WEAK VERSUS STRONG DOMINATION IN A MARKET WITH INDIVISIBLE GOODS

Alvin E. Roth and Andrew Postlewaite

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign
WEAK VERSUS STRONG DOMINATION IN A MARKET WITH INDIVISIBLE GOODS

Alvin E. Roth and Andrew Postlewaite

#240
WEAK VERSUS STRONG DOMINATION IN A MARKET WITH INDIVISIBLE GOODS

by

Alvin E. Roth

and

Andrew Postlewaite

University of Illinois

March 1975

This Research was partially supported by NSF Grant #GS-36 898
Abstract

The core of a market in indivisible goods can be defined in terms of strong domination or weak domination.

The core defined by strong domination is always non-empty, but may contain points which are unstable in a dynamic sense. However, it is shown that there are always stable points in the core, and a characterization is obtained.

The core defined by weak domination is always non-empty when there is no indifference, and has no instability problems. In this case, the core coincides with the unique competitive allocation.
In a recent paper, Shapley and Scarf [1974] consider a market with indivisible goods as a game without side payments. They define the core of this market in the usual way, is the set of allocations which are not strongly dominated, and prove that it is always non-empty. However, they show by an example that this result depends on the core being defined in terms of strong rather than weak domination; if the core is defined by weak domination, then there are markets for which the core is empty. The purpose of this paper is to point out several other implications of the differences between strong and weak domination in this type of market game.

The first consequence of using strong instead of weak domination is that it is possible for a point in the core of a market to be unstable in the following sense: an allocation \(x \) can be in the core of a given market, but not be in the core of the market in which \(x \) itself is the initial endowment. In a sense, \(x \) would be stable only until it was realized. There will always exist stable allocations in the core, however, and we will characterize the set of stable allocations in terms of prices.

Also, the relation between the core and the set of competitive allocations depends on whether strong or weak domination is used to define the core. When the core is defined by strong domination, it always contains the set of competitive allocations (which is itself non-empty, and can contain several allocations). The core can be strictly larger than the set of competitive allocations.

When the core is defined by weak domination, it can be empty. In particular the core need not contain the non-empty set of competitive allocations. However, it can be shown that if no trader is indifferent between any of the
goods on the market, then the core, defined by weak domination is always non-empty, and is in fact precisely equal to a unique competitive allocation.

If some traders are indifferent between some of the goods on the market, we observe another anomalous effect. It is possible for all traders to be indifferent between two allocations \(x \) and \(y \) and yet \(x \) is competitive and \(y \) is not. Further, we can have \(x \) competitive, \(y \) not competitive but have \(y \) weakly Pareto superior to \(x \).

Model

We consider markets with \(n \) traders, each of whom owns one indivisible good. (Shapley and Scarf suggest a market in houses as an appropriate example). The traders each have purely ordinal preferences over the goods, and no trader has any use for more than one item.

We will denote the initial endowment of the market by \(w = (w_1, \ldots, w_n) \) where \(w_i \) is the good brought to the market by the \(i \)th trader. We will denote this market by \(\mathcal{M}(w) \). Denote the \(i \)th trader's preference relation by \(R_i \), where \(w_j \succ_k R_i w_k \) means trader \(i \) likes the item \(w_j \) at least as well as \(w_k \). If \(w_j \succ_k R_i w_k \) but \(w_j \not\succ_k R_i w_j \), we say trader \(i \) **strictly prefers** \(w_j \) to \(w_k \), and denote this by \(w_j \succ_k R_i w_k \). If \(w_j \succ_k R_i w_k \) and \(w_k \succ_k R_i w_j \), we say that trader \(i \) is **indifferent** between \(w_j \) and \(w_k \) and write this as \(w_j \sim_k R_i w_k \). No trader **strictly prefers** owning several items to owning the most preferred of these items.

We define an **allocation** to be any permutation of the initial endowment \(w \). Thus the set of allocations represent the set of all possible trades which result in each trader having possession of exactly one item. A general allocation will sometimes be denoted as a vector \(x = (x_1, \ldots, x_n) \), where it is understood that the \(x_i \) can be mapped by some one-to-one mapping into the
corresponding \(w_j \).

Let \(N \) denote the set of all traders, and let \(S \) be a subset of \(N \). We say that an allocation \(x \) (strongly) dominates an allocation \(y \) if there is some coalition \(S \) such that

\[
\begin{align*}
(i) \quad & \{x_i | i \in S\} = \{w_j | i \in S\}, \text{ and} \\
(ii) \quad & x_i P y_i \quad \text{for all } i \in S.
\end{align*}
\]

The first condition says that the coalition \(S \) is effective for the allocation \(x \), and the second condition says that every member of \(S \) strictly prefers \(x \) to \(y \). Thus \(x \) (strongly) dominates \(y \) if, by trading among themselves, a coalition \(S \) could arrive at a reallocation \(x \) which is strictly preferred by each member of \(S \).

We define weak domination by relaxing condition (ii) to read

\[
\begin{align*}
(iia) \quad & x_i P y_i \quad \text{for all } i \in S, \text{ and } x_i P y_i \quad \text{for some } i \in S.
\end{align*}
\]

For whichever type of domination is under consideration, we define the core of the market to be the set of undominated allocations. Shapley and Scarf show that the core defined by strong domination is always non-empty, but the core defined by weak domination may be empty. (By definition, the core defined by weak domination is contained in the core defined by strong domination).

When no confusion will result, we will refer to the core defined by strong domination simply as the core, and to strong domination simply as domination.

SHAPLEY-SCARF EXAMPLE

Let \(N = \{1, 2, 3\} \) and \(w = (w_1, w_2, w_3) \). The preferences of the three players are as follows:
1) \(w_3^1 P_1 w_2^1 P_1 w_1 \)

2) \(w_1^1 P_2 w_2^2 P_2 w_3 \)

3) \(w_2^2 P_2 w_3^1 P_3 w_1 \)

The allocation \(x = (w_2^1, w_1^1, w_2^2) \) is clearly in the core of the market \(M(w) \), since it assigns to each trader his most preferred good. In fact, \(x \) is a competitive allocation in \(M(w) \) supported by prices \((1,1,1)\).

Let us now look at \(y = (w_2^1, w_1^1, w_2^2) \), which gives only trader 2 his most preferred good. It is straightforward to show that \(y \) cannot be competitive, but \(y \) is in the core of \(M(w) \), since it is undominated by any other allocation. In particular, the allocation \(x \) fails to dominate \(y \), because the coalition of traders \(\{1,3\} \) which strictly prefers \(x \) to \(y \) is not effective for \(x \) (i.e. they cannot accomplish \(x \) without trader 2), while the traders in the grand coalition \(\{1,2,3\} \) do not all strictly prefer \(x \) to \(y \) (since trader 2 gets \(w_1 \) in both allocations).

Nevertheless, the allocation \(y \) cannot be considered stable. For, suppose that the market \(M(w) \) should result in the allocation \(y \); i.e. suppose that the only trade should be the bilateral one between traders 1 and 2. As soon as the traders take possession of their new goods, a new market comes into being: the market \(M(y) \). And in this market, \(y \) is dominated by \(x \), since the coalition \(\{1,3\} \), which strictly prefers \(x \) to \(y \), is effective for \(x \). Simply stated, once the endowment of the market becomes \(y = (w_2^1, w_1^1, w_2^2) \), the coalition \(\{1,3\} \) is effective for the mutually profitable bilateral trade which results in the allocation \(x \).

The difficulty in the previous example arises from the fact that the allocation \(y \) is not in the core of the market \(M(y) \). We therefore define an allocation \(x \) to be stable if and only if it is in the core of \(M(x) \).
Theorem 1: There exists at least one stable allocation in the core of every market \(M(w) \).

Proof: Let \(y^0 \) be an allocation in the core of \(M(w) \). If \(y^0 \) is also in the core of \(M(y^0) \) then we are done. Otherwise there is an allocation \(y^1 \) which dominates \(y^0 \) in the market \(M(y^0) \). Since every trader can always choose to retain his endowment, we may assume that for each \(i \in \mathbb{N} \), \(y^1_i R_i y^0_i \); that is, every trader likes his assignment at \(y^1 \) at least as much as his assignment at \(y^0 \). But since \(y^1 \) dominates \(y^0 \) in the market \(M(y^0) \), there is some non-empty coalition which strictly prefers \(y^1 \) to \(y^0 \). This monotonicity, together with the finiteness of the market (and the transitivity of preferences), assures the finite convergence of the process: if \(y^1 \) is not in the core of \(M(y^1) \), then we find another allocation \(y^2 \) which dominates it, and in a finite number of steps we find a \(y \) which is in the core of \(M(y) \). To see that \(y \) is also in the core of \(M(w) \), note that if there were an allocation \(z \) which dominated \(y \) in the market \(M(w) \), then \(z \) would also dominate \(y^0 \), since \(y^1_i R_i y^0_i \) for every trader \(i \in \mathbb{N} \).

To see the relation between stability and prices, we define a price vector \(\pi \) to be any non-zero vector of non-negative numbers \(\pi = (\pi_1, \ldots, \pi_n) \), and we say that a pair \((\pi, x)\) where \(\pi \) is a price vector and \(x \) is an allocation is an efficiency equilibrium if, for every trader \(i \in \mathbb{N} \), \(x_j P_i x_i \) implies \(\pi_j > \pi_i \). Intuitively, if \((\pi, x)\) is an efficiency equilibrium, then the allocation \(x \) gives to each trader \(i \) the best good he could purchase at the prices \(\pi \), were he to sell his own assignment \(x_i \) at the price \(\pi_i \).

We say that an allocation \(x \) is efficient if there exists a price vector \(\pi \) such that \((\pi, x)\) is an efficiency equilibrium. 2/
Theorem 2: An allocation is stable if and only if it is efficient.

Proof: Let \(x \) be an efficient allocation. Then there exists a price vector \(\pi \) such that for all \(i \in N \), \(x \geq x_i \) implies \(\pi_i = \pi_i' \). Suppose now that \(x \) were not stable. Then \(x \) is not in the core of \(M(x) \), so there is an allocation \(y \) which dominates \(x \), via some coalition \(S \subseteq N \) in the market \(M(x) \). This means \(\{ y_i | i \in S \} = \{ x_i | i \in S \} \) and \(y \geq x \) for all \(i \in S \). Thus each trader in \(S \) strictly prefers some good \(y_i = x_j \), which implies \(\pi_j > \pi_i \). But since the good \(x_j \) must belong to some player \(j \in S \), we can construct a 'cycle' \(\pi_j > \pi_i > \ldots > \pi_k > \pi_j \), where \(i, j, k \) are all members of \(S \). This is plainly an absurdity, so we see that \(x \) must be stable if it is efficient.

Now let \(x \) be a stable outcome. Then no coalition of traders exists which, by trading among its members, could allocate to each a good which they strictly prefer to that which they receive in the allocation \(x \). Thus there must be some trader \(i \) who likes the good \(x_i \) at least as well as all other goods in the market (otherwise a profitable trade could be arranged among a coalition of players \(S = \{ i_1, i_2, \ldots, i_n \} \) such that trader \(i \) likes the good belonging to \(i_k \) at least as well as any good in the market). Reordering if necessary, let \(i = 1 \). Thus trader 1 has no desire to trade with any of the remaining traders.

Since no mutually profitable trade is possible among the remaining traders, there must be one among them who likes his good at least as well as all of those in the market except possibly that of trader 1. Rearranging if necessary so that this trader is number 2.

In this manner we can order all of the traders so that \(k \) likes his good at least as well as that of any higher numbered trader. If we let \(\pi \) be an.
price vector in which \(\bar{v} > \bar{v}' \), then \(\bar{v}, x \) is an efficiency equilibrium, and thus \(x \) is efficient.

It is also worth noting that the existence of unstable allocations in the core is a phenomenon that results directly from the indivisibility of goods in the market. In a market with divisible goods, and with continuous and insatiable preferences, every allocation (commodity bundle) in the core is stable.

To see this, consider an unstable allocation \(x \). The fact that \(x \) is not in the core of \(M(x) \) means that there is some allocation \(y \) which dominates \(x \) in the market \(M(x) \). As noted in the proof of Theorem 1, we may assume without loss of generality that each trader (weakly) prefers \(y_i \) to \(x_i \). However, in a market with a divisible commodity, this implies the existence of another allocation, \(y^1 \), such that every trader strictly prefers \(y^1 \) to \(x \). The allocation \(y^1 \) is produced from \(y \) by means of an infinitesimal transfer of the divisible good from traders who strictly preferred \(y \) to \(x \) to traders who were indifferent between \(y \) and \(x \).

Since every trader strictly prefers the allocation \(y^1 \) to \(x \), \(x \) is not in the core of any market \(M(y) \) (since the coalition of all traders is effective regardless of the initial endowment). So every allocation in the core of a market with divisible goods is stable.

Note also that since every unstable allocation can be weakly dominated (via the coalition of all traders), no allocation in the core defined by weak domination is unstable.

We will now examine the relationship of the core and the set of competitive allocations. We have:

Proposition: Any competitive allocation is in the core defined
by strong domination.

Proof: We first show that any competitive allocation can be thought of as being the result of top trading cycles. If we let \(S_1 \subseteq N \) be the set of traders whose initial goods are priced as high as any other good, then all traders in \(S_1 \) must be getting their most desired good. Furthermore, they must only be trading among themselves, since if any trader purchases the good of some trader outside \(S_1 \), then there must be outside of \(S_1 \) a trader \(k \) who receives the initial endowment of some trader in \(S_1 \), which costs more than \(w_k \). But this is clearly impossible at a competitive allocation. If \(S_2 \subseteq N - \{S_1\} \) is the set of traders whose goods are priced as high as any other good, excepting those owned by members of \(S_1 \), we see that traders in \(S_2 \) must be receiving their most desired goods (excluding those of \(S_1 \)). In this manner we will have \(N = S_1US_2U\ldots US_p \) with \(S_1 \) a top trading cycle for \(N \), \(S_2 \) a top trading cycle for \(N - (S_1) \) and so on. But Shapley and Scarf have shown that any allocation with this property is in the core defined by strong domination.

Lemma 1: If no trader is indifferent between any goods, then any competitive allocation weakly dominates any other allocation.

Proof: If \(x \) is any competitive allocation, we saw above that we can think of \(x \) as being arrived at via trading among top trading cycles \(S_1, S_2, \ldots, S_p \). Let \(y \) be any allocation. If \(y \neq x \) \(\forall i \in S_1 \), \(x \) dominates \(y \) via the coalition \(S_1 \) since \(S_1 \) is effective for \(x \) and \(x \) gives each member of \(S_1 \) its most preferred good. If \(y = x \) \(\forall i \in S_1 \) but \(y \neq x \) \(\forall i \in S_2 \), \(x \) dominates \(y \) via \(S_1US_2 \), since \(S_1US_2 \) is effective for \(x \) and \(x \) gives each \(i \) \(\forall i \in S_1US_2 \) and \(x \) \(\forall i \in S_1US_2 \) (again since both \(x \) and \(y \) give \(S_1 \) its most preferred good and \(x \) gives \(y \) its most preferred of what was left). Proceeding in this manner we see that \(x \) weakly dominates all other allocations.
Theorem 3: If no trader is indifferent between any goods, then the core defined by weak domination is always non-empty, and contains exactly one allocation. This allocation is the unique competitive allocation.

Proof: We know that under the conditions above a competitive allocation weakly dominates every other allocation, (competitive or not). Thus we need only show that no allocation weakly dominates a competitive allocation.

Let x be a competitive allocation. Associated with x are coalitions $S_1,...,S_p$ (top trading cycles) which are effective for x, and prices $\pi_1,...,\pi_N$ which are constant for each S_j and such that $i < j$ implies $\pi_i \geq \pi_j$.

Suppose y weakly dominates x via some coalition T. Then
$\{y_i | i \in T\} = \{w_i | i \in T\}$, $y_i R_1 x_i$ for all $i \in T$, and $y_i P_1 x_i$ for at least one $i \in T$.

Let j be the smallest integer such that $S_j \cap T \neq \emptyset$. Since x is competitive, if $y_i P_1 x_i$, for $i \in S_j \cap T$, then y_i must have sold at a higher price than x_i. But this implies that y_i must have been traded in some S_k for $k < j$, and hence must have been the initial endowment of some member m of S_k. But T is effective for y, so $m \in T$. This contradicts our assumption that j was the smallest integer such that $S_j \cap T \neq \emptyset$.

Thus it is false that $y_i P_1 x_i$ for $i \in S_j \cap T$, and since there is no indifference, and $y_i R_1 x_i$ for all $i \in T$, it must be that $y_i = x_i$ for all $i \in S_j \cap T$.

If we assume the $S_1,...,S_p$ are minimal cycles, then it follows that $S_j \cap T$, and $T - S_j$ is effective for y.

Continuing in the same manner, we see that for all $i \in T$, $x_i = y_i$, contradicting the assertion that y dominates x.
If we had merely wanted to show that there was a unique competitive allocation, we would have done so by using the fact that every competitive equilibrium can be generated using top trading cycles.

These results partially clarify a question Shapley and Scarf raise: Can there be non-competitive points in the core defined by strong domination which are not weakly dominated by a competitive allocation? If there is no indifference, Lemma 1 says that a competitive allocation weakly dominates everything else. Thus if there exists a market of this type with allocations in the core defined by strong domination which are not weakly dominated by a competitive allocation, there must be indifference in some peoples preferences.

The effect of not ruling out indifferences in traders' preferences can be shown by the following examples:

Example 1: A market in which allocations x and y are completely indifferent for all traders and x is competitive but y is not.

Let there be four traders with the following preferences over the four goods.

\[
P_1: \quad w_{2,1}w_{4,1}w_{1,1}w_3 \\
P_2: \quad w_{1,2}w_3w_{2,2}w_{2,4} \\
P_3: \quad w_{1,3}w_{4,2}w_{2,3}w_3 \\
P_4: \quad w_{1,4}w_3w_{4,4}w_{4,2}
\]

Then it is easy to verify that \(x = (w_2, w_1, w_4, w_3) \) is competitive where \(\pi_1 = \pi_2 > \pi_3 = \pi_4 \) and that all traders are indifferent between x and y = \((w_4, w_1, w_2, w_3) \). But y cannot be competitive since \(\pi_1 = \pi_2 = \pi_3 = \pi_4 \) in any price system that makes y possible. But trader 4 would not choose
but rather w_1 is this situation. Note that there is another competitive allocation $z = (w_4, w_3, w_2, w_1)$ supported by prices $\pi_1 = \pi_4 > \pi_3 = \pi_2$ which weakly dominates both x and y via the coalition $\{1, 4\}$. Perhaps even stranger is the second example,

Example 2: A market in which x is competitive, y is not competitive and y is weakly Pareto superior to x.

Let there again be four traders with the following preferences, which are the same as the previous example except for trader 3.

- P_1: $w_2 w_1 w_4 P_1 w_1 P_1 w_3$
- P_2: $w_1 P_2 w_3 P_2 w_2 P_2 w_4$
- P_3: $w_1 P_3 w_2 P_3 w_4 P_3 P_3 w_3$
- P_4: $w_1 P_4 w_3 P_4 w_4 P_4 w_2$

Again $x = (w_2, w_1, w_4, w_3)$ is competitive at prices $\pi_1 = \pi_2 > \pi_3 = \pi_4$ and $y = (w_4, w_1, w_2, w_3)$ cannot be competitive. But now we see that traders 1, 2, and 4 are indifferent between x and y, but that trader 3 prefers y to x.

Again, however, $z = (w_4, w_3, w_2, w_1)$ is competitive at prices $\pi_1 = \pi_4 > \pi_3 = \pi_2$ and z weakly dominates both x and y via $\{1, 4\}$.

That a competitive allocation with indivisible commodities may not be Pareto optimal is not new; Emmerson [1972] has shown an example of this phenomenon. But in Emmerson's example the Pareto optimal allocation which dominates the competitive allocation is itself competitive, whereas it is not in our example.
1 The assumption that no trader prefers owning several items to owning the most preferred is solely for convenience of notation. Since each trader begins with one item, if each prefers something to nothing, individual rationality implies each trader ends up with one item. Thus the relation of several items to single items is superfluous.

2 This terminology is borrowed from Shitovitz [1973].

3 This construction is the method of 'top trading cycles' due to D. Gale, discussed in Shapley and Scarf [1974].

4 This ordering constitutes a 'top trading cycle' in which each cycle consists of exactly one player. See previous footnote.

