Using Continuous Code Change Analysis to Understand the Practice of Refactoring

Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, Danny Dig
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{snegara2, nchen, mvakili2, rjohnson, dig}@illinois.edu

Abstract—Despite the enormous success that manual and automated refactoring has enjoyed during the last decade, we know little about the practice of refactoring. Understanding the refactoring practice is important for developers, refactoring tool builders, and researchers. Many previous approaches to study refactorings are based on comparing code snapshots, which is imprecise, incomplete, and does not allow answering research questions that involve time or compare manual and automated refactoring.

We present the first extended empirical study that considers both manual and automated refactoring. This study is enabled by our algorithm, which infers refactorings from continuous changes. We implemented and applied this algorithm to the code evolution data collected from 23 developers working in their natural environment for 1,520 hours. Using a corpus of 5,371 refactorings, we reveal several new facts about manual and automated refactoring. For example, more than a half of the refactorings were performed manually. The popularity of automated and manual refactorings differs. More than one third of the refactorings performed by developers are clustered. For some refactoring kinds, up to 64% of performed refactorings do not reach the Version Control System.

I. INTRODUCTION

Refactoring [1] is an important part of software development. Development processes like eXtreme Programming [2] treat refactoring as a key practice. Refactoring has revolutionized how programmers design software: it has enabled programmers to continuously explore the design space of large codebases, while preserving the existing behavior. Modern IDEs such as Eclipse [3], NetBeans [4], IntelliJ IDEA [5], or Visual Studio [6] incorporate refactoring in their top menu and often compete on the basis of refactoring support.

Several research projects [7]–[13] made strides into understanding the practice of refactoring. This is important for developers, refactoring tool builders, and researchers. Tool builders can improve the current generation of tools or design new tools to match the practice, which will help developers to perform their daily tasks more effectively. Understanding the practice also helps researchers by validating or refuting assumptions that were previously based on folklore. It can also focus the research attention on the refactorings that are popular in practice. Last, it can open new directions of research. For example, we recently discovered that more than one third of the refactorings performed in practice are applied in a group, thus motivating new research into refactoring composition.

The fundamental technical problem in understanding the practice is being able to identify the refactorings that were applied by developers. There are a few approaches. One is to bring developers in the lab and watch how they refactor [8]. This has the advantage of observing all code changes, so it is precise. But this approach studies the programmers in a confined environment, for a short period of time.

Another approach is to study the refactorings applied in the wild. The most common way is to analyze two Version Control System (VCS) snapshots of the code either manually [9], [14]–[16] or automatically [17]–[23]. However, the snapshot-based analysis has several disadvantages. First, it is imprecise. Many times refactorings overlap with editing sessions (e.g., a method is both renamed, and its method body is changed dramatically). Refactorings can also overlap with other refactorings (e.g., a method is both renamed and its arguments are reordered). The more overlap, the more noise. Our recent study [10] shows that 46% of refactored program entities are also edited or further refactored in the same commit. Second, it is incomplete. For example, if a method is renamed more than once, a snapshot-based analysis would only infer the last refactoring. Third, it is impossible to answer many empirical questions. For example, from snapshots we cannot determine how long it takes developers to refactor, and we cannot compare manual vs. automated refactorings.

A much better approach is to study the refactoring practice in the wild, while employing a continuous analysis. Refactoring tools like the ones in Eclipse record all automated refactorings applied by a developer [9], [24]. Recent empirical studies about the practice of refactoring [11], [12] have used these recorded logs as the source of their analysis. But this approach does not take into account the refactorings that are applied manually. Others [8], [11], [12] have shown that programmers sometimes perform a refactoring manually, even when the IDE provides an automated refactoring.

Our paper is the first empirical study that uses a continuous change analysis to study the practice of both manual and automated refactorings. We answer seven research questions:

RQ1: What is the proportion of manual vs. automated refactorings?

RQ2: What are the most popular automated and manual refactorings?

RQ3: Does a developer perform automated refactorings more often than manual ones?

RQ4: How much time do developers spend on manual vs. automated refactorings?
Refactoring

<table>
<thead>
<tr>
<th>Scope</th>
<th>Refactoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>API-level</td>
<td>Encapsulate Field</td>
</tr>
<tr>
<td></td>
<td>Rename Class</td>
</tr>
<tr>
<td></td>
<td>Rename Field</td>
</tr>
<tr>
<td></td>
<td>Rename Method</td>
</tr>
<tr>
<td>Partially local</td>
<td>Convert Local Variable to Field</td>
</tr>
<tr>
<td></td>
<td>Extract Constant</td>
</tr>
<tr>
<td></td>
<td>Extract Method</td>
</tr>
<tr>
<td>Completely local</td>
<td>Extract Local Variable</td>
</tr>
<tr>
<td></td>
<td>Inline Local Variable</td>
</tr>
<tr>
<td></td>
<td>Rename Local Variable</td>
</tr>
</tbody>
</table>

Fig. 1. Inferred refactorings. API-level refactorings operate on the elements of a program’s API. Partially local refactorings operate on the elements of a method’s body, but also affect the program’s API. Completely local refactorings affect elements in the body of a single method only.

RQ5: What is the size of manual vs. automated refactorings?
RQ6: How many refactorings are clustered?
RQ7: How many refactorings do not reach VCS?

Answering these empirical questions requires us to infer refactorings from continuous code changes. Recent tools [25], [26] that were developed for such inference neither were designed for empirical studies nor are publicly available. Therefore, we designed and implemented our own refactoring inference algorithm that analyzes code changes continuously. Currently, our algorithm infers ten kinds of refactorings performed either manually or automatically. These were previously reported [12] as the most popular among automated refactorings. Fig. 1 shows the inferred refactorings, ranging from API-level refactorings (e.g., Rename Class), to partially local (e.g., Extract Method), to completely local refactorings (e.g., Extract Local Variable). The inferred refactorings cover a wide range of common refactorings, and we believe that our algorithm can be easily extended to handle other refactorings as well.

In our previous study [10], we continuously inferred Abstract Syntax Tree (AST) node operations, i.e., add, delete, and update AST node from fine-grained code edits (e.g., typing characters). In this study, we designed and implemented an algorithm that infers refactorings from these AST node operations. First, our algorithm infers high-level properties, e.g., replacing a variable reference with an expression. Then, from combination of properties it infers refactorings. For example, it infers that a local variable was inlined when it noticed that a variable declaration is deleted, and all its references are replaced with the initialization expression.

We applied our inference algorithm on the real code evolution data from 23 developers, working in their natural environment for 1,520 hours. We found that more than half of the refactorings were performed manually, and thus, the existing studies that focus on automated refactorings only might not be generalizable since they consider less than half of the total picture. We also found that the popularity of automated and manual refactorings differs. Our results present a fuller picture about the popularity of refactorings in general, which should help both researchers and tool builders to prioritize their work. Our findings provide an additional evidence that developers underuse automated refactoring tools, which raises the concern of the usability problems in these tools. We discovered that more than one third of the refactorings performed by developers are clustered. This result emphasizes the importance of researching refactoring clusters in order to identify refactoring composition patterns. Finally, we found that up to 64% of the performed refactorings do not reach the VCS. Thus, using VCS snapshots alone to analyze refactorings might produce misleading results.

This paper makes the following contributions:
1) We designed seven questions to understand the practice of manual and automated refactoring.
2) We discovered new facts about the practice of refactoring (see above).
3) We designed, implemented, and evaluated an algorithm that employs continuous change analysis to infer refactorings. Our implementation is open source and available at http://sneagara2.projects.cs.illinois.edu/CodingTracker.

II. RESEARCH METHODOLOGY

To answer our research questions, we employed the code evolution data that we collected as part of our previous user study [10] on 23 participants. We recruited 13 Computer Science graduate students and senior undergraduate summer interns who worked on a variety of research projects from six research labs at the University of Illinois at Urbana-Champaign. We also recruited 10 professional programmers who worked on different projects in domains such as marketing, banking, business process management, and database management. Fig. 2 shows the programming experience of our participants. In the course of our study, we collected code evolution data for 1,520 hours of code development with a mean distribution of 66 hours per programmer and a standard deviation of 52.

To collect code evolution data, we asked each participant to install the CodingTracker [10] plug-in in his/her Eclipse IDE. During the study, CodingTracker recorded a variety of evolution data at several levels ranging from individual code edits up to the high-level events like automated refactoring invocations and interactions with Version Control System (VCS). CodingTracker employed existing infrastructure [12] to regularly upload the collected data to our centralized repository.

At the time when CodingTracker recorded the data, we did not have a refactoring inference algorithm. However, CodingTracker can accurately replay all the code editing events.

Note that only 22 out of 23 participants filled the survey and specified their programming experience.
thus recreating an exact replica of the evolution session that happened in reality. We replayed the coding sessions and this time, we applied our newly developed refactoring inference algorithm.

We first applied our AST node operations inference algorithm [10] on the collected raw data to represent code changes as add, delete, and update operations on the underlying AST. These basic AST node operations serve as input to our refactoring inference algorithm. Section IV presents more details about our refactoring inference algorithm.

Next, we answer every research question by processing the output of the algorithm with the question-specific analyzer. Note that our analyzers for RQ1 – RQ5 ignore trivial refactorings. We consider a refactoring trivial if it affects a single line of code, e.g., renaming a variable with no uses.

III. RESEARCH QUESTIONS

RQ1: What is the proportion of manual vs. automated refactorings? Previous research on refactoring practice either predominantly focused on automated refactorings [7], [11], [12] or did not discriminate manual and automated refactorings [9], [13]. Answering the question about the relative proportion of manual and automated refactorings will allow us to estimate how representative automated refactorings are of the total number of refactorings, and consequently, how general are the conclusions based on studying automated refactorings only. Additionally, we will get a better insight about the refactoring behavior of developers.

For each of the ten refactoring kinds inferred by our algorithm, we counted how many refactorings were applied using Eclipse automated refactoring tools and how many of the inferred refactorings were applied manually. Fig. 3 shows our results. The last column represents the combined result for all the ten refactoring kinds.

Overall, our participants performed 11% more manual than automated refactorings (2,820 vs. 2,551). Thus, research focusing on automated refactorings considers less than a half of the total picture. Moreover, half of the refactoring kinds that we investigated, Convert Local Variable to Field, Extract Method, Rename Field, Rename Local Variable, and Rename Method, are predominantly performed manually. This observation undermines generalizability of the existing studies based on the automated execution of these popular refactorings. Also, it raises concerns for tool builders about the underuse of the automated refactoring tools, which could be a sign that these tools require a considerable improvement.

RQ2: What are the most popular automated and manual refactorings? Murphy et al. [7] and Vakilian et al. [12] identified the most popular automated refactorings to better understand how developers refactor their code. We would like to get a more complete picture of the refactoring popularity by looking at both manual and automated refactorings. Additionally, we would like to contrast how similar or different are popularities of automated refactorings, manual refactorings, and refactorings in general.

To measure the popularity of refactorings, we employ the same refactoring counts that we used to answer the previous research question. Fig. 3 correspondingly shows the popularity of automated, manual, and all refactorings. The Y axis represents refactoring counts. The X axis shows refactorings ordered from the highest popularity rank at the left to the lowest rank at the right.

Our results on popularity of automated refactorings mostly corroborate previous findings [12]. The only exceptions are Inline Local Variable refactoring, whose popularity has increased from the seventh to the third position, and Encapsulate Field refactoring, whose popularity has declined from the fifth to the seventh position. Overall, our results show that the popularity of automated and manual refactorings is quite different: the top five most popular automated and manual refactorings have only three refactorings in common – Rename Local Variable, Rename Method, and Extract Local Variable, and even these refactorings have different ranks. The most important observation though is that the popularity of automated refactorings does not reflect well the popularity of refactorings in general. In particular, the top five most popular refactorings and automated refactorings share only three refactorings, out of which only one, Rename Method, has the same rank.

Having a fuller picture about the popularity of refactorings, researchers would be able to automate or infer the refactorings that are popular when considering both automated and manual refactorings. Similarly, tool builders should pay more attention to the support of the popular refactorings. Finally, novice developers might decide what refactorings to learn first depending on their relative popularity.

RQ3: Does a developer perform automated refactorings more often than manual ones? In our previous study [12], we argued that developers may underuse automated refactoring tools for a variety of reasons, one of the most important being

Note that we can not directly compare our results with the findings of Murphy et al. [7] since their data represents the related refactoring kinds as a single category (e.g., Rename, Extract, Inline, etc.).
that developers are simply unaware of automated refactoring tools. Answering this question will help us to better understand whether developers who are aware about an automated refactoring tool use the tool rather than refactor manually.

In the following, we denote the quantity of automated tool usage as A. We compute A as a ratio of automated refactorings to the total number of refactorings of a particular kind performed by an individual participant. For each of the ten inferred refactoring kinds, we counted the number of participants who never use an automated refactoring tool ($A = 0$), the number of participants who predominantly refactor manually ($0 \% < A \leq 25\%$), the number of participants who use an automated tool quite often, but still refactor manually most of the time ($25\% < A \leq 50\%$), the number of participants who refactor using an automated tool most of the time, but still often refactor manually ($50\% < A \leq 75\%$), the number of participants who predominantly use an automated tool ($75\% < A \leq 100\%$), and the number of participants who always use the automated refactoring tool ($A = 100\%$).

Fig. 7 shows our results. The Y axis represents the number of participants. Every bar shows the number of participants in each of the six automated tool usage categories, A, for a particular refactoring kind.

Our results show that only for two refactorings, Rename Class and Extract Constant, the number of participants who always perform the automated refactoring is higher than the number of participants who always perform the refactoring manually. Also, the fraction of participants who always perform a refactoring manually is relatively high for all the ten refactoring kinds. Overall, our results corroborate the previous findings [11, 12] that the automated refactoring tools are underused.

Another important observation is that for two refactoring kinds, Extract Method and Rename Local Variable, the number of participants who are aware about the automated refactoring, but still apply it manually most of the time ($0\% < A \leq 50\%$)
is higher than the number of participants who apply this refactoring automatically most of the time (50% < A <= 100%). This shows that some automated refactoring tools are underused even when developers are aware of them and apply them from time to time. Moreover, for each of the ten refactoring kinds, the number of participants who apply the automated refactoring only (A = 100%) is significantly lower than the number of participants who both apply the automated refactoring and refactor manually (0% < A < 100%). In particular, there are no participants who apply Convert Local Variable to Field, Encapsulate Field, Extract Method, and Rename Field using the automated refactoring tools only. These results show that developers underuse automated refactoring tools, some more so than the others, which could be an indication of a varying degree of usability problems in these tools.

RQ4: How much time do developers spend on manual vs. automated refactorings? One of the major arguments in favor of performing a refactoring automatically is that it takes less time than performing this refactoring manually [27]. We would like to assess this time difference as well as compare the average durations of different kinds of refactorings performed manually.

To measure the duration of a manual refactoring, we consider all AST node operations that contribute to it. Our algorithm marks AST node operations that contribute to a particular inferred refactoring with a generated refactoring’s ID, which allows us to track each refactoring individually. Note that a developer might intersperse a refactoring with other code changes, e.g., another refactoring, small bug fixes, etc. Therefore, to compute the duration of a manual refactoring, we cannot subtract the timestamp of the first AST node operation that contributes to it from the timestamp of the last contributing AST node operation. Instead, we compute the duration of each contributing AST node operation separately by subtracting the timestamp of the preceding AST node operation (regardless of whether it contributes to the same refactoring or not) from the timestamp of the contributing AST node operation. If the obtained duration is greater than two minutes, we discard it, since it might indicate an interruption in code editing, e.g., a developer might get distracted by a phone call or take a break. Finally, we sum up all the durations of contributing AST node operations to obtain the duration of the corresponding refactoring.

We get the durations of automated refactorings from CODINGSPETATOR [12]. CODINGSPETATOR measures configuration time of a refactoring performed automatically, which is the time that a developer spends in the refactoring’s dialog box. Note that the measured configuration time does not include the time that it takes Eclipse to actually change the code, which could range from a couple of milliseconds to several seconds, depending on the performed refactoring kind and the underlying code.

Fig. 8 shows our results. The Y axis represents the duration time in seconds. Note that the configuration time bar for Encapsulate Field refactoring is missing since we do not have data for this refactoring.

On average, manual refactorings take longer than their automated counterparts with a high statistical significance (p < 0.0001, using two-sided unpaired t-test) only for Extract Local Variable, Extract Method, Inline Local Variable, and Rename Class since for the other refactoring kinds our participants rarely used the configuration dialog boxes. The most time consuming, both manually and automatically, is Extract Method refactoring, which probably could be explained by its complexity and the high amount of code changes involved. All other refactorings are performed manually on average in under 15 – 25 seconds. Some refactorings take longer than others. A developer could take into account this difference when deciding what automated refactoring tool to learn first.

Another observation is that Rename Field refactoring is on average the fastest manual refactoring. It takes less time than the arguably simpler Rename Local Variable refactoring. One of the possible explanations is that developers perform Rename Field refactoring manually when it does not require many changes, e.g., when there are few references to the renamed field, which is supported by our results for the following question.

RQ5: What is the size of manual vs. automated refactorings? In an earlier project [12], we noticed that developers tend to apply automated refactoring tools for small code changes. Therefore, we would like to compare the average size of manual and automated refactorings to better understand this behavior of developers.

To perform the comparison, we measured the size of manual and automated refactorings as the number of the affected AST nodes. For manual refactorings, we counted the number of AST node operations contributing to a particular refactoring. For automated refactorings, we counted all AST node operations that appear in between the start and the finish
refactoring operations recorded by CODINGTRACKER. Note that all operations in between the start and the finish refactoring operations represent the effects of the corresponding automated refactoring on the underlying code [10].

Fig. 9 shows our results. The logarithmic Y axis represents the number of the affected AST nodes. Our results show that automated refactorings on average affect more AST nodes than manual refactorings for four refactoring kinds, Convert Local Variable to Field, Extract Method, Rename Field, and Rename Local Variable, with a high statistical significance (p < 0.0001), and for three refactoring kinds, Extract Local Variable, Inline Local Variable, and Rename Method, with a sufficient statistical significance (p < 0.03). One of the reasons could be that developers tend to perform smaller refactorings manually since such refactorings have a smaller overhead.

Intuitively, one could think that developers perform small refactorings by hand and large refactorings with a tool. On the contrary, our findings show that developers perform manually even large refactorings. In particular, Extract Method is by far the largest refactoring performed both manually and automatically – it is more than two times larger than Encapsulate Field, which is the next largest refactoring. At the same time, according to Fig. 7, most of the developers predominantly perform Extract Method refactoring manually in spite of the significant amount of the required code changes. Thus, the size of a refactoring is not a decisive factor for choosing whether to perform it manually or with a tool. This also serves as an additional indication that the developers might not be happy with the existing automation of Extract Method refactoring [8].

RQ6: How many refactorings are clustered? To better understand and support refactoring activities of developers, Murphy-Hill et al. [11] identified different refactoring patterns, in particular, root canal and floss refactorings. A root canal refactoring represents a consecutive sequence of refactorings that are performed as a separate task. Floss refactorings, on the contrary, are interspersed with other coding activities of a developer. In general, grouping several refactorings in a single cluster might be a sign of a higher level refactoring pattern, and thus, it is important to know how many refactorings belong to such clusters.

To detect whether several refactorings belong to the same cluster, we compute a ratio of the number of AST node operations that are part of these refactorings to the number of AST node operations that happen in the same time window as these refactorings, but do not belong to them (such operations could happen either in between refactorings or could be interspersed with them). If this ratio is higher than a particular threshold, T, we consider that the refactorings belong to the same cluster. I.e., rather than using a specific time window, we try to get as large clusters as possible, adding refactorings to a cluster as long as the ratio of refactoring to non-refactoring changes in the cluster does not fall below a particular threshold. The minimum size of a cluster is three. Note that for the clustering analysis we consider automated refactorings of all kinds and manual refactorings of the ten kinds inferred by our tool.

Fig. 10 shows the proportion of clustered and separate refactorings for different values of T, which we vary from 1 to 10. T = 1 means that the amount of non-refactoring changes does not exceed the amount of refactoring changes in the same cluster. Fig. 11 shows the average size of gaps between separate refactorings (i.e., refactorings that do not belong to any cluster) expressed as the number of AST node operations that happen in between two separate refactorings or a separate refactoring and a cluster.

Our results show that for T = 1, 45% of the refactorings are clustered. When the threshold grows, the number of the clustered refactorings goes down, but not much – even for T = 10, 28% of refactorings are clustered. The average gap between floss refactorings is not very sensitive to the value of the threshold as well. Overall, developers tend to perform a significant fraction of refactorings in batch mode. This observation emphasizes the importance of researching refactoring clusters in order to identify refactoring composition patterns.

RQ7: How many refactorings do not reach VCS? Software evolution researchers [17], [28]–[33] use file-based Version Control Systems (VCSs), e.g., Git [34], SVN [35], and thus, are missed by any analysis based on VCS snapshots. In particular, we showed that VCS snapshots provide incomplete and imprecise evolution data. In particular, we showed that 37% of code changes do not reach VCS. Since refactorings play an import role in software development, in this study, we would like to assess the amount of refactorings that never make it to VCS, and thus, are missed by any analysis based on VCS snapshots.

We consider that a refactoring does not reach VCS if none of the AST node operations that are part of this refactoring reach VCS. An AST node operation does not reach VCS if there is another, later operation that affects the same node, up to the
moment the file containing this node is committed to VCS. These non-reaching AST node operations and refactorings are essentially shadowed by other changes.

Fig. 12 shows the ratio of reaching and shadowed refactorings. Since even a reaching refactoring might be partially shadowed, we also compute the ratio of reaching and shadowed AST node operations that are part of reaching refactorings, which is shown in Fig. 13.

Our results show that for all refactoring kinds except Inline Local Variable, there is some fraction of refactorings that are shadowed. The highest shadowing ratio is for Rename refactorings. In particular, 64% of Rename Field refactorings do not reach VCS. Thus, using VCS snapshots to analyze these refactoring kinds might significantly skew the analysis results.

Although we did not expect to see any noticeable difference between manual and automated refactorings, our results show that there are significantly more shadowed manual than automated refactorings for each refactoring kind (except Inline Local Variable, which does not have any shadowed refactorings at all). Overall, 40% of manual and only 16% of automated refactorings are shadowed. This interesting fact requires further research to understand why developers underuse automated refactorings more in code editing scenarios whose changes are unlikely to reach VCS.

Another observation is that even refactorings that reach VCS might be hard to infer from VCS snapshots, since a noticeable fraction of AST node operations that are part of them do not reach VCS. This is particularly characteristic to Extract refactorings, which have the highest ratio of shadowed AST node operations.

IV. REFACTORING INFERENCE ALGORITHM

A. Inferring Migrated AST Nodes

Many kinds of refactorings that we would like to infer rearrange elements in the refactored program. To correctly infer such refactorings, we need to track how AST nodes migrate in the program’s AST. A node might migrate from a single site to another single site (i.e., this node is moved from one parent node to another parent node), for example, as a result of Inline Local Variable refactoring applied to a variable with a single usage. Such migration is one-to-one migration. Also, a node might migrate from a single site to multiple sites, e.g., as a result of Inline Local Variable refactoring applied to a variable with multiple usages in the code. Such migration is one-to-many migration. Finally, a node might migrate from multiple sites to a single site, e.g., as a result of Extract Local Variable refactoring applied to an expression that appears in multiple places in the code. Such migration is many-to-one migration.
Fig. 14 shows an example of the Extract Local Variable refactoring that results in many-to-one migration of the extracted AST node. Fig. 15 shows the effect of this refactoring on the underlying AST. Note that the extracted AST node, string literal "-", is deleted from two places in the old AST and inserted in a single place in the new AST – as the initialization of the newly created local variable.

Our refactoring inference algorithm takes as input a sequence of basic AST node operations: add, delete, and update. Note that an update operation deletes the old value (update_delete) and adds the new value (update_add). The algorithm infers migrate operation from the basic operations. A single migrate operation is composed either from one delete or update_delete operation and one or more add or update_add operations, or from one add or update_add operation and one or more delete or update_delete operations applied on the same AST node within a specific time window. We consider that two AST nodes represent the same node if they have the same AST node type and the same content. As a time window, we employ a five minutes time interval.

The algorithm assigns a unique ID to each inferred migrate operation. Note that a basic AST node operation can make part of at most one migrate operation. The algorithm marks each basic AST node operation that makes part of a particular migrate operation with its ID. This allows to easily establish whether two basic AST node operations belong to the same migrate operation in the following stages of our refactoring inference algorithm.

B. Refactoring Inference Algorithm Overview

Our algorithm infers ten kinds of refactorings shown in Fig. 1. To infer a particular kind of refactoring, our algorithm looks for properties that are characteristic to it. A refactoring property is a high-level semantic code change, e.g., addition or deletion of a variable declaration. Fig. 16 shows an example of the Inline Local Variable refactoring and its characteristic properties: deletion of a variable declaration, replacement of a reference to an entity with an expression, and migration of the variable’s initialization expression to the former usage of the variable.

Our algorithm identifies refactoring properties directly from the basic AST node operations that represent the actions of a developer. A developer may change the code in any order, e.g., first delete the variable declaration and then replace its references with the initialization expression, or first replace the references and then delete the variable declaration, etc. Consequently, the order in which the properties are identified does not matter.

A refactoring property is described with its attributes, whose values are derived from the corresponding AST node operation. Fig. 17 shows 15 attributes that our algorithm employs for a variety of refactoring properties. A property may contain one or more such attributes. Fig. 18 presents refactoring properties and their attributes. When the algorithm checks whether a property can be part of a particular refactoring, the property’s attributes are matched against attributes of all other properties that already make part of this refactoring. As a basic rule, two attributes match if either they have different names or they have the same value. Additionally, the algorithm checks that the disjoint attributes have different values: destinationMethodID should be different from sourceMethodID and getterMethodID should be different from setterMethodID.

Our algorithm combines two or more closely related refactoring properties in a single refactoring fragment. Such fragments allow to express high level properties that could not be derived from a single AST node operation, e.g., replacing a reference to an entity with an expression involves two AST node operations: delete entity reference and add expression. Fig. 19 shows the inferred refactoring fragments and their component properties.

The algorithm considers that a refactoring is complete if all its required characteristic properties are identified within a specific time window, which in our study is five minutes. Some characteristic properties are optional, e.g., replacing field references with getters and setters in Encapsulate Field refactoring is optional. Also, a refactoring might include several instances of the same characteristic property. For example, an Inline Local Variable refactoring applied to a variable that is used in multiple places includes several properties of migration of the variable’s initialization expression to the former usage of the variable. Even though it is sufficient to have a single instance of each required characteristic property to infer a refactoring, our algorithm infers a refactoring as fully as possible, incorporating all properties that belong to it. If no more properties are added to a complete refactoring within two minutes, the algorithm considers that the inference of this refactoring is finished. Fig. 20 presents the characteristic properties of the ten refactorings inferred by our algorithm.

Putting It All Together. Fig. 21 shows a high level overview of our refactoring inference algorithm. The algorithm takes as input the sequence of basic AST node operations.
public String wrap(int num) {
 return "-" + num + "-";
}

public String wrap(int num) {
 String dash = "-";
 return dash + num + dash;
}

Fig. 14. An example of the Extract Local Variable refactoring that results in many-to-one migration of the extracted AST node.

AST of the old method body

AST of the new method body

Fig. 15. The effect of the Extract Local Variable refactoring presented in Fig. 14 on the underlying AST.

public int scale(int num) {
 int factor = 5;
 return factor * num;
}

public int scale(int num) {
 return 5 * num;
}

Fig. 16. An example of the Inline Local Variable refactoring and its characteristic properties.

marked with migrate IDs, astNodeOperations. The output of the algorithm is a sequence of the inferred refactorings, inferredRefactorings. The algorithm assigns a unique ID to each inferred refactoring and marks all basic AST node operations that contribute to a refactoring with the refactoring’s ID.

The refactoring inference algorithm processes each basic AST node operation from astNodeOperations (lines 6 – 49). First, the algorithm removes old pending complete refactorings from pendingCompleteRefactorings (line 8) as well as timed out pending refactorings from pendingRefactoringFragments (line 9). An incomplete refactoring or a refactoring fragment times out if it was created more than five minutes ago, i.e., the algorithm allocates a five minutes time window for a refactoring or a refactoring fragment to become complete.

Next, the algorithm generates refactoring properties specific to a particular AST node operation (line 10). The kind of the AST node operation (add, delete, or update), the type of
Refactoring	Properties/Fragments	Optional	Multiple instances
Convert Local Variable to Field | Added Field Declaration
Deleted Variable Declaration | no | no
Encapsulate Field | Added Getter Method Declaration
Added Setter Method Declaration
Added Field Assignment
Added Field Return
Made Field Private
Replaced Entity With Getter
Replaced Entity With Setter | no | no
Extract Constant | Added Field Declaration
Migrated To Field Initialization
Replaced Expression With Entity | no | yes
Extract Local Variable | Added Variable Declaration
Migrated To Variable Initialization
Replaced Expression With Entity | no | yes
Extract Method | Added Method Declaration
Added Method Invocation
Migrated Across Methods | no | yes
Inline Local Variable | Deleted Variable Declaration
Migrated From Variable Initialization
Replaced Entity With Expression | no | yes
Rename Class | Changed Global Entity Name In Usage
Changed Type Name In Constructor
Changed Type Name In Declaration | yes* | yes
Rename Field | Changed Global Entity Name In Usage
Changed Field Name In Declaration | no | yes
Rename Local Variable | Changed Local Entity Name In Usage
Changed Variable Name In Declaration | no | yes
Rename Method | Changed Method Name In Invocation
Changed Method Name In Declaration | no | yes

Fig. 20. Characteristic properties of the inferred refactorings. Note that at least one of the two optional properties of the Rename Class refactoring, Changed Global Entity Name In Usage and Changed Type Name In Constructor, is required for this refactoring to be considered complete.

the affected node (e.g., a variable declaration or reference, a method declaration, etc.), the context of the affected node (e.g., the containing method, the containing field or variable declaration, etc.), whether this operation is part of a migrate operation – all are the factors that the algorithm accounts for in order to generate one or more properties shown in Fig. [18]

In the following step, the algorithm processes the generated properties one by one (lines 11 – 49). First, every new property is checked against each pending refactoring fragment (lines 12 – 21). If there is a refactoring fragment that accepts the new property and becomes complete, then this refactoring fragment itself turns into a new property to be considered by the algorithm (line 17). Note that a refactoring fragment or a pending refactoring accepts a property if the property’s attributes match the attributes of the properties that already make part of the fragment or the refactoring (more details on matching properties can be found in the previous subsection). If the new property can be part of a new refactoring fragment, the algorithm creates the fragment and adds it to pendingRefactoringFragments (lines 22 – 24).

Next, the algorithm tries to add the new property to pending complete refactorings (lines 25 – 30). If the new property is added to a complete refactoring, the algorithm proceeds to the next new property (line 28).

If there is no pending complete refactoring that accepts the new property, the algorithm checks whether this property can be added to pending incomplete refactorings (lines 31 – 42). If an incomplete refactoring accepts the property, it is added to a copy of this incomplete refactoring (lines 33 – 34). This ensures that the initial incomplete refactoring remains unchanged in pendingIncompleteRefactorings and thus, could be considered for future properties, if there are any. If adding the new property makes the new refactoring complete, it is added to pendingCompleteRefactorings (line 36) and the algorithm proceeds to the next new property (line 37). Otherwise, the new refactoring is added to pendingIncompleteRefactorings (line 39).

If the new property does not make any of the pending incomplete refactorings complete, the algorithm creates new refactorings of the kinds that the new property is character-
input: astNodeOperations // the sequence of basic AST node operations marked with migrate IDs
output: inferredRefactorings
 inferredRefactorings = ∅;
 inferredRefactoringKinds = getAllInferredRefactoringKinds();
 pendingCompleteRefactorings = ∅;
 pendingIncompleteRefactorings = ∅;
 pendingRefactoringFragments = ∅;
 foreach (astNodeOperation ∈ astNodeOperations) {
 inferredRefactorings ∪= removeOldRefactorings(pendingCompleteRefactorings);
 removeTimedOutRefactorings(pendingIncompleteRefactorings);
 removeTimedOutRefactoringFragments(pendingRefactoringFragments);
 newProperties = getProperties(astNodeOperation);
 foreach (newProperty ∈ newProperties) {
 foreach (pendingRefactoringFragment ∈ pendingRefactoringFragments) {
 if (accepts(pendingRefactoringFragment, newProperty)) {
 addProperty(pendingRefactoringFragment, newProperty);
 if (isComplete(pendingRefactoringFragment)) {
 remove(pendingRefactoringFragments, pendingRefactoringFragment);
 newProperties ∪= pendingRefactoringFragment;
 break;
 }
 }
 }
 if (canBePartOfRefactoringFragment(newProperty)) {
 pendingRefactoringFragments ∪= createRefactoringFragment(newProperty);
 }
 }
 foreach (pendingCompleteRefactoring ∈ pendingCompleteRefactorings) {
 if (accepts(pendingCompleteRefactoring, newProperty)) {
 addProperty(pendingCompleteRefactoring, newProperty);
 continue foreach_line11; // the property is consumed
 }
 }
 foreach (pendingIncompleteRefactoring ∈ pendingIncompleteRefactorings) {
 if (accepts(pendingIncompleteRefactoring, newProperty)) {
 newRefactoring = clone(pendingIncompleteRefactoring);
 addProperty(newRefactoring, newProperty);
 if (isComplete(newRefactoring)) {
 pendingCompleteRefactorings ∪= newRefactoring;
 continue foreach_line11; // the property is consumed
 } else {
 pendingIncompleteRefactorings ∪= newRefactoring;
 }
 }
 }
 foreach (inferredRefactoringKind ∈ inferredRefactoringKinds) {
 if (isCharacteristicOf(inferredRefactoringKind, newProperty)) {
 newRefactoring = createRefactoring(inferredRefactoringKind, newProperty);
 pendingIncompleteRefactorings ∪= newRefactoring;
 }
 }
 }
 inferredRefactorings ∪= pendingCompleteRefactorings;

Fig. 21. Overview of our refactoring inference algorithm.
<table>
<thead>
<tr>
<th>Property name</th>
<th>Property attributes</th>
<th>Fragment name</th>
<th>Component properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added Entity Reference</td>
<td>entityName, entityNameNodeID, parentID, enclosingClassNodeID</td>
<td>Migrated Across Methods</td>
<td>Migrated From Method, Migrated To Method</td>
</tr>
<tr>
<td>Added Field Assignment</td>
<td>entityName, entityNameNodeID, setterMethodID</td>
<td>Replaced Entity With Expression</td>
<td>Migrated To Usage, Deleted Entity Reference</td>
</tr>
<tr>
<td>Added Field Declaration</td>
<td>entityName, entityNameNodeID, enclosingClassNodeID</td>
<td>Replaced Entity With Getter</td>
<td>Added Getter Method Invocation, Deleted Entity Reference</td>
</tr>
<tr>
<td>Added Field Return</td>
<td>entityName, entityNameNodeID, getterMethodID</td>
<td>Replaced Entity With Setter</td>
<td>Added Setter Method Invocation, Deleted Entity Reference</td>
</tr>
<tr>
<td>Added Getter Method Declaration</td>
<td>getterMethodName, getterMethodID</td>
<td>Replaced Expression With Entity</td>
<td>Migrated From Usage, Added Entity Reference</td>
</tr>
<tr>
<td>Added Getter Method Invocation</td>
<td>getterMethodName, parentID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Method Declaration</td>
<td>entityName, entityNameNodeID, destinationMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Method Invocation</td>
<td>entityName, entityNameNodeID, sourceMethodName, sourceMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Setter Method Declaration</td>
<td>setterMethodName, setterMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Setter Method Invocation</td>
<td>setterMethodName, parentID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Variable Declaration</td>
<td>entityName, entityNameNodeID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Global Entity Name In Usage</td>
<td>oldEntityName, newEntityName, entityNameNodeID, sourceMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Local Entity Name In Usage</td>
<td>oldEntityName, newEntityName, entityNameNodeID, sourceMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Method Name In Invocation</td>
<td>oldEntityName, newEntityName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Field Name In Declaration</td>
<td>oldEntityName, newEntityName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Method Name In Declaration</td>
<td>oldEntityName, newEntityName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Type Name In Constructor</td>
<td>oldEntityName, newEntityName, entityNameNodeID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Type Name In Declaration</td>
<td>oldEntityName, newEntityName</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Variable Name In Declaration</td>
<td>oldEntityName, newEntityName, sourceMethodID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted Entity Reference</td>
<td>entityName, entityNameNodeID, parentID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deleted Variable Declaration</td>
<td>entityName, entityNameNodeID, enclosingClassNodeID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Made Field Private</td>
<td>entityName, entityNameNodeID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated From Method</td>
<td>sourceMethodID, migrateID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated From Usage</td>
<td>migratedNode, migrateID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated From Variable Initialization</td>
<td>entityName, migratedNode, migrateID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated To Field Initialization</td>
<td>entityName, migratedNode, migrateID, enclosingClassNodeID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated To Method</td>
<td>entityName, entityNameNodeID, destinationMethodID, migrateID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated To Usage</td>
<td>migratedNode, migrateID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrated To Variable Initialization</td>
<td>entityName, migratedNode, migrateID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 19. Refactoring fragments.

istic of and adds these new refactorings to pendingIncompleteRefactorings (lines 43 – 48).

Finally, after processing all AST node operations, the algorithm adds to inferredRefactorings any of the remaining pending complete refactorings (line 50).

C. Evaluation of Refactoring Inference Algorithm

We are the first to report the accuracy of a continuous refactoring inference algorithm on real world data. First, we evaluated our algorithm on the automated refactorings performed by our participants, which are recorded precisely by Eclipse. We considered 2,398 automated refactorings of the nine out of the ten kinds that our algorithm infers (we disabled the inference of automated Encapsulate Field refactoring in our experiment because the inferencer did not scale for one participant, who performed many such refactorings one after another). A challenge of any inference tool is to establish the ground truth, and we are the first to use such a large ground truth. Our algorithm correctly inferred 99.3% of these 2,398 refactorings. The uninferred 16 refactorings represent unlikely code editing scenarios, e.g., ten of them are Extract Local Variable refactorings in which Eclipse re-writes huge chunks of code in a single shot.

Also, we randomly sampled 16.5 hours of code development from our corpus of 1,520 hours. Each sample is a 30-minute chunk of development activity, which includes writing code, refactoring code, running tests, committing files, etc. To establish the ground truth, the second author manually replayed each sample and recorded any refactorings (of the ten kinds that we infer) that he observed. He then compared this to the numbers reported by our inference algorithm. The first and the second authors discussed any observed discrepancies and classified them as either false positives or false negatives. Fig. 22 shows the sampling results for each kind of the refactoring that our algorithm infers.

The confusion matrix [37] for our inference algorithm is presented below. The number of true negatives is represented as X. True negatives measure instances where a refactoring did not occur. Since a refactoring could occur at any time epoch (down to the last millisecond as recorded by our tool), there could be an enormous number of such true negatives. Our evaluation metrics do not depend on the number of true negatives.
We infer only ten kinds of refactorings, which is a subset of the total number of refactorings that a developer can apply. To address this limitation to some extent, we inferred those refactoring kinds that are previously reported as being the most popular among automated refactorings [12].

B. Refactoring Inference Algorithm

Our refactoring inference algorithm takes as input the basic AST node operations that are inferred by another algorithm [10]. Thus, any inaccuracies in the AST node operations inference algorithm could lead to imprecisions in the refactoring inference algorithm. However, we compute the precision and recall for both these algorithms applied together, and thus, account for any inaccuracies in the input of the refactoring inference algorithm.

Although the recall of our refactoring inference algorithm is very high, the precision is noticeably lower. As a result, some of our numbers might be skewed. Nevertheless, we believe that the precision is high enough not to undermine our general observations.

To measure the precision and recall of the refactoring inference algorithm, we sampled around 1% of the total amount of data. Although this is a relatively small fraction of the analyzed data, the sampling was random and involved 33 distinct 30-minute intervals of code development activities.

VI. RELATED WORK

To accurately answer questions about the practice of refactoring, we have to consider both manual and automated refactorings. Collecting information about automated refactoring is relatively simple and can be done through instrumenting the Eclipse refactoring infrastructure. Collecting information about manual refactorings, on the other hand, is more complex and relies on algorithms for inferring refactorings. This section summarizes state-of-the-art work in refactoring inference and empirical research of refactoring, and contrasts our work to them.

A. Empirical Studies of Refactoring Practice

Xing and Stroulia [13] report that 70% of all changes observed in the evolution of the Eclipse code base are expressible as refactorings. Our previous study [9] of four open source frameworks and one library concluded that more than 80% of component API evolution is expressible through refactorings. These studies indicate that the practice of refactoring plays a vital role in software evolution and is an important area of research.

Our paper focuses on studying software evolution through the lens of refactoring, juxtaposing both manual and automated refactorings. Work on empirical research on the usage of automated refactoring tools was stimulated by Murphy et al.’s study [7] of 41 developers using the Java tools in Eclipse. Their study provided the first empirical ranking of the relative popularities of different automated refactorings, demonstrating that some tools are used more frequently than others. Subsequently, Murphy-Hill et al.’s [38] study on the

A. Experimental Setup

We encountered difficulties in recruiting a larger group of experienced programmers due to issues such as privacy, confidentiality, and lack of trust in the reliability of research tools. However, we managed to recruit 23 participants, which we consider a sufficiently big group for our kind of study. Our dataset is not publicly available due the non-disclosure agreement with our participants.

Section II shows that some participants used CodingTracker for longer periods of time than the others. Also, some participants might be more prolific coders or apply refactorings more often. Consequently, such participants produced a more significant impact on our results. At the same time, we think that this non-uniformity is representative of the real world.

Our results are based on the code evolution data obtained from developers who use Eclipse for Java programming. Nevertheless, we expect our results to generalize to similar programming environments.
use of automated refactoring tools provided valuable insights into the use of automated refactorings in the wild by analyzing data from multiple sources.

Due to the non-intrusive nature of CodingTracker, we were able to deploy our tool to more developers for longer periods of time. As such, we were able to infer and record an order of magnitude more manual refactoring invocations compared to Murphy-Hill et al.’s sampling-based approach, providing a more complete picture of refactoring in the wild. To compare manual and automated refactorings, Murphy-Hill sampled 80 commits from 12 developers for a total of 261 refactoring invocations whereas our tool recorded 1,520 hours from 23 developers for a total of 5,371 refactoring invocations.

Murphy-Hill et al.’s [38] study found that (i) refactoring tools are underused and (ii) the kinds of refactorings performed manually are different from those performed using tools. Our data (see RQ3) corroborates both these claims. We found that some refactorings are performed manually more frequently, even when the automated tools exists and the developer is aware of it. Due to the large differences in the data sets (261 from Murph-Hill et al. vs. 5,371 from ours), it is not possible to meaningfully compare the raw numbers of each refactoring kind. However, the general conclusion holds: different refactoring tools are underused at different degrees. Our work also builds upon their work by providing a more detailed breakdown of the manual and automated usage of each refactoring tool according to different participant’s behavior.

Vakilian et al. [27] observed that many advanced users tend to compose several refactorings together to achieve different purposes. Our results about clustered refactorings (see RQ6) provide additional empirical evidence of such practices. Analyzing the actual elements that are affected by each refactoring would help us better understand how these clusters are formed and what are the implications of these clustering behaviors on software evolution.

B. Automatic Inference of Refactorings

Early work by Demeyer et al. [18] inferred refactorings by comparing two different versions of source code using heuristics based only on low-level software metrics (method size, class size and inheritance levels). To improve accuracy, subsequent work by other researchers described changes between versions of code using higher-level characteristic properties. A refactoring is detected based on how well it matches a set of characteristic properties. Our previous tool, RefactoringCrawler [17], used references of program entities (instantiation, method calls, type imports) as its set of characteristic properties. Weißgerber and Diehl [22] used names, signature analysis, and clone detection as their set of characteristic properties. More recently, Prete et al. [39] devised a template-based approach that can infer up to 63 of the 72 refactorings cataloged by Fowler [1]. Their templates build upon characteristic properties such as accesses, calls, inherited fields, etc., that model code elements in Java. Their tool, Ref-Finder, infers the widest variety of refactorings to date.

All these approaches rely exclusively on snapshots from VCS to infer refactorings. Thus, the accuracy of detection depends on the closeness of the two snapshots being compared. We have shown in RQ7 that many refactorings are shadowed and do not ever reach a commit. This compromises the accuracy of inference algorithms that rely on snapshots. Moreover, snapshot-based approaches (with the exception of Ref-Finder) usually concentrate only on API-level changes leaving out many of the completely or partially local refactorings that we infer (see Fig. 1). This paints an incomplete picture of the evolution of the code.

To address such inadequacies, our inference algorithm leverages fine-grained edits. Similar to existing approaches, our algorithm (see Fig. 20) infers refactorings by matching a set of characteristic properties for each refactoring. Our properties consist of high-level semantic changes such as adding a field, deleting a variable, etc. In contrast to existing approaches, our properties are precise because they are constructed directly from the AST operations that are recorded on each code edit.

In parallel with our tool, Ge et al. [25] developed BeneFactor and Foster et al. [26] developed WitchDoctor. Both these tools continuously monitor code changes to detect and complete manual refactorings in real-time. Although conceptually similar, our tools have different goals – we infer complete refactorings, while BeneFactor and WitchDoctor try to infer and complete partial refactorings. Thus, their tools can afford to infer fewer kinds of refactorings and with much lower accuracy. While orthogonal to our work on studying code evolution, these projects highlight the potential of using refactoring inference algorithms based on fine-grained code changes to improve the IDE. In the following, we compare our tool with the most similar tool, WitchDoctor, in more detail.

Like our tool, WitchDoctor represents fine-grained code changes as AST node operations and uses these operations to infer refactorings. Although similar, the AST node operations and refactoring inference algorithms employed by WitchDoctor and our tool have a number of differences. In particular, our AST node operations inference algorithm [10] employs a range of heuristics for better precision, e.g., it handles Eclipse’s linked edits and jumps over the unparsable state of the underlying code. WitchDoctor specifies refactorings as requirements and constraints. Our refactoring inference algorithm defines refactorings as collections of properties without explicitly specifying any constraints on them. Instead, the properties’ attributes matching ensures compatibility of the properties that are part of the same refactoring (see Section V-B). Additionally, our algorithm infers migrated AST nodes and refactoring fragments, which represent a higher level of abstraction than properties that are constructed directly from AST node operations. The authors of WitchDoctor focused on real-time performance of their tool. Since we applied our tool off-line, we were not concerned with its real-time performance, but rather assessed both precision and recall of our tool on the real world data.
VII. CONCLUSIONS

There are many ways to learn about the practice of refactoring, such as observing and reflecting on one’s own practice, observing and interviewing other practitioners, and controlled experiments. But an important way is to analyze the changes made to a program, since programmers’ beliefs about what they do can be contradicted by the evidence. Thus, it is important to be able to analyze programs and determine the kind of changes that have been made. This is traditionally done by looking at the difference between snapshots. In this paper, we have shown that VCS snapshots lose information. A continuous analysis of change lets us see that refactorings tend to be clustered, that programmers often change the name of an item several times within a short period of time and perform more manual than automated refactorings.

Our algorithm for inferring change continuously can be used for purposes other than understanding refactoring. We plan to use it as the base of a programming environment that treats changes intelligently. Continuous analysis is better at detecting refactorings than analysis of snapshots, and it ought to become the standard for detecting refactorings.

REFERENCES