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ABSTRACT

This thesis focuses on the binary classification problem with training data under both classes.

We first review binary hypothesis testing problems and present a new result on the case of

countably infinite alphabet. The goal of binary hypothesis testing is to decide between the

two underlying probabilistic processes. Asymptotic optimality of binary hypothesis testing

can be achieved with the knowledge of only one of the processes. It is also shown that the

finite sample performance could improve greatly with additional knowledge of the alternate

process. Most previous work focuses on the case where the alphabet is finite. This thesis

extends the existing results to the case of countably infinite alphabet. It is proved that,

without knowledge of the alternate process, the worst-case performance of any test is arbi-

trarily bad, even when the alternate process is restricted to be “far” in the sense of relative

entropy.

Binary classification problems arise in applications where a full probabilistic model of

either of the processes is absent and pre-classified samples from both of the processes are

available. It is known that asymptotic optimality can be achieved with the knowledge of

only one pre-classified training sequence. We propose a classification function that depends

on both training sequences. Then Stein’s lemma for classification is proved using this new

classification function. It states that the maximal error exponent under one class is given

by the relative entropy between the conditional distributions of the two classes. Our results

also shed light on how the classification errors depend on the relative size of the training and

test data. It is shown in the simulation results that our classification method outperforms

the asymptotically optimal one when the test samples are of limited size.
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CHAPTER 1

INTRODUCTION

Hypothesis testing is a fundamental issue in statistics and many application areas. We

restrict our attention to binary hypothesis testing problems in this work. There are two

underlying processes that could have generated the samples. The goal of binary hypothesis

testing is to test which one of the two processes generated the samples. There are mainly

two scenarios for the problem. In one scenario, the probabilistic models of the two processes

are fully specified. In the other scenario, only one of the two models is fully specified. The

model of the other process is either partially known or completely unknown. In this work,

we focus on the case where the underlying processes are stationary and memoryless. Thus

the probabilistic model is fully specified by the marginal distribution of the samples. In

the case where the two distributions are fully known, the loglikelihood ratio test is shown

to be optimal under the Neyman-Pearson criterion. The test statistic depends on the two

distributions and the samples to be tested. In the case where only one of the distributions

is known and the other is completely unknown, Hoeffding proposed in the sixties a universal

test statistic that only depends on the known distribution and the samples to be tested.

The test is asymptotically optimal [1] under a modified Neyman-Pearson criterion. Though

asymptotic optimality can be achieved with the knowledge of only one of the distributions,

prior information of the other distribution is shown to be crucial to the finite sample size

performance of the test [2].

Most of the previous works focus on the case where the alphabet size is finite. We study the

case of countably infinite alphabet in this thesis. We prove that the worst-case performance

of any test is arbitrarily bad, even when the unknown distribution is restricted to be “far”

from the known distribution. The notion of “arbitrarily bad” is made clear in Chapter 3.

This result implies that we need more prior information about the unknown distribution in

order to guarantee uniform performance.

Classification problems arise in the areas where it is unrealistic to have full knowledge of

either of the distributions. There are mainly two scenarios of the problem. In supervised

classification, previously classified samples from one or both of the distributions are available.

New samples are classified based on the knowledge of the classes learned from the previously
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classified samples. In unsupervised classification, even previously classified samples are not

available. The classifier learns about the classes while classifying samples. The second

part of this thesis focuses on the issue of supervised binary classification problems where

samples are generated stationary and memoryless under both classes. It is proved in [3] that

asymptotic optimality can be achieved by a classification function which depends only on the

previously classified samples from one of the classes. The classification function is derived

by formulating the classification problem as a composite versus composite hypothesis testing

problem and a generalized likelihood ratio test is performed. The classification function is

the same as the test statistics of the generalized likelihood ratio test.

We propose a classification function that utilizes previously classified samples from both

classes. Stein’s lemma for classification is proved in this thesis: the maximal error exponent

under one class is characterized by the relative entropy between the two classes and the

maximal error exponent is not achieved by the classification function in [3]. These results

are consistent with the results in hypothesis testing problems [4]. We also found in the

simulations that our method outperforms the method in [3] when the number of sample to

be classified is limited. This shows the importance of utilizing both training sequences. Finite

sample performance is a main concern in many applications because it can be expensive to

accumulate samples, and sample size is usually associated with delay in decision making.

The rest of the thesis is organized as follows. In Chapter 2, we review the binary hypothesis

testing problem with finite alphabet; a new result on countably infinite alphabet is also

proved in Chapter 2. In Chapter 3, we show theoretical and simulation results for the binary

classification problem. We conclude our work and discuss future work in Chapter 4.
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CHAPTER 2

HYPOTHESIS TESTING

2.1 Definition and Background

In this section, we introduce background and definitions that we will use in future sections.

We are concerned with the case where the underlying processes are stationary and memory-

less. In other words, the samples to be tested Xn
1 , n ∈ N, are independent and identically

distributed. We assume that the observations have a marginal which is absolutely continuous

with respect to some measure µ. We denote the probability mass function of the observations

as p0 or p1, both of which take values in the alphabet A = {1, 2, · · · , |A|}. A can be either

finite or countably infinite. We will refer to p0 as the null distribution and p1 as the alternate

distribution. The hypotheses are

H0 : Xn
1 ∼ p0

H1 : Xn
1 ∼ p1.

(2.1)

A decision rule is characterized by a sequence of tests δn1 , where δn : Xn → {0, 1} is a

function that maps the observations to a binary decision. δn = 0 represents a decision that

is in favor of accepting p0 as the true marginal distribution. The performance of a test is

measured by the false alarm and missed-detection probability, which are defined as

PF(δn, p0) , Pr(δn(Xn
1 ) = 1|Xn

1 ∼ p0) (2.2)

and

PM(δn, p1) , Pr(δn(Xn
1 ) = 0|Xn

1 ∼ p1). (2.3)

We say a test is consistent if PF and PM converge to zero as the size of the test sequence

goes to infinity.

We need to prescribe a performance criterion in order to compare various tests. A com-
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monly used criterion is the Neyman-Pearson criterion:

min PM(δn, p1)

s.t. PF(δn, p0) ≤ α.
(2.4)

In the case where p0 and p1 are fully known, the loglikelihood ratio test is shown to be

optimal under the Neyman-Pearson criterion. The test statistic of the loglikelihood ratio

test is
1

n
log

p1(Xn
1 )

p0(Xn
1 )
. (2.5)

In applications like anomaly detection, normal behavior is usually unique to the system,

but abnormal behavior can be anything other than the normal behavior. For example, one

may want to detect if there is a malicious entity (i.e., a Trojan horse) tampering a computer.

But one is unaware of the skills that this malicious entity has. Or one may want to decide if

a power network is working normally or not by observing its output. Anomalous behavior of

a power network might be hard to model due to the fact that the network is vast in size and

affected by various outside entities. As a result, the null distribution that characterizes the

normal behavior of the system is usually unique, but the alternate distribution can sometimes

be anything but the null distribution. In this case, we do not have a simple H1 anymore,

and the hypotheses become

H0 : Xn
1 ∼ p0

H1 : Xn
1 ∼ p1 ∈ S

(2.6)

where S is the class of possible alternate distributions. The above situation is called a simple

versus composite hypothesis testing problem. And the assumption that p1 is in a certain set

S serves as the prior information about the alternate distribution. Most of the time, it is

desirable to have uniform performance guarantee over the set S. We say a test is uniformly

consistent against S if both error probabilities converge to zero under any p1 ∈ S. We say

a test is exponentially uniformly consistent if the worst-case error probabilities against S

are exponentially small. Intuitively, if we restricted S to be far from P0, we would have

exponentially uniform consistency against S. But we will see in later sections that this is

not always the case. In the anomaly detection example mentioned earlier, S = {p1|p1 6= p0}
and this scenario is often referred to as the universal hypothesis testing problem. Since we

do not have full knowledge of what p1 is, a test that works in (2.6) can not depend on p1.

Instead, the test statistic can only be a function of the null distribution and the parameters

of S. In universal hypothesis testing problems, the test statistic can only be a function of p0
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due to the fact that there is no structure at all on S.

The generalized likelihood ratio test (GLRT) is a popular test used in the above simple

versus composite hypothesis testing problem. In this case, the test statistic of GLRT is given

by

sup
p1∈S

1

n
log

p1(Xn
1 )

p0(Xn
1 )
. (2.7)

The test also works in composite versus composite problems with the supremum taken on

both the numerator and the denominator.

The test sequence is given by

δn(Xn
1 ) = I{sup

p1∈S

1

n
log

p1(Xn
1 )

p0(Xn
1 )
≥ τn} (2.8)

where I is the indicator function and τn is referred to as the threshold.

In the situation where S = {p1|p1 6= p0}, the test is called the Hoeffding test which was

proposed by Hoeffding in the sixties. We next show that the test statistic can be further

simplified in this situation.

The relative entropy between two distributions p, q ∈ P(A) satisfying p ≺ q is defined as

D(p‖q) ,
∑
i∈A

p(i) log
p(i)

q(i)
. (2.9)

We define a divergence ball of radius τ around p is defined as

Qτ (p) , {p̃ ∈ P(A) : D(p̃‖p) < τ}. (2.10)

We use q to denote any empirical distribution. So the empirical distribution or type of

the observations Xn
1 is denoted by qXn

1
∈ P(A) where

qXn
1
(i) ,

1

n

n∑
k=1

I(Xk = i). (2.11)

In the case where S = {p1|p1 6= p0}, it is not hard to see that the Hoeffding test can be

equally written as

δn(Xn
1 ) = I{qXn

1
/∈ Qτn(p0)}. (2.12)

The Hoeffding test is proved to be asymptotically optimal under a modified version of the

Neyman-Pearson criterion:

Among all decision rules ∆ = {δ|δ = {δn, n = 1, 2, ...}} that do not depend on the
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unknown p1 and at the same time make sure that the false alarm error exponent

α = lim inf
n→∞

− 1

n
log pF(δn, p0) > λ, (2.13)

select a sequence that maximizes the missed-detection error exponent

β = lim inf
n→∞

− 1

n
log pM(δn, p1) for all p1 ∈ P(A). (2.14)

The quantities α and β are called the error exponents and the definition of them is justified

by large deviation analysis. We say a test is exponentially consistent if these two error

exponents are strictly positive. It is usually intractable to obtain a closed form expression

of PF and PM as functions of n. The analysis of error exponents provides approximation of

the test performance as a function of n. It is closely related to the channel reliability rate

function [5]. So the analysis of error exponents is a key issue in studying the asymptotic

behavior of a test.

Note that the test statistic of GLRT may not necessarily be written in terms of relative

entropy for arbitrary S. In addition, GLRT may not achieve optimality for arbitrary S

either. The sufficient condition for GLRT to be optimal, counter examples in which it is not,

can be found in [6].

2.2 Finite Alphabet

2.2.1 Asymptotic Analysis of the Hoeffding Test

In this section, we study the asymptotic behavior of the Hoeffding test when |A| <∞. The

analysis implies that the performance of the Hoeffding test is compromised when the number

of observations is limited compared to |A|. Then the next section shows how to incorporate

prior information of the alternate distribution to improve the performance of the Hoeffding

test.

The following theorem establishes the asymptotic behavior of the Hoeffding test.

Theorem 2.1 (Asymptotic Behavior of the Hoeffding Test). Assume p0 and p1 have full

support over A.

• Suppose that the observations Xn
1 are i.i.d. with marginal p0. Then the normalized

Hoeffding test statistic sequence {nD(qXn
1
||p0) : n ≥ 1} has the following asymptotic
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bias and variance

lim
n→∞

E[nD(qXn
1
‖p0)] =

1

2
(|A| − 1) (2.15)

lim
n→∞

Var[nD(qXn
1
‖p0)] =

1

2
(|A| − 1). (2.16)

Furthermore, the following weak convergence result holds,

nD(qXn
1
‖P0)

d.−−−→
n→∞

1

2
χ2
|A|−1 (2.17)

where χ2
|A|−1 denotes the chi-square distribution with (|A| − 1) degrees of freedom.

• Suppose the sequence Xn
1 is i.i.d. under p1 6= p0. We have with σ2 , Varp1(log p1

p0
)

lim
n→∞

E[n(D(qXn
1
‖p0)−D(p1‖p0))] =

1

2
(|A| − 1) (2.18)

lim
n→∞

Var[n
1
2D(qXn

1
‖p0)] = σ2 (2.19)

n
1
2 (D(qXn

1
‖p0)−D(p1‖p0))

d.−−−→
n→∞

N (0, σ2). (2.20)

The bias result of (2.15) follows from the unpublished report [7] and the weak convergence

result of (2.17) follows from the result of [8]. The rest of the results follow from [2]. Unlike

the well-known result of the error exponents of the Hoeffding test which follow from large

deviation theory [4], the above results are derived from Taylor expansion and then a central

limit theory analysis. As seen in [2], the weak convergence result can be used to set threshold

for a finite sample size test based on a prescribed false alarm probability. And it turns out

that, when the sample size is small, this approximation of error probabilities which follow

from a central limit theorem analysis is more accurate than that from a large deviation

analysis. Simulations of this can be seen in [2].

As we can see from (2.15 )and (2.19), the bias of the test statistic is positive under either

p0 or p1, and it is linear with (|A|− 1). When the sample size is limited and |A| is large, the

bias term can be significant. This can possibly be addressed by setting a higher threshold

that incorporates this positive bias. However, the variance of the test statistic under p0 is

also linear with (|A| − 1). The high variance implies that the decision region corresponding

to p0 needs to be large in order to guarantee the prescribed false alarm probability. As

a result, the probability of missed-detection might be significant due to the fact that the

decision region of p1 is the complement of that of p0. In other words, this test is not reliable

in situations where the square root of the sample size is small compared to the alphabet size.
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2.2.2 Performance Improvement of the Hoeffding Test

In this section, we show how prior information can improve the finite sample size performance

of the Hoeffding test. In [2], the mismatched test is proposed, which is based on a relaxation

of the Hoeffding test statistic. The relaxation itself relies on additional information about

the set S that p1 belongs to.

The relative entropy can be equally expressed as the convex dual of the log moment

generating function [9]. For any p0 and p1 ∈ P(A)

D(p1||p0) = sup
f

(p1(f)− Λp0(f)) (2.21)

where the supremum is taken over the space of all real-valued functions onA. Furthermore, if

p0 and p1 have equal supports, the supremum is achieved by the log likelihood ratio function

f ∗ = log
p1

p0

. (2.22)

Also note that the above definition is invariant to an addition of a constant. So the supremum

is also achieved by (log p1

p0
+ c) for any c a constant.

We can get a lower bound on the relative entropy if we fix f ∈ F for some function class

F . This lower bound is named as the mismatched divergence in [2]:

DMM(p1||p0) = sup
f∈F
{p1(f)− Λp0(f)}. (2.23)

Then the mismatched test sequence is given by replacing the divergence by mismatched

divergence in (2.8)

δMM
n (Xn

1 ) = I{qXn
1
/∈ QMM

τn (p0)} (2.24)

where

QMM
τn (p0) , {p ∈ P(A) : DMM(p‖p0) < τn} (2.25)

is the mismatched divergence ball around P0 with radius τn.

Now we show how the mismatched test outperforms the Hoeffding test when the sample

size is small. For the purpose of this thesis, we restrict our attention to linear function class

F . Note that the assumption of linear function class can be relaxed [2]. Let {ψi : 1 ≤ i ≤ d}
be d functions on A. And ψ = {ψ1, ψ2, · · · , ψd}T and let F be the linear function class with

basis ψ.

F = {fr =
d∑
i=1

rrψi : r ∈ Rd} (2.26)
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In addition, we assume the following assumptions hold:

• There exists an open neighborhood B ⊂ P(A) of q0 such that for each q ∈ B, the

supremum in the definition of DMM(q||q0) is achieved at a unique point r(q)

• The vectors {ψ1, ψ1, · · · , ψd−1} are linearly independent over the support of p0, where

ψ1 = 1

Then the following theorem holds.

Theorem 2.2 (Asymptotic Analysis of the Mismatched Test). Suppose that the observations

Xn
1 are i.i.d. with marginal p. Suppose that there exists r∗ satisfying fr∗ = log p

p0
. Further,

suppose that the above assumptions hold with q0 = p, then

• When p = p0,

lim
n→∞

E[nDMM(qXn
1
‖p0)] =

1

2
d (2.27)

lim
n→∞

Var[nDMM(qXn
1
‖p0)] =

1

2
d (2.28)

nDMM(qXn
1
‖p0)

d.−−−→
n→∞

1

2
χ2
d (2.29)

• When p = p1 6= p0, we have with σ2 , Varp1(log p1

p0
)

lim
n→∞

E[n(DMM(qXn
1
‖p0)−DMM(p1‖p0))] =

1

2
d (2.30)

lim
n→∞

Var[n
1
2DMM(qXn

1
‖p0)] = σ2 (2.31)

n
1
2 (DMM(qXn

1
‖p0)−DMM(p1‖p0))

d.−−−→
n→∞

N (0, σ2) (2.32)

First note that the asymptotic bias and variance of the mismatched test statistic is linear

with the dimension of the function class. Given the number of observations, we can choose

the dimension to insure that the bias and variance of the test statistic is within certain

tolerance.

Also note that if there exists r∗ satisfying fr∗ = log p
p0

, then log pλ

p0
∈ F for any λ ∈ [0, 1].

pλ is the twisted distribution between P1 and P0

pλ =
pλ0p

1−λ
1∑

pλ0p
1−λ
1

s (2.33)

and

log
pλ

p0

= λ log
p1

p0

− log(
∑

pλ0p
1−λ
1 ) (2.34)
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Because (2.21) is invariant to an addition of constant, λ log p1

p0
also achieves the supremum.

If fr∗ = log p
p0

is in the function class, λ log p1

p0
∈ F because of the linearity of F . So the

mismatched divergence between pλ and p0 coincides with the relative entropy between them.

With some large deviation analysis, it is shown that the mismatched test is still optimal

under the Neyman-Pearson criterion (2.4) for this pair of p0 and p1. So if we know enough

prior information about S, we are able to design F to include log p1

p0
for all p1 ∈ S. This

improves the finite sample performance of the Hoeffding test without compromising asymp-

totic optimality. Moreover, the better we know about the possible alternate distributions,

the further we can lower the dimensionality of F . Thus, the more reliable the test statistic

becomes. We refer readers to the simulation results in [2] for more information.

2.3 Countably Infinite Alphabet

The previous section focuses on the case that |A| < ∞. We prove a new result on the case

of countably infinite alphabet in this section.

We know from the asymptotic analysis of the Hoeffding test that the greater the difference

between the alternate distribution and the null distribution, the larger the missed-detection

error exponent is, given a certain false alarm error exponent. In other words, it is easier to

detect the alternate distribution if it is a lot different from the null distribution. The differ-

ence between the alternate distribution and the null distribution is measured by the relative

entropy between those two. Given any prescribed false alarm error exponent λ, the param-

eter of the twisted distribution can be determined accordingly. Then the missed-detection

error exponent is determined by the relative entropy between the twisted distribution and

the alternate distribution p1. Apparently, the missed-detection error exponent can be zero

for some choices of the alternate distribution p1. This means that the Hoeffding test is not

uniformly exponentially consistent if p1 can be any distribution other than p0. However, if

we restrict our attention to the following alternate distributions,

S = {p1|D(p1‖p0) > ε} (2.35)

where ε > λ, the worst-case missed-detection error exponent of the Hoeffding test is strictly

bounded away from zero.

Theorem 2.3 (Uniformly Exponential Consistency of the Hoeffding Test with |A| < ∞).

Assume p0 has full support over A. Consider the Hoeffding test with threshold λ and the

class of alternate distributions S = {p1|D(p1‖p0) > ε} with ε > λ, then the worst-case
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missed-detection error exponent of the Hoeffding test over S is strictly bounded away from

zero,

inf
p1∈S
{lim inf

n→∞
− 1

n
log PM(δn, p1)} > 0 (2.36)

Proof. We begin by proving the set S is closed under the assumption that p0 has full support

over A. Let qn ∈ S be any sequence of distributions that converges in L1. Let q∗ be the limit

of qn. We need to prove that q∗ ∈ S. Consider any i ∈ A such that q∗(i) 6= 0.

q∗(i) log
q∗(i)

p0(i)
= qn(i) log

qn(i)

p0(i)
+ (q∗(i)− qn(i)) log

qn(i)

q0(i)

+ qn(i) log
q∗(i)

qn(i)
+ (q∗(i)− qn(i)) log

q∗(i)

qn(i)

The last three terms on the right all converges to zero since qn → q∗ in L1 and q∗(i) 6= 0.

For i that q∗(i) = 0

lim
n→∞

qn(i) log
qn(i)

p0(i)
= q∗(i) log

q∗(i)

p0(i)
= 0

since p0 has full support. Sum q∗(i) log q∗(i)
p0(i)

over all i, there is limn→∞D(qn‖p0) = D(q∗‖p0).

Then we prove that infq∈S{infp∈Qλ(p0) D(p‖q) } > 0. Suppose it is not true, then there is

a sequence of (qn, pn), qn ∈ S and pn ∈ Qλ(p0) such that

lim
n→∞

D(pn‖qn) = 0

S is closed and bounded as proved before. So there is a subsequence qnk of qn and qnk → q0

in L1.

‖pnk − q0‖L1 6 ‖pnk − qnk‖L1 + ‖qnk − q0‖

The two terms on the right all converge to zero since limn→∞D(pn‖qn) = 0 and qnk → q0 in

L1. As a consequence, ‖pnk − q0‖L1 → 0. This contradicts the fact that Qλ(p0) is compact

since pnk converges to q0 /∈ Qλ(p0). By Sanov’s theorem, infq∈S{lim infn→∞− 1
n

log PM(δn, q)} =

infq∈S{infp∈Qλ(p0) D(p‖q)}. The theorem follows directly.

We shall see that the above theorem falls apart when A is countably infinite. And that

we need to better model the class of alternate distributions, if we would like to have any

worst-case performance guarantee under the alternate distribution.

From now on, we assume that A = {1, 2, ...} is countably infinite. We are still considering

the same universal hypothesis testing problem as in (2.6) except for that p0 and p1 take

values in countably infinite alphabet and S is defined in (2.35). We have proved that S

is a compact set when A is finite in size, and that the worst-case missed-detection error
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Figure 2.1: Receiver Operation Characteristic, Acceptable Test and Coin Flipping

exponent of the Hoeffding test over S is strictly bounded away from zero. Interestingly, this

falls apart when the alphabet is countably infinite. The next theorem shows that the worst-

case missed-detection error probability of any test is arbitrarily bad over the set of alternate

distributions that are arbitrarily far away from p0. This is due to the fact that S is not

closed when A is countably infinite. The result asserts that, in order to have any worst-case

performance guarantee of the Hoeffding test when A is countably infinite, we need a model

of the alternate distribution which provides more information than S does.

Theorem 2.4 (Worst-Case Performance of Any Test with |A| =∞). Assume p0 has full sup-

port over A and A = {1, 2, · · · } is countably infinite. Consider the worst-case performance

of an arbitrary test sequence δ = {δn : n = 1, 2, ...} over the class of alternate distributions

S. Then the performance of δ is arbitrarily bad in the sense that

inf
p1∈S

PD(δn, p1) ≤ PF (δn, p0) for all n (2.37)

where PD(δn, p1) = 1− PM(δn, p1) is the probability of detection.

Figure 2.1 shows what we mean by arbitrarily bad performance. The solid curve is the

receiver operation characteristic (ROC) curve for an acceptable test. The concavity follows

from the fact that we can improve any non-concave ROC curve by using randomized decision

rules. The dotted curve corresponds to the test done by blindly flipping coins. Given a false

alarm probability α, we can achieve PF = PD simply by flipping biased coins with the

probability of heads α. Moreover, if a test gives PD 6 PF , it can be improved simply by
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coin flipping. So the ROC curve of any acceptable test should be concave and above the

dotted line. We call the performance of a test arbitrarily bad if PF = PD because it can be

replaced with simple coin flipping.

We begin the proof by constructing a sequence of distributions that converges to p0 point-

wisely and in L1. For any sequence αn → 0, construct a sequence of distribution pn

pn(i) , (1− αn)p0(i) + I(i = n)αn. (2.38)

The next two lemmas show that we are able to choose αn carefully to make pn → p0 in L1,

and pn ∈ S for all n. We can do so simply because the relative entropy between any two

probability measure dominates the L1 distance.

Lemma 2.1. Assume p satisfies
∑∞

n=1 p(n) = 1 and p(n) 6= 0 for any n ∈ A. There exists

a sequence of αn → 0 that satisfies log( αn
p(n)

) > δ
αn

for all n and any δ > 0.

Proof. Let αn = 1
log log( 1

p(n)
)
. It is obvious that αn → 0 since p(n)→ 0.

log(
αn
p(n)

) = log(
1

p(n) log log( 1
p(n)

)
)

=
1

2
log(

1

p(n)
) + log(

( 1
p(n)

)
1
2

log log( 1
p(n)

)
)

>
1

2
log(

1

p(n)
) when n large enough

(2.39)

The right hand side is
δ

αn
= δ log log(

1

p(n)
) (2.40)

Note that 1
2

log( 1
p(n)

) > δ log log( 1
p(n)

) eventually for any δ > 0.

So let αn = 1
log log( 1

p(n)
)

for n large enough. Let αn be the solution to log( αn
p(n)

) = δ
αn

when n

small. Such {αn} satisfies that αn → 0 and log( αn
p(n)

) > δ
αn

by construction.

The following lemma shows that every pn constructed in (2.38) is at least ε away from p

if the αn in Lemma 2.1 is adopted.

Lemma 2.2. pn is given in the construction above. Let αn → 0 be given in Lemma 2.1.

Then D(pn‖p) > ε for all n large enough.

Proof. Adopt the {αn} given in Lemma 2.1. Apparently pn is guaranteed to be a valid p.m.f.

when n large enough since αn = 1
log log 1

p(n)

→ 0. Now calculate the divergence between pn

13



and p.

D(pn‖p) =
∞∑
i=1

pn(i) log
pn(i)

p(i)

=
∞∑
i=1

pn(i) log((1− αn) +
δn(i)αn
p(i)

)

=
∞∑
i 6=n

pn(i) log(1− αn) + pn(n) log(1− αn +
αn
p(n)

)

> log(1− αn) + pn(n) log(1− αn +
αn
p(n)

) for n large

> log
1

2
+ (p(n)− αnp(n) + αn) log(1− αn +

αn
p(n)

) for n large

> log
1

2
+ αn(1− p(n)) log(

αn
p(n)

) for n large since αn � p(n)

> log
1

2
+

1

2
αn log

αn
p(n)

for n large

(2.41)

Now note that if we let δ =
ε−log 1

2
1
2

in Lemma 2.1, we get log αn
p(n)

>
ε−log 1

2
1
2
αn

. Combine this

and the above calculation, we get D(pn‖p) > ε when n is large enough with the choice

αn = 1
log log 1

p(n)

.

Before proceeding to prove the theorem, we first introduce coupling on two random vari-

ables X and Y in the following way

Y =

{
X with prob. (1− αn)

n with prob. αn
(2.42)

Now we begin to prove Theorem 2.4. The proof techniques are similar to the techniques

used in [10] and [11].

Proof. We begin by constructing two random variables X and Y on the same probability

space. X has marginal p0 and Y has marginal pn.

Then couple X and Y in the above way. And repeat the coupling k times to get Xk
1 i.i.d.

with marginal p0 and Y k
1 i.i.d. with marginal pn.
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For any test sequence δ = {δn : n = 1, 2, ...}, the following holds:

Pr{δk(Xk
1 ) = δk(Y

k
1 )} > Pr{Xk

1 = Y k
1 }

> Pr{symbol n does not appear in either Xk
1 or Y

k
1 }

= [1− ((1− αn)p0(n) + αn)]k

> (1− (p0(n) + αn))k → 1 as n→∞

(2.43)

Now prove that the performance of any test can be arbitrarily bad.

PF (δk, p0) = Pr(δk(X
k
1 ) = 1) (2.44)

The probability of missed-detection for pn with k samples can be calculated as follows

PM(δk, pn) = Pr{δk(Y k
1 ) = 0}

> Pr{δ(Y k
1 ) = 0, Xk

1 = Y k
1 }

= Pr{δk(Xk
1 ) = 0, Xk

1 = Y k
1 }

> (1− (p0(n) + αn))k − PF (δk, p0)

(2.45)

For any k, let n →∞ we have

sup
p1∈S

Pr{δk(Y k
1 ) = 0} > 1− PF (δk, p0) (2.46)

and

inf
p1∈S

PD(δk, p1) 6 PF (δk, p0) (2.47)

where PD(δk, p1) = 1−PM(δk, p1) is the probability of detection under p1. So the performance

of any test over the set S is arbitrarily bad in the sense that the corresponding ROC curve

is a straight line.

Note that the above theorem works for any choice of positive ε, any arbitrary test sequence,

and any n. Thus we have no guarantee on the performance, even if we restrict our attention

to the alternate distributions that are far from the null distribution in terms of relative

entropy. This justifies the necessity that we need to incorporate more prior information of

the alternate distribution. Or in other words, we need a better modeling of the alternate

distributions.
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CHAPTER 3

CLASSIFICATION

3.1 Definition and Background

In this chapter, we focus on the design of the classification method. We show that utilizing

both training sequences improves the finite sample performance even though asymptotic

optimality is achieved with one training sequence. We prove Stein’s lemma for classification

using a new classification function. Our results also shed light on how the classification errors

depend on the relative size of the training and test data.

A full probabilistic model of the system can be too costly to obtain in some cases. The

modeling may not even be possible for some intricate and large-scaled systems. The prob-

lem of classification arises naturally in those applications. The goal of classification is to

identify which of the M classes a new observation belongs to. A class is characterized by the

probabilistic model from which the observations are generated. The probabilistic models are

not known but can be learned in various ways. In supervised classification problems, previ-

ously classified samples are available to the classifier and future observations are classified

based on the information learned from these previously classified samples. In unsupervised

classification problems, information about each class is learned as samples are classified. In

this work, we focus on the problem of supervised classification with M = 2. Without any

knowledge of the marginals, a classification rule can only depend on the previously classified

samples. We further assume that the observations are i.i.d. with different marginals from

different classes. Anomaly detection is one example of binary classification problems. There

are two states of a system, normal and abnormal. Observations generated by the normal

behavior follow a different distribution from those generated from any abnormal behavior.

For the cases where M > 2, the readers are referred to [3] for more information.

From now on, we refer to the previously classified sample sequences as the training data

and the samples to be classified as the test data. We assume that all the training data and

test data are i.i.d. with a marginal distribution p1 if they are from class one and p2 from class

two. p1 and p2 are discrete over the alphabet A and |A| < ∞. Without loss of generality,

assume A = {1, 2, · · · , |A|}. Let {T1}N1 be the training data from class one and {T2}N1 class
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two. Let Xn
1 be the test data with marginal p which is either p1 or p2. We use N to denote

the size of the training data and n for the size of the test data. We use q to denote the

empirical distributions. For instance, qXn
1

is the empirical distribution constructed from the

test sequence. A classification rule δ = I{h({T1}N1 , {T2}N1 , Xn
1 ) > 0}+ 1 : AN ×AN ×An →

{1, 2} maps the training and test data to a decision on the two classes. h({T1}N1 , {T2}N1 , Xn
1 )

is the classification function. A classification rule essentially divides the space of training and

testing data AN×AN×An into two decision regions Λ1 and Λ2 and Λ1∪Λ2 = AN×AN×An.

The error probability under each of the classes is defined similar to (2.2) and (2.3).

Perr1 , P(δ = 2|Xn
1 ∼ p1) (3.1)

Perr2 , P(δ = 1|Xn
1 ∼ p2) (3.2)

Intuitively, there are two sources of error in supervised classification problems. The mis-

classification error comes from both the false modeling of the classes and the classification

itself. If we have unlimited training data under both classes, the problem becomes a binary

hypothesis testing problem with fully known p1 and p1. Then it is known that the error is

exponentially small with respect to the size of the test data. If the training data are limited,

we do not have full knowledge of the classes. The false modeling is another source of error

because future observations are classified based on an inaccurate model. It is not clear at this

point how the classification errors decay. In other words, we do not know how to normalize

the errors to get the error exponent. As we can see from the optimality criterion introduced

next, the errors are normalized by 1
m

for some m→∞ as (n,N) tend to infinity. It will be

clear what m is once we study the asymptotic behavior of the errors. We shall also see that

it is the relative size of (n, N) that determines the rate at which the errors tend to zero. So

we postpone the definition of error exponent until later.

We adopt a similar definition of asymptotic optimality as the modified Neyman-Pearson

criterion:

Among all classification rules ∆ = {δ|δ = {δn, n = 1, 2, ...}} that do not depend

on the unknown p1 and p2 and with the error exponent under class one

lim inf
n→∞

− 1

m
log Perr1(δn, p1) > λ

select a sequence that maximizes error exponent under class two

lim inf
n→∞

− 1

m
log Perr2(δn, p2) for all p2 ∈ P(A)
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where m = m(n,N) is a function of (n,N) and tends to infinity as (n,N) tend to infinity. We

will specify m later as we know more about the behavior of error probabilities in classification.

This chapter is organized as follows. We first prove a theorem that characterizes asymp-

totically optimal classification functions. Then we study two classification functions under

which the error probabilities of the two classes are exponentially small. We will see that the

error probability depends on both n and N . These two functions depend only on the train-

ing samples from class one. The first classification function is inspired by [12]. The second

classification function is proposed by [3] and is proved to be asymptotically optimal under

the above criterion. This result is very similar to the case in hypothesis testing problems

where the knowledge of only one distribution is needed to achieve asymptotic optimality.

Then we propose a different classification function which resembles the test statistic of the

loglikelihood test. Our method utilizes both training sequences. We prove Stein’s lemma for

classification using the new classification function. In the end, we present simulation results

which show that the classification function we proposed outperforms the one in [3] when the

number of samples are limited. This justifies using both training sequences for additional

information about the two classes.

3.2 Asymptotically Optimal Classification Rules

3.2.1 Characteristic of the Asymptotically Optimal Classification Rules

We start by proving a theorem that characterizes asymptotically optimal classification func-

tions. Not surprisingly, the asymptotically optimal classification function depends on the

training and test data only through their types. The proof techniques are similar to the

Lemma 1 in [13].

Theorem 3.1 (Characteristic of Asymptotically Optimal Classification Functions). Any

asymptotically optimal classification function depends on the training and test data only

through their types.

Proof. First prove that all classification functions can be replaced by the ones that only

depend on Xn
1 through its type without compromising its asymptotic performance.

Let Λ = Λ1 ∪ Λ2 be the decision region specified by any classification function. Let

Λ1(t1, t2),Λ2(t1, t2) ∈ An be the decision regions conditioned on that the training data

{T1}N1 = t1 and {T2}n1 = t2. Let Xµ = {Xn
1 |qX = µ} be the set of test data that has

empirical distribution µ. Let Bµ(t1, t2) = Xµ ∩ Λ1(t1, t2) be the part of Xµ that is included
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in decision region one. Let Cµ(t1, t2) = Xµ ∩Λ2(t1, t2) be the rest of Xµ which is in decision

region two. The basic idea is to compare the size of these two sets and construct new decision

regions based on majority vote. Define

Ωµ(t1, t2) =

{
Xµ if |Bµ| ≥ |Cµ|;
∅ else.

The new decision region is defined as Ω1(t1, t2) = ∪Ωµ(t1, t2) and Ω2(t1, t2) = An/Ω1. It is

easy to see that

p1(Xn
1 ∈ Ω2(t1, t2)|Xn

1 ∈ Xµ) ≤ 2p1(Xn
1 ∈ Λ2(t1, t2)|Xn

1 ∈ Xµ)

and

p2(Xn
1 ∈ Ω1(t1, t2)|Xn

1 ∈ Xµ) ≤ 2p2(Xn
1 ∈ Λ1(t1, t2)|Xn

1 ∈ Xµ)

Do this for every pair of t1 and t2. And construct the new decision region Ω = Ω1 ∪ Ω2.

The error under p1 with decision region Ω is

Perr1(Ω) =
∑
t1,t2

p1(t1)p2(t2)
∑
Xµ

p1(xn1 ∈ Ω2(t1, t2)|xn1 ∈ Xµ)p1(xn1 ∈ Xµ)

≤ 2
∑
t1,t2

p1(t1)p2(t2)
∑
Xµ

p1(xn1 ∈ Λ1(t1, t2)|xn1 ∈ Xµ)p1(xn1 ∈ Xµ)

= 2Perr1(Λ)

where Perr1(Ω) is the error under class one with decision regions Ω and Perr1(Λ) is the error

under class one with decision region Λ. With the same argument,

Perr2(Ω) ≤ 2Perr2(Λ)

If we calculate the error exponent,

lim
m→∞

− 1

m
log Perr1(Ω) ≥ lim

m→∞
− 1

m
log Perr1(Λ)

and

lim
m→∞

− 1

m
log Perr2(Ω) ≥ lim

m→∞
− 1

m
log Perr2(Λ)

So the constructed new decision region Ω which depends on Xn
1 only through its type has

no worse error exponents under both classes.

The second part proves that all decision regions like Ω can be replaced by decision regions
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that depend on {T1}N1 and {T2}N1 only through their types. Λ1(t1, t2) is the decision region

conditional on the training data {T1}N1 = t1 and {T2}N1 = t2. Let Tν1,ν2 = {t1, t2|qt1 =

ν1, qt2 = ν2} be the set of training sequence pairs which has empirical distributions (ν1, ν2).

Construct a new decision region Θ as follows. Let

B(Xµ, Tν1,ν2) = {t1, t2 ∈ Tν1,ν2|Xµ ∈ Ω1(t1, t2)}

and

C(Xµ, Tν1,ν2) = {t1, t2 ∈ Tν1,ν2|Xµ ∈ Ω2(t1, t2)}

Let

Θµ(Tν1,ν2) =

{
Xµ if |B(Xµ, Tν1,ν2)| ≥ |C(Xµ, Tν1,ν2)|;
∅ else.

Let Θ1(Tν1,ν2) = ∪µΘµ(Tν1,ν2) and Θ2(Tν1,ν2) = An/Θ1(Tν1,ν2). Note that Θ only depends on

the training and test data through their types.

Perr1(Θ) =
∑
Tν1,ν2

∑
(t1,t2)∈Tν1,ν2

∑
Tµ∈Θ2(Tν1,ν2 )

p1(t1)p2(t2)p1(Tµ)

=
∑
Tν1,ν2

∑
Tµ∈Θ2(Tν1,ν2 )

p1(Tµ)
∑

t1,t2∈Tν1,ν2

p1(t1)p2(t2)

=
∑
Tν1,ν2

∑
Tµ∈Θ2(Tν)

p1(Tµ)(
∑

(t1,t2)∈Tν ,Tµ∈Ω2(t1,t2)

p1(t1)p2(t2) (3.3)

+
∑

(t1,t2)∈Tν1,ν2 ,Tµ∈Ω1(t1,t2)

p1(t1))p2(t2)

Note that ∑
t1,t2∈Tν1,ν2 ,Xµ∈Ω1(t1,t2)

p1(t1)p2(t2) = p1(B(Xµ, Tν1,ν2))

∑
t1,t2∈Tν1,ν2 ,Xµ∈Ω2(t1,t2)

p1(t1)p2(t2) = p1(C(Xµ, Tν1,ν2))

Note that Xµ ∈ Θ2(Tν1,ν2) implies that |B(Tµ, Tν1,ν2)| ≤ |C(Tµ, Tν1,ν2)|. Thus,

p1(B(Tµ, Tν1,ν2)) + p1(B(Tµ, Tν1,ν2)) ≤ 2p1(C(Tµ, Tν1,ν2)
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So

Perr1(Θ) ≤ 2
∑
Tν1,ν2

∑
Xµ∈Θ2(Tν1,ν2 )

p1(Xµ)
∑

t1,t2∈Tν1,ν2 ,Xµ∈Ω2(t1,t2)

p1(t1)p2(t2)

≤ 2
∑
Tν1,ν2

∑
t1t2∈Tν1,ν2

∑
Xµ∈Ω2(t1,t2)

p1(Xµ)p1(t1)p2(t2)

= 2
∑
Tν1,ν2

∑
t1,t2∈Tν1,ν2

p1(t1)p2(t2)
∑

Xµ∈Ω2(t1,t2)

p1(Xµ)

= 2Perr1|(Ω)

By the same argument, Perr2(Θ) ≤ 2Perr2(Ω). Asymptotically,

lim
m→∞

− 1

m
log Perr1(Θ) ≥ lim

m→∞
− 1

m
log Perr1(Λ)

and

lim
m→∞

− 1

m
log Perr2(Θ) ≥ lim

m→∞
− 1

m
log Perr2(Λ)

where Λ is any decision region and Θ is constructed from Λ which depends on the training

and test sequences only through their types. So the asymptotically optimal classification

function depends on the data only through their types.

3.2.2 Classification Functions Based on Total Variation Distance

According to the last theorem, we can focus our attention on classification functions that

depend on the training and test data through their types. We first study a classification

function that is similar in nature to the test statistic in [12]. The classification function

takes the total variation distance between the empirical distribution of the training data

under class one and that of the test data.

h(t1, t2, x) = d(qt1 , qx) (3.4)

where d denotes the total variation distance. For any P,Q defined over (Ω,F), the total

variation distance is defined as

d(P,Q) , sup
A∈F
|P(A)−Q(A)|. (3.5)
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For discrete A, the total variation distance is simply

d(P,Q) =
1

2

∑
i∈A

|P (i)−Q(i)|. (3.6)

The decision δ(t1, t2, x) is made by comparing h(t1, t2, x) with a threshold r

δ(t1, t2, x) =

{
class one if h(t1, t2, x)− r < 0;

class two else
(3.7)

Note that this classification function depends only on the training data from class one.

We extend the notion of consistency and uniform consistency to classification problems.

We say a classification method is consistent if the error probabilities under all classes converge

to zero as the size of the training and test data increases. In examples like anomaly detection,

the normal behavior of a system is unique but abnormal behaviors can be anything in the set

S. It is desirable that a classification method is consistent against all the possible abnormal

behaviors in S. We say a classification method is uniformly consistent against the set S if the

misclassification errors converge to zero under any p2 ∈ S. Uniform exponential consistency

can be defined similarly.

Consider the set of all possible marginals p2 under class two which is at least δ away from

the marginal p1 under class one,

S , {p2|d(p1, p2) > δ} (3.8)

where the choice of δ will be specified later. We will prove that the classification rule based

on total variation distance is uniform exponentially consistent over S.

Theorem 3.2 (Uniform Exponential Consistency of the Classifier Based on Total Variation

Distance). The classification function h(t1, t2, x) = d(qt1 , qx) with threshold r is uniform

exponentially consistent against the set of marginals S , {p2|d(p1, p2) > δ} for any δ > r.

Proof. Choose any r1 such that
√

1
2
r1 < r < δ and (

√
1
2
r1 + r)2 < δ. Let Cr1 be the set of

training sequences from class one that have empirical distribution close to the true marginal

p1 in terms of relative entropy,

Cr1 = {t1|D(qt1 || p1) ≤ r1}

and define the decision region corresponding to class one

Ar = {x|d(qx, qt1) ≤ r}
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We first calculate a few bounds on the total variation distance between any two sequences

in the above two sets. If qt1 ∈ Cr1 , then by the definition of Cr1 and Pinsker’s inequality,

there is 2d2(qt1 , p1) ≤ D(qt1 || p1) ≤ r1. If in addition that Xn
1 ∈ (Ar)c and r >

√
1
2
r1, then

by the same argument,

D(qx || p1) ≥ 2d2(qx, p1)

≥ 2(d(qx, qt1)− d(qt1 , p1))2

≥ 2(r −
√

1

2
r1)2

If qt1 ∈ Cr1 and qx ∈ Ar, for any p2 ∈ S,

D(qx || p2) ≥ 2d2(qx, p2)

≥ 2(d(p2, p1)− d(qx, p2))2

≥ 2(δ − (r +

√
1

2
r1))2

provided δ > (r +
√

1
2
r1). The inequality follows from the fact that

d(qx, p1) ≤ d(qx, qt1) + d(qt1 , p1) ≤ r +

√
1

2
r1

and d(p2, p1) ≥ δ.
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Now we proceed to calculate the missed classification error of class one,

p1(Ar) = p1(Ar, T1 ∈ Cr1) + p1(Ar, T1 ∈ (Cr1)c)

≥ p1(Ar, T1 ∈ Cr1)

= p1(Ar|T1 ∈ Cr1)p1(T1 ∈ Cr1)

= (1− p1((Ar)c|T1 ∈ Cr1))p1(T1 ∈ Cr1)

= (1− p1((Ar)c, T1 ∈ Cr1)

p1(T1 ∈ Cr1)
)p1(T1 ∈ Cr1)

≥ (1−
p1(D(qX || p0) ≥ 2(r0 −

√
1
2
r1)2)

1− p1(T1 ∈ (Cr1)c)
)p1(T1 ∈ Cr1)

≥ (1−

(
n+ |A|
|A|

)
e−n2(r−

√
1
2
r1)2

1−

(
N + |A|
|A|

)
e−Nr1

)(1−

(
N + |A|
|A|

)
e−Nr1)

= 1−

(
N + |A|
|A|

)
e−Nr1 −

(
n+ |A|
|A|

)
e−n2(r−

√
1
2
r1)2

So the missed classification error under class one is upper bounded by

Perr1 ≤

(
N + |A|
|A|

)
e−Nr1 +

(
n+ |A|
|A|

)
e−n2(r−

√
1
2
r1)2

Use the following bound on

(
n+m

m

)
,

(
m+ n

m

)
≤ e(n+m)H( m

n+m
)

where H( m
m+n

) is the entropy of binomial distribution ( m
m+n

, n
m+n

). Plug the above bound in

Perr1; finally we get that

Perr1 ≤ exp{−N [r1 − (1 +
|A|
N

)H(
|A|

N + |A|
)]}

+ exp{−n[2(r −
√

1

2
r1)2 − (1 +

|A|
n

)H(
|A|
|A|+ n

)]}

It is easy to see that (1 + |A|
N

)H( |A|
N+|A|) → 0 as N → ∞. And (1 + |A|

n
)H( |A|

|A|+n) → 0 as
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n → ∞. So the missed classification error under class one decays exponentially fast with

respect to the term among (N, n) that grows slower.

The error under any p2 ∈ S can be bounded similarly and finally we get

Perr2 ≤

(
N + |A|
|A|

)
exp{−Nr1}+

(
n+ |A|
|A|

)
exp{−n2(δ − (r +

√
1

2
r1)2}

= exp{−N [r1 − (1 +
|A|
N

)H(
|A|

n+ |A|
)]}

+ exp{−n[2(δ − (r +

√
1

2
r1)2)− (1 +

|A|
n

)H(
|A|

n+ |A|
)]}

Note that since the bound does not depend on a particular p2 but only the fact that p2 ∈ S,

we have proved that the missed classification error is uniformly exponentially small over the

set S.

Recall the intuitive observation we made in the beginning of this chapter. We can see

the two sources of error in the upper bound of Perr1 and Perr2. There are two terms in the

expression. One of the terms is exponentially small in the size of the training data. The

other is exponentially small in the size of the test data. It is the relative size of (n,N) that

determines how the error decays. For example, if N = o(n), the error is exponentially small

with respect to the size of the training samples. If n = o(N), the error is exponentially small

with respect to the size of the test data. If N and n are of the same order, for instance

N = Kn, the error exponent depends on r, r1 and δ and the choice of the growth rate K.

The best error exponent is achieved by choosing K that balances the two terms in the error.

So if we would like the error probability to decay exponentially with the size of the test

data, we need to have enough training samples to get a good understanding of the difference

between the classes so the errors brought by the training samples are negligible compared

to the error brought by the test samples. The relative size of the training data with respect

to the test data seems to be a universal issue in classification problems. The same situation

also appears in the classification function we study next.

Similarly to [12], if we look at a general probability space and continuous probability

measures, the classification function can be modified to work in the new scenario. We

could partition the space with pin and use the variational distance dπn(qx, qt1) in the new

classification function. Also note that if we let the size of the partition |πn| grow sub-linearly

with respect to the smaller term among (N, n), the classification function still has uniform

exponentially consistent performance over the set of alternatives S = {p|dπn(p2, p1) ≥ δ}.
The difference is that we are including more and more alternative models in S as the sizes
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of training and test data grow. This result is not surprising in the sense that more samples

provide more discerning power so more models of class two can be discerned from class one.

More information about this issue can be found in [12].

3.2.3 Asymptotically Optimal Classification Rules

We have a good understanding of the asymptotic behavior of the errors in hypothesis testing

problems. We know that there is a tradeoff between the error probabilities under the two

hypotheses. It is also known that if a test is exponentially consistent then the errors decay

exponentially fast with respect to the size of the test samples. Recall that we did not specify

the normalization term m in the definition of asymptotic optimality because it is not clear

how the errors decay. First, there are two sample sizes involved in the analysis. Does the

error decay exponentially fast with respect to the size of the training sample or the test

sample? What is the relation between the training sample size and test sample size in order

to guarantee exponential decay? How fast can the error under class one go to zero under the

constraint that the error under class two converge to zero? Intuitively, if the training sample

size is too small to provide enough information about the difference between the two classes,

the error brought by false modeling of the two classes would dominate. If the number of

training samples goes to infinity, we would know the exact distribution p1 and p2, so the

error should be exponentially small with respect to the size of the test samples. We show

in this section that it is possible to make the error under class one decay exponentially fast

with m for any choice of m. But if m is of higher order than the smaller term in (n,N),

no classifier is consistent under class two. This result is consistent with the analysis of the

classifier based on the total variation distance. We will make the above statement rigorous

in the following theorems.

With some abuse of notation, let min(n,N) be the one between n and N that is of smaller

order. And if N = Kn for a constant K, we let min(n,N) = n. The following theorem

states that if we require that the error probability under class one is exponentially small

with respect to m with min(n,N)
m

→ 0, the error probability under class two does not vanish.

Thus in the optimality criterion (3.9), m = min(n,N).

Theorem 3.3 (Necessary Condition for Consistency). Assume p1 and p2 ∈ P(A) have full

support over A. Let t1 ∼ p1, t2 ∼ p2 be the training samples of length N. Let δ(t1, t2, x)

be any classification rule that does not depend on p1 and p2. Let m be any sequence that
min(n,N)

m
→ 0. For any λ > 0, if δ(t1, t2, x) satisfies,

Perr1(δ(t1, t2, x)) ≤ 2−λm
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Then for any p1 ∈ P(A) and any p2 6= p1

lim
m→∞

Perr2(h(t1, t2, x)) > 0

The proof of the theorem is very similar to the one of theorem 3 in [14] and we do not repeat

it here. In application, we are usually interested in classification rules that are consistent

under both classes. We have seen in the analysis of the classifier based on total variation

distance that the errors are exponentially small with min(n,N). This theorem states that we

cannot do better than this if we would like the classifier to be consistent under both classes.

Now we can specify the choice of m in the optimality criterion.

Among all classification rules ∆ = {δ|δ = {δn, n = 1, 2, ...}} that do not depend

on the unknown p1 and p2 and with the error exponent under class one

lim inf
min(n,N)→∞

− 1

min(n,N)
log Perr1(δn, p1) > λ (3.9)

select a sequence that maximizes error exponent under class two

lim inf
min→∞

− 1

min
log Perr2(δn, p2) for all p2 ∈ P(A) (3.10)

We are not able to prove if the classifier based on total variation distance is asymptotically

optimal under this criterion. Note that the total variation distance and the test statistics

of the Hoeffding test are of a different nature. And the fact that the Hoeffding test is

asymptotically optimal motivates us to look for classification functions that are similar to

the generalized likelihood ratio. This is exactly how the next classification function is formu-

lated. The classification function we study next first appeared in [14] and was later clarified

by [3]. The classification function is constructed by formulating the classification problem

as a composite versus composite hypothesis testing problem. Thus GLRT can be applied to

it. [14] also points out the connection between the classification function and universal data

compression algorithms. The connection helps to avoid constructing empirical distributions

from training and test data, which can be tedious if the underlying processes are not sta-

tionary and memoryless. The optimality result also extends to more general processes, i.e.,

all finite alphabet ergodic measures with a certain fading memory. This work focuses on

i.i.d. models. So we would stick with constructing empirical distributions. The classification

problem can be formulated as a composite versus composite hypothesis testing problem as

follows:

• H1 : {T1}N1 and Xn
1 are i.i.d. with the same distribution p
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• H2 : {T1}N1 and Xn
1 are i.i.d. with different distribution p1 and p2 .

Apply the generalized likelihood ratio test to this composite versus composite hypothesis

testing problem

h(t1, t2, x) = log
supp1,p2

p1(x)p2(t1)

supp p(x, t1)
(3.11)

It is easy to show that the supremum in h is achieved by the empirical distributions

p∗1 = qx, p
∗
2 = qt1 and p∗ = qx,t1 where qx,t1 = N

N+n
qt1 + n

N+n
qx is the empirical distribution

of the concatenation of x and t1. Plug in the maximizer, and we see that h can be equally

written as

h(t1, t2, x) = (n+N)H(qx,t1)− nH(qx)−NH(qt1) (3.12)

where H(p) is the entropy of distribution p.

Note that h can also be equally written as

h(t1, t2, x) = nD(qx||qx,t1) +ND(qt1||qx,t1) (3.13)

which is the sum of the total relative entropy between the training samples T1 and (X,T1)

and the total relative entropy between X and (X,T ). If X and T1 have the same marginal,

and if the size of N and n are large enough, D(qX ||qX,T1) and D(qT1||qX,T1) are both close

to 0 in probability. If X and T1 have different marginals, we would expect D(qT1||qX,T1) and

D(qX ||qX,T1) converge to positive numbers in probability by the law of large numbers. The

convergence obviously depends on the relative size of N and n since qX,T1 is the empirical

distribution of the concatenation of X and T1. This is intuitively how the classification

function has discerning power.

To be consistent with our definition of asymptotic optimality, we use a decision rule which

is slightly different from the one in [3]. The decision δ(t1, t2, x) is made by comparing
1
m
h(t1, t2, x) + ρ(n,M) with a threshold λ. ρ(n,N) = o(1).

δ(t1, t2, x) =

{
class one if 1

m
h(t1, t2, x) + ρ(n)− λ < 0;

class two otherwise
(3.14)

The following lemma states an upper bound for the probability of error under class one of

(3.14).

Lemma 3.1 (Misclassification Error under Class One). Consider the classification rule de-

fined in (3.14). Assume that logn
m
→ 0 and logN

m
→ 0, then the probability of error under
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class one is upper bounded by

− 1

m
log Perr1(δ(t1, t2, x)) ≥ λ

Proof. Let Λ1 = {x, t1|nD(qx||qx,t1) + ND(qt1||qx,t1)−mλ < 0} be the acceptance region of

class one and Λ2 = AN ×An/Λ0 be the acceptance region of class two. The error probability

under class one is

Perr1(Λ) =
∑

(x,t1)∈Λ1

p1(x)p1(t1)

≤
∑

(x,t)∈Λ1

qx,t1(x, t1)

Note that qx,t1(x, t1) = 2−(n+N)H(qx,t1 ). If (x, t1) ∈ Λ1, then (n + N)H(qx,t1) − nH(qx) −
NH(qt1) + mρ(n)−mλ ≥ 0. So 2−(n+N)H(qx,t1 ) ≤ 2−nH(qx)2−NH(qt1 )2−m(λ−ρ(n)). Plug this in

Perr1(Λ),

Perr1(Λ) ≤
∑

(x,t1)∈Λ1

2−NH(qt1 )2−nH(qx)2−m(λ−ρ(n))

≤ 2−n(λ−ρ(n))
∑
t1∈An

2−NH(qt1 )
∑
x∈An

2−nH(qx)

Let T (p1) be the set of all possible types constructed from x under p1. For any T ∈ T (p1),

let q(T ) be any empirical distribution associated with the particular type T . Let |T | be the

number of sequences that are of the same type T . We have∑
x∈An

2−nH(qx) =
∑

T∈T (p1)

2−nH(qT )|T |

By direct calculation in [4], |T | can be bounded by 2nH(qT ). The size of T (p1) can be bounded

by (n+ 1)|A|. So ∑
x∈An

2−nH(qx) ≤ (n+ 1)|A|

and for the same reason ∑
t1∈AN

2−NH(qt1 ) ≤ (N + 1)|A|
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So the error under p1 can be upper bounded by

Perr1(Λ) ≤ 2−m(λ−ρ(n))(n+ 1)|A|(N + 1)|A|

= 2−m(λ−ρ(n))2|A|(log(n+1)+log(N+1))

= 2−m(λ−ρ(n)−|A| log(n+1)
m

−|A| log(N+1)
m

)

We assume that log(n)
m
→ 0 as n → ∞, log(N+1)

m
→ 0 as n → ∞ and ρ(n) → 0. So the error

exponent under class one is bounded by

lim
n→∞

− 1

m
log(perr1) ≥ λ

So the error under class one can be exponentially small with respect to m regardless of

the relative size of m and (n,N). But we know from Theorem 3.3 that we need to set

m = min(n,N) so that the classifier is consistent under class two.

The following theorem [3] states that the classification function defined above is asymp-

totically optimal even though it uses only the training data from class one. The expression

of ρ(n) is specified in the proof.

Theorem 3.4 (Asymptotically Optimal Classifier). For any p1, p2 ∈ P(A) and any λ >

0. Let Ω = (Ω1,Ω2 = Ωc
1) be the decision regions specified by any decision rule that is

independent of p1 and p2 such that

lim
min(n,N)→∞

− 1

min(n,N)
log Perr1(Ω) ≥ λ (3.15)

Let the decision region Λ = (Λ1,Λ2) be specified by (3.14). Then

lim
min(n,N)→∞

− 1

min(n,N)
log Perr1(Λ) ≥ λ (3.16)

and

Perr2(Λ) ≤ Perr2(Ω) (3.17)

The proof follows directly from the proof in [3] by replacing n with min(n,N). Theorem

3.4 shows a result that is very similar to the optimality of the Hoeffding test that asymptotic

optimality is achieved even though only the training data from class one is used. It does not

answer the following questions. What are the error exponents under both classes? What is

the relative size between n and N such that the error under class two is exponentially small
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with respect to min(n,N)? From [14], it turns out that if N and n are of the same order,

N needs to satisfy that N ≥ K?n where K? depends on λ, p1 and p2. Readers who are

interested can find more information in [14].

3.3 Classification Function with Two Training Sequences

In this section, we propose a classification function that depends on both training sequences.

We also prove Stein’s lemma using the new classification function. We also present simulation

results which show that our classification function outperforms the one in [3].

We have seen that asymptotic optimality can be achieved using only the training data

from class one. In this section, we propose a classification function that depends on both T1

and T2 and show that

• The classification rule in [3] does not work for the special case λ = 0. This can be

solved by using the function we propose and the best error exponent under class two

is characterized by D(p2||p1). Thus we prove Stein’s lemma for classification.

• The classification rule that we propose incorporates additional prior information by

utilizing both training data. It outperforms the asymptotically optimal one when the

test data is limited.

Let h(t1, t2, x) = 1
n

log
qt1 (x)

qt2 (x)
and classification rule we study next is

δ(t1, t2, x) =

{
class one if h(t1, t2, x)− λ < 0;

class two otherwise
(3.18)

Note that the classification function is inspired by the loglikelihood ratio test.

3.3.1 Stein’s Lemma for Classification

Recall that the Hoeffding test is proved to be asymptotically optimal for any positive error

exponent under H0. But when the error exponent under H0 is zero, a different test needs

to be constructed in order to prove Stein’s lemma [4]. The same issue also appears in

classification problems. We have seen that the classification rule in [3] is asymptotically

optimal for any positive error exponent under class one. But a different classification rule

needs to be constructed in order to achieve zero error exponent under class one. We adopt

the same classification function as (3.18) with thresholds adapted to the training data.
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δ(t1, t2, x) =

{
class one if D(qt1||qt2)− ε ≤ 1

n
log

qt1(x)

qt2(x)
≤ D(qt1||qt2) + ε ;

class two otherwise
(3.19)

Theorem 3.5 (Stein’s Lemma for Classification). Assume limn→∞
n
N

= 0. Let Λ1 ⊆ AN ×
AN × An be the acceptance region for class one and Λ2 = Λc

1 for class two. Let the error

probabilities be

αn = Pr(Λ2|H1)

and

βn = Pr(Λ1|H2)

for any 0 < η < 1
2
, define

β?n = min
Λ1⊆Am×Am×An

αn<η

βn (3.20)

Then

lim
η→0

lim
n→∞

− 1

n
log β?n = D(p1||p2) (3.21)

Proof. First prove that the test is consistent under H1.

Choose δ < ε and define the following regions.

Aε = {t1, t2, x|D(qt1 ||qt2)− ε ≤ 1

n
log

qt1(x)

qt2(x)

≤ D(qt1||qt2) + ε} (3.22)

Bδ = {t1, t2|D(p1||p2)− δ ≤ D(qt1||qt2) ≤ D(p1||p2) + δ} (3.23)

By definition, Bδ is the set of possible training sequences that the relative entropy between

their empirical distributions is close to D(p1||p2).

Cδ,ε = {t1, t2, x|D(p1||p2) + δ − ε ≤ 1

n
log

qt1(x)

qt2(x)
≤ D(p1||p2)− δ + ε} (3.24)

It is not hard to see that Bδ ∩ Cδ,ε ⊆ Aε.

Next show that for any ε > 0, the test is consistent under H1. The test statistics can be

equally written as
1

n
log

qt1(x)

qt2(x)
= −D(qx||qt1) +D(qx||qt2) (3.25)

Under H1, ||qt1 − p1||l1 → 0 in probability because of the weak law of large numbers. So are
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||qt2 − p2||l1 and ||qx − p1||l1 for the same reason.

|D(qx||qt2)−D(p1||p2)| = |
∑
i

qx(i) log
qx(i)

qt2(i)
−
∑
i

p1(i) log
p1(i)

p2(i)
|

= |
∑
i

(p1(i) + qx(i)− p1(i)) log
qx(i)

qt2(i)
−
∑
i

p1(i) log
p1(i)

p2(i)
|

= |
∑
i

p1(i) log
p2(i)

qt2(i)
+
∑
i

p1(i) log
qx(i)

p1(i)
+
∑
i

(qx − p1) log
qx
qt2
|

≤ |
∑
i

p1(i) log
p2(i)

qt2(i)
|

+ |
∑
i

p1(i) log
qx(i)

p1(i)
|+ |

∑
i

(qx − p1) log
qx
qt2
|

|
∑
i

p1(i) log
p2(i)

qt2(i)
| in Prob.−−−−→ 0

|
∑
i

p1(i) log
qx(i)

p1(i)
| in Prob.−−−−→ 0

|
∑
i

(qx − p1)(i) log
qx(i)

qt2(i)
| in Prob.−−−−→ 0

all because of the weak law of large numbers. With the same argument,

|D(qx||qt1)| in Prob.−−−−→ 0

Putting together the above convergence result, we get that for any ε > δ > 0 ,

lim
n, N→∞

Pr(| −D(qx||qt1) +D(qx||qt2)−D(p1||p2)| ≥ ε− δ| H1) = lim
n, N→∞

Pr(Cc
δ,ε| H1)

= 0

With a similar argument,

lim
n, N→∞

Pr(Bc
δ | H1) = 0

So under H1,

lim
n, N→∞

Pr(Aε| H1) ≥ lim
n, N→∞

Pr(Bδ ∩ Cε,δ| H1)

≥ 1− lim
n, N→∞

Pr(Bc
δ |H1)− lim

n, N→∞
Pr(Cc

ε,δ|H1)

= 1
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This proves that for any ε, the test is consistent under H1.

Then prove a lower bound on the error exponent under H2 of the proposed test. Let

βε = Pr(Aε|H2). Pick ε small enough such that ε < min p1 and ε < min p2 and define two

regions as follows,

Q1 = {t1|D(qt1||p1) <
1

2
ε2}

Q2 = {t2|D(qt2||p2) <
1

2
ε2}

A simple observation gives that

βε =
∑

{t1,t2,x}∈Aε

p1(t1)p2(t2)p2(x)

≤ (
∑

Aε∩Q1∩Q2

+
∑
Aε∩Qc1

+
∑
ε∩Qc2

)p1(t1)p2(t2)p2(x)

First deal with the last two summations.∑
Aε∩Qc1

p1(t1)p2(t2)p2(x) ≤
∑
Qc1

p1(t1)p2(t2)p2(x)

=
∑
Qc1

p1(t1)

≤ (N + 1)M2−N
1
2
ε2

∑
Aε∩Qc2

p1(t1)p2(t2)p2(x) ≤
∑
Qc2

p1(t1)p2(t2)p2(x)

=
∑
Qc2

p2(t2)

≤ (N + 1)M2−N
1
2
ε2

Both are exponentially small with respect to N which is the size of the training sequences.

Now we deal with the first summation. Using Pinsker’s inequality,

||qt1 − p1||l1 < ε for t1 ∈ Q1

and

||qt2 − p2||l1 < ε for t2 ∈ Q2
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Rewrite the empirical divergence rate between t1 and t2 as

D(qt1||qt2) = D(p1||p2) +
∑
i

p1 log
qt1
p1

+
∑
i

p1 log
p1

qt2
+
∑
i

(qt1 − p1) log
qt1
q2

We give upper and lower bound on each of the last three terms:∣∣∣∣∣∑
i

p1 log
qt1
p1

∣∣∣∣∣ ≤ ∑
i

p1

∣∣∣∣log
qt1
p1

∣∣∣∣
≤

∑
i

p1 max{log
p1 + ε

p1

, log
p1

p1 − ε
}

≤
∑
i

p1 max{ ε

min p1

,
ε

min p1 − ε
}

=
ε

min p1 − ε
= O(ε)

and ∣∣∣∣∣∑
i

p1 log
p2

qt2

∣∣∣∣∣ ≤ ∑
i

p1

∣∣∣∣log
qt1
p1

∣∣∣∣
≤ ε

min p2 − ε
= O(ε)

and ∣∣∣∣∣∑
i

(qt1 − p1) log
qt1
qt2

∣∣∣∣∣ ≤ ∑
i

|qt1 − p1|
∣∣∣∣log

qt1
qt2

∣∣∣∣
≤

∑
i

|qt1 − p1|max{log
max p1 + ε

min p2 − ε
, log

max p2 + ε

min p1 − ε
}

≤ εmax{log
max p1 + ε

min p2 − ε
, log

max p2 + ε

min p1 − ε
} = O(ε)

So for any t1 ∈ Q1 and t2 ∈ Q2,

D(p1||p2)−O(ε) ≤ D(qt1||qt2) ≤ D(p1||p2) +O(ε)

For any {t1, t2, x} ∈ Aε ∩Q1 ∩Q2, combine the above

D(p1||p2)−O(ε) ≤ 1

n
log

qt1(x)

qt2(x)
≤ D(p1||p2) +O(ε)
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The test statistic can be rewritten as

1

n
log

qt1(x)

qt2(x)
=

1

n
log

p1(x)

p2(x)
+

1

n
log

qt1(x)

p1(x)
+

1

n
log

p2(x)

qt2(x)

Use the same method to bound the last two terms,∣∣∣∣ 1n log
qt1(x)

p1(x)

∣∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣∣log
qt1(xj)

p1(xj)

∣∣∣∣
≤ 1

n

n∑
j=1

max{log(1 +
ε

p1(xj)
), log(1 +

ε

p1(xj)− ε
}

≤ log(1 +
ε

min p1 − ε
) ≤ ε

min p1 − ε
= O(ε)

and ∣∣∣∣ 1n log
p2(x)

qt2(x)

∣∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣∣log
p2(xj)

qt2(xj)

∣∣∣∣
≤ ε

min p2 − ε
= O(ε)

Putting the above results together, we get that for any {t1, t2, x} ∈ Aε ∩Q1 ∩Q2,

D(p1||p2)−O(ε) ≤ 1

n
log

p1(x)

p2(x)
≤ D(p1||p2) +O(ε)

So p2(x) can be bounded by

p1(x)2−n(D(p1||p2)+O(ε)) ≤ p2(x) ≤ p1(x)2−n(D(p1||p2)−O(ε))

So the error under H2 can be bounded as follows,∑
Aε∩Q1∩Q2

p1(t1)p2(t2)p2(x) ≤
∑

Aε∩Q1∩Q2

p2(x)

≤
∑

p1(x)2−n(D(p1||p2)−O(ε))

≤ 2−n(D(p1||p2)−O(ε))

βε ≤ 2−n(D(p1||p2)−O(ε)) + 2−N( 1
2
ε2−M log(N+1)

N
) + 2−N( 1

2
ε2−M log(N+1)

N
)
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Since N is of greater order of n, take log of the error and normalize by 1
n
,

− 1

n
log βε ≥ D(p1||p2)−O(ε)

Lastly, we prove the converse that the error exponents cannot be better. Assume A∗ is

the optimal decision region corresponding to H1 which satisfies that

Pr((A∗)c|H1) ≤ α

Let β∗ be the error under H2

β∗ =
∑

{t1,t2,x}∈A∗

p1(t1)p2(t2)p2(x)

≥
∑

{t1,t2,x}∈A∗∩Aε∩Q1∩Q2

p1(t1)p2(t2)p2(x)

≥ 2−n(D(p1||p2)+O(ε))
∑

{t1,t2,x}∈A∗∩Aε∩Q1∩Q2

p1(t1)p2(t2)p1(x)

The summation can be bounded by∑
A∗∩Aε∩Q1∩Q2

p1(t1)p2(t2)p1(x) ≥ 1− Pr((A∗)c|H1)− Pr(Acε|H1)− p1(Qc
1)− p2(Qc

2)

≥ 1− α− α− 2−N( 1
2
ε2−M log(N+1)

N
) − 2−N( 1

2
ε2−M log(N+1)

N
)

Combine the above two inequalities,

β∗ ≥ 2−n(D(p1||p2)+O(ε))(1− α− α− 2−N( 1
2
ε2−M log(N+1)

N
) − 2−N( 1

2
ε2−M log(N+1)

N
))

Since N is of greater order of n, take log of β∗ and normalize it by 1
n
,

− 1

n
log β∗ ≤ − 1

n
log(1− 2α− 2−N( 1

2
ε2−M log(N+1)

N
) − 2−N( 1

2
ε2−M log(N+1)

N
)) +D(p1||p2) +O(ε)

Let ε→ 0, we get the desired result.

Note that the above result is achieved by letting the training data grow much faster than

the test data. So the error brought by false modeling of the classes is negligible compared

to the error brought by the test data. In this case, the classifier basically has full knowledge

of the classes.
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3.3.2 Improvement of Finite Sample Performance

Recall that though the Hoeffding test is proved to be asymptotically optimal, the mismatched

test, which incorporates additional prior information, has better finite sample performance

[2]. The improvement is implied by the asymptotic mean and variance analysis of the test

statistic (2.27) – (2.32). Simulation results also show that the mismatched test outperforms

the Hoeffding test with finite samples. In this section, we present simulation results to

compare the finite sample size performance of the Gutman classifier and the loglikelihood

ratio classifier.

Figure 3.1 shows the receiver operational curve (ROC) of both classifiers when the training

sequences from both classes are of the same length. The larger the area under the curve,

the better the performance is. The solid blue line corresponds to the ROC of the loglikeli-

hood ratio classifier. The dotted green line corresponds to the Gutman classifier. The two

underlying distributions are generated randomly on alphabet A with |A| = 5. Both of the

distributions have full support over A. The size of the test data is n = 50. The training

sequences from both classes are of size N = 50. The Gutman classifier utilizes only the

training sequence from class one. The loglikelihood ratio classifier utilizes both of the train-

ing sequences. As we can see in Figure 3.1, our classifier outperforms the Gutman classifier

when the test samples are limited. The improvement comes from incorporating additional

information that characterizes class two.

The fact that these two training sequences are of the same size merits them similar im-

portance in classifying future samples. If one of the training sequences is a lot shorter than

the other, the information it provides suffers from more serious inaccuracy. Recall that the

classification errors come from both false modeling of the classes and classification itself, and

that the final error is determined by the dominating term among those two. Intuitively, if

one of the training sequences is too short, the false modeling error it brings may dominate

the total error. So the classifier may benefit from not utilizing that training data. Figure 3.2

verifies this argument. In Figure 3.2, the training sequence from class one and the test data

are of the same size as in Figure 3.1. But the training sequence from class two is reduced

to only 15 samples. Figure 3.2 does not compare the high false alarm region of the ROCs.

This is because a very high false alarm region is not achievable for the loglikelihood ratio

classifier. Recall that the classification function for the loglikelihood ratio classifier is

h(t1, t2, x) = log
qt1(x)

qt2(x)
. (3.26)

Though both of the underlying distributions have full support over A, there is a relatively

high probability that qt2 does not have full support because of the estimation error between
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Figure 3.1: Receiver Operation Characteristic, the Gutman Classifier and the Likelihood
Ratio Classifier, Training Sequence with Equal Size
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Figure 3.2: Receiver Operation Characteristic, the Gutman Classifier and the Likelihood
Ratio Classifier, Less Training Data from Class Two
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qt2 and p2. The estimation error is made worse by the limited size of T2. Whenever qt2 does

not have full support over A, the classification function is infinity, which is greater than any

threshold. So the high false alarm region is not achievable. As we can see from Figure 3.2,

the loglikelihood ratio classifier is outperformed by the Gutman classifier. It is not clear

how fast the training sequence from class two should grow such that incorporating it would

benefit the finite sample performance.
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CHAPTER 4

CONCLUDING REMARKS

We summarize the main contributions of this thesis in Section 4.1, and in Section 4.2 we

briefly discuss some promising directions based on the results presented in Chapter 2–3.

4.1 Summary of Contributions

The three main contributions of this thesis are:

• demonstration that in binary classification problems, it may be rewarding to utilize

training sequences from both classes;

• proof of Stein’s lemma for classification which characterizes the maximal error exponent

under one class;

• an account of the performance limit of hypothesis testing in the case of countably

infinite alphabet.

4.2 Future Extension

In Figure 3.1, we can see that utilizing training sequences from both classes improves the

performance of classification. In Figure 3.2, the simulation yields an opposite result. It may

be rewarding to utilize training sequences from both classes, and the relative size of the two

training sequences is a factor. A meaningful extension will be to study the conditions under

which the improvement is guaranteed.

We prove Stein’s lemma for classification under the condition that the size of the training

sequence is of higher order than that of the test sequence. The maximal error exponent

under one class is given by the relative entropy. This result is not surprising given Stein’s

lemma for hypothesis testing. This result relies on the fact that the training data grows

much faster than the test data. In practice, this means that a large amount of training data
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needs to be collected before a test can be done. A useful extension will be to study the

maximal error exponent under one class, under the condition that the training and test data

are of the same size.
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