Optimal Contracts With Costly State Verification: The Multilateral Case

Stefan Krasa
Department of Economics

Anne P. Villamil
Department of Economics

The Library of the
MAY 16 1991
University of Illinois
of Urbana-Champaign

Bureau of Economic and Business Research
College of Commerce and Business Administration
University of Illinois at Urbana-Champaign
Optimal Contracts With Costly State Verification: The Multilateral Case

Stefan Krasa
Anne P. Villamil

Department of Economics

Address of the authors: Department of Economics, University of Illinois, 1206 South Sixth Street, Champaign, IL 61820.
We gratefully acknowledge financial support from the National Science Foundation (SES 89-09242).
Optimal Contracts With Costly State Verification: The Multilateral Case

Stefan Krasa Anne P. Villamil*

First Draft: January 1991 This Draft: April 1991

Abstract

The purpose of this paper is to derive the structure of optimal multilateral contracts in a costly state verification model with multiple agents who may be risk averse and need not be identical. We consider two different verification technology specifications. When the verification technology is deterministic, we show that the optimal contract is a multilateral debt contract in the sense that the monitoring set is a lower interval. When the verification technology is stochastic, we show that transfers and monitoring probabilities are decreasing functions of wealth. The key economic problem in this environment is that optimal contracts are interdependent. We are able to resolve this externality problem using abstract measure theoretic tools.

*Address of the authors: Department of Economics, University of Illinois, 1206 South Sixth Street, Champaign, IL 61820

We gratefully acknowledge financial support from the National Science Foundation (SES 89-09242).
1 Introduction

In the Arrow-Debreu model complete insurance markets exist and agents are able to attain unconstrained Pareto efficient consumption allocations. In addition, the structure of the set of financial securities that support these allocations is indeterminate (i.e., the Modigliani-Miller Theorem states that a firm’s debt-equity ratio is irrelevant when there are no market imperfections). Casual observation and systematic study, however, suggest that firms have determinate debt-equity ratios and that insurance markets are incomplete. The costly state verification model, proposed by Townsend (1979), provides one plausible explanation of these outcomes that is consistent with (constrained) Pareto efficient behavior. In particular, Townsend introduces an information friction into the Arrow-Debreu model with two essential elements. First, agents have asymmetric information. That is, all agents know the (common) distribution of random variables (i.e., endowments) in the economy, but the realization of a particular agent’s random variable is costlessly observed only by the agent himself. Second, a technology exists that can be used to publicly announce the realization to all agents ex post, but it is costly to use the verification technology. This model has proved useful for analyzing two general classes of economic problems: The case where the verification technology is deterministic and the case where it is stochastic.

When costly state verification is deterministic (i.e., monitoring occurs with either probability one or zero), Townsend proves that the optimal contract that supports (information and resource) constrained Pareto efficient consumption allocations resembles debt because the monitoring set is a “lower interval.” That is, it is optimal to monitor all announcements below a certain cut-off point, and these outcomes are interpreted as states of costly (but efficient) bankruptcy. All announcements above the cutoff point are not monitored, and these outcomes are interpreted as states of solvency. The lower interval result establishing the optimality of debt is important because
it is consistent with many stylized facts observed in actual markets.1 For example, it is consistent with the prevalent issue of debt by firms, its payment characteristics, and key institutional features of bankruptcy procedures.2

Unfortunately, existing lower interval results have been established only under several restrictive assumptions: Agents are either assumed to be risk neutral or their trades are exogenously restricted to be symmetric, separable in endowments, and bilateral. Townsend (1979, p. 281) notes that these restrictions are "unpleasant" because they are motivated by technical, rather than economic considerations. Further, they may preclude optimal risk sharing arrangements even in two-agent contracting problems.3 More fundamentally, however, Boyd and Prescott (1987) argue that coalitional structures are important for understanding many economic phenomena.4 For example, Boyd and Prescott (1986) study explicitly multilateral contracts which (p. 217) "condition the consumption allocations of [agents] on group experience as well as on observables for individual(s)." Their model (with adverse selection and two types of agents) gives rise to welfare-improving financial intermediary coalitions which exhibit key characteristics displayed by actual intermediaries. Boyd and Prescott (p. 231) note: "An extension which is not so easy [in their model] is to allow for more than two agent or project types." As we discuss in Section 5, such an extension may prove to be straightforward in our framework.

1Lower interval results are also obtained by Gale and Hellwig (1985), but they assume that only the agent who pays for monitoring gets the information. The distinction between public and private monitoring does not matter in a two agent economy, but it is important when there are many agents. See Williamson (1986) and Krasa and Villamil (1990) for multiple agent costly state verification environments with private monitoring reports.

2We discuss relevant aspects of US bankruptcy procedures in Section 5.

3Townsend (1979, p. 281) provides an example where two agents have utility functions of the form $u(c) = e^{\alpha+1}/(\alpha + 1)$, where $-1 < \alpha < 0$. The optimal symmetric transfer function implied by this common utility specification is not separable in endowments as required by the exogenous restriction.

4Wilson (1968) also argues that group, i.e., syndicate, structures are important in finance and insurance problems.
The second class of problems that the costly state verification model has proved useful for analyzing are environments where the verification technology is stochastic (i.e., monitoring need not occur with probability one). In this case the optimal contract that supports (information and resource) constrained Pareto efficient consumption allocations specifies transfer and monitoring procedures that resemble those commonly used by insurance companies and tax revenue collection agencies. That is, the optimal contract has transfers and monitoring probabilities that are monotonically decreasing functions of an agent's reported wealth. Border and Sobel (1987) prove this result in a model with stochastic monitoring, two risk neutral agents (one having a random endowment of wealth), and information conditions that are identical to those in Townsend's model. However, Border and Sobel note (p. 533) that their arguments "use risk neutrality in an essential way" and that "it is not known if the monotonicity result ... extends to the risk averse case." This open question seems particularly important for insurance applications of the model as risk aversion is typically thought to be the driving force behind most insurance arrangements. Further, we argue in Section 4 that the multilateral framework is important for many (costly) auditing problems.

The monotonicity result establishing the optimality of transfers and monitoring probabilities that are monotonically decreasing functions of agents' wealth reports is important because it is consistent with the following stylized facts. In insurance markets, a large loss can be viewed as a low wealth realization. Thus, a monotonic contract implies that policy holders receive higher transfers when they claim larger losses, and the probability of being audited is correspondingly higher for such reports. Border and Sobel (1987, p. 531) note that the tax interpretation of the monotonicity result is "more subtle." Taxes can be viewed as negative transfers and low wealth reports can be viewed as high itemized deduction claims. Thus, the monotonicity result implies that larger (total) tax payments are associated with larger
wealth reports, but the probability of a tax audit is decreasing in reported wealth. The key insight is that a low wealth claim, not low wealth itself, makes a tax audit more likely.

The purpose of this paper is to generalize the costly state verification model to resolve the difficulties noted by Townsend and Border and Sobel that preclude its application to economic problems involving risk aversion and/or multiple agents (e.g., financial intermediation, insurance, and tax problems). Thus, we specify a model with multiple asymmetrically informed agents who have access to a costly state verification technology. We study the nature of contracts that support (information and resource) constrained Pareto efficient consumption allocations in the model when contracts are not restricted a priori to be symmetric, bilateral, or separable in endowments, and agents may be risk averse. We show that even in this more general environment, “debt-like” securities remain optimal when the monitoring technology is deterministic (i.e., the optimal multilateral contract has a lower interval), and transfer functions and monitoring probabilities remain monotonically decreasing functions of wealth when the monitoring technology is stochastic.

We use abstract measure theoretic arguments to derive the form of the optimal contracts in our more general economic setting. The key problem when agents are risk averse and contracts are explicitly multilateral is that non-trivial interdependencies among agents exist. Thus, strong measure theoretic tools such as the Isomorphism Theorem (cf., Section 3) and Lusin’s Theorem (cf., Section 4) appear to be necessary to solve this interdependency problem. These tools allow us to change contracts in such a way that only the expected utility of one agent is affected while the expected utility of all other agents remains the same. We are then able to show that given any arbitrary initial contract, unless we start with lower intervals as monitoring sets (when monitoring is deterministic), or monotonically decreasing transfer and monitoring functions (when monitoring is stochastic), at least one agent can be made better off, which contradicts the (constrained) Pareto
optimality of the arbitrary initial contract. These results are stated formally in Theorem 1, and Theorem 2 and Corollary 1, respectively.

2 The Model

Consider a two period exchange economy with finitely many individuals indexed by \(i = 1, \ldots, n \). Each trader is described by a von Neumann-Morgenstern utility function, \(u_i \), which is defined over second period consumption, \(c_t \), and a random endowment, \(X_i \). Let \(u_i \) be concave and monotonically increasing in consumption. Further, assume that the \(X_i \) are independent random variables. Denote the particular realization of \(X_i \) by \(x_i \), let \(F_i \) be the distribution of \(X_i \), let \(F^n \) be the joint distribution of \(X_1, \ldots, X_n \), and assume that all distributions are non-atomic. Finally, to ensure non-negative consumption, assume that the support of \(F_i \) is contained in \([m, \infty)\), where \(m > 0 \). The information conditions in our model are the same as those in the Townsend (1979, p. 281) costly state verification model. Each agent \(i \) privately observes the realization of his/her endowment, \(X_i \), ex-post, but all agents have access to a costly state verification technology that can be used to publicly announce the realization to all other agents.

Let \(\phi_i(\cdot) \) be the cost incurred by agent \(i \) from using the verification technology. Denote by \(t_i(x_1, \ldots, x_n) \) the net transfer function of agent \(i \), which describes the payment between the coalition and each agent \(i \). This payment may be positive (indicating a state-contingent payment from the coalition to the agent), negative (indicating a payment by the agent to the coalition), or zero. Throughout our analysis we assume that agents’ verification costs are an arbitrary positive function of the transfer payments, \(\phi_i(t_i(\cdot)) \). Because transfers need not be identical across agents, verification

\footnote{A distribution is non-atomic if every single point has probability zero. This follows automatically if the distribution has a density.}

\footnote{Verification is perfect in the sense that after monitoring occurs the true endowment is publicly reported without error.}
costs may differ as well. Townsend (1979, p. 269) considers two verification cost specifications, and our cost function includes both as special cases. In his first case, the verification cost is a fixed constant, and hence independent of the actual realization. In the second case, the verification cost of agent i depends on the transfer t_i, where the costs are strictly monotonic.

Resources are allocated in this economy via binding contracts. At time zero, agents have the opportunity to write contracts to provide for consumption next period. The structure of optimal contracts that emerge depends on the specification of agents' preferences, the distributions of random variables, the verification technology, and the nature of information in the economy.

Three alternative ex-post information conditions are possible:

- When $\phi_i(t_i(\cdot)) \equiv 0$ for $i = 1, \ldots, n$, there is costless, and consequently complete public information about the realization of each X_i ex post. When agents have identical utility functions and weights and if the X_i are identically distributed, it follows that

\[c_i(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i, \]

for all $i = 1, \ldots, n$. See Caspi (1978, p. 270, Theorem 2) for a formal proof of this result for the core.

- When $\phi_i(t_i(\cdot)) \equiv \infty$ for $i = 1, \ldots, n$, information is infinitely costly, so no verification is undertaken and information about each X_i remains completely private. The optimal multilateral contract which is individually rational in this case is autarky.

- In the remainder of the paper, we characterize the nature of optimal multilateral contracts under deterministic and stochastic verification, respectively, when information need not be entirely private nor public.\(^7\)

\(^7\)Townsend (1979, p. 273) provides an example which indicates that non-trivial solutions exist in the costly state verification model with deterministic monitoring. Townsend (1988) contains a systematic numerical analysis of the costly state verification model with both deterministic and stochastic monitoring.
3 The Case of Deterministic Verification

In this section we study the form of Pareto efficient multilateral contracts that arise among agents under deterministic monitoring. Note that transfers, $t_i(\cdot)$, can be contingent only on endowment realizations of agent i which are publicly verified. In private information states, all transfers must be non-contingent. Let S_i denote the set of all announced realizations of X_i for which verification occurs, and let S_i^c denote the complement of S_i. We begin by defining a multilateral contract for this economy.

Definition 1. A multilateral contract with deterministic verification for each agent $i = 1, \ldots, n$ is a pair (t_i, S_i), where $t_i(x_1, \ldots, x_n)$ is a net-transfer function for agent i from \mathbb{R}^n into \mathbb{R} and S_i is a set of endowment realizations announced by agent i for which monitoring occurs (with probability one). If agent i is verified, the endowment becomes public information.

We restrict the analysis to the class of incentive compatible contracts which we define as follows:

Definition 2. A collection of multilateral contracts (t_i, S_i) with deterministic verification is incentive compatible if $S_i = \tilde{S}_i$ and $t_i(\cdot) = \tilde{t}_i(\cdot)$ for every $i = 1, \ldots, n$, where (t_i, S_i) denotes the pre-state contractual commitment and $(\tilde{t}_i, \tilde{S}_i)$ denotes the post-state outcome.

Definition 2 indicates that under an incentive compatible contract, agents do not misrepresent their private information (i.e., pre-state commitments are fulfilled ex post). Townsend (1988, pp. 416-418) uses a revelation principle argument to prove that incentive compatibility can be imposed without loss of generality. The following conditions generalize the incentive compatibility specification of Lemma 5.1 in Townsend (1979):

\[(IC1) \quad x_i \mapsto t_i(x_1, \ldots, x_i, \ldots, x_n) \text{ is constant on } S_i^c, \text{ for a.e. } x_j, j \neq i. \]
(IC2) \(t_i(x_1, \ldots, x_i, \ldots, x_n) - \phi_i(t_i(\cdot)) \geq t_i(x_1, \ldots, y, \ldots, x_n) \); for a.e. \(x_i \in S_i \), for every \(y \in S_i \), and for a.e. \(x_j, j \neq i \).

IC1 says that when agent \(i \)'s endowment announcement is not verified (ceteris paribus), his/her net-transfer is constant. This follows from the fact that agent \(i \)'s transfer cannot depend on private information. IC2 says that it is (at least weakly) optimal for agent \(i \) to request verification when the endowment realization is in the verification set. Thus, it ensures that agent \(i \) requests verification when \(x_i \in S_i \). To avoid distraction from the main point of our analysis (i.e., the structure of optimal contracts) we refer the reader to Section 5 for a discussion of implementation, alternative specifications, and institutional interpretations of the incentive constraints.

We now state an information constrained optimization problem whose solutions characterize optimal multilateral contracts. The objective is to choose Pareto efficient net transfer functions, \(t_i(X_1, \ldots, X_n) \), and sets of endowment realizations for which verification occurs, \(S_i \), to maximize a weighted average of agents' utilities, subject to feasibility and information constraints. The \(\lambda_i \) denote weights on agents' utility functions.

Problem 3.1. Choose \(t_i \) and \(S_i \) for \(i = 1, \ldots, n \) to maximize

\[
\sum_{i=1}^{n} \lambda_i \int u_i [c_i(x_1, \ldots, x_n)] \, dF^n(x_1, \ldots, x_n),
\]

subject to

\[
0 \leq c_i \leq x_i + t_i(x_1, \ldots, x_n) - \phi_i(t_i(\cdot)) \text{ a.e. for all } i,
\]

\[
\sum_{i=1}^{n} t_i \leq 0 \text{ a.e.},
\]

\(t_i \) is incentive compatible for every \(i \)

\(S_i \) is a measurable set for every \(i \).

The optimal multilateral contract maximizes the expected utility of all agents (3.1), subject to: (3.2) a budget constraint for each agent which holds
almost everywhere; (3.3) an aggregate feasibility constraint which holds almost everywhere; (3.4) incentive-compatibility conditions IC1 and IC2; and (3.5) a standard measurability condition.

The purpose of this section is to characterize the nature of optimal contracts when verification is deterministic. Our main result is that (constrained) Pareto efficient multilateral contracts have lower interval monitoring sets, except for nullsets. That is, we show that there exists a \(\gamma_i \) such that \(S_i = [m, \gamma_i] \) for all \(i \), except for a set of measure zero, where the lower interval may be trivial. Because monitoring is deterministic, it follows immediately from this result that the transfer function is constant for all \(x_i \in S_i^c \) (for fixed \(x_j, j \neq i \)). As we noted at the outset, Townsend (1979, p. 283) proves a related lower interval result under several exogenous restrictions which he describes as “unpleasant” because they are necessary for technical reasons, but are not motivated by economic considerations. Specifically, he assumes:

(i) all transfers and verification costs are symmetric;
(ii) all trades are bilateral; and further
(iii) when both agents are verified, the transfer function is separable in endowment realizations (i.e., in our notation \(t(x_1, x_2) = t_1(x_1) + t_2(x_2) \)).

Before beginning our formal analysis we describe the relationship between our result and Townsend’s, and give an overview of the proof of Theorem 1.

Townsend specifies an optimization problem which involves the maximization of a weighted average of utilities, subject to information and resource constraints. However, instead of characterizing \(t_i \) and \(S_i \) directly as in our Problem 3.1, Townsend reformulates an analog of Problem 3.1 as a standard constrained maximization problem. The key difference between our approaches is that the maximizer in his reformulated problem is a function of only one variable. This follows from restrictions (i) and (iii), as they immediately imply that the transfer function is of the form

\[t(x_1, x_2) = t_1(x_1) + t_2(x_2) \]
\[t(x_1, x_2) = \hat{t}(x_1) + \hat{t}(x_2). \]

Hence, under these restrictions it is only necessary to choose a one-dimensional transfer function, \(\hat{t} \). Townsend considers the multilateral case (pp. 278-283) but reduces it to a similar one-dimensional problem by using (ii). This approach has two limitations. First, it precludes certain types of agent heterogeneity (i.e., (i) rules out transfer and cost function differences). Second, even when agents' transfer and cost functions are identical, restrictions (ii) and (iii) preclude certain economically plausible risk-sharing arrangements as noted in the Introduction.

In contrast, we characterize the solutions to Problem 3.1 directly. The maximizers in our problem are explicitly multi-dimensional transfer functions and verification sets, where transfer and verification cost functions need not be symmetric. We use abstract measure theoretic arguments to obtain our results, and these mathematical tools appear to be essential in our more general setting. We proceed as follows: Our main result in this Section is Theorem 1, which establishes that in a multi-agent economy with deterministic costly state verification, all solutions to Problem 3.1 have lower interval verification sets (except for sets of measure zero). We prove the Theorem indirectly by assuming that there exists some arbitrary initial contract \((t_i(\cdot), S_i) \) which is optimal but is not a lower interval. We then define a measure preserving mapping, which we denote by \(g \), which allows us to transform the transfer functions, monitoring sets, and monitoring costs associated with the initial contract into an alternative contract \((t'_i, S'_i) \) such that the new contracts are feasible, incentive compatible, strictly increase the expected utility of at least one agent, and leave the expected utility of all other agents unaffected. This contradicts the optimality of the original (non-lower monitoring interval) contract, hence it establishes the optimality of contracts with lower monitoring intervals.

Roughly speaking, we contradict the optimality of non-lower intervals in the following way. We move a part of the original (non-lower interval)
monitoring set of one of the agents (say agent one) to the left, mapping it into a set where there was previously no state verification. Such sets (with positive measure) always exist if the initial contract was not a lower monitoring interval to begin with, and we construct these sets to be compact. The existence of a measure preserving one-to-one mapping, \(g \), between these two sets follows from the Isomorphism Theorem which we state below. The Isomorphism Theorem says that measure preserving one-to-one mappings exist between all separable and complete measure spaces (where both spaces have the same measure). Since compact subsets of \(\mathbb{R} \) are separable and complete (in the induced topology) the Theorem can be applied.

Feasibility and incentive compatibility of the alternative contract are straightforward to show because \(g \) is measure preserving and one-to-one. It is also reasonably straightforward to show that the expected utility of agent one increases by a Rothschild and Stiglitz increasing risk argument. Townsend (1979, p. 288) uses a similar argument in the proof of Proposition 3.2, which is his lower-interval result for two-agents, one risk neutral, with \(\text{fixed} \) monitoring costs. Thus, the reader may wonder why we use abstract measure theory to obtain our results. Recall that the remaining and key step in the proof is to show that the utility of all other agents does not decrease under the alternative contract. In Townsend’s proof (which does not require measure theory), this follows immediately from risk neutrality and fixed verification costs.\(^9\) In our setting with multiple risk-averse agents and arbitrary verification cost functions his argument breaks down exactly at this step because all contracts are \textit{interdependent}. Hence without an additional argument, it is not possible to avoid affecting other agents’ expected utility nor to see in

\(^9\)Townsend (1979, p. 287, Proposition 3.1) proves a second lower interval result for a \textit{bilateral} contracting problem where agents may be risk averse and the monitoring cost function is convex with \(\phi_i(0) < 1 \). However, the Euler equation argument he uses to obtain his result depends crucially on restrictions (i), (ii), and (iii). It does not appear to us that this Euler equation approach can be readily extended to the multilateral case because of the interdependency problem.
which direction their utilities change. Measure preserving mappings impose
the necessary structure to overcome this problem.

We begin our analysis by defining a measure preserving mapping. As
indicated above, this concept is crucial for the arguments that follow.

Definition 3. Let \((Y_i, \beta_i, \mu_i), i = 1, 2\) be two measure spaces and let \(g: Y_1 \rightarrow Y_2\) be a measurable function. For every \(A \in \beta_2\) define \(gA = \{ga: a \in A\}\). Then \(g\) is measure preserving iff \(\mu_1(g^{-1}A) = \mu_2(A)\).

The following Remark is an immediate consequence of Definition 3.\(^{10}\)

Remark 1. Let \(f\) be an integrable function on \(Y_2\), and let \(g\) be a measure preserving transformation as defined above. Then \(f \circ g\)\(^{11}\) is integrable and the following holds:

\[
\int_{Y_2} f(x) \, d\mu_2(x) = \int_{Y_1} f(g(x)) \, d\mu_1(x).
\]

Remark 1 corresponds to Theorem 1.6.12 of Ash (1972) or Remark 28.14 of Parthasarathy (1977). For completeness we give the proof in the Appendix. This Remark is essential for the proofs of our main results as it establishes that whenever we change the payoffs to one agent in a measure preserving way (i.e., choose a measure preserving function \(g\)), then the expected utility from an arbitrary initial contract \(t_i(X_1, \ldots, X_n)\) and a transformed alternative contract \(t_i(g(X_1)), X_2, \ldots, X_n\) is the same for all other agents.

\(^{10}\)Consider the following example of a measure preserving mapping. Let \(Y_1 = [0, 1] \cup 2\) and \(Y_2 = [1, 2]\). On both sets consider the standard Lebesgue measure. Then the function

\[
g(x) = \begin{cases}
 x + 1 & \text{if } x \in [0, 1]; \\
 1 & \text{if } x = 2;
\end{cases}
\]

is measure preserving in this example (though not a one-to-one mapping).

\(^{11}\)\(f \circ g\) is the composition of \(f\) and \(g\), i.e. \(f \circ g(x) = f(g(x))\).
To construct measure preserving mappings we use the Isomorphism Theorem from measure theory (cf., Parthasarathy (1977) Proposition 26.6).

Isomorphism Theorem. Let $Y_i, i = 1, 2,$ be complete and separable metric spaces, and let μ_i be non-atomic Borel measures on Y_i such that $\mu(Y_1) = \mu(Y_2) > 0$. Then the two measure spaces are isomorphic, i.e., there exist two sets of measure zero, $N_i, i = 1, 2,$ and there exists a measure preserving transformation, $g: Y_1 \setminus N_1 \to Y_2 \setminus N_2,$ whose inverse exists and is also measure preserving.12

We now state our main result concerning the nature of optimal contracts in a multi-agent economy with deterministic costly state verification.

Theorem 1. Assume that the utility functions of all agents are twice continuously differentiable and that $u'' < 0$. Let the endowments of the agents be described by independent random variables X_i for all $i = 1, \ldots, n$. Then all solutions to Problem 3.1 have lower interval verification sets, except for sets of measure zero (i.e., there exists a γ_i such that $S_i \setminus \{X_i: X_i < \gamma_i\}$ has measure zero.)13

Proof. We proceed indirectly. Without loss of generality, assume that the monitoring set of agent one is not a lower interval. Let μ be the distribution of the endowment of agent one. Then there exist compact sets $K_i, i = 1, 2$ with positive measure, and such that $k_1 < k_2$ for all $k_i \in K_i$ and such that $K_1 \subset \mathbb{R} \setminus S_1$ and $K_2 \subset S_1$. By regularity14 and non-atomicity of the measure, we can assume that $\mu(K_1) = \mu(K_2)$. Note that the K_i are separable and complete because they are compact. Thus, by the Isomorphism Theorem

12"\" denotes set theoretic subtraction.

13"Δ" denotes the symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$, for arbitrary sets A and B.

14Regularity means that $\mu(A) = \inf\{\mu(O): O \supset A, O \text{ open}\} = \sup\{\mu(F): F \subset A, F \text{ closed}\}$. Our measure μ is regular, since every probability measure on a metric space is regular (cf., Parthasarathy (1977) Proposition 19.13).
there exists a measure preserving mapping \(h: K_1 \setminus N_1 \to K_2 \setminus N_2 \) such that \(h^{-1} \) exists and is also measure preserving, where \(N_i, i = 1, 2 \) are sets of measure zero. Note that \(h \) can be extended to \(\mathbb{R} \) by

\[
g(x) = \begin{cases} h(x) & \text{if } x \in K_1 \setminus N_1; \\ h^{-1}(x) & \text{if } x \in K_2 \setminus N_2; \\ x & \text{otherwise.} \end{cases}
\]

Clearly, \(g \) is again measure preserving.

Recall that \(t_i(x_1, \ldots, x_n) \) are transfer functions associated with some arbitrary initial contract, where the monitoring set of agent one is not a lower interval. Thus for every agent \(i \), now define new transfers \(t'_i \) by

\[
t'_i(x_1, \ldots, x_n) = t_i(g(x_1), x_2, \ldots, x_n).
\]

Further, define the new monitoring set of agent one by \(S'_1 = g^{-1}(S_1) \) and \(S'_i = S_i \) for \(i = 2, \ldots, n \). The strategy of the proof is to show the following:

(i) The transfer functions associated with the new contracts \((t'_i(\cdot), S'_i) \) are feasible; (ii) the new contracts are incentive compatible; (iii) the utility of all other agents \(i \neq 1 \) does not change; and (iv) the utility of agent one strictly increases. This gives the contradiction to the assumed optimality of a non-lower interval contract. (i)-(iv) are proved as follows:

(i) Let \(A = \{(x_1, \ldots, x_n) : \sum_{i=1}^n t_i(x_1, \ldots, x_n) > 0\} \). Define \(\hat{g} \) on \(\mathbb{R}^n \) by \((x_1, \ldots, x_n) \mapsto (g(x_1), x_2, \ldots, x_n) \). Clearly, \(\hat{g} \) is measure preserving with respect to the joint distribution of the \(X_i \). Then, \(\hat{g}^{-1}A = \{(y_1, \ldots, y_n) : g(y_1) = x_1; y_i = x_i \text{ for all } i > 1, \text{ and } \sum_{i=1}^n t_i(x_1, \ldots, x_n) > 0\} = \{(y_1, \ldots, y_n) : \text{such that } \sum_{i=1}^n t_i(g(y_1), y_2, \ldots, y_n) > 0\} \). Since \(\hat{g} \) is measure preserving, (3.3) implies that \(\hat{g}^{-1}A \) has measure zero. Hence,

\[
\sum_{i=1}^n t_i(g(x_1), x_2, \ldots, x_n) \leq 0 \text{ a.e.}
\]

which proves feasibility.
(ii) Incentive compatibility requires IC1 and IC2 to be fulfilled. IC1 is obvious. Let \(\tilde{\ell}_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \) denote the constant payment to agent \(i \) in non-monitoring states. We first show that IC2 is satisfied for \(i \geq 2 \), (the argument is similar to that given for (i)). Define \(\tilde{g} \) as above, but now let

\[
A = \{(x_1, \ldots, x_n): t_i(g(x_1), \ldots, x_n) - \phi_i(t(g(x_1), \ldots, x_n)) < \tilde{\ell}_i(x_1, \ldots, x_n)\}.
\]

Then it follows that

\[
\tilde{g}^{-1}A = \{(x_1, \ldots, x_n): t_i(g(x_1), \ldots, x_n) - \phi_i(t(g(x_1), \ldots, x_n)) < \tilde{\ell}_i(g(x_1), \ldots, x_n)\}.
\]

Since \(\tilde{g} \) is measure preserving, IC2 implies that \(\tilde{g}^{-1}A \) has measure zero. Hence IC2 holds for the new contract for all agents \(i \geq 2 \). It remains to give the proof for \(i = 1 \). This, however, follows immediately from the argument for \(i > 2 \) and the fact that

\[
\tilde{\ell}_1(x_2, \ldots, x_n) = \sup_{y_1 \in S^c_1} t_1(g(y_1), \ldots, x_n)
= \sup_{y_1 \in S^c_1} t_1(y_1, \ldots, x_n) = \tilde{\ell}_1(x_2, \ldots, x_n).
\]

because \(g \) is one-to-one. This proves (ii).

(iii) Apply Remark 1 and Fubini’s Theorem (cf., Ash (1972), Theorem 2.6.4). Let \(c'_i \) denote consumption under the new contract, and let \(c_i \) denote consumption under the original contract for agent \(i \). Note that for every \(i \neq 1 \) we have \(c_i(g(x_1), x_2, \ldots, x_n) = c'_i(x_1, \ldots, x_n) \). We must show that

\[
\int u_i(c_i)\,dF^n = \int u_i(c'_i)\,dF^n,
\]

which means that the expected utilities are the same. This follows from Fubini’s Theorem since

\[
\int \cdots \int u_i(c_i(g(x_1), x_2, \ldots, x_n))\,dF_1(x_1)dF_2(x_2)\ldots dF_n(x_n)
= \int \cdots \int u_i(c_i(x_1, x_2, \ldots, x_n))\,dF_1(x_1)dF_2(x_2)\ldots dF_n(x_n).
\]

Equality follows from Remark 1, i.e., the fact that \(g \) is measure preserving. This proves (iii).

(iv) For given \((x_2, \ldots, x_n) \) define

\[
f(x_1) = t_1(x_1, \ldots, x_n) - \phi_1(t_1(x_1, \ldots, x_n)).
\]
Because of IC1 and IC2, transfers (net of monitoring costs) in monitoring states are always higher than transfers in non-monitoring states. \(g \) moves these high transfers to the left (i.e., to low income states) and vice versa.\(^{15}\) By Lemma 2 in the Appendix, agent one is strictly better off under the new contract. This contradicts the assumed optimality of the original contract, proving the Theorem.

4 The Case of Stochastic Verification

In this section we study the form of Pareto efficient multilateral contracts that arise among agents under stochastic monitoring. We begin by defining a multilateral contract for this economy.

Definition 4. A multilateral contract with stochastic verification for each agent \(i = 1, \ldots, n \) is a pair \((t_i, p_i)\), where \(t_i(x_1, \ldots, x_n) \) is a net-transfer function for agent \(i \) from \(\mathbb{R}^n \) into \(\mathbb{R} \), and \(p_i: [m, \infty]^n \rightarrow [0, 1] \) is a function which indicates the probability that agent \(i \)'s endowment announcement is verified. If agent \(i \) is verified, the endowment becomes public information.

Alternative formulations of the stochastic monitoring problem have been studied previously by other authors. In particular, Townsend (1988, p. 424) reports the results of systematic numerical analyses of costly state verification economies with stochastic monitoring and gives examples of non-monotonic monitoring probabilities. His results stem from the fact that the monitoring probability function, \(p_i \), in his model is defined on \([m, \infty]\). That is, whether or not an agent is verified depends only on the agent's own announcement, and is independent of all other agents' announcements.\(^{16}\) In contrast, in our

\(^{15}\)That is \(f(k_1) < f(k_2) \) for every \(k_1 \in K_1 \) and for every \(k_2 \in K_2 \). This is exactly the condition specified in Lemma 1 under which Lemma 2 holds.

\(^{16}\)Townsend's example is for a discrete (hence atomic) distribution. However, because it is an equal distribution our proof immediately goes through (but it breaks down for
model monitoring depends on the agent's own endowment announcement \(\text{and} \) on the announcements of all other agents (i.e., \(p_i \) is defined on \([m, \infty]\) in Definition 4). We believe that this specification is reasonable for the stochastic auditing applications of the model described at the outset. For example, the probability of a tax audit by the IRS is related not only to an individual's own income tax return, but also to the returns filed by all other individuals in the economy.\(^{17} \) Finally, Border and Sobel also prove a monotonicity result. However, as we noted in the Introduction, their arguments depend crucially on risk neutrality.

Our main goal in this section is to characterize the solutions to an information constrained optimization problem with stochastic monitoring. However, before beginning our formal analysis we first discuss an inherent difficulty that emerges in economies with stochastic monitoring \(\text{and} \) risk averse agents.\(^{18} \) The problem stems from the fact that stochastic monitoring generates additional uncertainty into expected consumption allocations, and this additional uncertainty decreases the expected utility of risk averse agents.\(^{19} \) The key problem is that states with low endowment realizations are the same states where the probability of monitoring is the highest. Further, these high variance states are precisely the states of most concern to risk averse agents. In general it is difficult to precisely characterize the marginal loss of utility to an agent from the additional uncertainty caused by stochastic monitoring. Transfers which are contingent not only on all agents' endowment realizations

\(^{17} \)That is, an individual with a university salary is more likely to be audited in a small college town (Urbana, IL) than in the Silicon Valley (Palo Alto, CA).

\(^{18} \)Randomness is inherent in the monitoring technology considered in this Section. Thus, one may interpret the optimal consumption allocations derived from Problem 4.1 as "consumption lotteries." However, they differ from the consumption lotteries considered in Prescott and Townsend (1984) where lotteries are introduced as a device to obtain a concave programming problem.

\(^{19} \)Note that stochastic monitoring also has the countervailing beneficial effect of reducing expected monitoring costs (relative to deterministic monitoring).
(as they are in our model), but also on whether or not monitoring is actually performed (which does not occur in our model) might ameliorate the negative utility effects associated with stochastic monitoring somewhat. However, it is unlikely that such transfers would eliminate these effects entirely.

We consider two polar cases which are designed to address the “marginal utility loss” problem experienced by risk averse agents. We first consider the case where monitoring costs are borne by each individual agent, but restrict agents’ utility functions to be separable in consumption and monitoring cost. This approach is often employed in the literature (e.g., Moohkerjee and Png (1989)), hence we use it in the statement of Problem 4.1 below. However, our proofs also apply to an alternative specification where agents are able to diversify their individual specific monitoring cost risk. That is, our results also hold for the case where (if monitoring occurs) the monitoring costs of agent i are borne by all other agents $i \neq j$. We defer discussion of this second specification until after we have proved our main results (Theorem 2 and Corollary 1).

We now state the optimization problem for this economy:

Problem 4.1. Choose $t_i(\cdot)$ and $p_i(\cdot)$ for $i = 1, \ldots, n$ to maximize:

$$
\sum_{i=1}^{n} \lambda_i \int [v_i(x_i + t_i(\cdot)) - p_i(\cdot)\phi_i(t_i)] dF^n(x_1, \ldots, x_n),
$$

subject to

$$
0 \leq c_i \leq x_i + t_i(x_1, \ldots, x_n) \text{ a.e. for all } i, \quad (4.2)
$$

$$
\sum_{i=1}^{n} t_i \leq 0, \text{ a.e.} \quad (4.3)
$$

$$
\begin{align*}
&v_i(x_i + t_i(x_1, \ldots, x_i, \ldots, x_n)) - p_i(x_1, \ldots, x_n)\phi_i(t_i(\cdot)) \geq \\
&(1 - p_i(x_1, \ldots, y, \ldots, x_n))v_i(x_i + t(x_1, \ldots, y, \ldots, x_n)) \\
&\quad + p_i(x_1, \ldots, y, \ldots, x_n)[v_i(0) - \phi_i(t_i)], \text{ for all } i,
\end{align*}
$$

for all y, and for a.e. x_i; and

$$
(4.4)
$$
$0 \leq p_i(x_1, \ldots, x_n) \leq 1$, for every x_i. \hfill (4.5)

Equation (4.1) reflects the consumption and monitoring cost separability restriction described previously. Separability implies that each agent's utility from consumption is independent of the non-pecuniary (effort cost) imposed on the agent by the monitoring procedure. Loosely speaking, the idea is that the monitoring process causes no additional utility or disutility other than the direct costs. Equation (4.3) is the same as in Problem 3.1. Equation (4.4) is the incentive compatibility constraint under stochastic monitoring.20 The left-hand side of (4.4) is the expected utility of agent i from truthfully reporting endowment realization x_i, and the right-hand side is the expected utility of agent i from announcing any other realization $y \neq x_i$. When agent i misreports and is verified, he/she receives a zero transfer and the entire endowment is confiscated, so utility is $v_i(0) - \phi_i(t_i(\cdot))$ in this case. We have implicitly assumed that it is optimal to punish an agent as much as possible (which in this case means seizing the entire endowment) for misreporting. This, however, is straightforward to show since maximizing the penalty minimizes the propensity to cheat. We again refer the reader to Section 5 for further discussion of incentive compatibility. Finally, (4.5) states that the p_i are probabilities.

We now give an overview of the proof of Theorem 2. This Theorem shows that the transfer function associated with the optimal contract is a decreasing function of wealth when monitoring is stochastic. As in Theorem 1, we proceed indirectly: Assume that the transfer function of one agent (say agent one) is not a monotonically decreasing function of wealth over the entire support of the distribution. We again wish to use the Isomorphism Theorem to find a measure preserving one-to-one function g which maps arbitrary initial contracts into an alternative contract which is "more monotonic."21

20Townsend (1988, pp. 416–418) uses a revelation principle argument to prove that this restriction can be imposed without loss of generality.

21In general it is not possible (even for very simple cases) to construct a monotonic con-
We show that this "more monotonic" alternative contract: (i) is feasible; (ii) is incentive compatible; (iii) does not decrease the expected utility of all other agents; and (iv) strictly increases the expected utility of agent one. This establishes the optimality of contracts with monotonically decreasing transfer functions.

The first step of the proof, since the argument is indirect, is to establish a uniform violation of (decreasing) monotonicity of an arbitrary initial (non-monotonic) transfer function. We begin by showing that it is possible to find two compact sets with positive measure, denoted \(U \) and \(V \), where \(U \) is strictly to the left of \(V \), and such that all values of the transfer function in \(U \) are strictly below the values which the transfer function assumes in \(V \). To construct such sets, we use Lusin's Theorem (cf., Parthasarathy (1977) Proposition 24.21 and Corollary 24.22), which says that for any integrable function (on a complete and separable metric space) there exist arbitrary large compact subsets of the domain such that the restriction of a function on this compact subset is continuous. We use this continuity to establish the desired (uniform) violation of monotonicity of the transfer function on \(U \) and \(V \). The main insight in this part of the proof is that it is not sufficient to establish a violation of monotonicity of the transfer function for single points as the analysis necessarily excludes sets of measure zero. Hence, starting with two points \(z_1, z_2 \) for which monotonicity is violated, we must establish a violation which also holds in the neighborhood of these two points. For continuous functions this is obviously always the case. Fortunately, Lusin's Theorem implies that this is also true almost everywhere for arbitrary measure preserving transformation.

Consider the following Example: Choose the interval \([0, 1]\) with the standard Lebesgue measure. Let \(f(x) = x(1-x) \). Now assume (indirectly) that there exists a measure preserving transformation \(g \) on \([0, 1]\) such that \(f \circ g(x) = g(x)(1-g(x)) \) is monotonic. The function is quadratic, so there are still always two solutions \(x_i, i = 1, 2 \) to any equation \(x(1-x) = z \). Hence, there exist \(x_1 \neq x_2 \) such that \(f \circ g(x_1) = f \circ g(x_2) \). Assume that \(x_1 < x_2 \). Since \(f \circ g \) is monotonic, \(f \) is constant on the image of the interval \([x_1, x_2]\) under \(g \). This, however, means that \(g([x_1, x_2]) \) contains at most two points. This is a contradiction to \(g \) being measure preserving.
surable functions (by continuity of such a function on compact subsets).

The remainder of the proof is similar to Theorem 1: We apply the Isomorphism Theorem to get a measure preserving one-to-one mapping h between the arbitrary initial (non-monotonic) contract and a (more monotonic) alternative contract on the two compact sets U and V. We then show that (i)-(iv) hold. The strategies of the arguments for (i), (ii), and (iii) are very similar to those used in Theorem 1. However, Lemma 1 in the Appendix is used to show (iv) and (in contrast with Lemma 2 used in Theorem 1) it requires h to be continuous. Fortunately we can again appeal to Lusin's Theorem to show the continuity of h (i.e., continuity of h follows immediately from Lusin's Theorem on $A \subset U$ and $B \subset V$). Since monotonicity is only violated in neighborhoods of z_1 and z_2 denoted by $A \times C$ and $B \times C$ we only apply the mapping h for values of x_2, \ldots, x_n which are in C. This defines a measure preserving mapping g on \mathbb{R}^n.

We now state our main result concerning the nature of optimal contracts in a multi-agent economy with stochastic verification.

Theorem 2. Let (t_i, p_i) for $i = 1, \ldots, n$ be a collection of Pareto optimal contracts. Then there exists a set of measure zero N such that for every agent i and for every $z_1 = (x_1, \ldots, x_i, \ldots, x_n)$, and $z_2 = (x_1, \ldots, y_i, \ldots, x_n)$ with $z_1, z_2 \in \mathbb{R}^n \setminus N$ it follows that $t_i(z_1) \geq t_i(z_2)$ if $x_i \leq y_i$, i.e., the transfers are monotonically decreasing a.e.

Proof. We proceed indirectly. Without loss of generality we can assume that the transfer function of agent one is not monotonic a.e. Let \mathcal{U} be the union of all open sets with measure zero. Then \mathcal{U} itself is open and has measure zero. By Lusin's Theorem (cf. Ash (1972), Corollary 4.3.17(b)) there exists for every $\varepsilon > 0$, a compact subset $K \subset \mathbb{R}^n$ with $\mu(\mathbb{R} \setminus K) < \varepsilon$ and such that t_1 is continuous on K. Without loss of generality we can assume that $\mathcal{U} \cap K_n = \emptyset$ (otherwise take $K_n \setminus \mathcal{U}$). Hence, we can construct an increasing sequence of compact sets K_i such that t_1 is continuous on each of the K_i and
such that \(\mathbb{R}^n \setminus \bigcup_{i=1}^{\infty} K_i \) has measure zero. Since \(t_1 \) is not monotonic a.e. there must exist \(z_1 = (x_1, x_2, \ldots, x_n) \) and \(z_2 = (y_1, x_2, \ldots, x_n) \) such that \(x_1 < y_1 \), and \(t_1(z_1) < t_1(z_2) \), and such that \(z_1, z_2 \in \bigcup_{n=1}^{\infty} K_n \). For a sufficiently large \(n \) we can assure that \(z_1, z_2 \in K_n \). Since \(t_1 \) is continuous on \(K_n \), monotonicity is also violated in a neighborhood of \(z_1 \) and \(z_2 \). Therefore we can choose a compact neighborhood \(U \) of \(x_1 \) in \(\mathbb{R} \); a compact neighborhood \(V \) of \(y_1 \) in \(\mathbb{R} \) which is strictly to the right of \(U \); and an open neighborhood \(C \) of \((x_2, \ldots, x_n) \) in \(\mathbb{R}^{n-1} \) such that monotonicity is violated for \(U \times C \) and \(V \times C \) (i.e., for every \(v_1 = (a_1, c_2, \ldots, c_n) \in U \times C \) and for every \(v_2 = (b_1, c_2, \ldots, c_n) \in V \times C \) it follows that \(t_1(v_1) < t_1(v_2) \)).

Because of the regularity of the measure we can choose \(U \) and \(V \) such that \(\mu(U) = \mu(V) \). Further, \(U \) and \(V \) are neighborhoods, hence they must have positive measure (since their intersection with \(U \) is empty). By the Isomorphism Theorem there exists a measure preserving mapping \(h: U \rightarrow V \), such that the inverse of \(h \) exists and is also measure preserving except for nullsets \(N_U \subset U \) and \(N_V \subset V \). Let \(U' \) be compact subsets of \(U \setminus N_U \) with positive measure (such a subset exists because of regularity). Since \(U' \) is a complete and separable metric space, Lusin’s Theorem can be applied. It therefore follows that there exists a compact subset \(A \) of \(U' \) with positive measure and such that \(h \) is continuous on \(A \). Let \(B = h(A) \). Since the inverse of \(h \) exists and since \(A \) is compact it follows that \(h \) is a homeomorphism between \(A \) and \(B \) (we need continuity of \(h \) for Lemma 1). Now define

\[
g(x_1, x_2, \ldots, x_n) = \begin{cases}
(h(x_1), x_2, \ldots, x_n) & \text{if } x \in A \times C; \\
(h^{-1}(x_1), x_2, \ldots, x_n) & \text{if } x \in B \times C; \\
(x_1, x_2, \ldots, x_n) & \text{otherwise.}
\end{cases}
\]

Then \(g \) is a measure preserving transformation on \(\mathbb{R}^n \). We now define new transfers denoted by \(t_i(g(x_1, x_2, \ldots, x_n)) \) and new monitoring probabilities denoted by \(p_i(g(x_1, x_2, \ldots, x_n)) \), and show that these new contracts are: (i) feasible, (ii) incentive compatible, (iii) preserve the utility of all agents \(i \neq 1 \), (iv) increase the utility of agent one.
(i) Feasibility follows as in the proof of Theorem 1.

(ii) Incentive compatibility requires (4.4) to be satisfied. There are three possible cases. First, assume the true realization \((x_1, \ldots, x_n)\) lies in \(B \times C\). If it is profitable to cheat in this situation under the alternative contract, then it must also have been profitable with the initial contract in state \(g^{-1}(x_1, x_2, \ldots, x_n)\). This follows from the fact that the transfers are the same under the two contracts but under the initial contract the endowment of agent one was lower and hence the penalty if detected cheating was less severe. However, this contradicts incentive compatibility of the initial contract. Second, assume the realization lies in \(A \times C\). If it is profitable to cheat in this situation under the alternative contract, then it must have been even more profitable under the initial contract as the transfer was lower. However, this again contradicts optimality of the initial contract. Finally, for all other realizations the two contracts are the same. This proves (ii).

(iii) The expected utility of all other agents remains unchanged as in Theorem 1.

(iv) Agent one is strictly better off by Lemma 1 (since we exchange high transfers to low income states and vice versa) and the fact that monitoring probabilities are reduced under the alternative contract. This proves the Theorem.

The following Corollary follows immediately from Theorem 2.

Corollary 1. Under the assumptions of Theorem 2 it follows that \(p_i(z_1) \geq p(z_2)\), i.e., the probabilities of verification are monotonically decreasing a.e. in endowments.

Proof. The Corollary follows immediately from the fact that the transfers are monotonically decreasing: Let \(x_1 \leq y_1\). Consider two endowments \(z_1 = (x_1, \ldots, x_n)\) and \(z_2 = (y_1, x_2, \ldots, x_n)\), and assume that monotonicity of the probabilities is violated for agent one. By Theorem 2, we have that \(t_1(z_1) \geq \cdots\)
Now choose the same probabilities of monitoring for \(z_1 \) and \(z_2 \), and suppose it were profitable for the agent to cheat in some other state and announce \(z_2 \). Then it would be at least as profitable to announce \(z_1 \) since the transfer is at least as high and the probability that cheating is detected is lower. However, this contradicts incentive compatibility of the original contract. Hence \(p_1(z_1) \geq p_1(z_2) \).

We conclude this section by discussing the alternative monitoring cost specification described before the statement of Problem 4.1. That is, instead of assuming that each risk averse agent \(i \) privately bears the entire “utility loss” stemming from stochastic monitoring, Theorem 2 and Corollary 1 continue to hold if we assume that a mechanism exists whereby the monitoring costs of agent \(i \) are borne by all agents \(j \neq i \) (when monitoring occurs). This follows from the fact that steps (i), (ii) and (iii) from the proof of Theorem 2 remain valid under either specification of the model because the transfers and monitoring probabilities have the same expected value and the same distribution (although we did not use this fact in the proof of Theorem 2 because of the assumed separability of the utility function). Examples of mechanisms in actual economies which appear to be qualitatively similar to this second (publicly borne) cost specification are tax surcharges (levied by a government) or a reduction in the “dividend credits” commonly rebated to policy holders by insurance companies (e.g., TIAA-CREF and many other insurance companies follow this practice).

5 Discussion of Results and Extensions

In this paper we generalize the costly state verification model to allow risk averse agents who need not be identical ex ante to write multilateral contracts. Bilateral versions of the model have proved useful for many economic applications, and we believe that this multilateral extension will expand the
class of economic problems that can be addressed in this framework. Of course, whether a problem is best analyzed in a bilateral or multilateral contracting framework depends on its underlying economic structure. However, a multilateral version of the model seems necessary for many types of insurance problems and certain types of financial intermediation problems (cf., Boyd and Prescott (1986)). In the remainder of this section we will discuss the implications of our results and extensions.

We first focus on the incentive compatibility constraint used in our analysis. Townsend (1988) notes that in order to justify this restriction in costly state verification models it is necessary to formulate the underlying revelation game. This works as follows: Contracts are written before uncertainty is revealed. Uncertainty is then privately revealed, and each agent sends a message (i.e., reports a state). Thus, agents play a Nash game in messages where each agent has beliefs over whether all other agents tell the truth. When the analysis is restricted to truth-telling equilibria, it therefore follows that each agent expects all other agents to tell the truth. In such a framework the point-wise incentive constraints commonly used in costly state verification models follow. This formulation implicitly contains a great deal of communication among agents, in the sense that decisions are made based on the expected announcements by all other agents.

The other extreme that we now consider is a game with no communication among agents. We are concerned with two issues. First, what are the implications of such an environment for the form of the incentive constraints. Second, which environment (one with communication or one with no communication) seems most plausible for the economic problems which motivate this paper. We begin with the first issue. In a game with no communication among agents, each agent makes an announcement with no knowledge of other agents' announcements. This corresponds to a Harsanyi (1967) type Bayesian Nash game, where the incentive constraints need not hold point-
wise but only in expected value.22 Theorem 2 and Corollary 1 immediately go through under this alternative formulation of the constraint because we do not use incentive compatibility in any essential way in the proof. Rather, we need only check that it remains satisfied.23 From a technical point of view, this step of the proof requires us to show that our construction does not move us out of the set of all incentive compatible contracts—and this is of course easier to show if the constraint set is bigger. Thus, the expected value form of the incentive constraint does not change the structure of the optimal contract in an environment with stochastic monitoring. In fact, it facilitates the technical arguments necessary to prove the result.

In contrast, in Theorem 1 we again check that incentive compatibility conditions IC1 and IC2 are satisfied in step (ii) of the proof, but we also use these conditions in step (iv) in an essential way. In particular, we use them in (iv) to show that the transfer in every non-monitoring state is always higher than the transfer in every monitoring state. Thus, the final step in the proof of Theorem 1 does not go through with an incentive constraint which holds only in expected value. In fact, it turns out that under the mathematically weaker expected value constraint, the transfers associated with the optimal

22For example incentive constraint IC1 would be written:

\[
\theta_i(x_1, \ldots, x_t, \ldots, x_n) - \int t_i(x_1, \ldots, x_t, \ldots, x_n) dF(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
\]

is constant on \(S_i^e \); and IC2 would be written:

\[
\int t_i(x_1, \ldots, x_t, \ldots, x_n) - \phi(\cdot) dF(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \\
\geq \int t_i(x_1, \ldots, y, \ldots, x_n) dF(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n);
\]

for all \(x_i \in S_i \) and for every \(y \in S_i^e \). In both cases \(dF(\cdot) \) denotes integration with respect to the joint distribution of the random variables \(X_j, j \neq i \). Unlike in the pointwise specification, these constraints need only hold on average.

23To check this use the same argument as in step (iii) of the proof of Theorem 2, and take the expected value.
contract need no longer be constant on the non-monitoring set. We first show this in a simple (but not pathological) example and then provide an economic interpretation of the result.

Example 1. Consider a discrete distribution and two agents where agent one is risk neutral and agent two is very risk averse. The same kind of example also goes through for continuous distributions and if one agent is (slightly) risk averse. Assume that there are four states which occur with equal probability. The endowment of agent one is given by $(7,7,3,3)$ and of agent two by $(7,3,7,3)$. Clearly, the two endowments are independent. Let ϕ be the (in our example constant) monitoring cost. Choose $S_1 = \emptyset$ and $S_2 = \{3\}$, i.e., agent one is never monitored and agent two is monitored in the low state. Then Pareto optimal contracts are given by $t_1 = -t_2 = (2+c,-2,2+c,-2)$, since under this contract agent two is completely insured, i.e., consumption is state-independent (net of monitoring costs). However, agent one’s net-transfer is not constant even though the agent is never monitored. Incentive compatibility for agent two is straightforward. Incentive compatibility for agent one is fulfilled in expected value: Assume that agent one gets the high realization. Then the expected net transfer is $c/2$. This is the same expected net-transfer the agent would get in the low state. The argument goes through even if agent one is slightly risk averse because this arrangement economizes on monitoring costs: Choosing $S_1 = \{3\}$ increases monitoring costs by a discrete amount since monitoring is deterministic.

Some readers may be tempted to construe Example 1 as refuting the optimality of debt even under deterministic verification. We regard this interpretation as misguided. As Townsend (1987, p. 382) notes, the motivation for an analysis such as our Theorem 1 is to “begin with some striking arrangement [e.g, debt] in an actual economy and ask whether any theoretical environment might yield such an arrangement . . . without making the [model] too complicated or implausible.” We view the question—is a model with an
expected value incentive constraint better than a model with a point-wise constraint?—to be methodologically equivalent to the question—is a model with stochastic monitoring better than a model with deterministic monitoring? In our opinion the answer is clearly no. Mathematical generality is not the desideratum per se, rather it is the consistency of the structure and results of alternative models with those observed in actual economic environments which determines which model is more appropriate for the problem at hand.

In fact, the appropriateness of the point-wise constraint appears to be directly linked to the appropriateness of deterministic monitoring. Both specifications seem to be consistent with key institutional features of US bankruptcy procedures.24 When a firm petitions for bankruptcy protection under Chapter 7 of the US Bankruptcy Code, a trustee is appointed by the court. This trustee is bound by law to give a full account of the status of the claims owed by and to the insolvent firm by every individual involved in transactions with it. Formally, this corresponds to the game with communication which leads to the (point-wise) incentive constraints IC\textsubscript{1} and IC\textsubscript{2}. Thus, even though an insolvent firm's creditors are likely to have information about the firm's assets, the Bankruptcy Code prohibits them by law from attempting to secure direct payments from the firm or from those who owe payments to it. One interpretation of the co-existence of different institutions is that there are different equity versus efficiency tradeoffs in bankruptcy and auditing problems. Perhaps society is willing to pay a higher price for fairness in bankruptcy settings because all agents are potentially subject to a random shock which could render them insolvent.

Finally, we conclude by discussing the Boyd and Prescott problem noted in the Introduction, i.e., the nature of optimal multilateral contracts in

24See White (1989) for a detailed discussion of the corporate bankruptcy decision in the US. Note that we take the procedures associated with Chapter 7 of the US Bankruptcy Code as given. An analysis of why these particular legal structures have emerged is beyond the scope of this paper.
economies with additional information imperfections such as adverse selection and moral hazard. Recently, Boyd and Smith (1990) have introduced adverse selection into the (deterministic) costly state verification model when contracts are restricted to be bilateral and agents are risk neutral. Agent heterogeneity is clearly essential for such problems, and our model permits agents to differ on several different dimensions (i.e., preferences, (endowment) distribution functions, transfer functions, and monitoring cost functions need not be identical). Thus, we believe that our multilateral results will be robust even when these additional imperfections are introduced. However, this remains for future research.

6 Appendix

Proof of Remark 1. Let \(t \) be a simple function on \(Y_2 \), i.e., there exist \(A_i \in \beta_2 \), and \(\lambda_i \in \mathbb{R} \) such that

\[
t = \sum_{i=1}^{n} \lambda_i 1_{A_i},
\]

where

\[
1_{A_i}(x) = \begin{cases}
1 & x \in A_i; \\
0 & \text{otherwise}.
\end{cases}
\]

Then \(t(g(x)) = \sum_{i=1}^{n} \lambda_i 1_{g^{-1}A_i}(x) \). Hence,

\[
\int_{Y_1} t(g(x)) d\mu_1(x) = \sum_{i=1}^{n} \lambda_i \int_{Y_1} 1_{g^{-1}A_i}(x) d\mu_1(x) = \sum_{i=1}^{n} \lambda_i \mu_1(g^{-1}A_i)
\]

\[
= \sum_{i=1}^{n} \lambda_i \mu_2(A_i) = \sum_{i=1}^{n} \lambda_i \int_{Y_2} 1_{A_i}(x) d\mu_2(x) = \int_{Y_2} t(x) d\mu_2(x).
\]

where the third inequality follows from the fact that \(g \) is measure preserving. Since the Remark holds for all simple functions, it also hold for all integrable functions.\(^{25}\)

Lemma 1. Let \(\mu \) be a measure on \(\mathbb{R} \) and let \(A, B \) be two compact subsets of \(\mathbb{R} \) with the same measure. Let \(f \) be an integrable function on \(\mathbb{R} \). Assume

\(^{25}\)This is a standard approximation argument in measure theory: All integrable functions can be approximated by simple functions.
that \(a < b \), and \(f(a) < f(b) \), for every \(a \in A \), and for every \(b \in B \). Let \(g \) be a measure preserving isomorphism on \(\mathbb{R} \) which is continuous on \(A \cup B \) such that \(g(A) = B \), and such that \(g(x) = x \) for every \(x \in \mathbb{R} \setminus A \cup B \). Then \(x + f(g(x)) \) is less risky than \(x + f(x) \) in the Rothschild and Stiglitz sense (i.e., every risk averse agent prefers \(x + f(g(x)) \) over \(x + f(x) \)).

Proof. If the support of \(\mu \) is compact, and if \(f \) is bounded this follows immediately from the integral condition in Rothschild and Stiglitz. In the following we implicitly prove the result for the slightly more general conditions of the Lemma 1.

First, note that we can assume that \(f \) is continuous since it can always be approximated by continuous functions. We first prove the Lemma for the case where \(\mu \) is a discrete measure on \(A \) and \(B \). We proceed by induction. Assume that the support of \(\mu \) on \(A \) and on \(B \) consists of single points \(x_A \) and \(x_B \), respectively. Hence \(g(x_A) = x_B \) and \(g(x_B) = x_A \). It follows that

\[
x_A + f(x_A) < x_A + f(x_B), \text{ and } x_B + f(x_A) < x_B + f(x_B).
\]

Since \(u \) is concave it follows that

\[
u(x_A + f(x_A)) + u(x_B + f(x_B)) < u(x_A + f(x_B)) + u(x_B + f(x_A)).
\]

This proves the Lemma for the case of a single-point distribution.

Proceeding inductively, assume that the Lemma holds for all distributions that have a support of exactly \(n \) discrete points in \(A \) and \(B \), respectively. We now give the proof for \(n + 1 \). Choose two points \(x_A \), and \(x_B \) in the support of the measure on \(A \) and \(B \), respectively. Let \(g' \) be the following transformation on \(\mathbb{R} \):

\[
g'(x) = \begin{cases} x_A & \text{if } x = x_A; \\ x_B & \text{if } x = x_B; \\ g(x) & \text{otherwise.} \end{cases}
\]

Then we can apply the induction hypothesis for \(g' \) to get that \(x + f(g'(x)) \) is less risky than \(x + f(x) \). We can use again the induction hypothesis in
order to exchange x_A and x_B and prove that $x + f(g(x))$ is less risky than $x + f(g'(x))$. This concludes the proof for the discrete case.

For the continuous case we use an approximation argument. Let ν^A be the restriction of μ on A. We can approximate ν^A by a sequence of measures ν^A_n which converges weakly to ν^A (cf. Billingsley (1968) Theorem 4 on p. 237). For every n let ν^B_n be the image of the measure ν^A_n under g (i.e., $\nu^B_n(S) = \nu^A_n(g^{-1}S)$, for every set S). Then, ν^B_n converges weakly to ν^B. Let μ_n be the measure defined by

$$
\mu_n(S) = \mu(S \setminus A \cup B) + \nu^A_n(S \cap A) + \nu^B_n(S \cap B),
$$

for every S. Then by construction g is measure preserving with respect to μ_n. Since μ_n has finite support on $A \cup B$ the first step of the proof implies that

$$
\int u(x + f(g(x))) d\mu(x) \geq \int u(x + f(x)) d\mu(x).
$$

Taking the limit for $n \to \infty$ on both sides and using the continuity of f and g on $A \cup B$ we conclude the proof.

Lemma 2. Let u be a utility function which is twice continuously differentiable. Assume that $u''(x) < 0$ for every x. Let f be integrable and let g be a measure preserving transformation (not necessarily continuous). Then Lemma 1 holds with a strict inequality, i.e., the agent strictly prefers the contract $x + f(g(x))$ to $x + f(x)$.

Proof. Here we need only check that the integral condition of Rothschild and Stiglitz holds with a strict inequality, and then use partial integration to show that the agent strictly prefers $x + f(g(x))$ (cf., Rothschild and Stiglitz (1970), footnote 10).

Choose γ_A such that $x + f(x) \leq \gamma_A \leq x + f(g(x))$, for every $x \in A$. Define γ_B analogously. Let F be the distribution of $x + f(g(x))$ and let G be the distribution of $x + f(x)$. Then $F(t) - G(t) \geq 0$ for every $t < \gamma_A$, with the
strict inequality holding on a set of positive measure. Further $F(t) - G(t)$ is monotonically decreasing for $\gamma_A \leq t < \gamma_B$, and is monotonically increasing for every $t \geq \gamma_B$. Finally, note that $F(t) - G(t) = 0$ for every $t \notin A \cup B$. Let $T(y) = \int_{-\infty}^{y} G(t) - F(t) \, dt$. Then

(a) $T(\infty) = \int_{m}^{\infty} [G_i(x) - F_i(x)] \, dx = 0$;
(b) $T(y) \geq 0$ for $m \leq y \leq \infty$.

Conditions (a) and (b) are the integral conditions of Rothschild and Stiglitz.

Let $S = F - G$. Integration by parts yields

$$\int_{0}^{\infty} u(x) \, dS(x) = u(x)S(x)|_{0}^{\infty} - \int_{0}^{\infty} u'(x)S(x) \, dx$$

$$\quad = -u'(x)T(x)|_{0}^{\infty} + \int_{0}^{\infty} u''(x)T(x) \, dx, \quad (A.1)$$

since $u(x)S(x)|_{0}^{\infty} = 0$ and $u(x)T(x)|_{0}^{\infty} = 0$ by (a). Further, since T is strictly positive on a set of positive measure, and since $u'' < 0$ it follows that

$$\int_{0}^{\infty} u''(x)T(x) \, dx < 0. \quad (A.2)$$

(A.1) and (A.2) immediately imply that the agent’s utility is strictly greater under contract $x + f(g(x))$. This proves the Lemma.
REFERENCES:

