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ABSTRACT

This thesis focuses on the binary classification problem with training data under both classes.
We first review binary hypothesis testing problems and present a new result on the case of
countably infinite alphabet. The goal of binary hypothesis testing is to decide between the
two underlying probabilistic processes. Asymptotic optimality of binary hypothesis testing
can be achieved with the knowledge of only one of the processes. It is also shown that the
finite sample performance could improve greatly with additional knowledge of the alternate
process. Most previous work focuses on the case where the alphabet is finite. This thesis
extends the existing results to the case of countably infinite alphabet. It is proved that,
without knowledge of the alternate process, the worst-case performance of any test is arbi-
trarily bad, even when the alternate process is restricted to be “far” in the sense of relative
entropy.

Binary classification problems arise in applications where a full probabilistic model of
either of the processes is absent and pre-classified samples from both of the processes are
available. It is known that asymptotic optimality can be achieved with the knowledge of
only one pre-classified training sequence. We propose a classification function that depends
on both training sequences. Then Stein’s lemma for classification is proved using this new
classification function. It states that the maximal error exponent under one class is given
by the relative entropy between the conditional distributions of the two classes. Our results
also shed light on how the classification errors depend on the relative size of the training and
test data. It is shown in the simulation results that our classification method outperforms

the asymptotically optimal one when the test samples are of limited size.
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CHAPTER 1

INTRODUCTION

Hypothesis testing is a fundamental issue in statistics and many application areas. We
restrict our attention to binary hypothesis testing problems in this work. There are two
underlying processes that could have generated the samples. The goal of binary hypothesis
testing is to test which one of the two processes generated the samples. There are mainly
two scenarios for the problem. In one scenario, the probabilistic models of the two processes
are fully specified. In the other scenario, only one of the two models is fully specified. The
model of the other process is either partially known or completely unknown. In this work,
we focus on the case where the underlying processes are stationary and memoryless. Thus
the probabilistic model is fully specified by the marginal distribution of the samples. In
the case where the two distributions are fully known, the loglikelihood ratio test is shown
to be optimal under the Neyman-Pearson criterion. The test statistic depends on the two
distributions and the samples to be tested. In the case where only one of the distributions
is known and the other is completely unknown, Hoeffding proposed in the sixties a universal
test statistic that only depends on the known distribution and the samples to be tested.
The test is asymptotically optimal [1] under a modified Neyman-Pearson criterion. Though
asymptotic optimality can be achieved with the knowledge of only one of the distributions,
prior information of the other distribution is shown to be crucial to the finite sample size
performance of the test [2].

Most of the previous works focus on the case where the alphabet size is finite. We study the
case of countably infinite alphabet in this thesis. We prove that the worst-case performance
of any test is arbitrarily bad, even when the unknown distribution is restricted to be “far”
from the known distribution. The notion of “arbitrarily bad” is made clear in Chapter 3.
This result implies that we need more prior information about the unknown distribution in
order to guarantee uniform performance.

(Classification problems arise in the areas where it is unrealistic to have full knowledge of
either of the distributions. There are mainly two scenarios of the problem. In supervised
classification, previously classified samples from one or both of the distributions are available.

New samples are classified based on the knowledge of the classes learned from the previously



classified samples. In unsupervised classification, even previously classified samples are not
available. The classifier learns about the classes while classifying samples. The second
part of this thesis focuses on the issue of supervised binary classification problems where
samples are generated stationary and memoryless under both classes. It is proved in [3] that
asymptotic optimality can be achieved by a classification function which depends only on the
previously classified samples from one of the classes. The classification function is derived
by formulating the classification problem as a composite versus composite hypothesis testing
problem and a generalized likelihood ratio test is performed. The classification function is
the same as the test statistics of the generalized likelihood ratio test.

We propose a classification function that utilizes previously classified samples from both
classes. Stein’s lemma for classification is proved in this thesis: the maximal error exponent
under one class is characterized by the relative entropy between the two classes and the
maximal error exponent is not achieved by the classification function in [3]. These results
are consistent with the results in hypothesis testing problems [4]. We also found in the
simulations that our method outperforms the method in [3] when the number of sample to
be classified is limited. This shows the importance of utilizing both training sequences. Finite
sample performance is a main concern in many applications because it can be expensive to
accumulate samples, and sample size is usually associated with delay in decision making.

The rest of the thesis is organized as follows. In Chapter 2, we review the binary hypothesis
testing problem with finite alphabet; a new result on countably infinite alphabet is also
proved in Chapter 2. In Chapter 3, we show theoretical and simulation results for the binary

classification problem. We conclude our work and discuss future work in Chapter 4.



CHAPTER 2

HYPOTHESIS TESTING

2.1 Definition and Background

In this section, we introduce background and definitions that we will use in future sections.
We are concerned with the case where the underlying processes are stationary and memory-
less. In other words, the samples to be tested X', n € N, are independent and identically
distributed. We assume that the observations have a marginal which is absolutely continuous
with respect to some measure . We denote the probability mass function of the observations
as po or pp, both of which take values in the alphabet A = {1,2,---,|A|}. A can be either
finite or countably infinite. We will refer to pg as the null distribution and p; as the alternate

distribution. The hypotheses are

Hp : X?Npo

(2.1)
H1 : X{L ~ PDi.

A decision rule is characterized by a sequence of tests 07, where §,, : X™ — {0,1} is a
function that maps the observations to a binary decision. 9,, = 0 represents a decision that
is in favor of accepting py as the true marginal distribution. The performance of a test is

measured by the false alarm and missed-detection probability, which are defined as
Pr (00, po) 2 Pr(,(X7) = 1|XT ~ po) (2.2)

and
PM((Sn,Pl) £ Pr(én(Xf) = 0|X? ~ p1)~ (2-3)

We say a test is consistent if Pr and Py converge to zero as the size of the test sequence
goes to infinity.

We need to prescribe a performance criterion in order to compare various tests. A com-



monly used criterion is the Neyman-Pearson criterion:

min  Py(0p,, p1)

(2.4)
s.t. Pp(dn,po) <a.

In the case where py and p; are fully known, the loglikelihood ratio test is shown to be
optimal under the Neyman-Pearson criterion. The test statistic of the loglikelihood ratio
test is
1 log nXY) .
n 7 po(XT)

In applications like anomaly detection, normal behavior is usually unique to the system,

(2.5)

but abnormal behavior can be anything other than the normal behavior. For example, one
may want to detect if there is a malicious entity (i.e., a Trojan horse) tampering a computer.
But one is unaware of the skills that this malicious entity has. Or one may want to decide if
a power network is working normally or not by observing its output. Anomalous behavior of
a power network might be hard to model due to the fact that the network is vast in size and
affected by various outside entities. As a result, the null distribution that characterizes the
normal behavior of the system is usually unique, but the alternate distribution can sometimes
be anything but the null distribution. In this case, we do not have a simple H; anymore,

and the hypotheses become

H()I X?Npo

(2.6)
Hl : X{L ~p1 € S

where S is the class of possible alternate distributions. The above situation is called a simple
versus composite hypothesis testing problem. And the assumption that p; is in a certain set
S serves as the prior information about the alternate distribution. Most of the time, it is
desirable to have uniform performance guarantee over the set S. We say a test is uniformly
consistent against S if both error probabilities converge to zero under any p; € S. We say
a test is exponentially uniformly consistent if the worst-case error probabilities against S
are exponentially small. Intuitively, if we restricted S to be far from F), we would have
exponentially uniform consistency against S. But we will see in later sections that this is
not always the case. In the anomaly detection example mentioned earlier, S = {p;|p1 # po}
and this scenario is often referred to as the universal hypothesis testing problem. Since we
do not have full knowledge of what p; is, a test that works in (2.6) can not depend on p;.
Instead, the test statistic can only be a function of the null distribution and the parameters

of S. In universal hypothesis testing problems, the test statistic can only be a function of pg



due to the fact that there is no structure at all on S.

The generalized likelihood ratio test (GLRT) is a popular test used in the above simple
versus composite hypothesis testing problem. In this case, the test statistic of GLRT is given
by

p(XT)
sup — log -
pies Po (X )

(2.7)

The test also works in composite versus composite problems with the supremum taken on
both the numerator and the denominator.

The test sequence is given by

3(X7) = L{sup %logp gl; > ) (2.8)

where I is the indicator function and 7,, is referred to as the threshold.

In the situation where S = {p1|p1 # po}, the test is called the Hoeffding test which was
proposed by Hoeffding in the sixties. We next show that the test statistic can be further
simplified in this situation.

The relative entropy between two distributions p, ¢ € P(A) satisfying p < ¢ is defined as

Z
)1 2.9
D(pllg) 2 3" pli)log 25 "o (2.9)

€A

We define a divergence ball of radius 7 around p is defined as

Q:(p) = {p € P(A) : D(pllp) < 7}- (2.10)

We use ¢ to denote any empirical distribution. So the empirical distribution or type of
the observations X7 is denoted by gxr € P(A) where

qxp (i) & = ZH k=) (2.11)

In the case where S = {p1|p1 # po}, it is not hard to see that the Hoeffding test can be

equally written as

0n(XT) = Haxp ¢ Q- (po) - (2.12)

The Hoeffding test is proved to be asymptotically optimal under a modified version of the

Neyman-Pearson criterion:

Among all decision rules A = {6|0 = {d,,n = ...} } that do not depend on the



unknown p; and at the same time make sure that the false alarm error exponent

1
a = liminf —— log pr(d,, po) = A, (2.13)

n—00 n

select a sequence that maximizes the missed-detection error exponent
o 1
f = liminf —— log pm(0,, p1) for all p; € P(A). (2.14)
n—00 n

The quantities o and (8 are called the error exponents and the definition of them is justified
by large deviation analysis. We say a test is exponentially consistent if these two error
exponents are strictly positive. It is usually intractable to obtain a closed form expression
of Pr and Py as functions of n. The analysis of error exponents provides approximation of
the test performance as a function of n. It is closely related to the channel reliability rate
function [5]. So the analysis of error exponents is a key issue in studying the asymptotic
behavior of a test.

Note that the test statistic of GLRT may not necessarily be written in terms of relative
entropy for arbitrary S. In addition, GLRT may not achieve optimality for arbitrary S
either. The sufficient condition for GLRT to be optimal, counter examples in which it is not,

can be found in [6].

2.2 Finite Alphabet

2.2.1 Asymptotic Analysis of the Hoeffding Test

In this section, we study the asymptotic behavior of the Hoeffding test when |A| < co. The
analysis implies that the performance of the Hoeffding test is compromised when the number
of observations is limited compared to |.A|. Then the next section shows how to incorporate
prior information of the alternate distribution to improve the performance of the Hoeffding
test.

The following theorem establishes the asymptotic behavior of the Hoeffding test.

Theorem 2.1 (Asymptotic Behavior of the Hoeffding Test). Assume py and p; have full

support over A.

o Suppose that the observations X' are i.i.d. with marginal py. Then the normalized

Hoeffding test statistic sequence {nD(qxn||po) : n > 1} has the following asymptotic



bias and variance

Jim BnD(ax;lm)] = (A1~ 1) (2.15)
I VarnD(ax )] = 3 (1A~ 1) (2.16)

Furthermore, the following weak convergence result holds,

d. 1
nD(gX{lHPO) —>n—>oo §X|2A|—1 (217)

where Xiy_, denotes the chi-square distribution with (|A| — 1) degrees of freedom.
e Suppose the sequence X7 is i.i.d. under py # po. We have with 0® £ Var,, (log 5—;)

1

Jim Bln(D(gxy 7o) = Diprllpo))] = (141 = 1) (2.18)
nh_}ngo Var[n%D(qX{szo)] = o’ (2.19)
n*(D(ax;llpo) = D(pallpo)) = N(0,0%). (2.20)

The bias result of (2.15) follows from the unpublished report [7] and the weak convergence
result of (2.17) follows from the result of [8]. The rest of the results follow from [2]. Unlike
the well-known result of the error exponents of the Hoeffding test which follow from large
deviation theory [4], the above results are derived from Taylor expansion and then a central
limit theory analysis. As seen in [2], the weak convergence result can be used to set threshold
for a finite sample size test based on a prescribed false alarm probability. And it turns out
that, when the sample size is small, this approximation of error probabilities which follow
from a central limit theorem analysis is more accurate than that from a large deviation
analysis. Simulations of this can be seen in [2].

As we can see from (2.15 )and (2.19), the bias of the test statistic is positive under either
po or p1, and it is linear with (|.A| —1). When the sample size is limited and |.A] is large, the
bias term can be significant. This can possibly be addressed by setting a higher threshold
that incorporates this positive bias. However, the variance of the test statistic under pg is
also linear with (].A4| — 1). The high variance implies that the decision region corresponding
to po needs to be large in order to guarantee the prescribed false alarm probability. As
a result, the probability of missed-detection might be significant due to the fact that the
decision region of p; is the complement of that of py. In other words, this test is not reliable

in situations where the square root of the sample size is small compared to the alphabet size.



2.2.2 Performance Improvement of the Hoeffding Test

In this section, we show how prior information can improve the finite sample size performance
of the Hoeffding test. In [2], the mismatched test is proposed, which is based on a relaxation
of the Hoeffding test statistic. The relaxation itself relies on additional information about
the set S that p; belongs to.

The relative entropy can be equally expressed as the convex dual of the log moment

generating function [9]. For any py and p; € P(A)
D(p1|lpo) = Sgp(pl(f) — Ay () (2.21)

where the supremum is taken over the space of all real-valued functions on A. Furthermore, if

po and p; have equal supports, the supremum is achieved by the log likelihood ratio function

F*=log 2L, (2.22)
Po
Also note that the above definition is invariant to an addition of a constant. So the supremum
is also achieved by (log ;;—[1) + ¢) for any ¢ a constant.
We can get a lower bound on the relative entropy if we fix f € F for some function class

F. This lower bound is named as the mismatched divergence in [2]:
DY (pu]lpo) = iu]lg{pl(f) = Ay ()} (2.23)
S

Then the mismatched test sequence is given by replacing the divergence by mismatched
divergence in (2.8)
SYM(XT) = axp ¢ QMM (po)} (2.24)

where
QMM (po) = {p € P(A) : DY (pllpo) < 7} (2.25)

is the mismatched divergence ball around F, with radius 7,.

Now we show how the mismatched test outperforms the Hoeffding test when the sample
size is small. For the purpose of this thesis, we restrict our attention to linear function class
F. Note that the assumption of linear function class can be relaxed [2]. Let {¢; : 1 <i < d}
be d functions on A. And ¢ = {41,109, -+ , 94} and let F be the linear function class with
basis 1.

d
F={fr=) _ri:reRY (2.26)
=1



In addition, we assume the following assumptions hold:

e There exists an open neighborhood B C P(A) of gy such that for each ¢ € B, the

supremum in the definition of DM (q||qo) is achieved at a unique point r(q)

e The vectors {1,101, -+ ,1q_1} are linearly independent over the support of pg, where
=1
Then the following theorem holds.
Theorem 2.2 (Asymptotic Analysis of the Mismatched Test). Suppose that the observations

X7 are i.i.d. with marginal p. Suppose that there exists r* satisfying f.~ = log p%. Further,
suppose that the above assumptions hold with gy = p, then

e When p = po,
. 1
T}L}I{.IOE[”DMM(QX{LHPO)] = §d (2.27)
. 1
nh_{glo Var{nDM" (qxp|po)] = §d (2.28)
d. 1
nD"(qxpllpo) —— §sz (2.29)

o When p=p # po, we have with 0® £ Vary, (log &)

. 1
JE&E[”(DMM(QX{IHPO)—DMM(p1||po))] = §d (2.30)
lim Var[nz D™ (g, |po)] = o (2.31)
n—roo
n? (D" (qxpllpo) — D™ (p1lpo)) —== N(0,0%) (2:32)

First note that the asymptotic bias and variance of the mismatched test statistic is linear
with the dimension of the function class. Given the number of observations, we can choose
the dimension to insure that the bias and variance of the test statistic is within certain
tolerance.

Also note that if there exists r* satisfying f,« = log p%’ then log 1;—2 € F for any A € [0,1].
p is the twisted distribution between P, and P,

A pop1_
p= =5 (2.33)
Y
and »
log o )\log — — log Zpépi N (2.34)



Because (2.21) is invariant to an addition of constant, Alog Z—; also achieves the supremum.
If fr = logpﬂ0 is in the function class, )\logi—; € F because of the linearity of F. So the
mismatched divergence between p* and p, coincides with the relative entropy between them.
With some large deviation analysis, it is shown that the mismatched test is still optimal
under the Neyman-Pearson criterion (2.4) for this pair of pg and p;. So if we know enough
prior information about S, we are able to design F to include log i—é for all p; € S. This
improves the finite sample performance of the Hoeffding test without compromising asymp-
totic optimality. Moreover, the better we know about the possible alternate distributions,
the further we can lower the dimensionality of F. Thus, the more reliable the test statistic

becomes. We refer readers to the simulation results in [2] for more information.

2.3 Countably Infinite Alphabet

The previous section focuses on the case that |A| < co. We prove a new result on the case
of countably infinite alphabet in this section.

We know from the asymptotic analysis of the Hoeffding test that the greater the difference
between the alternate distribution and the null distribution, the larger the missed-detection
error exponent is, given a certain false alarm error exponent. In other words, it is easier to
detect the alternate distribution if it is a lot different from the null distribution. The differ-
ence between the alternate distribution and the null distribution is measured by the relative
entropy between those two. Given any prescribed false alarm error exponent A, the param-
eter of the twisted distribution can be determined accordingly. Then the missed-detection
error exponent is determined by the relative entropy between the twisted distribution and
the alternate distribution p;. Apparently, the missed-detection error exponent can be zero
for some choices of the alternate distribution p;. This means that the Hoeffding test is not
uniformly exponentially consistent if p; can be any distribution other than py. However, if

we restrict our attention to the following alternate distributions,

S =A{p1|D(p1llpo) = €} (2.35)

where € > )\, the worst-case missed-detection error exponent of the Hoeffding test is strictly

bounded away from zero.

Theorem 2.3 (Uniformly Exponential Consistency of the Hoeffding Test with |A] < 00).
Assume po has full support over A. Consider the Hoeffding test with threshold \ and the
class of alternate distributions S = {p1|D(p1||po) = €} with € > X, then the worst-case

10



missed-detection error exponent of the Hoeffding test over S is strictly bounded away from
zero,
1
inf {hmmf—— log P (05, p1)} >0 (2.36)

p1ES ™ n—oo

Proof. We begin by proving the set S is closed under the assumption that py has full support
over A. Let ¢, € S be any sequence of distributions that converges in L. Let ¢* be the limit
of ¢,. We need to prove that ¢* € S. Consider any ¢ € A such that ¢*(i) # 0.

L(i) Qn(z) () — M lo
o) po(o) 0~ @) log T

+ qn(7) log
() .

q* (i) log = ¢, (7) log

The last three terms on the right all converges to zero since ¢, — ¢* in L; and ¢*(i) # 0.
For i that ¢*(i) =0
: c @) g ()
lim ¢,(?)log —= = ¢*(i) log —=% =0
Tim g, (7) o~ (4) o)
since py has full support. Sum ¢*(i)log 7 8 over all 4, there is lim,,_,o D(g,||po) = D(¢*||po)-
Then we prove that inf,cg{inf,co,p,) D(pllg) } > 0. Suppose it is not true, then there is

a sequence of (¢, pn), gn € S and p, € Qx(po) such that
lim D(pyllgn) =0
n—oo

S is closed and bounded as proved before. So there is a subsequence ¢,, of ¢, and ¢,, — qo
in Ll-

1Pne — @ollzy < [1Pn — @i llzy + 1@, — 0l

The two terms on the right all converge to zero since lim,,_,o D(py||¢,) = 0 and ¢,, — ¢ in
L. As a consequence, ||p,, — qollz, — 0. This contradicts the fact that Q,(pg) is compact
since py,, converges to gy ¢ Qx(po). By Sanov’s theorem, inf e s{liminf, o —1 log P/ (6., q)} =

inf,cs{infpco, o) D(p|l¢)}. The theorem follows directly. O

We shall see that the above theorem falls apart when A is countably infinite. And that
we need to better model the class of alternate distributions, if we would like to have any
worst-case performance guarantee under the alternate distribution.

From now on, we assume that A = {1,2,...} is countably infinite. We are still considering
the same universal hypothesis testing problem as in (2.6) except for that py and p;, take
values in countably infinite alphabet and S is defined in (2.35). We have proved that S

is a compact set when A is finite in size, and that the worst-case missed-detection error

11
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Figure 2.1: Receiver Operation Characteristic, Acceptable Test and Coin Flipping

exponent of the Hoeffding test over S is strictly bounded away from zero. Interestingly, this
falls apart when the alphabet is countably infinite. The next theorem shows that the worst-
case missed-detection error probability of any test is arbitrarily bad over the set of alternate
distributions that are arbitrarily far away from py. This is due to the fact that S is not
closed when A is countably infinite. The result asserts that, in order to have any worst-case
performance guarantee of the Hoeffding test when A is countably infinite, we need a model

of the alternate distribution which provides more information than S does.

Theorem 2.4 (Worst-Case Performance of Any Test with | A| = c0). Assume pg has full sup-
port over A and A = {1,2,---} is countably infinite. Consider the worst-case performance
of an arbitrary test sequence 6 = {6, : n = 1,2,...} over the class of alternate distributions

S. Then the performance of § is arbitrarily bad in the sense that

inf Pp(dn,p1) < Pp(d,,po) for all n (2.37)

p1ES
where Pp(0,,p1) =1 — Pr(0n, p1) is the probability of detection.

Figure 2.1 shows what we mean by arbitrarily bad performance. The solid curve is the
receiver operation characteristic (ROC) curve for an acceptable test. The concavity follows
from the fact that we can improve any non-concave ROC curve by using randomized decision
rules. The dotted curve corresponds to the test done by blindly flipping coins. Given a false
alarm probability «, we can achieve Pr = Pp simply by flipping biased coins with the

probability of heads a. Moreover, if a test gives Pp < Pp, it can be improved simply by

12



coin flipping. So the ROC curve of any acceptable test should be concave and above the
dotted line. We call the performance of a test arbitrarily bad if Pr = Pp because it can be
replaced with simple coin flipping.

We begin the proof by constructing a sequence of distributions that converges to py point-

wisely and in L;. For any sequence «a,, — 0, construct a sequence of distribution p,
(i) = (1 — a)po(i) +1(i = n)a,. (2.38)

The next two lemmas show that we are able to choose «,, carefully to make p, — pg in Ly,
and p, € S for all n. We can do so simply because the relative entropy between any two

probability measure dominates the L; distance.

Lemma 2.1. Assume p satisfies Y -, p(n) =1 and p(n) # 0 for any n € A. There exists

=1
a sequence of o, — 0 that satisfies log((—) ai for all n and any 6 > 0.

Proof. Let o, = m. It is obvious that «;,, — 0 since p(n) — 0.
o 1
log(——) = log( )
p(n) p(n)loglog(5:5)
1
1 1 (m)?
= —log(—) + log(— 2" —— (2.39)

2 (p ) (loglog(ﬁ))

The right hand side is

9 = ¢ loglog( ) (2.40)

L
o p(n)

Note that %log(ﬁ) > Jlog log(L) eventually for any ¢ > 0.

So let a, = for n large enough. Let «,, be the solution to log(- o )) = % when n

— 1
log log( 50 )
small. Such {«,} satisfies that a;,, — 0 and log(p‘Z:L)) > E by construction. O

The following lemma shows that every p, constructed in (2.38) is at least ¢ away from p

if the o, in Lemma 2.1 is adopted.

Lemma 2.2. p, is given in the construction above. Let o, — 0 be given in Lemma 2.1.

Then D(p,||p) = € for all n large enough.

Proof. Adopt the {«,} given in Lemma 2.1. Apparently p, is guaranteed to be a valid p.m.f.

1

———— — 0. Now calculate the divergence between p,
log log 507

when n large enough since a,, =

13



and p.

Pa
D(pullp) = an )log ))

. On (7)ot
=D pali)log((1 — an) + ———)
; p(i)
= an(z) log(1 — o) + pu(n) log(1 — ay, + ]%)
7 o, (2.41)
> log(1 — ay,) + pu(n) log(l — oo, + —) for n large
p(n)
1 «
> log = + (p(n) — anp(n) + o) log(l — oy, + ——) for n large
5+ (p(n) = aup(n) + ) og(1 =, £ 5%5)
1 Qay, )
> log§ + a,(1 —p(n)) log( o )) for n large since o, > p(n)
n
>1 L + ! log 2§ large
> log - + —a,, log — for n lar
g 5779 g p(n) g
Now note that if we let § = & log2 in Lemma 2.1, we get log o 2 ellzg%. Combine this
2 n
and the above calculation, we get D(p,|lp) = € when n is large enough with the choice
Up = e T L O
oglog

p(n)
Before proceeding to prove the theorem, we first introduce coupling on two random vari-

ables X and Y in the following way

(2.42)

v _ X with prob. (1 — ay,)
n with prob. a,

Now we begin to prove Theorem 2.4. The proof techniques are similar to the techniques
used in [10] and [11].

Proof. We begin by constructing two random variables X and Y on the same probability
space. X has marginal py and Y has marginal p,,.
Then couple X and Y in the above way. And repeat the coupling k times to get XF¥ i.i.d.

with marginal py and Y} i.i.d. with marginal p,,.
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For any test sequence 6 = {0, : n = 1,2, ...}, the following holds:

Pr{dn(X7) = 0x(Y1)} = Pr{Xy = ¥{"}

VoWV

Pr{symbol n does not appear in either X* or Y}

[1 = (1 = an)po(n) + ay,)]*

X (2.43)
(1= (po(n) + an))* — 1 as n — 00

WV

Now prove that the performance of any test can be arbitrarily bad.
P (6, p0) = Pr(6,(XF) =1) (2.44)

The probability of missed-detection for p, with k& samples can be calculated as follows

P (6, pn) = Pr{0,(Y}") = 0}
> Pr{s(V}") = 0, X} = Y}

(2.45)
= Pr{0(X7) = 0, X7 =Y/}
> (1= (po(n) + on))* — Pp(dk, po)
For any k, let n — oo we have
su[; Pr{6,(Y{") =0} > 1 — Pr (0, po) (2.46)
p1€
and
inf PD(5k7p1) < PF<5k7p0) (247)
p1ES

where Pp (g, p1) = 1—Pas(0k, p1) is the probability of detection under p;. So the performance
of any test over the set S is arbitrarily bad in the sense that the corresponding ROC curve

is a straight line. O]

Note that the above theorem works for any choice of positive €, any arbitrary test sequence,
and any n. Thus we have no guarantee on the performance, even if we restrict our attention
to the alternate distributions that are far from the null distribution in terms of relative
entropy. This justifies the necessity that we need to incorporate more prior information of
the alternate distribution. Or in other words, we need a better modeling of the alternate

distributions.

15



CHAPTER 3

CLASSIFICATION

3.1 Definition and Background

In this chapter, we focus on the design of the classification method. We show that utilizing
both training sequences improves the finite sample performance even though asymptotic
optimality is achieved with one training sequence. We prove Stein’s lemma for classification
using a new classification function. Our results also shed light on how the classification errors
depend on the relative size of the training and test data.

A full probabilistic model of the system can be too costly to obtain in some cases. The
modeling may not even be possible for some intricate and large-scaled systems. The prob-
lem of classification arises naturally in those applications. The goal of classification is to
identify which of the M classes a new observation belongs to. A class is characterized by the
probabilistic model from which the observations are generated. The probabilistic models are
not known but can be learned in various ways. In supervised classification problems, previ-
ously classified samples are available to the classifier and future observations are classified
based on the information learned from these previously classified samples. In unsupervised
classification problems, information about each class is learned as samples are classified. In
this work, we focus on the problem of supervised classification with M = 2. Without any
knowledge of the marginals, a classification rule can only depend on the previously classified
samples. We further assume that the observations are i.i.d. with different marginals from
different classes. Anomaly detection is one example of binary classification problems. There
are two states of a system, normal and abnormal. Observations generated by the normal
behavior follow a different distribution from those generated from any abnormal behavior.
For the cases where M > 2, the readers are referred to [3] for more information.

From now on, we refer to the previously classified sample sequences as the training data
and the samples to be classified as the test data. We assume that all the training data and
test data are i.i.d. with a marginal distribution p; if they are from class one and p, from class
two. p; and py are discrete over the alphabet A and |A| < co. Without loss of generality,
assume A = {1,2,--- ,|A|}. Let {71} be the training data from class one and {T5}} class
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two. Let X7 be the test data with marginal p which is either p; or po. We use N to denote
the size of the training data and n for the size of the test data. We use ¢ to denote the
empirical distributions. For instance, gxp is the empirical distribution constructed from the
test sequence. A classification rule § = I{A({T} }V, {To}, X7") > 0} +1: AV x AV x A" —
{1,2} maps the training and test data to a decision on the two classes. h({Ti}Y, {T5}Y, XT)
is the classification function. A classification rule essentially divides the space of training and
testing data AN x AN x A" into two decision regions A; and Ay and A;UAy = AN x AN x A",
The error probability under each of the classes is defined similar to (2.2) and (2.3).

Pewt = P(§ = 2|X]" ~ p)) (3.1)

Peno = P(§ = 1|X]" ~ po) (3.2)

Intuitively, there are two sources of error in supervised classification problems. The mis-
classification error comes from both the false modeling of the classes and the classification
itself. If we have unlimited training data under both classes, the problem becomes a binary
hypothesis testing problem with fully known p; and p;. Then it is known that the error is
exponentially small with respect to the size of the test data. If the training data are limited,
we do not have full knowledge of the classes. The false modeling is another source of error
because future observations are classified based on an inaccurate model. It is not clear at this
point how the classification errors decay. In other words, we do not know how to normalize
the errors to get the error exponent. As we can see from the optimality criterion introduced
next, the errors are normalized by % for some m — oo as (n, N) tend to infinity. It will be
clear what m is once we study the asymptotic behavior of the errors. We shall also see that
it is the relative size of (n, N) that determines the rate at which the errors tend to zero. So
we postpone the definition of error exponent until later.

We adopt a similar definition of asymptotic optimality as the modified Neyman-Pearson

criterion:

Among all classification rules A = {6|0 = {0,,n = 1,2,...}} that do not depend

on the unknown p; and ps and with the error exponent under class one
o 1
lim inf —— log Peyr1 (0n, p1) = A
m

n—oo

select a sequence that maximizes error exponent under class two

n—o0

1
lim inf - 10g Perra (0, p2) for all py € P(A)
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where m = m(n, N) is a function of (n, V) and tends to infinity as (n, V) tend to infinity. We
will specify m later as we know more about the behavior of error probabilities in classification.

This chapter is organized as follows. We first prove a theorem that characterizes asymp-
totically optimal classification functions. Then we study two classification functions under
which the error probabilities of the two classes are exponentially small. We will see that the
error probability depends on both n and N. These two functions depend only on the train-
ing samples from class one. The first classification function is inspired by [12]. The second
classification function is proposed by [3] and is proved to be asymptotically optimal under
the above criterion. This result is very similar to the case in hypothesis testing problems
where the knowledge of only one distribution is needed to achieve asymptotic optimality.
Then we propose a different classification function which resembles the test statistic of the
loglikelihood test. Our method utilizes both training sequences. We prove Stein’s lemma for
classification using the new classification function. In the end, we present simulation results
which show that the classification function we proposed outperforms the one in [3] when the
number of samples are limited. This justifies using both training sequences for additional

information about the two classes.

3.2 Asymptotically Optimal Classification Rules

3.2.1 Characteristic of the Asymptotically Optimal Classification Rules

We start by proving a theorem that characterizes asymptotically optimal classification func-
tions. Not surprisingly, the asymptotically optimal classification function depends on the
training and test data only through their types. The proof techniques are similar to the

Lemma 1 in [13].

Theorem 3.1 (Characteristic of Asymptotically Optimal Classification Functions). Any
asymptotically optimal classification function depends on the training and test data only

through their types.

Proof. First prove that all classification functions can be replaced by the ones that only
depend on X7 through its type without compromising its asymptotic performance.

Let A = Ay U Ay be the decision region specified by any classification function. Let
Ai(t1,ta), Aa(ty,t2) € A™ be the decision regions conditioned on that the training data
{11} = t; and {Tb}} = t5. Let X, = {X7|¢gx = pu} be the set of test data that has
empirical distribution p. Let B, (t1,t2) = X, N A;1(t1,t2) be the part of X, that is included
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in decision region one. Let C),(t1,t2) = X, N Ay(t1,t2) be the rest of X, which is in decision
region two. The basic idea is to compare the size of these two sets and construct new decision

regions based on majority vote. Define

Xu if |BM| > ‘Cu‘;
& else.

Qu(th t2) = {

The new decision region is defined as € (t1,t2) = UQ,(t1,t2) and Qa(ty,t2) = A™"/Qy. It is

easy to see that
pl(X{L c Qg(tl,t2>|X{L c XH) S 2p1<X{l € Ag(tl,t2)|X{l € X“)

and
pa(XT € Q(tr, 1) | XT € X)) < 2pa(XT € Ai(tn, 12)|XT € X,)

Do this for every pair of t; and t5. And construct the new decision region 2 = € U .

The error under p; with decision region {2 is

Port(Q) = D pi(t)palts) Y pi(a} € Qo(tr, to)|a € X,)pi(a] € X,.)

t1,t2 Xu
< 2 pit)palta) Y palaf € At ta)laf € X )pi(af € X,)
t1,t2 X
- 2Perrl (A)

where Pey,1(Q2) is the error under class one with decision regions Q2 and Py (A) is the error

under class one with decision region A. With the same argument,
Perr2<Q) S 2Perr2<A)
If we calculate the error exponent,

1 1
lim —— lOg Perrl(Q) 2 lim —— IOg Perrl <A>

m—0o0 m m—oo m

and

1 1
11111 I IOg PerrZ(Q) Z hm . IOg Perr2<A>

m—r0o0 m m—r0o0 m
So the constructed new decision region 2 which depends on X7 only through its type has
no worse error exponents under both classes.

The second part proves that all decision regions like {2 can be replaced by decision regions
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that depend on {71} and {T5}) only through their types. A;(t1,t5) is the decision region
conditional on the training data {77} = t; and {T2}Y = ty. Let T, ., = {ti,ta2lq, =
V1, G, = 2} be the set of training sequence pairs which has empirical distributions (1, vs).

Construct a new decision region © as follows. Let

B(X/MTVM/Q) = {t17t2 S TVLVQ’XM € Ql(t17t2)}

and

C( Xy, Toy ) ={tita €T 1,1 Xy € Qa(th, 82)}
Let
Xy if |B<XM>TV1,V2)| > |C(X/MTV1,V2)|;
o else.

GH(TI/LVQ) = {

Let ©4(T), 1,) = U,0,(T), 1) and O2(T,, ,,) = A"/O1(T,, 1,). Note that © only depends on
the training and test data through their types.

Per1(©) = > Y > pilt)pa(t)pa(T,)

Toq vy (t1,t2)E€ETvy vy Tu€O2(Tyy uy)

_ Z Z n(T},) Z pi(t1)pa(t2)

Tul,y2 T;,,e@2(TV1,V2) tl,thTul,Vz
- Y Y a@m Y mlme) (33)
Tul,u2 THGQQ(TV) (tl,tQ)ETy,TMGQQ(t17t2)

+ Z pi(t1))pa(t2)

(t1,t2)E€Tvy vo,Tp€Q (t1,t2)

Note that
Z pi(t)pa(te) = pr(B(Xu, Ty 1))

t1,t2€T0 vy, Xp€Q (t1,t2)

> pi(t1)p2(t2) = pi(C(Xy, Toy0s))
t1 ,tQETyl o 7XH EQQ(tl ,tQ)

Note that X, € ©4(7},,,) implies that |B(T},, T, .,)| < |C(Ty, Ty, 0,)|- Thus,

pl(B(Tw TV1,V2)) + p1<B(Tw TVl,VQ)) < 2p1(C(TM, TV1,V2)
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So

Per1(©) < 2 Z Z p1(X,) Z p1(t1)pa(ta)
Tul,y2 XuG@Q(Ty17y2) tlthGTlll,VQ7Xu692(t17t2)
< 2 Z Z Z pr(X)pi(t)p2(ta)

Tu1 9 tito eTul B2 Xll S (t1 ,tg)

= QZ Z pi(ti)pa(ta) Z p1(Xy)

Ty ,vg t1,t2€T0, 1y X, €Qa(t1,t2)

= 2Perr1’(Q)
By the same argument, Po2(0) < 2Pq.0(£2). Asymptotically,

1 1
lim ——10g Pe1(©) > lim —— log P (A)

m—»00 m m—00 m

and 1 1
lim ——log Peyz(©) > lim —— log P ()

m—oo M m—oo M
where A is any decision region and © is constructed from A which depends on the training
and test sequences only through their types. So the asymptotically optimal classification

function depends on the data only through their types. O

3.2.2 C(lassification Functions Based on Total Variation Distance

According to the last theorem, we can focus our attention on classification functions that
depend on the training and test data through their types. We first study a classification
function that is similar in nature to the test statistic in [12]. The classification function
takes the total variation distance between the empirical distribution of the training data

under class one and that of the test data.

h(ty, ta, ) = d(qr,, ¢z) (3.4)

where d denotes the total variation distance. For any P, Q defined over (2, F), the total

variation distance is defined as

d(P,Q) £ sup [P(4) — Q(A)]. (3.5)

AeF
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For discrete A, the total variation distance is simply

aP,Q) = 3 3" IP() — QM) (3.6)

icA
The decision (t1,t2, z) is made by comparing h(tq,ts, x) with a threshold r

class one if h(ty,ts, ) —r < 0;

Ity te, ) = { (3.7)

class two else
Note that this classification function depends only on the training data from class one.

We extend the notion of consistency and uniform consistency to classification problems.
We say a classification method is consistent if the error probabilities under all classes converge
to zero as the size of the training and test data increases. In examples like anomaly detection,
the normal behavior of a system is unique but abnormal behaviors can be anything in the set
S. It is desirable that a classification method is consistent against all the possible abnormal
behaviors in .S. We say a classification method is uniformly consistent against the set S if the
misclassification errors converge to zero under any py € S. Uniform exponential consistency
can be defined similarly.

Consider the set of all possible marginals p, under class two which is at least § away from

the marginal p; under class one,

S 2 {pald(p1,p2) > 6} (3.8)
where the choice of § will be specified later. We will prove that the classification rule based
on total variation distance is uniform exponentially consistent over S.

Theorem 3.2 (Uniform Exponential Consistency of the Classifier Based on Total Variation
Distance). The classification function h(ty,ts,x) = d(qi,,q:) with threshold r is uniform
exponentially consistent against the set of marginals S = {ps|d(p1,p2) > 6} for any § > r.

Proof. Choose any ry such that %7"1 <r <éand ( %7"1 +7)% < §. Let C™ be the set of
training sequences from class one that have empirical distribution close to the true marginal

p1 in terms of relative entropy,

C" ={t1|D(gs, [ p1) <11}

and define the decision region corresponding to class one

A" = {z|d(gr, ) <7}
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We first calculate a few bounds on the total variation distance between any two sequences
in the above two sets. If ¢;, € C", then by the definition of C"™ and Pinsker’s inequality,

there is 2d*(q,,p1) < D(q, ||p1) < r1. If in addition that X7 € (A”)® and 7 > /371, then
by the same argument,

D(gz || p1)

v

2d*(qu, 1)

2(d(qes @) — d(quy 1))

1
AUpr — ] =y )2
(r 27”1)

IV

Y

If ¢, € C"™ and ¢, € A", for any p, € S,

D(qy || p2)

Vv

2d2(Qa:7p2)
> 2(d(p2. 1) — d(qar p2))?

AV
\}
—
>
|
—
=3
+
N | —
=
[
N—
N—
no

provided § > (r + \/%rl). The inequality follows from the fact that

/1
gz, p1) < d(qz: q1,) + (@, 1) <7+ 57"1

and d(ps,p1) > 0.
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Now we proceed to calculate the missed classification error of class one,

pi(A7) pi(A", Ty € C™) + pi (A", Ty € (C™)°)
p(A", Ty e C™)

pi(A"[Ty € C™)py(Th € C™)

(I =p((A")[Ty € C™))pa(Ty € C™)

(A7), Ty € C™)
T, e C™
pl(Tl c Orl) )pl( 1€ )

p1(D(gx || po) > 2(ro — 1/ 571)%)

T meoyy e

<n+|A|) e /T
(- Al N+|A|>6Nn)

1 - <N+ LA’) e—Nr1 )<1 . ( |A’

Al
Nri <7’L—|—|A’> —n2(r—y/3r1)?
|A]

N+ |A
_ 1_( +] |)e_
|Al

So the missed classification error under class one is upper bounded by

Perr1 < (N * |A|> e_N"”l —+ (TZ + |"4|> €_n2(7‘—\/¥)2
Al A

1AV,

= (1-

v

v

Use the following bound on (n * m) ,

m

m-+n < (M) H(ED)
m

where H (") is the entropy of binomial distribution (.

e, ). Plug the above bound in

Pert; ﬁnally we get that

A A
v a?

b epnl2tr 3 -+ Eha ALy

It is easy to see that (1 + %)H(NL“:“&‘) — 0as N — oco. And (1 + %)H(‘Aﬁn) — 0 as

Perrl S eXp{_N[Tl (1+ >H<
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n — 00. So the missed classification error under class one decays exponentially fast with
respect to the term among (N, n) that grows slower.

The error under any py € S can be bounded similarly and finally we get

N+ A n+ | Al T,
Perg < ( Al )exp{—Nr1}+ ( Al >exp{—n2(5— (r+ \/;) }

i AL 1A
= exp{—N[r — (1+ W)H(n—l- ‘A’)]}

1 Al Al
—n[2(0 — —r)H) - (1 4+ ) H(———
+ exp{=nl2(0 — (r 4+ 5r)?) — (L ORGS0
Note that since the bound does not depend on a particular p, but only the fact that p, € S,
we have proved that the missed classification error is uniformly exponentially small over the
set S. ]

Recall the intuitive observation we made in the beginning of this chapter. We can see
the two sources of error in the upper bound of Py, and P..o. There are two terms in the
expression. One of the terms is exponentially small in the size of the training data. The
other is exponentially small in the size of the test data. It is the relative size of (n, V) that
determines how the error decays. For example, if N = o(n), the error is exponentially small
with respect to the size of the training samples. If n = o(N), the error is exponentially small
with respect to the size of the test data. If N and n are of the same order, for instance
N = Kn, the error exponent depends on r, r; and d and the choice of the growth rate K.
The best error exponent is achieved by choosing K that balances the two terms in the error.
So if we would like the error probability to decay exponentially with the size of the test
data, we need to have enough training samples to get a good understanding of the difference
between the classes so the errors brought by the training samples are negligible compared
to the error brought by the test samples. The relative size of the training data with respect
to the test data seems to be a universal issue in classification problems. The same situation
also appears in the classification function we study next.

Similarly to [12], if we look at a general probability space and continuous probability
measures, the classification function can be modified to work in the new scenario. We
could partition the space with pi, and use the variational distance d,, (qs, ;) in the new
classification function. Also note that if we let the size of the partition |m,| grow sub-linearly
with respect to the smaller term among (IV,n), the classification function still has uniform
exponentially consistent performance over the set of alternatives S = {p|d,, (p2,p1) > d}.

The difference is that we are including more and more alternative models in S as the sizes
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of training and test data grow. This result is not surprising in the sense that more samples
provide more discerning power so more models of class two can be discerned from class one.

More information about this issue can be found in [12].

3.2.3 Asymptotically Optimal Classification Rules

We have a good understanding of the asymptotic behavior of the errors in hypothesis testing
problems. We know that there is a tradeoff between the error probabilities under the two
hypotheses. It is also known that if a test is exponentially consistent then the errors decay
exponentially fast with respect to the size of the test samples. Recall that we did not specify
the normalization term m in the definition of asymptotic optimality because it is not clear
how the errors decay. First, there are two sample sizes involved in the analysis. Does the
error decay exponentially fast with respect to the size of the training sample or the test
sample? What is the relation between the training sample size and test sample size in order
to guarantee exponential decay? How fast can the error under class one go to zero under the
constraint that the error under class two converge to zero? Intuitively, if the training sample
size is too small to provide enough information about the difference between the two classes,
the error brought by false modeling of the two classes would dominate. If the number of
training samples goes to infinity, we would know the exact distribution p; and ps, so the
error should be exponentially small with respect to the size of the test samples. We show
in this section that it is possible to make the error under class one decay exponentially fast
with m for any choice of m. But if m is of higher order than the smaller term in (n, N),
no classifier is consistent under class two. This result is consistent with the analysis of the
classifier based on the total variation distance. We will make the above statement rigorous
in the following theorems.

With some abuse of notation, let min(n, N) be the one between n and N that is of smaller
order. And if N = Kn for a constant K, we let min(n, N) = n. The following theorem
states that if we require that the error probability under class one is exponentially small

min(n,N)
m

with respect to m with — 0, the error probability under class two does not vanish.

Thus in the optimality criterion (3.9), m = min(n, N).

Theorem 3.3 (Necessary Condition for Consistency). Assume p; and ps € P(A) have full
support over A. Let t, ~ py, ta ~ po be the training samples of length N. Let 6(t1,ts, x)
be any classification rule that does not depend on py and ps. Let m be any sequence that
minN) o ). For any A > 0, if §(t1,ta, x) satisfies,

m

Perrl (5(t17 t27 [L’)) S 2—)\m
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Then for any p; € P(A) and any py # p;

lim Perrg(h(tl,tz, l’)) >0

m— 00

The proof of the theorem is very similar to the one of theorem 3 in [14] and we do not repeat
it here. In application, we are usually interested in classification rules that are consistent
under both classes. We have seen in the analysis of the classifier based on total variation
distance that the errors are exponentially small with min(n, N). This theorem states that we
cannot do better than this if we would like the classifier to be consistent under both classes.

Now we can specify the choice of m in the optimality criterion.

Among all classification rules A = {6|0 = {0,,n = 1,2,...}} that do not depend

on the unknown p; and py and with the error exponent under class one

1
liminf —————10gPep1 (0, p1) = A (3.9)

min(n,N)—oco min(n, N)

select a sequence that maximizes error exponent under class two

1 i0f = log Para(3,p2) for all p» € P(A) (3.10)

We are not able to prove if the classifier based on total variation distance is asymptotically
optimal under this criterion. Note that the total variation distance and the test statistics
of the Hoeffding test are of a different nature. And the fact that the Hoeffding test is
asymptotically optimal motivates us to look for classification functions that are similar to
the generalized likelihood ratio. This is exactly how the next classification function is formu-
lated. The classification function we study next first appeared in [14] and was later clarified
by [3]. The classification function is constructed by formulating the classification problem
as a composite versus composite hypothesis testing problem. Thus GLRT can be applied to
it. [14] also points out the connection between the classification function and universal data
compression algorithms. The connection helps to avoid constructing empirical distributions
from training and test data, which can be tedious if the underlying processes are not sta-
tionary and memoryless. The optimality result also extends to more general processes, i.e.,
all finite alphabet ergodic measures with a certain fading memory. This work focuses on
i.i.d. models. So we would stick with constructing empirical distributions. The classification
problem can be formulated as a composite versus composite hypothesis testing problem as

follows:

o Hy: {7}V and X7 are i.i.d. with the same distribution p
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o Hy: {Ti}Y and X7 are i.i.d. with different distribution p; and p, .

Apply the generalized likelihood ratio test to this composite versus composite hypothesis

testing problem
Supp p(xv tl)

h(tl,tg,(l}) = IOg (3].1)

It is easy to show that the supremum in h is achieved by the empirical distributions
Pl = Gz, D5 = @, and p* = @+, Where ¢4, = NLJrnqtl + 44 1s the empirical distribution
of the concatenation of x and ¢;. Plug in the maximizer, and we see that h can be equally
written as

h(t1,te, ) = (n + N)H(qrs,) — nH(q:) — NH(q,) (3.12)

where H(p) is the entropy of distribution p.

Note that h can also be equally written as

hty, o, 2) = nD(4a|l92,0) + ND(gn]|¢2,) (3.13)

which is the sum of the total relative entropy between the training samples 7} and (X, 7})
and the total relative entropy between X and (X, 7). If X and T} have the same marginal,
and if the size of N and n are large enough, D(¢x||¢x ) and D(qn ||gx ) are both close
to 0 in probability. If X and 77 have different marginals, we would expect D(qr, ||gx,r ) and
D(gx||gxr,) converge to positive numbers in probability by the law of large numbers. The
convergence obviously depends on the relative size of N and n since gx 1, is the empirical
distribution of the concatenation of X and Tj. This is intuitively how the classification
function has discerning power.

To be consistent with our definition of asymptotic optimality, we use a decision rule which
is slightly different from the one in [3]. The decision 6(t1,t2, ) is made by comparing
Lh(t1,ts, ) + p(n, M) with a threshold \. p(n, N) = o(1).

class one if Lh(ty,ts, ) 4+ p(n) — A < 0; (3.14)
class two otherwise '

5(t1,t2,1’) = {

The following lemma states an upper bound for the probability of error under class one of
(3.14).

Lemma 3.1 (Misclassification Error under Class One). Consider the classification rule de-
fined in (3.14). Assume that loi” — 0 and % — 0, then the probability of error under
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class one is upper bounded by
1
_E 108; Perrl (5(t17 t27 :U>> Z A

Proof. Let Ay = {z,t1|nD(qx||@zt,) + ND(qt,||qzt,) — mA < 0} be the acceptance region of
class one and Ay = AN x A"/Ag be the acceptance region of class two. The error probability

under class one is

Perrl (A) - Z D1 (x)pl(t1>

(z,t1)EAL

S Z Qx,tl (137 tl)

(z,t)EAL

Note that g, (z,t;) = 27N H@ew) If (z,4) € Ay, then (n + N)H(quy,) — nH(q.) —
NH(q,) +mp(n) —mA > 0. So 2~ (TN H(aze,) < 9=nH(a:)9=NH(a)9=mA=r(n)  Plug this in
Perrl (A)7

Perrl (A) < Z 27NH(qt1)27"H(QI)2*m()\fp(n))

(x,tl)GAl

< 9—n(A—p(n)) —NH(qt,) —nH (qz)
< 2 2 2

t1eAn TEA™

Let T'(p1) be the set of all possible types constructed from x under p;. For any T € T'(p,),
let ¢(T') be any empirical distribution associated with the particular type T". Let |T'| be the

number of sequences that are of the same type 7. We have

Z 2an(Qz) — Z anH(qT)‘T|

zeAn TeT(p1)

By direct calculation in [4], |T'| can be bounded by 2"#(47). The size of T(p;) can be bounded
by (n+ 1)H. So
Z 97 nH@) < (4 1)M

rEA™

and for the same reason
Z o~ NH(a) < (N + 1)\A\

t1 c AN
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So the error under p; can be upper bounded by

Pan(A) < 27m(/\fp(n))(n + 1)|AI(N + 1)|AI
—  9=m(A=p(n))9|A|(log(n+1)+log(N-+1))
— 9—mA—p(n)—| Al RECEL | 4 L))
We assume that % — 0 as n — o0, W — 0 asn — oo and p(n) — 0. So the error

exponent under class one is bounded by

1
lim ——1og(perr1) > A

n—oo m

]

So the error under class one can be exponentially small with respect to m regardless of
the relative size of m and (n,N). But we know from Theorem 3.3 that we need to set
m = min(n, N) so that the classifier is consistent under class two.

The following theorem [3] states that the classification function defined above is asymp-
totically optimal even though it uses only the training data from class one. The expression

of p(n) is specified in the proof.

Theorem 3.4 (Asymptotically Optimal Classifier). For any pi, ps € P(A) and any X\ >
0. Let Q = (1,Qs = QF) be the decision regions specified by any decision rule that is
independent of p1 and po such that

1
li ——————log Pe1 (©2) > A 3.15
min(nl,r]\lfl)—)oo min(n, N) & 1( ) ( )

Let the decision region A = (A1, Ay) be specified by (3.14). Then

1
lim  ——— log Payi(A) > A (3.16)

min(n,N)—oco min(n, N)

and

PerrZ(A) S Perr2(Q) (317)

The proof follows directly from the proof in [3] by replacing n with min(n, N). Theorem
3.4 shows a result that is very similar to the optimality of the Hoeffding test that asymptotic
optimality is achieved even though only the training data from class one is used. It does not
answer the following questions. What are the error exponents under both classes?” What is

the relative size between n and N such that the error under class two is exponentially small
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with respect to min(n, N)? From [14], it turns out that if N and n are of the same order,
N needs to satisfy that N > K*n where K* depends on A\, p; and ps. Readers who are

interested can find more information in [14].

3.3 Classification Function with Two Training Sequences

In this section, we propose a classification function that depends on both training sequences.
We also prove Stein’s lemma using the new classification function. We also present simulation
results which show that our classification function outperforms the one in [3].

We have seen that asymptotic optimality can be achieved using only the training data
from class one. In this section, we propose a classification function that depends on both T3
and 75 and show that

e The classification rule in [3] does not work for the special case A = 0. This can be
solved by using the function we propose and the best error exponent under class two

is characterized by D(pz||p1). Thus we prove Stein’s lemma for classification.

e The classification rule that we propose incorporates additional prior information by
utilizing both training data. It outperforms the asymptotically optimal one when the

test data is limited.

Let h(ty,ts,x) = %1og Zilgg and classification rule we study next is
2

class one if h(th‘tg, ) —A<0; (3.18)
class two otherwise

5(t17t2,1’> = {

Note that the classification function is inspired by the loglikelihood ratio test.

3.3.1 Stein’s Lemma for Classification

Recall that the Hoeffding test is proved to be asymptotically optimal for any positive error
exponent under Hy. But when the error exponent under H is zero, a different test needs
to be constructed in order to prove Stein’s lemma [4]. The same issue also appears in
classification problems. We have seen that the classification rule in [3] is asymptotically
optimal for any positive error exponent under class one. But a different classification rule
needs to be constructed in order to achieve zero error exponent under class one. We adopt

the same classification function as (3.18) with thresholds adapted to the training data.
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ta(a)

class one if D(gy||qr,) — € < Llog 21 < D(qy, || qu,) + € ;
5(t1, s, 7) = { (9t /191,) — g (qn[lar.) + (3.19)

class two otherwise

Theorem 3.5 (Stein’s Lemma for Classification). Assume lim, . 1 = 0. Let Ay C AN x
AN x A" be the acceptance region for class one and Ay = AS for class two. Let the error
probabilities be

a, = Pr(Ay|Hy)

and

ﬁn = PI'(A1|H2)

for any 0 <n < %, define

By = min Bn (3.20)
A CAMXAM XA
an<n
Then
lim lim ——logﬁ = D(p1]|p2) (3.21)
n—0n—o0

Proof. First prove that the test is consistent under H;.

Choose § < € and define the following regions.

1 Wz

Ac= {tta 2l Dlaulla) — ¢ < log (22 < Dlgula) +¢) (3.22)
to(x

Bs = {t1, 12| D(p1llp2) — 0 < D(aullar,) < D(prlp2) + 0} (3.23)

By definition, By is the set of possible training sequences that the relative entropy between

their empirical distributions is close to D(p1||p2).

4t (Q?)
dt, (SC)

1
Coe = {t1,t2,2[D(pllp2) + 6 — e < —log < D(p1llp2) — 6 + €} (3.24)
It is not hard to see that Bs; N Cs. C A..
Next show that for any € > 0, the test is consistent under H;. The test statistics can be

equally written as
l 10 qtl (l') —
no 7 gy ()

Under Hy, ||g:, — p1]];;, — O in probability because of the weak law of large numbers. So are

_D<qr||Qt1) + D(QwHQt2> (325)
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llgt, — p2|li, and ||gz — p1]|;, for the same reason.

Dlalla) = D] = 13 (0108 25— iy os 25|
= 100 —m(z’))logqu(?)—gjp1<i>1og§;§j§|
= IZpl logfz((?) zi:pl(@)l —p 10gZ|
< T noes 2

1
+ |Zp1 ) log & Z;IHZ —pi log—!

|Zp1 lOg p2(l> | in Prob. 0
4, Z)
)

Qm 1 in Prob.
p1(7) log —0
| Z 1 p1<z)|

o () in Prob.
1220 =) los G5l =5 0

all because of the weak law of large numbers. With the same argument,

in Prob.
1 D(¢z|lge, )| ——0

Putting together the above convergence result, we get that for any ¢ > ¢ > 0,

lim Pr(| = D(gellgn) + D(gellg,) = D(pillp2)| = € = 0] Hi) = lim Pr(C5 [ Hy)

n, N—oo n, N—oco

= 0

With a similar argument,

lim Pr(B§| H)=0

n, N—oo

So under Hy,

lim Pr(AJ| Hy) > lim Pr(BsnNC.s| Hy)

n, N—oo n, N—oco

1— lim Pr(B§|Hy)— lm Pr(C:s|H,)
n, N—oo ’

n, N—oo
1

v
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This proves that for any ¢, the test is consistent under H;.
Then prove a lower bound on the error exponent under H, of the proposed test. Let
Be = Pr(A¢|Hz). Pick e small enough such that € < minp; and € < minps and define two

regions as follows,

Q1 = {tlD(aullp) < 5¢)

Q2 = {121 Daullps) < )

A simple observation gives that

Be = Y. pmt)pe(to)pa(x)

{t1,t2,x} €A

( Z + Z +Z)p1(t1)p2(t2)p2($)

ANQiNQz  ANQS  eNQS

IN

First deal with the last two summations.
Z pi(t)pa(te)pe(z) < ZP1(t1)p2(t2)p2($)
AcNQS QT
= Zm (t1)
Q1

S (N—|— 1)M27N%62

> nitpe(ta)pa(z) < D pi(t)ps(ta)pa(x)
ANQS Q3
= sz(tz)
@3
< (N4 )M

Both are exponentially small with respect to N which is the size of the training sequences.

Now we deal with the first summation. Using Pinsker’s inequality,

||qt1 _p1||l1 <€ for t, € Ql

and

g, — p2lli, <€ for ty € Qs
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Rewrite the empirical divergence rate between ¢; and ¢, as

q p q
D(anllgs,) = D(pallp2) + Y p1 logﬁJr > pi logq—1+ > (i, —p1>10g£
i i t2 i

We give upper and lower bound on each of the last three terms:

Qt1 qtl
prlog—| < p1 |log —
2miee, | < 2mfes,
D1t € D1
< p1 max{log ,log
zi: { P1 p1—€
< Zplmax{ '6 y — ‘ }
- ; minp; minp; — €
= ————=0()
minp; — €
and
P2 Qt1
pilog—| < p1|log —
2miee,| < 2mles,
< ¢ = O(e)
minpy — €
and
4t qt
Z(qn —pi)log—| < Z | g1, — p1 log =—
P to i th
maxp; + € maxps + €
= Z 612 = pr| max{log mian1 —€’ log minpl2 —€
< emax{log mé.lXpl + 6, log mz_lsz + 6} = O(e)
min py — € minp; — €

So for any t; € Q1 and ty € ()o,

D(p1llp2) — O(€) < D(qy|lar.) < D(p1llp2) + O(e)
For any {t1,t2,2} € Ac N Q1 N Q2, combine the above

4y, (ZE)
4, (ZE)

D(pillp2) — 0(6) < “1og 1) < pipyip) + O(¢)

S
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The test statistic can be rewritten as

1 log gn(z) 1 log m@) 1. g, (2)

noCan(r) n Tpa(r) o T pi(@) o on 7 g(2)

Use the same method to bound the last two terms,

llog G, () Qt1
n pi(z)
€
< —Zmax{log ( )) ,log(1 W}
sl%u+mm€_>s = 0()
pL— € minp; — €
and
1 po(x)
—lo < =
n Qtz(x) n ]Zl qt2
< —— —=0(
minpy — €

Putting the above results together, we get that for any {t,%s,2} € A. N Q1 N Qq,

Dlllp) - 0(0) < 1 1o 423 < Dillp) + 010

So po(z) can be bounded by

pl(x>2—n(D(p1sz)+O(e)) < polz) < pl(l,)2—n(D(p1Hp2)—O(g))
So the error under H, can be bounded as follows,

Z pi(t)p2(t2)p2(r) < Z pa()

AcNQ1NQ2 AeNQ1NQ2

Zpl D(p1llp2)—O(e))

< 9=n(D@illp2)=0(e)

IN

B, < 2 (PWillp2)=0(0) 4 9-N(Ge-MOETE) | oo N(Ge2- b D)
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Since N is of greater order of n, take log of the error and normalize by %,

—%log Be = D(p1|p2) — O(e)

Lastly, we prove the converse that the error exponents cannot be better. Assume A* is

the optimal decision region corresponding to H; which satisfies that
Pr((A")°H;) < «
Let 8* be the error under H,

B = > pit)pa(ta)pe(x)

{tl,tg,z}GA*

> Z p1(t1)pa(to)pa(w)

{t1,t2,2}€EA*NANQ1NQ2

> 9~(D(p1llp2)+0(e)) Z p1(t)p2(t)pr(z)
{t1 ,tg,x}GA*ﬂAeﬂQl nQ2

The summation can be bounded by

Z pi(t)p2(te)pi(z) = 1 —Pr((A%)°[Hy) — Pr(A¢[Hy) — pi(QF) — p2(Q3)
A*NANQINQ:

> 1 o — o — 27N(%€27M10g1§]N+1)) B 27N(%62,A110g15]1\]+1))

Combine the above two inequalities,

M1 N M1 N
1.2 og( +1)) o 2—N(%62— Og](v +1)))

g > 2 nPEilP0O) (] _ o o — 9~ NGE-K

Since N is of greater order of n, take log of f* and normalize it by %,

1.2 Mlog(N+1) _an7(l.2_ Mlog(N+1)
N ) 9 NGE-———x{

1 1
——log f* < ——log(1 — 2 — 27 ~ )+ D(p1]|p2) + OCe)

Let € — 0, we get the desired result. O]

Note that the above result is achieved by letting the training data grow much faster than
the test data. So the error brought by false modeling of the classes is negligible compared
to the error brought by the test data. In this case, the classifier basically has full knowledge

of the classes.
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3.3.2 Improvement of Finite Sample Performance

Recall that though the Hoeffding test is proved to be asymptotically optimal, the mismatched
test, which incorporates additional prior information, has better finite sample performance
[2]. The improvement is implied by the asymptotic mean and variance analysis of the test
statistic (2.27) — (2.32). Simulation results also show that the mismatched test outperforms
the Hoeffding test with finite samples. In this section, we present simulation results to
compare the finite sample size performance of the Gutman classifier and the loglikelihood
ratio classifier.

Figure 3.1 shows the receiver operational curve (ROC) of both classifiers when the training
sequences from both classes are of the same length. The larger the area under the curve,
the better the performance is. The solid blue line corresponds to the ROC of the loglikeli-
hood ratio classifier. The dotted green line corresponds to the Gutman classifier. The two
underlying distributions are generated randomly on alphabet A with |A| = 5. Both of the
distributions have full support over A. The size of the test data is n = 50. The training
sequences from both classes are of size N = 50. The Gutman classifier utilizes only the
training sequence from class one. The loglikelihood ratio classifier utilizes both of the train-
ing sequences. As we can see in Figure 3.1, our classifier outperforms the Gutman classifier
when the test samples are limited. The improvement comes from incorporating additional
information that characterizes class two.

The fact that these two training sequences are of the same size merits them similar im-
portance in classifying future samples. If one of the training sequences is a lot shorter than
the other, the information it provides suffers from more serious inaccuracy. Recall that the
classification errors come from both false modeling of the classes and classification itself, and
that the final error is determined by the dominating term among those two. Intuitively, if
one of the training sequences is too short, the false modeling error it brings may dominate
the total error. So the classifier may benefit from not utilizing that training data. Figure 3.2
verifies this argument. In Figure 3.2, the training sequence from class one and the test data
are of the same size as in Figure 3.1. But the training sequence from class two is reduced
to only 15 samples. Figure 3.2 does not compare the high false alarm region of the ROCs.
This is because a very high false alarm region is not achievable for the loglikelihood ratio
classifier. Recall that the classification function for the loglikelihood ratio classifier is

h(tr, ta, 2) = log 2012). (3.26)

dt, (ZE)

Though both of the underlying distributions have full support over A, there is a relatively

high probability that ¢;, does not have full support because of the estimation error between
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Figure 3.1: Receiver Operation Characteristic, the Gutman Classifier and the Likelihood
Ratio Classifier, Training Sequence with Equal Size
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Figure 3.2: Receiver Operation Characteristic, the Gutman Classifier and the Likelihood
Ratio Classifier, Less Training Data from Class Two
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g, and py. The estimation error is made worse by the limited size of T5. Whenever ¢;, does
not have full support over A, the classification function is infinity, which is greater than any
threshold. So the high false alarm region is not achievable. As we can see from Figure 3.2,
the loglikelihood ratio classifier is outperformed by the Gutman classifier. It is not clear
how fast the training sequence from class two should grow such that incorporating it would

benefit the finite sample performance.
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CHAPTER 4

CONCLUDING REMARKS

We summarize the main contributions of this thesis in Section 4.1, and in Section 4.2 we

briefly discuss some promising directions based on the results presented in Chapter 2-3.

4.1 Summary of Contributions

The three main contributions of this thesis are:

e demonstration that in binary classification problems, it may be rewarding to utilize

training sequences from both classes;

e proof of Stein’s lemma for classification which characterizes the maximal error exponent

under one class;

e an account of the performance limit of hypothesis testing in the case of countably

infinite alphabet.

4.2  Future Extension

In Figure 3.1, we can see that utilizing training sequences from both classes improves the
performance of classification. In Figure 3.2, the simulation yields an opposite result. It may
be rewarding to utilize training sequences from both classes, and the relative size of the two
training sequences is a factor. A meaningful extension will be to study the conditions under
which the improvement is guaranteed.

We prove Stein’s lemma for classification under the condition that the size of the training
sequence is of higher order than that of the test sequence. The maximal error exponent
under one class is given by the relative entropy. This result is not surprising given Stein’s
lemma for hypothesis testing. This result relies on the fact that the training data grows

much faster than the test data. In practice, this means that a large amount of training data
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needs to be collected before a test can be done. A useful extension will be to study the
maximal error exponent under one class, under the condition that the training and test data

are of the same size.
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