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Abstract 
 

Older adults are the fastest growing segment of our population (United Nations 

Populations Division, 2010). Memory is one of many important functions that declines with age 

and plays an influential role in health and wellbeing of older adults (Salthouse, 2003). Numerous 

studies have been conducted investigating the effect of self-efficacy on physical activity (e.g., 

McAuley, Elavsky, Jerome, Konopack, & Marquez, 2005; McAuley et al., 2006) and cognitive 

parameters (e.g., Serra, Dunlosky, & Hertzog, 2008) in healthy older adult populations. Self-

efficacy refers to one’s beliefs about his or her ability to perform a specified task or participate in 

an activity (Bandura, 1977, 1997). However, the specific brain regions associated with self-

efficacy and the implications such brain regions may have for memory task performance are 

unknown. In addition to self-efficacy, previous research has demonstrated that cardiorespiratory 

fitness (Colcombe, Kramer, McAuley, Erickson, & Scalf, 2004; Erickson et al., 2011; Kramer et 

al., 1999) and physical activity (Angevaren, Aufdemkampe, Verhaar, Aleman, & Vanhees, 2008; 

Flöel et al., 2010) also can increase or help maintain cognitive function and brain health in older 

adults.  

The purpose of this study was to determine which brain regions are associated with self-

efficacy cognitions using functional magnetic resonance imaging (fMRI). In addition, a goal was 

to determine the relationship among these brain regions, memory performance, physical activity 

and cardiorespiratory fitness. Results showed, that the retrosplenial, anterior cingulate (ACC), 

dorsal medial prefrontal cortex (dMPFC), temporal parietal junction (TPJ), and the ventral 

medial prefrontal cortex (vMPFC) (van Overwalle, 2009; Buckner et al., 2008) brain regions 

were all active during the self-referential task. In addition, greater activity in the form of 

deactivation in the dMPFC was related better performance on the relational memory task. 
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Results also showed that the two activity groups (high and low active) overall did not 

have any significant differences in brain activity, however, there was a trend towards individuals 

in the high activity group having more deactivation in the dMPFC than individuals in the low 

activity group. In addition, correlation findings showed that higher self-efficacy was related to 

better performance memory task, greater cardiorespiratory fitness, greater participation in 

physical activity, greater activation in the ACC and deactivation in dMPFC. Results also showed 

that deactivation in the dMPFC was associated with better memory task performance and greater 

participation in physical activity. Finally, findings showed that physical activity, 

cardiorespiratory fitness, self-efficacy and brain activation on memory performance together did 

not influence performance on the memory task (proportion of correct responses and dprime). 

This research extends the social cognitive neuroscience literature by identifying regions 

of the brain associated with self-efficacy cognitions relative to memory performance using fMRI. 

In addition, this study also provides initial insight into the role of social cognitive brain regions 

and how they are related to physical activity, cardiorespiratory fitness and how these variables 

influence cognitive health in older adults.  
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CHAPTER 1: Introduction 

Significance 

Older adults are the fastest growing segment of our population and at risk for declines in 

cognitive function (Salthouse, 2003, 2009), increases in physical disability (Jette, 2006; 

Verbrugge & Jette, 1994), and compromised quality of life (Khaw, 1997). These declines are 

associated with considerable medical, social and economic burden and thus demand a better 

understanding of factors which prevent loss of function with age. Salthouse (2003, 2009), has 

demonstrated that that several cognitive functions including reasoning, spatial visualization, 

processing speed, and memory steadily decline with age and such declines in neurocognitive 

function have been shown to directly influence every day function and activity for older adults 

(Moody-Ayers, Mehta, Lindquist, Sands, & Covinsky, 2005; Tucker-Drob, 2011). Although 

many lifestyle interventions have been conducted to identify ways to maintain cognitive function 

with age, little is known about mechanisms through which brain health is maintained with age.  

 Memory is one important cognitive function which can play an influential role in the 

health and well being of older adults. Memory is defined as the persistence of learning in a state 

that is revealed at a later time as active retrieval of information about an experience (Squire, 

1987). Within the memory literature, working memory and episodic memory have been shown to 

have the greatest decline with aging (Tulving & Craik, 2000). However, it is unclear which 

mechanisms, behaviors, or other factors are important for preserving memory function or 

ameliorating cognitive decline in healthy older adults, thereby allowing them to remain 

productive members of society.   

Previous research conducted in rodents has established the role of the hippocampus as an 

important region for memory functioning and aging (Rosenzweig & Barnes, 2003). Likewise, 
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human researchers have also validated the importance of the hippocampus for memory task 

performance (Dennis et al., 2008; Ranganath, Cohen, Dam, & D'Esposito, 2004). Within the 

human literature, working memory and episodic memory are the functions most influenced by 

aging. Working memory is defined as the ability to actively hold information in the mind that is 

necessary for performing complex tasks such as reasoning, comprehension and learning. 

Episodic memory is concerned with remembering autobiographical events (i.e., times, places, 

associated emotions, and other contextual knowledge) that can be explicitly stated. Research 

using working memory and episodic type tasks has demonstrated that performance may be 

related to function or volumetric changes within the hippocampus (Gazzaley, Cooney, Rissman, 

& D'Esposito, 2005), as this region is important for the encoding and retrieval of memories and 

is sensitive to the effects of aging (Daselaar, Fleck, Dobbins, Madden, & Cabeza, 2006; Davachi 

& Wagner, 2002; Yonelinas et al., 2007). In addition, to working and episodic memory a more 

complex form of memory, relational memory, or one’s ability to bind portions of an experience 

together (i.e., pairing a smell with an event or a face with a scene) in order to improve memory 

retrieval, is also impacted by the aging process, as it too heavily relies on hippocampal function 

(Cohen et al., 1999; Giovanello, Schnyer, & Verfaellie, 2004; Konkel & Cohen, 2009).     

Both cardiorespiratory fitness and being physically active have been reported to have a 

beneficial effect on the cognitive function, including memory, in older adults. Specifically, 

cardiorespiratory fitness is associated with maintenance of cognitive function with age (Newson 

et al., 2009; Erikson et al., 2009; Voss et al., 2009) and interventions to increase 

cardiorespiratory fitness have demonstrated that increases in fitness can improve or help 

maintain cognitive function in older adults (Kramer et al., 1999; Colcombe & Kramer, 2003; 

Erickson et al., 2011). Similarly, physical activity has been associated with the preservation of 

http://en.wikipedia.org/wiki/Autobiographical
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Location_(geography)
http://en.wikipedia.org/wiki/Emotion
http://en.wikipedia.org/wiki/Knowledge
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cognitive function (Bixby et al., 2007; Eggermont, Milberg, Lipzitz, Scherder, & Leveille, 2009; 

Newson, 2006b). Increased physical activity as a function of participating in exercise programs 

has also been associated with improved cognitive functioning in older adults (Chang, Nien, Tsai, 

& Etnier, 2010; van Uffelen, Chin A Paw, Hopman-Rock, & van Mechelen, 2008). However, it 

is unclear whether physical activity participation and cardiorespiratory fitness have independent 

effects on cognitive function and can help preserve memory function with age.      

One social cognitive factor that has been associated with both cognitive function and 

physical activity is self-efficacy (Bandura, 1997). Self-efficacy refers to one’s beliefs about his 

or her capability to successfully perform a specified task or participate in an activity and 

therefore, can be used as a method of behavioral regulation or change (Bandura, 1977, 1997). 

Self-efficacy has been shown to influence physical activity participation, as well as be enhanced 

by physical activity participation (McAuley & Blissmer, 2000). In addition, cognitive 

performance, especially on challenging cognitive tasks (e.g., Serra, Dunlosky, & Hertzog, 2008), 

is also enhanced by having high self-efficacy.  

Although the relationship between self-efficacy and cognitive function has been 

established, the specific brain regions associated with self-efficacy cognition or their 

implications for cognitive performance and brain health are not known. Social cognitive 

neuroscience is a new and emerging field of research that combines neuroscience methods, such 

as functional Magnetic Resonance Imaging (fMRI), to investigate social psychological 

phenomena, such as self-referenced behavior (Ochsner & Lieberman, 2001). Within this new 

field, researchers have examined self-referential behaviors such as action monitoring and self-

perception. These behaviors are associated with activation in the medial prefrontal cortex 

(MPFC) and the temporal-partietal junction brain regions (TPJ), as well as the default network or 
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resting state network (Buckner, Andrews-Hanna, & Schacter, 2008; van Overwalle, 2009). 

Whether these brain regions are also associated with self-efficacy cognitions remains to be 

determined.  

To this end, the purpose of this study was to examine whether relationships among brain 

activity, cognitive function and self-efficacy are moderated by fitness/activity level with the goal 

of extending the social cognitive neuroscience literature by identifying regions of the brain 

associated with self-efficacy cognitions relative to memory performance using fMRI. In addition, 

the purpose of this study was to determine if these brain regions are related to physical activity 

and cardiorespiratory fitness, both of which have been associated with cognitive function in older 

adults.  

Objectives and Hypotheses  

Objective 1  

The first objective of this study was to identify which brain regions were associated with 

self-efficacy during the performance of a self-referential task in the MRI and to determine how 

the identified ROIs were related to memory performance on a relational memory task (Dennis et 

al., 2008).  

Based on the reviews by Van Overwalle (2009) and Buckner (2008) it was hypothesized 

that ROIs associated with self-referential task (i.e., retrosplenial cortex, anterior cingulate, dorsal 

MPFC, JPJ, and ventral MPFC) and the default network (i.e., posterior cingulate, frontal medial 

cortex, middle temporal gyrus, middle frontal gyrus, and the parahippocampal gyrus), would be 

active during the performance of the self-referential task. Also, it was hypothesized that these 

ROIs would be significantly related to performance on the memory paradigm. Specifically, better 
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memory performance (i.e., greater proportion of correct responses and d prime score) would be 

associated with greater activation in all self-referential ROIs.  

Objective 2  

The second objective of this study was to determine whether cardiorespiratory fitness and 

physical activity participation, base on high and low physical activity groups, is independently 

associated with brain activity in the ROIs related to self-efficacy and how these factors 

influenced memory performance.  

Based on the previous research on physical activity’s effect on self-efficacy (McAuley & 

Blissmer, 2000; McAuley et al., 2005) and self-efficacy’s relationship with cognitive function 

(Bandura & Wood, 1989; Serra et al., 2008; West, Bagwell, & Dark-Freudeman, 2008), it was 

hypothesized that the ROIs for both the self-efficacy task (i.e., retrosplenial cortex, anterior 

cingulate, dorsal MPFC, TPJ, and ventral MPFC) and during rest (i.e., posterior cingulate, frontal 

medial cortex, middle temporal gyrus, middle frontal gyrus, and the parahippocampal gyrus) 

would show greater activity for the individuals in the high active group as compared to the low 

active group. Additionally, it was hypothesized that those individuals in the high active group 

would also perform better on the memory task and that enhanced performance would be 

positively related to activation in the self-reflective ROIs, as well as the default network.     
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Chapter 2: Literature Review 

Introduction 

Older adults, those sixty-five years and older, represent the fastest growing segment of 

many populations around the world (United Nations Populations Division, 2010). This rapid 

aging of our population has medical, social and economic implications as these individuals 

decline in both physical and cognitive functioning. Memory is one of many cognitive functions 

that substantially decline with age and can have a negative impact on health for older adults 

(Salthouse, 2009). Physical activity is one health behavior intervention that has proven to be 

effective in maintaining or improving cognitive function in older adults, however the direct 

mechanisms underlying this effect have yet to be determined (Erickson et al., 2011; Kramer et 

al., 1999). For example, it is unclear whether it is cardiorespiratory fitness or physical activity, 

which drives this relationship (Angevaren et al., 2008). Moreover, having high self-efficacy has 

also been associated with better memory performance in older adults (West et al., 2008); 

however, more research is necessary to provide insight to why self-efficacy, cardiorespiratory 

fitness, and physical activity participation all have a positive impact on cognitive function with 

age and how these factors influence one another.  

This chapter will present the current state of the literature on memory and aging including 

how different types of memory (i.e., procedural memory, perceptual representational systems 

memory, working memory, semantic memory, episodic memory and relational memory) are 

studied and the role of different brain regions in memory processes. Additionally, this chapter 

will review the literature relative to physical activity, cognitive function and brain health and 

how these findings compare to those of cardiorespiratory fitness, cognitive function, and brain 

structure/function. Next, the relationship between self-efficacy and physical activity, as well as 
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between self-efficacy and cognitive function will be reviewed. Finally, the relationship between 

an emerging body of literature related to social cognitive neuroscience and the potential role of 

self-efficacy within this field will be summarized. The chapter will conclude with statements 

related to the limitations of the current research within each presented topic and will establish the 

role of the current project in the literature to show how self-efficacy, cognitive function, physical 

activity, and cardiorespiratory fitness are important to brain health and aging.       

Memory and Aging  

The human brain undergoes many structural and functional changes throughout the 

lifespan. Magnetic resonance imaging (MRI) studies, as well as postmortem assessments of brain 

volume (Courchesne et al., 2000; Riddle, DonLevy, & Lee, 2010), have shown that grey matter 

starts to slowly decline early in adult life. White matter, on the other hand, increases until 

adulthood and then remains stable until later in adulthood, when significant decline is observed 

(Ge et al., 2002; Gogtay et al., 2004). The prefrontal and frontal lobes show increased age-related 

decline in volume in comparison to other brain regions (Resnick, Pham, Kraut, Zonderman, & 

Davatzikos, 2003). Reductions in volume in these regions may be specifically associated with 

declines in attention, response inhibition, processing speed, and memory (Salthouse, 2003, 

2009).  

Memory function is made up of five independent domains that include procedural 

memory, perceptual representational systems memory, working memory, semantic memory, and 

episodic memory (Tulving & Craik, 2000). Procedural memory refers to the type of memory that 

is needed to acquire and perform cognitive and motor skills. Perceptual representational systems 

memory is responsible for one’s ability to encode and retain sensory information. Procedural and 

perceptual representation memory are said to be implicit, require little effort to access in order to 
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remember, and generally are fairly resilient when it comes to aging. Semantic memory refers to 

general knowledge of the world and this too is fairly age resistant. Working memory and 

episodic memory, on the other hand, are said to be explicit and tend have the greatest decline in 

function as a result of aging. Working memory refers to one’s ability to hold and remember 

information for a short period of time, while episodic memory is one’s ability to remember 

events and experiences. Both working memory and episodic memory appear to be the most 

important types of memory for everyday life and are the most often studied (Balota, Dolan, & 

Ducheck, 2000; Luo & Craik, 2008; Zacks, Hasher, & Li, 2000). In addition, relational memory, 

which reflects one’s ability to bind portions of a memory together (i.e., pairing a smell with an 

event or a face with a scene) in order to improve memory retrieval, is also an important element 

of memory research (Cohen et al., 1999; Giovanello et al., 2004; Konkel & Cohen, 2009).     

Research findings have clearly established that memory processes in humans 

significantly decline with age (Park & Reuter-Lorenz, 2009; Salthouse, 2003) and which brain 

regions are associated with performance on memory related tasks (Rajah & D'Esposito, 2005; 

Small, Tsai, DeLaPaz, Mayeux, & Stern, 2002). In Salthouse’s (2003) summary article exploring 

memory and aging, he establishes that age-related deficits in memory are not restricted to a 

single type of task (i.e., delayed or immediate, procedural, working, etc.) but rather occur 

globally and in conjunction with declines in other cognitive process (i.e., executive function). 

Park and Reuter-Lorenz (2009) also noted this, but recognize that verbal ability, which may be 

more knowledge based, does not decline as do other processes with age. In addition, Salthouse 

(2003) suggests that age-related declines in memory are not necessarily due to age-related 

increases in performance variability, but rather due to a shift in the distribution of everyone’s 

memory with age (i.e., not related to only a small proportion of the sample experiencing a 
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decline in memory function, but instead everyone experiences a decline in memory ability). This 

shift may also be a function of increases in processing speed (Park & Reuter-Lorenz, 2009; 

Salthouse, 2009). 

Researchers have suggested that the established declines in memory function may be 

related to functional declines in the hippocampus and prefrontal brain regions. Small and 

colleagues (2002) note that fMRI signal strength for the dentate gyrus, subiculum and entorhinal 

cortex (regions of the hippocampus) steadily decline with age. In addition, these declines in 

hippocampal signal are also associated with declines in memory performance, but not with 

declines in abstract reasoning or language. Along with, functional declines in the hippocampus, 

declines in memory with age are also related to functional declines in the prefrontal cortex. 

Specifically, Rajah and D’Esposito (2005) reviewed the literature related to positron emission 

topography (PET) and fMRI and reported that the declines in memory associated with age may 

be due to a reduction in hemispheric specialization of cognitive function in the frontal lobes that 

may be related to dedifferentiation of function, deficits in function, and/or a reorganization and 

compensation within the brain. These functional changes in the brain are then associated with 

declines in episodic and working memory in older adults.                  

In addition to the brain structure changes in the prefrontal region that are related to 

working and episodic memory, relational memory function also declines with age. Traditionally, 

relational memory paradigms result in improved memory performance, as they allow individuals 

to pair stimuli together. However, this ability tends to exponentially decline with age, as the 

hippocampus is required for the effective “binding” of stimuli (Cohen et al., 1999; Giovanello et 

al., 2004; Ranganath, Heller, Cohen, Brozinsky, & Rissman, 2005). For example, one task of 

relational memory for face and scene stimuli (Dennis et al., 2008) has shown that younger adults 



 

 10 

performed better than older individuals which suggests that relational memory is also impaired 

with age. Dennis and colleagues (2008) also report that individuals were most accurate on faces, 

scenes and then the face-scene pairs, suggesting that face scene-pairs are more challenging to 

remember. Also, older adults had a longer response time than younger adults. These findings 

demonstrate that the ability to recognize faces and scenes decline with age and may be related to 

particular functional or volumetric changes within the brain. For relational memory type tasks, 

research has established that that the hippocampus plays a vital role in encoding new information 

(Dennis et al., 2008; Ranganath et al., 2004). In addition to encoding, fMRI studies have also 

shown that the hippocampus is important for memory retrieval (Eldridge, Knowlton, Furmanski, 

Bookheimer, & Engel, 2000). The medial temporal lobe has also been suggested to be important 

for both the encoding and retrieval of memories, especially when someone is asked if something 

is familiar or not (Dennis et al., 2008; Montaldi, Spencer, Roberts, & Mayes, 2006).  In addition 

to the temporal lobe, cognitive tasks that include the presence of faces and places, or in the case 

of the relational memory task, scenes and faces have been shown to activate the “face” and 

“place” specific regions of the brain during memory encoding (Wheeler, Petersen, & Buckner, 

2000). The fusiform face area (FFA), on the right side of the brain, is typically activated 

whenever an individual is presented with a face or is asked to remember a face (Prince, Dennis, 

& Cabeza, 2009). Specifically, within the hippocampus, the para-hippocampal place area, 

responds in a similar fashion to places (Gazzaley et al., 2005). These regions are important to the 

encoding and retrieval of memories and are sensitive to the effects of aging (Daselaar et al., 

2006; Davachi & Wagner, 2002; Yonelinas et al., 2007). Thus, although research has established 

that memory globally declines with age, the brain regions affected may be related to the specific 

type of memory being tested.    
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Animal research has also established the role of the hippocampus and other associative 

brain regions and their role in memory and aging. Findings in animals also provide insight into 

which biological changes occur with age that may cause declines in memory function. A review 

by Rosenzweig and Barnes (2003) on age-related plasticity deficits and its effect on memory 

suggests that changes in the dynamics of the hippocampal network do occur with age. In rats, the 

CA1 region has been shown to be impaired specifically, since this is the hippocampal region that 

has been suggest to store sequences and location memories. Disruption of the CA1 area places 

aged rats at a spatial-learning disadvantage relative to younger adult rats, leading to slower (or 

poorer) learning of spatial tasks and faster forgetting. Similarly, delayed realignment of the 

hippocampal network might also cause impairment in the performance of some spatial tasks. 

This impairment forces aged rats to be overly dependent on self-motion information, or the 

response that is being made. This loss of function impairs the use of external environmental cues 

to correct hippocampal estimates of incorrect spatial positions. For example, Barnes and 

colleagues (1980) examined strategies used by older rats to remember the location of a food 

reward in the three-armed maze. They found that older rats tended to use a response strategy, 

where if during training the food was always to the right, the rat would still turn right during the 

test phase, even if the food was located to the left. This type of egocentric response is striatum 

dependent and does not rely on the hippocampus. Barnes et al. (1980) also found that younger 

rats, on the other hand, tended to use a cue response to locate food in a three-armed maze, a 

response which relies on environmental cues and is hippocampal dependent. These findings 

suggest that aging results in disruption of the hippocampal network where impaired encoding of 

context may also lead to impaired behavioral responses to contextual information for memory 

performance. In addition, aged rats are also impaired in contextual fear-conditioning task 
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performance, but unimpaired in associating the conditioned and unconditioned stimuli (Oler & 

Markus, 1998). This disruption in the ability to perform spatial and fear-conditioning tasks, could 

be due to age-related changes in hippocampal network function (D. Barnes, Yaffe, Satariano, & 

Tager, 2003).  

In vitro research in rodents has suggested that memory impairment with age may be 

related to both long-term potentiation of neurons (LTP; i.e., long-lasting enhancement in signal 

transmission between two neurons) and long-term depression (LTD; i.e., the activity-dependent 

reduction in the efficacy of neuronal synapses)(Barnes & McNaughton, 1985). Research on LTP 

suggests that memory improvements may be the result of repeated stimulation from a variety of 

neurotransmitters, which in turn cause changes in the formation of neuronal proteins resulting in 

an increase in synchronous firing of the neurons involved (Collingridge, Kehl, & McLennan, 

1983; Hillman, Gupta, Stairs, Buonanno, & Dravid, 2011; Huang & Kandel, 1994; Kang & 

Schuman, 1996; Lu et al., 1997). LTD, on the other hand, may be responsible for the pruning of 

neuronal connections with age, which may result in impairments in learning as well as memory 

(Popkirov & Manahan-Vaughan, 2011; Rosenzweig & Barnes, 2003; Toyoda, Zhao, & Zhuo, 

2006). A variety of experiences are suggested to produce changes in the brain that may be related 

to LTP and LTD. Specifically, exposure to enriched environments or participation in physical 

activity could enhance LTP expression while decreasing LTD (Black, Isaacs, Anderson, 

Alcantara, & Greenough, 1990; Gould, Reeves, Graziano, & Gross, 1999; Greenough & 

Volkmar, 1973; van Praag, Kempermann, & Gage, 1999). However, more parallel animal-human 

studies need to be conducted in order to confirm that the mechanisms that exist in rats also occur 

in humans. Even so, these findings have lead to further mechanistic and in vivo validation and 

behavioral research studies in humans.  

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Synapse
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Although LTP and LTD is thought to be a critical mechanism for learning and memory, 

limited research demonstrating these processes in humans is available. In fact, no published 

works relative to LTD in humans exist due to invasive measurement techniques required (Ito, 

2001). LTP in humans, on the other hand, can be explored in individuals with temporal lobe 

epilepsy, in which one of their temporal lobes is removed in order to control the disorder. Slice 

preparation of a removed temporal lobe, specifically the hippocampus region, has shown that 

electrical stimulation of the dentate gyrus results in sustained potentiation within the neuronal 

connections of the hippocampus, which suggests the presence of LTP. (Beck, Goussakov, Lie, 

Helmstaedter, & Elger, 2000; Chen et al., 1996; Cooke & Bliss, 2006) However, whether this 

potentiation is related to changes in learning and memory is unknown.        

   More recently, technical advances have made it possible to study LTP in awake humans 

by delivering a titanic stimulation through repetitive transcranial magnetic stimulation (rTMS). 

However, rTMS cannot be used on brain regions that are located more than 2 cm below the 

surface of the human skull, which unfortunately includes the hippocampus. Regardless, LTP 

findings in other brain regions are evidence that LTP does exist in humans and that it is 

important for learning and memory. Esser and colleagues (2006) combined rTMS and high-

density electroencephalography (EEG) to obtain direct, noninvasive evidence for LTP in humans 

within the motorcortex. Specifically, these researchers found that after rTMS, EEG responses 

were significantly potentiated. A topographic analysis of the findings revealed that this 

potentiation was significant at EEG electrodes located bilaterally over premotor cortex. These 

findings provide a direct demonstration in humans of LTP induced by rTMS. Other researchers 

have also come to similar conclusions within other areas of the brain including the auditory 

(Clapp, Kirk, Hamm, Shepherd, & Teyler, 2005) and occipital (Teyler et al., 2005) regions of the 
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brain and suggest that LTP induced by rTMS lasts up to one-hour (Cooke & Bliss, 2006). In each 

brain region LTP was also associated with task learning and memory, even though LTP in the 

hippocampus was not directly assessed. Despite the promise of this type of research, the ability 

to simply validate rodent and other animal finding relative to memory in humans is one of many 

reasons why it is important to study other cognitive or behavioral variables that may influence 

memory function and brain health with age.   

Physical activity and Physical fitness: Which one influences cognitive performance? 

It has been suggested that exercise may help slow decline in cognition through 

preservation of gray and white matter (Colcombe et al., 2006; Erickson et al., 2011; Erickson et 

al., 2009). However, it is unclear whether these improvements in cognition are associated with 

changes in physical fitness or if the participation in physical activity alone is enough to allow for 

cognitive maintenance with age. Physical activity is referred to as any bodily movement 

produced by the contraction of skeletal muscles (Caspersen, Powell, & Christenson, 1985; Pate, 

1995). These actions result in a substantial increase in energy expenditure above resting 

metabolic levels. Physical activity is also referred to as a behavior not an attribute of a person. 

Cardiorespiratory fitness is defined as an attribute of an individual, rather than a behavior. It 

reflects the capacity of the body to do physical work (Bray et al., 2009; Shepard & Bouchard, 

1994; Shepard & Bouchard, 1995). Cardiorespiratory fitness is influenced by hereditary factors, 

as well as life-style, such as participating in physical activity (Bray et al., 2009). However, it is 

uncertain whether cardiorespiratory fitness or physical activity are independently associated with 

cognitive function as we age.     
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Physical Activity and Cognitive Performance  

For decades, researchers have tested the efficacy of various interventions for enhancing 

cognitive functioning in older adults. One approach examines cognitive and lifestyle 

interventions that may ameliorate age-related cognitive decline. Specifically, physical activity 

behavior has been consistently attributed to better health in older individuals, however, it was not 

until the late 20
th

 century that physical activity was also attributed to better cognitive 

performance in older individuals as well. Spirduso and Clifford (1978) first introduced the 

concept when they reported that older athletes performed better on choice reaction time task than 

non-athletes. 

Several researchers have conducted cross-sectional studies to determine the nature of the 

relationship is between aging, physical activity, and cognitive function (Bixby et al., 2007; 

Eggermont et al., 2009; Newson, 2006b). Newson and Kemps (2006b) examined the relationship 

between physical and cognitive activity and its impact on cognition in older adults. Physical and 

cognitive activities were assessed by having older adults record the amount of physical or 

cognitive activity engaged in, as well as, how often and to what extent they participated in it. 

Better performance on both the simple and complex imagery task was associated with greater 

participation and more intense physical activity. This suggests that older adults who participate 

in physical activity for long periods of time or at a high intensity show cognitive benefits from it. 

Bixby et al. (2007) examined the relationship between physical activity, executive function, and 

advancing age. Results suggested that physical activity explained a significant amount of 

variance on the Stroop task performance after controlling for intelligence and age, but did not 

influence task performance on other measures with smaller executive function components. 
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Overall, these findings suggest that physical activity participation is associated with better 

cognitive function.  

The MOBILIZE Boston Study (Eggermont et al., 2009) reported similar findings in a 

large (N=544) cohort study. Results showed that individuals who were in the least active group 

(1
st
 quartile) based on the Physical Activity Scale for the Elderly (PASE; Washburn, Smith, Jette, 

& Janney, 1993) performed worse on several measures of cognitive function (i.e., clock in box 

drawing test, animal fluency, trail making tests, and the Hopkins verbal learning test) than those 

in the more active quartiles. Together, all of these cross-sectional studies suggest that being more 

physically active is positively associated with better cognitive function in older adults.   

In addition to the cross-sectional work on physical activity and cognitive function, a 

number of longitudinal investigations of this relationship in older adults have also been 

conducted. Using data from a large national sample of older adults (NHANES III), Gillum and 

Obisesan (2010) found that higher leisure time physical activity was significantly associated with 

cognitive function at baseline and significantly predicted survival at follow up, 8.5 years later. 

Those individuals who were more physically active also had higher cognitive functioning at 

follow-up as well as a reduced risk of mortality. Similar findings were also established by Weuve 

and colleagues (2004) as part of the Nurses Health Study who reported that being more 

physically active was associated with better cognitive performance; those individuals who were 

in the two highest physical activity quintiles experienced less cognitive decline 2-years later at 

follow-up. Furthermore, increases in physical activity during the 2-year follow-up period were 

associated with improvements in cognitive performance.   

A number of studies have examined the effects of midlife physical activity on subsequent 

cognitive function later in life. Chang and colleagues (2010) found that those individuals who 
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participated in physical activity more than 5 hours per week at midlife (M age= 51 years) had 

better processing, memory, and executive function, later in life (M age= 76 years) compared to 

those individuals who were active less than 5 hours per week. Lytle and other researchers (2004) 

reported similar findings using three exercise categories based on type of activity, frequency, and 

duration; “high exercise” (aerobic exercise of ≥ 30 minute duration ≥ 3 times a week); “low 

exercise” (all other exercise groups); and “no exercise.” These exercise levels were then 

compared with scores of cognitive status (i.e., Mini Mental State Exam, MMSE; Folstein, 

Folstein, & McHugh, 1975). Lytle and colleagues (2004) found that high exercise level at the 

first assessment (M age= 72.9 years) was protective against cognitive decline (e.g. a drop of 

three or more points at follow-up) during a follow-up assessment, four years later. Yaffe et al. 

(2001) also established that women with a greater physical activity level at baseline were less 

likely to experience cognitive decline, based on MMSE score, during the six to eight years of 

follow-up. Together, these findings suggest that midlife physical activity may contribute to the 

maintenance of cognitive abilities and that the relationship between physical activity and 

cognitive function is stable over time.   

Many randomized control trials have been conducted to determine the effects of physical 

activity on cognitive function; however, due to the inconsistency of methods and measures 

coming to a consensus on the relationship is difficult (Chang et al., 2010; van Uffelen et al., 

2008). Findings do suggest, however, that participation in a physical activity intervention does 

not have a detrimental effect on cognitive function and many result in some positive and 

beneficial effect on at least one aspect of cognitive function. Also, there is no consensus on 

whether aerobic, non-aerobic, or a combined program is more effective in producing such 

changes in cognitive function. In conclusion, these reviews (Chang et al., 2010; van Uffelen et 
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al., 2008) suggest that the research is positive yet inconclusive due to the need for more 

consistency in the measures used to assess both physical activity and cognitive function.   

Although the reviews related to physical activity interventions and cognitive function 

suggest that there is a positive effect of physical activity on cognitive function it is valuable to 

examine the independent findings of specific randomized controlled trials. A recent randomized 

control trial conducted by Klusmann and colleagues (2010) with older women, consisted of three 

groups: a computer class (cognitive activity), a physical activity class (variety of aerobic, 

strength, and flexibility exercises), or a control group (instructed to carry on their normal lives). 

Each group met three times per week for 1.5 hours for six months. Results showed that those 

individuals in the cognitive class and in the exercise class either improved or maintained 

cognitive performance, while those in the control group declined. This intervention, as well as 

others (van Uffelen et al., 2008), demonstrate that both cognitive and physical activity 

interventions can prevent cognitive decline in older adults and more conclusively suggest that 

randomized control trials, to increase physical activity in older adults, do result in a positive 

effect on cognitive function in older adults; however, additional research is warranted (Klusmann 

et al., 2010; van Uffelen et al., 2008).         

In conjunction with the reviews and randomized control trials on physical activity and 

cognitive function, Colcombe and Kramer (2003) conducted a meta-analysis to examine the 

affect of exercise training interventions on specific domains of cognitive function. Results of this 

meta-analysis show that more difficult tasks benefit more from physical activity participation 

than simple tasks (g = 0.68, p < .05, for executive tasks; g = 9.461, p < .05, for control tasks; g = 

0.426, p < .05, for spatial tasks; and g =0.274, p < .05, for speed tasks). More recently, Smith and 

colleagues (2010) conducted a meta-analysis to also examine the relationship between exercise 
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training interventions and neurocognitive performance. Smith et al. (2010) reported that 

individuals randomly assigned to receive aerobic exercise training demonstrated modest 

improvements in attention and processing speed (g = 0.158; p = .003), executive function (g = 

0.123, p = .018), and memory (g = 0.128, p = .026). Both of these meta-analyses suggest that 

participation in physical activity can help improve cognitive function, particularly in the domains 

of processing speed and executive function in older adults. The findings relative to memory, on 

the other hand, are less conclusive with Smith et al. (2010) reporting only a small association. 

Additionally, Smith et al. did find preliminary evidence that exercise training among individuals 

with mild cognitive impairment (MCI) may be associated with greater improvements in memory 

relative to those among non-cognitively compromised samples that Colcombe and Kramer 

(2003) investigated.       

More recently, researchers have begun to examine factors that may mediate the 

relationship between physical activity and cognitive performance. Flöel and colleagues (2010) 

reported that higher levels of physical activity (kilo-calories expended per week) were associated 

with not only better memory performance (i.e., Auditory verbal learning test, AVLT), but also 

with greater levels of the neurotropin granulocyte colon-stimulating factor (G-CSF).  This 

neurotropin has been suggested to be a mediator of learning and memory (Schneider et al., 

2005). Flöel and colleagues, however, did not conclude that brain derived neurotropic factor 

(BDNF), which has been previously shown to be associated with cognitive performance in 

rodents (van Praag et al., 1999; Vaynman & Gomez-Pinilla, 2005), was associated with memory 

performance in older adults. Additionally, Flöel et al. (2010) established that physical activity 

participation was significantly associated with gray matter volume in the right anterior frontal 

cortex when controlling for age, sex, education, and other health behaviors. Although the 
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researchers also measured physical fitness, none of the measures were significantly associated 

with memory performance, neurtropic factors, or gray matter volume.  

In summary, the findings from the physical activity, cognitive function, and brain 

literature suggest that physical activity participation is correlated with higher cognitive function, 

physical activity level/ amount earlier in life may be related to cognitive function later in life, 

and physical activity is also related to G-CFS level and gray matter volume in older adults, 

which may mediate the physical activity/ cognitive function relationship. Thus, these studies 

illustrate that participation in physical activity, regardless of whether it increases 

cardiorespiratory fitness or not, is associated with better cognitive function in older adults.      

Cardioresperatory Fitness and Cognitive Performance  

The literature examining the relationship between cardiorespiratory fitness and cognitive 

function suggests that the maintenance of cardiorespiratroy fitness with increasing age is a key 

factor in preserving brain structure, function, and cognitive performance. However, the 

associated neural mechanism by which increased cardiorespiratory fitness results in increased 

cognitive performance with age is yet to be determined.  

Van Boxtel and colleagues (1997) conducted a cross-sectional examination of individuals 

ranging from 29 to 74 years of age. They reported that although both cardiorespiratory fitness 

and cognitive function decline with age, the decline in cognitive function was moderated by 

physical fitness. That is, those individuals who were more fit with increasing age maintained 

cognitive function. Newson and Kemps (2006a) also found that having greater cardiorespiratory 

fitness has a positive impact on several cognitive tasks and accounts for differences in task 

performance relative to age on single-component cognitive tasks like attention, working memory 

and processing speed, and multiple-component tasks such as executive function and memory. 
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Together, these findings suggest that higher cardiorespiratory fitness may act as a buffer for 

cognitive decline with age.     

Colcombe and colleagues (2006) reported that higher cardiorespiratory fitness was 

associated with greater white and gray matter density, particularly in regions that are sensitive to 

age-related structural decline. Marks et al. (2007) found similar results for white matter tracts in 

the brain using diffusion tensor imaging (DTI). In addition to white and gray matter structure, 

cardiorespiratory fitness has also been shown to be related to cognitive function and 

cerebrovasuclar health in older (postmenopausal) women (Eskes et al., 2010). Pontifex, Hilman 

and Polich (2009) using electroencephalography (EEG) during an oddball task, showed that task 

performance, as well as event related action potentials during task performance, indicate that 

physical fitness may ameliorate or protect against cognitive aging for simple stimulus 

discriminations. Researchers have also reported that regional difference for cortical recruitment 

relative to task activity and attentional control (Colcombe et al., 2004; Parkash et al., 2011), and 

the brain’s resting state network and functional connectivity (Voss, Erickson, et al., 2010) is 

maintained as a function of cardiorespiratory fitness. Specifically, such functional connectivity 

relationships have been related to activation in the middle frontal gyrus, superior parietal lobe, 

visual cortex, and anterior cingulated cortex.  

Erickson et al. (2009) have shown that cardiorespiratory fitness has a positive association 

with spatial working memory performance and hippocampus volume in older adults. Szabo et al. 

(2011) have extended these findings by suggesting that higher levels of fitness not only show 

greater preservation of hippocampal volume which, in turn, is associated with more accurate and 

faster spatial memory performance, but are also related to fewer reported episodes of forgetting. 

This study demonstrates that memory and the regions of the brain supporting memory are 
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directly associated with cardiorespiratory fitness, and are also related to older individuals self-

perceptions of their memory abilities. In conclusion, the cross-sectional findings suggest that 

higher cardiorespiratory fitness is not only associated with cognitive function, but also plays a 

role in the maintenance of brain structure and function with age.    

Relative to longitudinal research examining the association between cardiorespiratory 

fitness and cognitive function, Barnes et al. (2003) conducted a treadmill exercise test to assess 

cardiorespiratory fitness. Six years after the baseline, a battery of cognitive tests was 

administered. Results showed that lower baseline cardiorespiratory fitness was associated with 

lower cognitive function scores at follow-up suggesting that higher levels of cardiorespiratory 

fitness may help to preserve cognitive function with age.          

Randomized controlled trials have also demonstrated that increasing cardiorespiratory 

fitness through a structured physical activity program results in improvements in cognitive 

performance in older adults. In an early study, Dustman et al. (1984) had older adults complete a 

graded exercise test (GXT) to assess cardiorespiratory fitness as well as baseline 

neuropsychological function. Participants were then randomized into three groups, one for 

aerobic exercise, another for anaerobic exercise, and the third was a non-active control. 

Participants in the exercise groups completed three one-hour mode specified exercise sessions 

per week for four months. All baseline testing was repeated again after 4 months. Results 

showed that the aerobic group participants’ cardiorespiratory fitness increased more than those in 

the anaerobic group and non-active group, as did neuropsychological performance. Depression 

scores, sensory thresholds, and visual acuity were not changed by aerobic exercise participation. 

These results suggest that aerobic exercise training associated with changes in cardiorespiratory 

fitness may also bring about improved cognitive performance in older adults. Building on 



 

 23 

Dustman’s findings, Kramer et al. (1999) conducted a 6-month intervention with older adults 

randomly assigned to participate in either aerobic or anaerobic exercise. Pre-and post-

cardiorespiratory fitness was assessed along with cognitive task performance on a task-switching 

paradigm as a measure of executive function. Cognitive task performance as well as 

cardiorespiratory fitness increased for the aerobic participants, but not anaerobic participants. 

These results also suggest that cardiorespiratory fitness improvements are associated with 

executive type cognitive task improvement and maintenance with age.  

More recently, randomized controlled trials have examined the relationship between 

changes in cardiorespiratory fitness from participation in structured aerobic exercise and changes 

in cognitive function and brain structure and function. Erickson and colleagues (2011) conducted 

a year-long randomized controlled trial and determined that increases in cardiorespiratory fitness 

are associated with increase in spatial working memory performance, which was also related to 

increases in hippocampal volume in older adults. In addition, similar changes in 

cardiorespiratory fitness have also been shown to be related to changes in the resting state 

network brain activity and cognitive performance (Voss, Prakash, et al., 2010). Together, these 

findings indicate that participation in structured aerobic exercise not only improves cognitive 

performance in older adults, but also improves brain structure and function in brain regions 

corresponding to such cognitive improvements.    

 A number of meta-analytic and narrative reviews on cardiorespiratory fitness and 

cognitive function in older adults summarize this literature. Etnier et al. (2006) conducted a 

meta-analysis that showed a positive relationship between cardiorespiratory fitness and cognitive 

performance. Overall, Etnier et al. (2006) found that there was a positive association between 

cardiorespiratory fitness and cognitive function (Mean r = 0.29, range .04 - .68), and concluded 
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that small changes in cardiorespiratory fitness lead to significant and meaningful changes in 

cognitive function (g = 0.25). However, Etnier and colleagues did not determine the impact of 

cardiorespiratory fitness on the different domains of cognitive function, as others have done 

(Colcombe & Kramer, 2003; Smith et al., 2010).    

 More recently, a systematic Cochran review suggested that aerobic physical activities, 

which improve cardiorespiratory fitness, are beneficial for cognitive function in healthy older 

adults (Angevaren et al., 2008). In this review, eight of eleven intervention studies reported that 

the aerobic exercise condition/group in interventions result in increased cardiorespiratory fitness 

with corresponding improvements in cognitive performance. The largest effects on cognitive 

function were found on motor function and auditory attention, g = 1.17 and g = 0.50 

respectively. Moderate effects were observed for processing speed, g = 0.26 and visual attention 

g = 0.26. However, the authors’ indicated that the data were insufficient to suggest that the 

improvements in cognitive function, which can be attributed to physical exercise, are due to 

improvements in cardiovascular fitness, although the temporal association suggests that this 

might be the case. Together, Etnier et al. (2006) and Angevaren et al. (2008) conclude that larger 

studies are still required to confirm whether the aerobic training component is necessary, or 

whether the same cognitive improvements can be achieved with any type of physical activity. 

Furthermore, additional research is necessary to understand why some cognitive functions seem 

to improve with aerobic physical activity participation while others do not.  

 In summary, the literature on cardiorespiratory function, cognitive performance, and 

brain structure and function suggest that maintaining or increasing cardiorespiratory fitness, even 

in older adults, is associated with maintenance of cognitive function, brain structure, and 

function. However, it is unclear as to what extent the relationship is simply with 
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cardiorespiratory fitness alone or if participation in any form of physical activity to improve 

health can help to improve and maintain brain health with age. It is also unclear whether other 

variables, such as genes, environments, or other psychosocial variables play a role in these 

relationships. 

Social Cognitive Theory  

Social Cognitive Theory (SCT; Bandura, 1986, 1997, 2004) is comprised of a core set of 

determinants including: psychological determinants, observational learning, environmental 

determinants of behavior, self-regulation, and moral disengagement (Bandura, 1986, 1989). 

These determinants help to explain how people acquire and maintain patterns of behavior and 

also provide the basis for intervention strategies. Specifically, human behavior is explained in 

terms of a triadic, dynamic, and reciprocal model in which behavior, personal factors, and 

environmental influences all interact to determine an individual’s behavior (Figure 1).   

The specific components of the triadic SCT model rest on the importance of human 

agency, which is the key mechanism through which an individual can contribute and modify 

outcomes (Bandura, 1989). Personal efficacy is the main component of one’s personal human 

agency. Self-efficacy is suggested to be the “active ingredient” and it is also the most highly 

studied concept. Self-efficacy expectations are beliefs regarding an individuals’ capabilities to 

successfully carry out a course of action (Bandura, 1977) and is considered to be a situation-

specific form of self-confidence. The situation-specific nature of self-efficacy is what 

distinguishes efficacy cognitions from the other more stable qualities of general self-confidence 

and allows it to be easily influenced, thus making self-efficacy an ideal target for manipulation 

(McAuley, Talbot, & Martinez, 1999) and intervention (McAuley, Courneya, Rudolph, & Lox, 

1994; McAuley et al., 2010). The primary sources of efficacy information include past 
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performance accomplishments, or mastery experiences, social persuasion, social modeling, and 

the interpretation of physiological and emotional states (Bandura, 1997). Efficacy expectations 

are theorized to influence the activities that an individual chooses to pursue, the degree of effort 

they expend to complete a task, and the level of persistence they demonstrate in the face of 

related barriers. Together, choice, effort, and persistence are related to the successful adoption 

and maintenance of health behaviors, like physical activity, especially as one ages (McAuley & 

Blissmer, 2000; McAuley et al., 2010).  

Self-efficacy and Physical Activity  

Within the physical activity and self-efficacy literature, there is evidence to suggest that 

self-efficacy is one of a number of potential mediators of the effects of physical activity on 

several psychological outcomes (Craft & Landers, 1998; Taylor, 2000) in older adults. Self-

efficacy has been identified as both a consequence of physical activity and determinant of 

physical activity participation (McAuley & Blissmer, 2000). Cross-sectional research has shown 

that the amount of physical activity one participates in is significantly related to one’s confidence 

in his or her ability to exercise on a regular basis (McAuley et al., 2006). In addition, there is a 

strong association between self-efficacy and physical activity that appears to hold when a variety 

of measures of physical activity are used. For example, Conn et al. (2003) found adherence self-

efficacy to be the best predictor of exercise frequency, as well as exercise intensity and duration. 

Similarly, Harris et al. (2009) found exercise self-efficacy was positively related to 

accelerometer-measured step count in a dose dependant manner. These findings suggest that 

there is a clear relationship between self-efficacy and physical activity.  

Longitudinal studies have also demonstrated the role physical activity participation plays 

in maintaining self-efficacy levels over time as well as suggest it reliably predict future 
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engagement and adherence to physical activity regimens. Specifically, McAuley, Lox and 

Duncan (1993) showed that exposure to both acute bouts of physical activity (i.e., GXT) as well 

as participating in an exercise intervention can both increase self-efficacy. In addition, Sallis and 

colleagues (1986) noted that adoption and maintenance of physical activity was significantly 

predicted by self-efficacy in a community sample of older adults over the course of a year. 

Luszczynska et al. (2007) found leisure runners who demonstrated greater recovery self-efficacy 

or confidence to resume running after a lapse, at baseline ran/jogged more at follow-up, two 

years later. Similarly, McAuley (1993) suggests that self-efficacy predicted exercise behavior 

over the 4-month follow-up period when statistically controlling for previous exercise 

participation and aerobic capacity. In addition, McAuley et al. (2007) found that adherence self-

efficacy assessed two years following an exercise intervention to be a significant predictor of 

physical activity three years later in older adults. Together, these studies suggest that self-

efficacy is a consistent determinant of physical activity for older individuals, even several years 

later in life. 

The effect of physical activity participation and the relationship between changes in 

physical activity and self-efficacy has been most commonly studied through the use of exercise 

interventions. Most physical activity interventions have demonstrated that simply adhering to a 

regular exercise regimen as part of an intervention results in an increase in self-efficacy for 

exercise (Annesi & Unruh, 2008; Bock, Marcus, Pinto, & Forsyth, 2001; D'Alonzo, Stevenson, 

& Davis, 2004; Dallow & Anderson, 2003; S.-J. Huang, Hung, Chang, & Chang, 2009; Hughes 

et al., 2004; Katula, Rejeski, & Marsh, 2008; Katula, Sipe, Rejeski, & Focht, 2006; Li et al., 

2002; McAuley, 1993). This is likely due to the accumulation of mastery experiences, which act 

as a primary source of efficacy information. Furthermore, theory-based interventions (e.g., SCT 
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approach) have been shown to be more effective at increasing self-efficacy than non-theory 

based interventions (Bock et al., 2001; Hall et al., 2011; Hughes et al., 2004). Such theory-based 

interventions typically utilize strategies to increase self-efficacy, for example providing mastery 

experiences, facilitating social modeling, or utilizing social persuasion, in accordance with 

Bandura’s model of triadic reciprocity (Bandura, 1986, 1989, 2004).  

One example of an intervention conducted to change self-efficacy through an SCT frame 

work was recently conducted by McAuley and colleagues (2010).  Specifically, these researchers 

conducted a 12-month exercise intervention for community dwelling older adults where they 

found that exercise self-efficacy decreased from baseline to 3 weeks, followed by a significant 

upturn at 6 months, and then a second, steeper downturn at the program’s end. Barriers self-

efficacy showed a similar pattern, although the increase in self-efficacy between week 3 and 

month 6 was not significant. Finally, self-efficacy for walking showed a linear trend with a 

significant positive increase over time that was maintained at 12 months. This study was the first 

to take multiple measures of self-efficacy within an exercise intervention and demonstrate that a 

recalibration of self-efficacy occurs in the early weeks of an exercise program. Moreover, it also 

appears that when judging their capabilities to adhere to regular exercise, individuals may be 

overly optimistic at baseline, when they have not yet undertaken the behavior. Thus, these 

findings suggest that measure at 3 weeks into an intervention could be considered a “true 

baseline” or “informed baseline,” and the increases in self-efficacy exhibited between week 3 

and month 6 occur as a function of regular exercise participation (i.e., mastery experiences). 

Additionally, the decrease in self-efficacy at 12 months is consistent with previous studies (e.g., 

Hughes et al., 2004; McAuley, Jerome, Elavsky, Marquez, & Ramsey, 2003; McAuley, Katula, 

et al., 1999), which have shown that efficacy decreases at the end of a program due to the 



 

 29 

impending challenge of maintaining an exercise regimen after the termination of the structured 

intervention.  

 Recently, McAuley et al. (2011) investigated the influence of executive function, self-

regulatory behavior and self-efficacy on older adults’ adherence to a 12-month exercise 

intervention. These researchers found that executive function, specifically tasks that reflect ones’ 

ability to multi-task and inhibit habitual responses, as well as self-regulatory strategy use, were 

significantly related to self-efficacy at 3-weeks into the exercise intervention. Self-efficacy was 

in turn related to adherence to the exercise classes. These findings suggest that cognitive 

capabilities may influence self-efficacy for physical activity, which are then related to ones 

ability to adhere to positive health behaviors.  

Self-efficacy’s Influence on Cognitive Performance 

Self-efficacy has also been demonstrated to influence memory and other cognitive 

functions. For example, significant differences in everyday memory and memory self-efficacy 

have been reported when comparing younger and older adults (Wells & Esopenko, 2008). Wells 

and Esopenko (2008) concluded that memory self-efficacy predicts memory performance on 

free-recall memory tasks in older adults. Similarly, Serra, Dunlosky, and Hertzog (2008) 

reported that older adults performed less accurately on memory related tasks than younger adults, 

however, older adults were able to more accurately judge their performance, since they not only 

performed poorly, but also reported being less efficacious about their ability to remember words. 

In addition to cross-sectional studies, West and colleagues (2008) conducted an intervention in 

an attempt to improve self-efficacy for memory and memory performance in older adults. They 

found that compared to waitlist control participants, older adults who received a SCT structured 

training intervention to improve memory strategies, used more effective techniques to complete a 
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memory test at the end of the five week training period. Results also demonstrated that memory 

performance post-training was predicted by receiving the intervention, post assessment self-

efficacy, and baseline memory performance. This suggests that SCT based interventions can be 

used to improve both self-efficacy for memory and memory performance alike. These studies 

further suggest that significant differences exist between older and younger individuals, relative 

to memory performance and their beliefs in their capabilities to perform memory related tasks 

and that self-efficacy may play a more important role in cognitive performance for older adults 

than younger individuals.  

A number of studies have also examined self-efficacy’s effect on executive functioning. 

These studies have concluded that past performance on cognitive tasks influences self-efficacy, 

which in turn affects ones analytical strategies, which is associated with subsequent overt 

performance (Bandura & Wood, 1989; Wood & Bandura, 1989). Thus, the higher one’s efficacy 

beliefs about their own cognitive ability in a defined situation, the better the performance 

(Bandura, 1977; Bandura & Wood, 1989). Windsor and Anstey (2008) have reported that those 

individuals with higher levels of perceived control at baseline performed better four years later.  

Few studies to date have examined the association between self-efficacy and brain 

activity. One exception is a study by Themanson et al. (2008) examining the relationship 

between self-efficacy, error commission (ERN), and overall performance accuracy on event 

related brain potentials (ERP) in older adults. Participants’ completed a flanker task where speed 

and accuracy of performance were assessed, as well as ERPs, being collected while the subject 

performed the task. Participants with higher self-efficacy responded more quickly and exhibited 

larger ERN and Pe amplitudes for accuracy than those with low self-efficacy. These findings 
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may suggest that self-efficacy affects action-monitoring processes in older adults or how one 

responds to an error. 

Brain Activity and Social Cognition (Social Cognitive Neuroscience) 

Examining relationships among self-efficacy, cognitive performance and brain activity 

may best be understood from a social cognitive neuroscience (SCNS) perspective. Ochsner and 

Lieberman (2001) define SCNS as a combined interdisciplinary field that involves the 

integration of analysis of behavior on the social level, to information-processing mechanisms on 

the cognitive level, and the brain systems that initiate these processes at the neural level. Butler 

and Senior (2007) suggest SCNS is embedded in social science, as it draws on theories and 

psychological phenomena including social cognition, but uses neuroscience methodology such as 

fMRI, PET, TMS, and ERPs to answer related questions. SCNS research has focused on the 

decision-making process and the cognitive processes that lead to these decisions and how these 

decisions are affected by an individual’s desire to act, ability to act, and situational demands 

(Blakemore, Winston, & Frith, 2004; Lieberman, 2005; Ochsner, 2004). All of these factors have 

the ability to influence human behavior and possess important social outcomes. Although the 

SCNS literature has not specifically focused on self-efficacy, a related construct, self-reflection, 

has received a considerable amount of attention in the literature (van Overwalle, 2009).  

Brain regions that have been linked to SCNS processes such as self-reflection, decision-

making, recall, envisioning, and self-consciousness may also be associated with self-efficacy. 

Measures of these self-apprasial processes, have been used in conjunction with fMRI to 

determine brain regions that may be associated with self-reflective cognitions (Schmitz & 

Johnson, 2006). Previous research has indicated that the anterior and posterior cingulate, 

precuneous, and medial prefrontal cortex are specific brain regions involved in self-referential 



 

 32 

assessments of behavior (Hampton & O'Doherty, 2007; Schacter, Addis, & Buckner, 2007). 

Specifically, research has shown that participation in a self-reflective task increases activity in 

these specific brain regions more so than tasks that do not require self-reflection or appraisal 

(van Overwalle, 2009).   

In addition to task specific areas of brain activity, research has also suggested that the 

default, or the brain’s resting state network, may also plays a key role in self-reflection 

suggesting another area that may be implicated in efficacy expectations for cognitive 

performance. Default network brain regions that are suggested to be related to self-referential 

cognitions include areas such as ventro-medial prefrontal cortex, posterior cingulated, inferior 

parietal lobule, lateral temporal cortex, dorsal medial prefrontal cortex, and the hippocampus 

(Buckner et al., 2008). Such regions have not only been shown to be active during social 

cognitive tasks (Hampton & O'Doherty, 2007; Schacter et al., 2007; van Overwalle, 2009), but 

are also the regions employed during self-referential tasks. These findings suggest that the 

default or resting state network may also be involved in brain areas related to self-efficacy 

expectations. In addition, such brain regions have also been shown to be influenced by physical 

activity as well as cardiorespiratory fitness in older adults (Colcombe et al., 2006; Erickson et al., 

2011; Erickson et al., 2009; Voss, Erickson, et al., 2010; Voss, Prakash, et al., 2010). However, 

despite the growing body of research on the default network and brain activity related to self-

referential behaviors the exact relationship between these brain regions and physical activity and 

their relationship with self-efficacy has yet to be determined.  

Limitations in the Literature 

Although there is a considerable body of literature examining the relationships among 

aging, memory function, physical activity, cardiorespiratory fitness, and social cognitive 
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constructs, several areas remain to be addressed. We know that memory performance; as well as 

associated regions of the brain are positively influenced by cardiorespiratory fitness (Erickson et 

al., 2011; Erickson et al., 2009). In addition, the literature suggests that having higher self-

efficacy at an older age improves task performance on memory as well as other executive tasks 

(Serra et al., 2008; West et al., 2008). Being more physically active, and fitter is associated with 

greater self-efficacy (Konopack et al., 2008; McAuley et al., 2005; McAuley et al., 2006). 

Finally, we know that self-reflective areas of the brain, including the default network and its 

connectivity, are positively influenced by cardiorespiratory fitness (Voss, Erickson, et al., 2010; 

Voss, Prakash, et al., 2010). Whether these brain regions are specifically related to self-efficacy, 

how self-efficacy manifests itself in the brain and how it is related to memory performance has 

yet to be determined. Moreover, whether being more active or fit moderates this relationship is 

not known.      

The Present Study 

The present study aimed to identify which brain regions were associated with self-

efficacy and how these brain regions were related to self-efficacy, memory performance, 

physical activity, and cardiovascular fitness. In order to determine this, the specific brain regions 

associated with self-efficacy during the performance of a self-referenced task, as well as how 

these areas were related to task performance on the relational memory task, were identified. In 

addition, the relationship between physical activity group and its association with brain activity 

during the self-referenced task was determined. Finally, the relationship between brain activity 

during the self-referenced task, self-efficacy, cardiorespiratory fitness, physical activity and their 

relationship with memory performance was identified. In conclusion this study was able to 
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identify an additional moderators of cognitive function, which will in turn aid in the development 

of future inventions to improve quality of life and cognitive function in older adults.  
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Chapter 3: Research Design and Methods 

Methods 

Sample and Recruitment 

Research participants were drawn primarily from Champaign County (population 

193,636) and the surrounding areas in central Illinois. In order to adequately recruit older 

participants, paid, targeted advertising in local newspapers, senior magazines and e-week was 

employed. Additionally, we contacted the representatives of area radio stations that identify older 

adults as a key element of their market share. Finally, flyers were distributed at community 

events, organizations and facilities, which may have a large membership of highly active older 

adults (i.e., running clubs, tennis clubs, and other master athlete groups on and off campus). We 

also posted flyers in local restaurants, libraries, shops, and athletic/exercise facilities.   

Participation Criteria 

Participants were required to meet several criteria before entering the study. All 

participants were between the ages 60 to 79 years of age, and capable of participating in exercise 

without exacerbating any pre-existing condition(s). In addition, those individuals in the sedentary 

group were required to be physically active less than 2 days per week for 30 minutes or less, 

whereas the highly active individuals must participate in aerobic physical activity on 5 or more 

days per week for 30 minutes or more. All participants were screened for cognitive impairment 

using the 13-item modified Telephone Interview of Cognitive Status (TICS-M; de Jager, Budge, 

& Clark, 2003). In addition, each participant was required to have corrected (near and far) acuity 

20/40 or better, including no reported color blindness, a depression score on Geriatric Depression 

Scale (GDS, Sheikh & Yesavage, 1986) below clinical level, no metal objects residing in their 
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body, and could not be claustrophobic. Finally, all participants were also required to obtain 

written consent from their personal primary care physician to participate in this study. 

Measures 

Health History and Demographics. Each subject completed a standard health history 

questionnaire assessing medical history and lifestyle habits prior to recruitment into the study. 

Basic demographic characteristics on all individuals including age, education, socioeconomic 

status marital status and whether or not they participate in a life-long learning program were also 

obtained.  

Mental Status. Participants were screened for cognitive decline using the TICS-M 

(Brandt, Spencer, & Folstein, 1988; de Jager et al., 2003). The TICS-M covers four domains of 

function including orientation, registration/recent memory; attention/calculation; and semantic 

memory/comprehension. The measure is a good assessment of mild cognitive dysfunction and is 

easy to administer during telephone screening. The maximum score on the TICS-M is 39 with a 

score of 21 being equivalent to a score below 25 on the Mini Mental Status Examination 

(MMSE). A score of 24 on the MMSE is considered normal (Folstein et al., 1975).  

Physical Activity. Physical activity was assessed objectively by accelerometry. The 

Actigraph accelerometer (GT3X, Health One Technology, Fort Walton Beach, FL) is a small 

(1.5 x 1.44x .70 in) and lightweight (27 grams) device powered by a rechargeable Lithium 

Polymer battery that is capable of providing power for up to 20 days without recharging. 

Participants were instructed to wear the monitor on the non-dominant hip, under their clothing, 

and fastened to a belt worn around the waist. The accelerometer was worn during all waking 

hours, except for when bathing or swimming. Activity data were collected in one-minute 
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intervals (epochs), with the total number of counts for each day summed and divided by the 

number of days of monitoring to arrive at an average number of activity counts.  

The Actigraph demonstrates acceptable reliability and validity among young and middle-

age adults (Bassett et al., 2000; Hendelman, Miller, Baggett, Debold, & Freedson, 2000; Tudor-

Locke, Ainsworth, Thompson, & Matthews, 2002; Washburn, McAuley, Katula, Mihalko, & 

Boileau, 1999) and chronically diseased, older adults (Focht, Sanders, Brubaker, & Rejeski, 

2003). Participants recorded the time that the accelerometer was worn on a log, and this was 

verified by the inspection of the accelerometer data. The data were further examined for long 

periods of continuous zeros as a check of compliance with wearing the device and a criterion of 

30 minutes of continuous zeros (Copeland, 2009) suggested non-compliance. One valid day of 

measurement was based on 10 hours of wear time during the waking hours (Mâsse et al., 2005), 

from getting out of bed in the morning through getting into bed in the evening. Data were 

considered to be inaccurate when counts exceeded 20,000 per minute (Mâsse et al., 2005) or 

when participants had less than five valid days of data. The downloaded data were processed 

using MeterPlus (Actilife) and the movement counts for each day were summed and then 

averaged across the period of five valid days of data. Accelerometer data are expressed in total 

movement counts per day (i.e., usual physical activity). 

Appropriate cut-points for activity were then applied to the data in order to determine the 

amount of time each participant spent performing sedentary, light, moderate, hard, and vigorous 

activities (Copeland, 2009; Mâsse et al., 2005). The number of counts obtained during moderate, 

hard, and vigorous activities were then summed to obtain a measure of moderate to vigorous 

physical activity (MVPA) per day for each participant.   
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Graded Exercise Testing (GXT). Participants completed a nurse and physician supervised 

GXT to assess cardiorespiratory fitness. This test was conducted on a motor-driven treadmill 

employing a modified Balke protocol (Balke & Ware, 1959). The protocol involved walking at a 

self-selected speed (slightly faster than normal walking speed) while increasing grade increments 

of 2% every 2 min. Measurements of oxygen uptake, heart rate and blood pressure were 

continuously monitored. Oxygen uptake (VO2) was measured from expired air samples taken at 

30 second intervals until a peak VO2, the highest VO2, were attained at the point of test 

termination due to symptom limitation and/or volitional exhaustion. Other evidence of maximal 

effort included a respiratory exchange ratio greater than or equal to 1.0 and/or a heart rate 

approaching the age-predicted maximum (i.e., 220-age). Heart rate was taken during each work 

stage through continuous direct 12-lead electro cardiographic monitoring. Blood pressure was 

measured by auscultation and a sphygmomanometer. 

Relational Memory Task. Participants completed a modified version of the relational 

memory task developed by Dennis et al. (2008). This task used a hybrid event-related block 

design, such that timing of trials were jittered in order that remembered and forgotten items 

could later be traced back to examine associated brain activity. All stimuli were color images 

from the Ebner database (Ebner, Riediger, & Lindenberger, 2008). Participants performed three 

runs of approximately 10 minutes in the fMRI. Each run consisted of successive encoding-

retrieval phases. In the encoding phase of a trial, participants saw a scene for 2 seconds (s) then a 

face superimposed on that scene (face-scene pair) for an additional 2 s. This ensured that the 

participant could view the whole scene before making a relationship with the face. There were 24 

encoding trials. To ensure that the participant was actively forming relationships between the 

scene and face stimuli during the encoding phase, participants were asked to make judgments 
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based on their past experiences of whether they would normally encounter the person in the 

scene presented (yes or no). Between trials there was an optimal jittered fixation-screen 

interstimulus interval (ISI) of 4 to 8 s as determined by opsteq2 

(http://surfer.nmr.mgh.harvard.edu/fswiki/optseq2). Following a brief delay (20 s), the retrieval 

phase began. As during encoding,trial participants saw a scene for 2 s, followed by a face-scene 

pair for 2 s. All the faces and scenes shown during retrieval were also shown during encoding, 

therefore there were no novel items during the retrieval phase. To study brain processes related 

to relational memory, 12 trials were 'intact' face-scene pairs (the same face-scene pair shown at 

encoding) whereas the other 12 were 'repairs' (a scene and face from the encoding phase, but 

were not previously shown as a pair). Participants were asked to respond if a pair was 'old' or 

'new.' Each block has 24 retrieval trials. Examples of stimuli and presentation for both the 

encoding and retrieval phases are presented in Figure 2.   

A total of 72 encoding trials and 72 retrieval trials were performed over the course of the 

three runs. Reaction time (RT), and accuracy were recorded by the computer for each recognition 

trial. The total time for this task was approximately 30 minutes. 

The primary outcome variables for the relational memory paradigm were calculated 

based on the number of hits (i.e., responding yes, to a previously viewed pair), correct rejections, 

and false alarms using procedures previously described by Bayer-Carter et al. (2001) and Konkel 

et al. (2008) to derive the proportion of correct responses and d prime variables. 

Self-efficacy fMRI Protocol. Self-efficacy for the relational memory task was assessed 

using a modified version of the referenced self-appraisal task used by Schmitz and Johnson 

(2006). This paradigm was made up of two tasks; a memory self-efficacy (MSE) task and a non-

self-referencing (NSE) task. The latter task served as a “control” task, as is uses different brain 
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regions than the self-referential or MSE portion of the task, as indicated by Schmitz and Johnson 

(2006). All items for each task can be found in Appendix A and B, respectively. The MSE task 

required participants to make yes/no decisions based on how confident they felt they could 

complete “X” number of trials correctly for the face/scene relational memory task (MSE). The 

MSE paradigm contained twenty-four items with statements such as, “I am confident that I can 

correctly recognize 3 of 24 presented face-scene pairs.”  Participants then either responded yes or 

no by pressing keys on a keypad. The trials appeared in a random order to ensure a consistent 

oscillation of brain activity during the trials. The NSE task served as a spatial and response 

control and asked participants to assess their belief in whether it would rain “X” number of days 

of the next 24. An example of NSE trial asked “I am confident that it will rain 4 of 24 days this 

month”. As with the MSE task, participants responded to twenty-four items by answering yes or 

no by pressing keys on a keypad. The trials again appeared in a random older to ensure 

consistent oscillation of brain activity during each trial. 

For each task (MSE or NSE) eight blocks of six stimuli each were presented during a 

single run where participants responded to a total of 24 MSE and 24 NSE trials. MSE and NSE 

statements each appeared for 2.5s each, followed by a response screen for 1.5s and a fixation-

screen ISI of 500ms. MSE and NSE stimuli were counter balanced across conditions and 

subjects whereby some participants saw MSE trials followed by the NSE trials and others were 

presented with the NSE trials followed by the MSE trials. This protocol took approximately 6 

minutes to complete.  

“Yes” responses during the MSE and NSE tasks were summed, then divided by twenty-

four and multiplied by 100 to produce a score ranging from 0 to 100. This score served as an 

individual’s total confidence in their ability to complete the relational memory task or total 
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confidence that it would rain. In addition, the computer reported the RT for both tasks, and for 

yes and no responses.  

Questionnaire Assessments of Self-efficacy. In addition to the self-efficacy fMRI 

protocol, self-efficacy for cognitive function was also assessed via two questionnaires. Zelinski 

and Gilewski (2004) developed a 10-item version of the 33-item Frequency of Forgetting scale 

(F of F) from the Memory Functioning Questionnaire (MFQ; Zelinski, Gilewski, & Anthony-

Bergstone, 1990). Zelinski and Gilewski (2004) and report excellent reliability across items and 

persons for the shorter version of the scale. Construct validity was demonstrated by theorized 

relationships with depression, conscientiousness and actual memory performance (Zelinski & 

Gilewski, 2004). For this assessment, items were rated on a seven point Likert scale with lower 

ratings indicating more negative self-report, or a greater frequency of forgetting. Mean rating 

was calculated by summing all items and dividing by 10. This measure has also been shown to 

be associated with spatial working memory performance and hippocampal volume in older adults 

(Szabo et al., 2011).  

In addition to the F of F, memory confidence was assessed using the Memory 

Controllability Inventory (MCI; Lachman, Bandura, Weaver, & Elliot, 1995; Lachman, Weaver, 

Bandura, Elliot, & Lewkowicz, 1992) The MCI consists of 12-items assessing beliefs about 

memory ability (i.e., present capacity, potential improvement) and memory control (i.e., role of 

effort, belief in inevitable decrement). These 12-items comprise four subscales: Capacity (e.g., “I 

can remember the things I need to”), Improvement (e.g., “I can find ways to improve my 

memory”), Effort (e.g., “If I use my memory often I won't lose it”), and Inevitable Decrement 

(e.g., “When it comes to memory, there is no way one can make up for the losses that come with 

age”). Ratings were made on 7-point Likert scales, ranging from strongly disagree to strongly 
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agree. Each subscale contains three items (scoring range = 3 to 21). Previous research, based on 

three adult samples conducted by Lachman (1995), suggests that scale reliabilities are adequate 

for Capacity, α = .71, Improvement, α =.69, Effort, α = .70, and Inevitable Decrement, α = .68. 

Procedures 

Data Collection 

 Participants were first screened for all qualifying criteria, including the TICS-M over the 

phone. Once physicians’ approval was obtained for a participant, he or she was invited to 

participate in the study. A questionnaire packet containing the physical activity and the self-

efficacy measures (F of F and MCI) along with an accelerometer and a log to report wearing 

time was then mailed to the participant and returned at the GXT appointment. Participants then 

completed a physician supervised GXT and the fMRI protocol. All testing was completed within 

a span of three-weeks and no two tests were completed on the same day. For the fMRI protocol 

each participant first complete the pre-self-efficacy assessment (MSE and NSE), followed by the 

relational memory assessment.   

fMRI Data Acquisition 

All participants were scanned in a 3T Siemens Allegra whole-body scanner. All stimuli 

were presented using MRI-safe fiber optic goggles (Resonance Technologies, Inc.). T2* 

weighted images were acquired using a fast echo-planar imaging (EPI) sequence (64 x 64 

resolution matrix, 4-mm slice thickness, TR = 1500 ms, TE = 25 ms, flip angle = 80 ). 

Anatomical, T1-weighted images were acquired using a 3D Magnetization Prepared Rapid 

Gradient Echo Imaging (MPRAGE) protocol with 28 contiguous axial slices, collected in 

ascending fashion parallel to the anterior and posterior commissures, echo time (TE)=3.87 ms, 

repetition time (TR)=1800 ms, field of view (FOV)=220 mm, and voxel size of 3.4 x 3.4 x 4mm.  
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During the self-efficacy paradigm (MSE and NSE combined) a total of 244 total BOLD volumes 

were collected.  

Data Analysis 

Establishment of physical activity groups 

The high and low activity groups were established two ways, (1) based on the a priori 

high and low physical activity classification determined during participant recruitment (i.e., low 

active individuals were identified as physically active less than 2 days per week for 30 minutes 

or less, high active individuals were identified as participating in aerobic physical activity on 5 or 

more days per week for 30 minutes or more), and (2) based on examination of the accelerometer 

data. The sample characteristics for the a priori low and high activity groups are presented in 

Table 1. Using the accelerometer data, high and low MVPA groups were established based on 

the amount of time spent participating in MVPA per day. Specifically, any individual in the low 

physical activity group who participated in one-half of a standard deviation more MVPA per day 

than the mean was moved to the high active group and those individuals who were in the high 

physical activity group, but participated in one-half of a standard deviation less MVPA than the 

mean were moved to the low active group. This resulted in two new groups based on MVPA 

(i.e., high MVPA group and low MVPA group). The means and standard deviations for the 

sample characteristics of these groups are presented in Table 2. 

fMRI Pre-processing 

All fMRI images were motion-corrected using a rigid-body algorithm in MCFLIRT 

(Jenkinson, 2003) and temporally smoothed with a 100s cut-off Gaussian high-pass filter. Spatial 

smoothing was conducted with a 7-mm (Full Width at Half Maximum: FWHM) 3-dimensional 

Gaussian kernel. Following this, all high-resolution T1-weigthed images were skull stripped 
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using a robust deformable brain extraction technique (BET; Smith et al., 2002). The skull-

stripped images for each participant were then spatially registered using a 12-parameter affine 

transformation to a study-specific template in stereotaxic space. This template was specifically 

created for this study to avoid systematic registration error. To do so: (a) each participant’s high-

resolution scan was registered to MNI space; (b) an average of these registered images was 

created; and (c) the average image was then spatially smoothed with a 7-mm (FWHM) Gaussian 

kernel. This study-specific template was then subsequently used for spatial registration of all 

fMRI data. 

Objective 1: Associations among self-efficacy brain ROIs and memory performance 

fMRI Analysis. The first goal of this objective was to identify which brain regions were 

associated with self-efficacy during the performance of a self-referential task in the MRI. Based 

on Schmitz and colleagues (2006) findings in healthy adults, it was hypothesized that significant 

cluster activation would be present in the retrosplenial cortex, ACC, and dMPFC. Additionally, 

others (e.g., van Overwalle, 2009) have suggested that the TPJ and vMPFC may also be 

important for self-referential cognitions such as self-efficacy. To determine which ROIs were 

associated with self-efficacy a series of analyses using FSL were conducted. Following pre-

processing, the functional neuroimaging data collected during the presentation of memory (MSE) 

and non-memory self-efficacy tasks (NSE), were convolved with a double-gamma function to 

model the response for each condition (MSE, NSE, and rest/fixation). This first-level analysis, 

was conducted separately for each participant, resulting in voxel-wise parameter estimate maps 

for the entire brain for each condition and for the direct comparison between the conditions (e.g., 

MSE > NSE, NSE > MSE). In addition, activation during periods associated with the fixation-

cross, which is presented between the stimuli and at the beginning and conclusion of the 
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experiment, these time points were also examined by contrasting rest > MSE stimuli and rest > 

NSE. MSE > rest and NSE > rest contrasts were also examined in order to determine how 

activity during the two task differed from rest. These analyses produced parameter estimate maps 

and variance maps, which were then forwarded to a whole-head second level analysis. A 

covariate of no interest, gray matter volume, was also included in the model. This covariate 

identified cortical regions that contained variance, which could be explained by differences in 

gray matter volume (i.e., the motor cortex and visual areas). The final higher-level analysis 

resulted in three voxel-wise parameter estimate maps of interest for each condition mean. 

Regions of interest (ROIs) were then determined based on a Z statistic images thresh-hold map 

and using clusters determined by a voxel-wise threshold of z > 2.33 (p < 0.01) and a corrected 

cluster-wise threshold of p < 0.05. The significant ROIs for each contrast determined from this 

analysis are included in Table 3. However the primary contrasts of interest were the MSE > NSE 

and the rest > MSE contrasts as these were the contrasts hypothesized to best represent the self-

referenced behavior during the self-efficacy task and the default network. 

After extracting the activity level from the significant ROIs, the second goal of objective 

1 was to determine how activity in the ROIs from the MSE > NSE contrast (i.e., retrosplenial, 

ACC, dMPFC, TPJ, vMPFC) were related to memory performance (i.e., proportion of correct 

responses and dprime) on a relational memory task (Dennis et al., 2008). It was hypothesized 

that activity in these ROIs would be significantly related to performance on the memory 

paradigm. Specifically, better memory performance (i.e., higher proportion of correct responses 

and d prime scores) would be associated with greater activation in all self-referential ROIs. To 

examine these relationships a correlation analysis was performed in which, life-long learning 

membership and education were included as covariates. In addition to investigating the 
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relationship between the hypothesized self-referential ROIs and memory performance, any non-

hypothesized ROIs that were active during the MSE > NSE contrast were included in a second 

set of correlations in order to establish their relationship with memory performance.  

Objective 2: Relationship between physical activity, cardiorespiratory fitness, self-efficacy brain 

activity and memory performance 

The second objective of this study was to first determine whether activity groups (i.e., 

high and low active), show differences in brain activity in the ROIs active during the self-

reference task as determined in objective 1 (i.e., retrosplenial, ACC, dMPFC, TPJ, vMPFC from 

MSE > NSE contrast). The second goal of this objective was to determine how physical activity, 

cardiorespiratory fitness, self-efficacy and brain activity during the self-referential task influence 

memory performance. Based on the previous research on physical activity’s effect on self-

efficacy (McAuley & Blissmer, 2000; McAuley et al., 2005) and self-efficacy’s relationship with 

cognitive function (Bandura & Wood, 1989; Serra et al., 2008; West et al., 2008), it was 

hypothesized that the ROIs during the self-referential task (i.e., retrosplenial, ACC, dMPFC, 

TPJ, vMPFC) would show greater activity for the individuals in the high active group as 

compared to the low active group. In addition, it was hypothesized that greater participation in 

physical activity, higher fitness, higher self-efficacy, and greater activity in ROIs (i.e., 

retrosplenial, ACC, dMPFC, TPJ, vMPFC) would be related to better memory performance (i.e., 

proportion of correct responses and d prime).   

Next, in order to examine differences in brain activity for the two activity groups (i.e., 

high vs. low physical activity groups) all of the significant hypothesized ROIs (i.e., retrosplenial, 

ACC, dMPFC, TPJ, vMPFC) were included in a MANOVA. Education was included in this 

analysis as a covariate. In addition to determining the differences in brain activity by group for 
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the hypothesized self-reflective ROIs, the same MANOVA procedure was repeated for all 

significant, non-hypothesized ROIs.  

To determine the relationship between cardiorespiratory fitness, physical activity, self-

efficacy, memory performance, and the self-reference ROIs, correlation analyses were initially 

conducted. These analyses included the all self-reference ROIs identified in objective 1 (i.e., 

retrosplenial, ACC, dMPFC, TPJ, vMPFC), relational memory task performance (i.e., proportion 

of correct trials and dprime), self-efficacy (i.e., F of F, all MCI subscales, and MSE percent), 

cardiorespiratory fitness, and physical activity (i.e., total and MVPA). Potential covariates, life-

long learning membership and education were also included in the analysis.  

Finally, to examine the independent contributions of physical activity, cardiorespiratory 

fitness, self-efficacy, and brain activation on memory performance a hierarchical linear 

regression was conducted. This analysis included physical activity, fitness, and self-efficacy and 

the ROIs from objective 1 (i.e., retrosplenial, ACC, dMPFC, TPJ, vMPFC) as independent 

variables and memory performance as the dependent variable. Education was included as a 

covariate in this analysis.  
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Chapter 4: Results 

Sample Characteristics 

Original Physical Activity Groups 

Two age and sex matched groups of older adults were recruited and screened to 

participate in neuroimaging, psychosocial, physical activity and cardiorespiratory fitness testing 

for this study. Initially, 25 low-active adults and 26 high active-adults, aged 60 to 79 years 

completed all measures. However, two sedentary individuals had to be removed from the sample 

due to a stroke occurring sometime between the day they were screened and the day they were to 

complete testing. This resulted in three high-active individuals also being removed from the 

sample, in order to match groups by age and sex. Therefore, 23 sedentary and 23 active 

individuals completed all required testing and were retained for analysis. The two groups were 

age matched ±1 year. The sample characteristics for the two groups and the sample as a whole, 

including physical activity, cardiorespiratory fitness, self-efficacy and memory performance has 

been included in Table 1.  

 Based on sample characteristics alone, the two activity groups were significantly different 

in terms of life-long-learning program membership, body mass index (BMI), total physical 

activity counts per day, number of MVPA counts per day, and cardiorespiratory fitness. In all 

cases, the high-active participants were more likely to participate in a life-long-learning program, 

have a lower BMI, were more physically active, and had higher cardiorespiratory fitness. Self-

efficacy and memory performance did not differ between the two groups. Reaction time (ms) 

during the memory self-efficacy task did not significantly differ by physical activity group or 

based on the type of response made (e.g., yes or no (t (45) =.290, p = .773)). For the NSE 

condition, the two physical activity groups also did not differ in the proportion of yes responses 
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(i.e., I believe that it will rain) or response time (see Table 1). However, the overall mean 

reaction time for NSE task was significantly faster than the mean response time for the memory 

self-efficacy task (t (45) = -2.018, p = .05).  

MVPA Groups 

 
Based on the accelerometer data for MVPA per day, 8 self-reported high active 

individuals were moved to the low group while three self-reported low active individuals were 

moved to the high group. This resulted in two MVPA groups. The MVPA groups consisted of 28 

low-active individuals and 18 high-active individuals. The sample characteristics for the two new 

groups and the sample as a whole, including physical activity, cardiorespiratory fitness, self-

efficacy and memory performance are included in Table 2.  

 The MVPA sample characteristics showed that the low MVPA and high MVPA 

individuals were significantly different in terms of age, education, physical activity, fitness, F of 

F score, and reaction time for the NSE task. Specifically, the high active group was younger, had 

more years of eduction, participated in more physical activity, had higher cardiorespiratory 

fitness, higher F of F score, and had a slower reaction time during the NSE task. There was also a 

trend towards a significant difference in MCI potential improvement (p = .077), NSE no 

response reaction time (p = .068), proportion of correct response (p =.060) and d prime (p = 

.112), where individuals in the high active group had high confidence in their ability to improve 

their memory, slow NSE RT, and better memory performance than those in the low-active group.   

Objective 1 

Brain Regions Associated with Self-efficacy 

The first objective of this study was to identify which brain regions were associated with 

self-efficacy during the performance of a self-referential task in the MRI and then to determine 
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whether these ROIs were related to task performance on the relational memory task. It was 

hypothesized that the retrosplenial, ACC, dMPFC, TPJ, and the vMPFC (Van Overwalle, 2009; 

Buckner et al., 2008) would be active during the self-referential task (i.e., MSE > NSE contrast). 

Results supported this hypothesis, as all five brain regions were active during the self-referential 

task suggesting that the retroplenial, the ACC, dMPFC, TPJ, and vMPFC are all associated with 

self-efficacy for memory performance (see Table 3A and Figure 3A). In addition to the 

hypothesized ROI for the MSE > NSE contrast, several other brain areas were also significantly 

active. These brain regions included the left occipital cortex (OCC), left precentral gyrus (PrG), 

left temporal pole (TP), left superior frontal gyrus (SFG), right temporal occipital fusiform gyrus 

(TOF), and the right and left paracingulate gyri (PAC) (see Table 3B and Figure 3B).   

It was also hypothesized that the default network would be active during the rest/ fixation 

periods of the self-referential task (i.e., rest > MSE and rest > NSE contrasts); however, no 

default network activity was observed. This finding may be due to the overlap in brain regions 

that are associated with both self-referential tasks and the resting state or default network. 

Although it was not hypothesized, several brain regions during the MSE and NSE conditions 

were also more active than the rest condition. During the MSE condition, the right and left 

occipital poles (OP), precentral gyrus (PrG), and the right and left frontal poles (FP) were more 

active (see Table 3C and Figure 3C). These findings confirm that reading and information 

processing were taking place during the MSE condition and not during rest. Similarly, the OP 

and FP were also active in the NSE condition (see Table 3D and Figure 2D).  

Relationship Between ROIs and Memory Performance  

Relationship between hypothesized ROIs and memory performance. It was hypothesized 

that greater activation in the retroplenial, the ACC, dMPFC, TPJ, and vMPFC would be 
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significantly related to better memory performance (i.e., greater proportion of correct responses 

and higher d prime score). To determine the relationship between the MSE ROIs and task 

performance bivariate correlations were conducted (see Table 4). Although activity in the ACC 

was significantly related to education (r = .360, p =.014), neither education nor life-long learning 

membership were related to memory performance or any brain regions that were associated with 

it. These variables were therefore dropped from all subsequent analyses. Only activity in the 

dMPFC was significantly associated with memory performance. Specifically, greater 

deactivation in the dMPFC was significantly associated with the proportion of correct responses 

(r = -.292, p =.049) on the memory task. There was also a trend towards significance (r = -.259, 

p = .082) between d prime and deactivation in the dMPFC. Again, this correlation suggests that 

better performance on the memory task was associated with greater deactivation in the dMPFC. 

Relationship between non-hypothesized ROIs and memory performance. To determine 

the relationship between the non-hypothesized ROIs and task performance a second set of 

bivariate correlations were conducted (Table 5). Results showed that brain activity in these ROIs 

were not significantly related to education. However, life-long learning status was significantly 

related to activity in the left PrG (r = .470, p = .001) and left PCC (r = .320, p = .030). Finally, 

none of the non-hypothesized ROIs were significantly related to memory performance.   

Objective 2  

Relationship Between Relational Memory Performance, Self-efficacy, Activity Group, Physical 

Activity, Cardiorespiratory Fitness and Brain Activity  

Differences in Brain Activity by Activity Group. It was hypothesized that the ROIs for the 

self-efficacy task (i.e., retrosplenial cortex, ACC, dMPFC, TPJ, and vMPFC) would show 

greater activity for the individuals in the high active group as compared to the low active group. 
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Results showed no group differences for any the dependent variables, F(5,39) = 1.492, p = .215, 

eta
2
 =.161 (Table 5.). A follow up MANOVA consisting of the ACC and the dMPFC, the only 

brain regions significantly associated with self-efficacy, confirmed that no significant differences 

existed between groups, F(5,39) = 1.596, p = .215, eta
2
 =.071. However, in both analyses there 

was a trend towards a significant difference in brain activity for the dMPFC, F(1,43) = 3.260, p = 

.078, eta
2
 =.070, suggesting that individuals in the high-active group showed deactivation in this 

brain region, while individuals in the low-active group showed activation. In addition, the mean 

differences in brain activity, by group showed a trend towards more deactivation for the high 

active individuals. Figure 4 and Table 6 display these group differences. In summary, these 

findings indicate that the two activity groups overall were not significantly different in brain 

activity. However, there was a trend towards individuals in the high activity group having more 

deactivation in the dMPFC than individuals in the low activity group. Moreover, this was a 

moderate effect as indicated by the eta
2
. 

Differences in Brain Bctivity by MVPA Group. Similar to the activity group differences in 

brain activity, the only brain area to show differential activity between the MVAP groups was 

the dMPFC, F(1,43) = 5.629, p = .022, eta
2
 =.116. Specifically, there was greater deactivation of 

the dMPFC in the high MVPA group as compared to the low MVPA group (see Table 7 and 

Figure 5).  

Differences in Brain Activity for Non-hypothesized ROIs. Differences in other brain 

regions that were significantly active during the MSE > NSE contrast, but were not hypothesized 

as being related to self-reflective thought, were also compared based on the originally established 

physical activity groups (1) and MVPA groups (2). Results showed that activity in the non-
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hypothesized brain regions did not differ by physical activity, F(7,43) = .133, p = .995, eta
2
 =.08, 

nor based on MVPA group, F(7,43) = 1.060, p = .408, eta
2
 =.167.  

Relationship Between Physical Activity, Cardiorespiratory Fitness, Self-efficacy Brain 

Activity and Memory Performance 

It was hypothesized that those individuals who are more fit and active would also have 

higher self-efficacy, better memory performance and greater activity in all ROIs including 

retroplenial, the ACC, dMPFC, TPJ, and vMPFC. To evaluate the relationship between memory 

task performance, self-efficacy, physical activity, and cardiorespiratory fitness, and the MSE 

ROIs determined in objective 1, bivariate correlations were conducted. Education and life-long-

learning group membership were also included in the correlations to determine if they would be 

required covariates for subsequent analyses (see Table 8). The correlations showed that F of F 

was significantly related to the proportion of correct trials for the memory task (r =.333, p 

=.024), d prime (r =.336, p =.023), cardiorespiratory fitness (r =.396, p =.006), total physical 

activity counts (r =.328, p =.026), MVPA counts (r =.361, p =.014), activity in the ACC (r 

=.328, p =.026) and deactivation in dMPFC (r = -.327, p = .027).  F of F was also significantly 

related to all other measures of self-efficacy (i.e., all MCI subscales and MSE percent). 

Deactivation in the dMPFC was significantly related to the proportion of correct responses on the 

memory task (r = -.292, p = .049) and MVPA counts per day (r = -.314, p = .034). Counter to 

prior findings in the literature, cardiorespiratory fitness, was not related to memory task 

performance, self-efficacy, or brain activity. Education was significantly related to 

cardiorespiratory fitness (r = .386, p = .008), total physical activity counts (r = .499, p = .000), 

MVPA (r = .411, p = .005) and activity in the ACC (r = .360, p = .014). Life-long-learning 

membership was not related to memory performance, self-efficacy, cardiorespiratory fitness, or 
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physical activity variable and was dropped as a covariate in subsequent analyses. The 

correlational findings suggest that higher self-efficacy may be related to better memory task 

performance, activation in the ACC and deactivation in the dMPFC. Additionally, deactivation 

in the dMPFC was also related to greater participation MVPA.  

Influence of Physical Activity, Cardiorespiratory Fitness, Self-efficacy and Brain 

Activation on Memory Performance. It was hypothesized that those individuals in the high 

activity group would be more efficacious and perform better on the memory task, and that the 

enhanced performance would be positively related to activation in the self-reflective ROIs. The 

hierarchical linear regression analysis with proportion of correct responses as the dependent 

variable was non-significant. Results showed that these variables together did not influence 

performance on the memory task (proportion of correct responses) F(5,45) = 1.718, p = .153, R
2 

= .177 (see Table 9). The same hierarchical linear regression was conducted with d prime as the 

dependent variable and again was non-significant, F(5,45) = 1.537, p = .200, R
2 

= .161 (see Table 

10). However, in both cases, several of the independent variables did have sizable beta values 

suggesting that if the sample size were larger, they might be significantly associated with 

memory performance. Specifically, self-efficacy (i.e., F of F score), ß = .199, p = .237, 

contributed approximately 3% of the variance associated with proportion of correct responses, 

and 3.5% of the variation d prime memory performance, ß = .215, p = .205. Similarly, dMPFC 

brain deactivation, ß = -.175, p = .276, contributed approximately 2.5% of the variance 

associated with the proportion of correct responses and 1.6% of the variance associated with d 

prime, ß = -.141, p = .383. Together these findings suggest that both self-efficacy, and brain 

activity during the self-referential task may be positively impacting subsequent memory 

performance. 
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Summary of Findings 

In summary, results showed that the retrosplenial, ACC, dMPFC, TPJ, and the vMPFC 

(Van Overwalle, 2009; Buckner et al., 2008) were all active during the self-reference task. It was 

also hypothesized that greater activity in these brain regions would be related to better memory 

performance, however results showed that greater activity in the form of deactivation, 

specifically in the dMPFC, was related to both the proportion of correct responses and d prime. 

Results also showed that other, non-hypothesized, brain regions including the left OCC, left PrG, 

left TP, left SFG, TOF, and the right and left PAC were also active during the self-reference task; 

however, brain activity in these regions was unrelated to memory performance.  

It was also hypothesized that default network would be active during the rest periods of 

the cognitive task, however we were unable to investigate this hypothesis. Even so, results did 

show that the OP and FP were also active during the MSE and NSE task conditions (based on 

MSE > rest and NSE > rest contrasts), suggesting that reading and information processing were 

taking place during the MSE and NSE tasks, but not during the rest periods.  

Although results were unable to support the hypothesis that activity group (i.e., high and 

low active) would show differences in brain activity in the ROIs active during the self-reference 

task, there was a trend towards individuals in the high activity group having more deactivation in 

the dMPFC than individuals in the low activity group. As hypothesized, findings showed higher 

self-efficacy (i.e., less F of F) was related to better performance on the memory task. In addition, 

higher self-efficacy was related to greater cardiorespiratory fitness and greater participation in 

physical activity. Finally, higher self-efficacy was related to activation in the ACC and 

deactivation in dMPFC. Additionally, deactivation in the dMPFC was associated with better 

memory task performance and greater participation in physical activity. Finally, findings showed 
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that physical activity, cardiorespiratory fitness, self-efficacy and brain activation on memory 

performance together did not independently influence performance on the memory task 

(proportion of correct responses or d prime). 
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Chapter 5: Discussion 

Brain Regions Associated with Self-Efficacy and Memory Peformance  

There were two main goals for this first objective; the first was to determine which brain 

regions were active during the self-referential task that was designed to assess self-efficacy 

performance and which brain regions were active during the periods of rest between tasks. As 

hypothesized the retrosplenial, ACC, dMPFC, TPJ, and the vMPFC (van Overwalle, 2009; 

Buckner et al., 2008) were all active during the self-reference task and the OP and FP were also 

active, however, there were no active brain areas during the rest periods.   

The second goal of this objective was to establish which of the self-reflective brain 

regions that were active during the task, were related to memory performance on a self-reflective 

memory task. It was hypothesized that all self-referential brain regions (e.g., retrosplenial, ACC, 

dMPFC, TPJ, and the vMPFC) would be related to memory performance, however; only activity 

in the dMPFC was significantly associated with performance. Specifically, deactivation in the 

dMPFC was associated with better memory performance.  

Although the findings from this study suggest that activity in the dMPFC is related to 

self-referential behavior, supporting previous findings (e.g., van Overwalle, 2009), it was not 

hypothesized that there would be deactivation in the dMPFC during the task. A review by 

Gusnard and Raichle (2001) suggests that a psychological baseline for the brain’s behavior when 

it is awake, but at rest, should be established in fMRI and PET research. However, the manner in 

which brain baseline is established in the literature has been inconsistent. Many studies, the 

present study included, establish a brain baseline as when the brain is at rest before the 

experiment begins or at break points between experiment blocks. Brain activity during these 

short-resting periods is then taken into account during the response conditions. In other studies, 
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participants view abstract stimuli or scrambled photos and this passive viewing task is then used 

as baseline. Even so, neural activity during rest periods (even short, 3 s rest periods) can reduce, 

eliminate, or even reverse the sign of activity during a cognitive task, therefore a consistent 

means of collecting data during rest needs to be established (Stark & Squire, 2001). 

In addition, the findings in this study can also be related to the unique activation patterns 

exhibited in the dMPFC during self-referencing tasks. Specifically, McGuire and colleagues 

(1997) found that self-referential brain activity was always greater than rest, which was also 

greater than non-self-referential behavior (i.e., MSE > rest > NSE). Therefore, the fact that no 

rest > MSE activity was observed is not unusual. In addition, self-referential thought often occurs 

in between cognitive task trials or when the brain is supposedly at rest, or naturally deactivating 

(Gusnard & Raichle, 2001; McGuire et al., 1997). Therefore, deactivation being observed in the 

present study during the MSE > NSE condition is not uncommon. Even so, better control over 

baseline resting conditions is still needed in order to come to clear scientific conclusions.  

The neural composition and connections of the dMPFC to other regions of the brain may 

also explain study findings. Previous research suggests that the dMPFC receives a wide range of 

sensory information from the body as well as the external environment via the orbital prefrontal 

cortex (Wall & Messier, 2001). Additionally, the dMPFC is also heavily interconnected with 

limbic system structures via the brainstem (Forbes & Grafman, 2010). Research has suggested 

that connections with these brain regions may mediate the integration of emotional and cognitive 

processes by incorporating emotional biasing signals or markers into decision-making processes 

and thought (Bechara, Damasio, & Damasio, 2000; Forbes & Grafman, 2010). This is important 

as such processes come into play when one self-reflects and makes decisions about behaviors or 

capabilities.   
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In addition to brain activity being observed in the hypothesized self-referential ROIs, a 

significant level of brain activity was also present in several other brain regions (i.e., left OCC, 

left PrG, left TP, left SFG, right TOC, and right and left PCC). Although activity in these ROI 

was not significantly related to memory performance nor was it influenced by physical activity 

or MVPA level, the functional reasoning for this observed brain activity is still relevant for 

discussion. Activity in the OCC was observed because it is part of the visual system and 

necessary for reading and other visual processes (Erik, Hallett, & Cowey, 2003; Kastner, 

Demmer, & Ziemann, 1998). Activation in the PrG, on the other hand, is motor related and 

required for the initiation of skeletal muscle contractions (Kwan, MacKay, Murphy, & Wong, 

1978). This type of muscle movement is necessary for responding during a task. The TP is 

considered an extension of the limbic system and is involved in the processing of social and 

emotional stimuli. The TP has also been argued as necessary for facial recognition. Both of these 

properties are relevant to the MSE task as this task is both social/emotional in nature and 

required for remembering face-scene pairs (Olson, Plotzker, & Ezzyat, 2007). SFG activation 

was also observed during the MSE > NSE contrast. SFG is thought to contribute to higher 

cognitive function, including memory function, which may come into play when reflecting on 

one’s ability to remember stimuli (du Boisgueheneuc et al., 2006). The TOC is also sensitive to 

the processing of faces and is referred to as the occipital face area. Therefore this brain region 

may have been active as the MSE task asked participants to reflect on their ability to remember 

face-scene pairs (Rossion et al., 2003). Finally, the PCC was also active during the MSE task. 

Literature regarding the PCC suggests that it is necessary for predicting the future. Moreover, it 

is also involved in other social and self-referential processes (Lemogne et al., 2010; Walter et al., 

2004).           
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Findings also showed that the OP and the FP were active during both the MSE and NSE 

conditions as compared to the rest condition. This finding may be important in that is supports 

the position that reading, attending, and processing stimuli were ongoing during the task and not 

during the rest condition. Okuda and colleagues (2003) have also suggested that the FP is 

especially active when one is asked to think about future events that may or may not occur. In 

addition, Addis and Schacter (2008) showed greater activity in the FP when participants were 

asked think about future events rather than past events. In the present task, participants were 

asked to think about not only their future performance on the memory task, but also to think 

about whether or not they thought it would rain in the next month. As for OP activity, several 

studies using TMS have confirmed that placing a TMS magnet over the occipital pole region 

does disrupt vision, thus suggesting that this region is necessary for processing visual stimuli 

(Erik et al., 2003; Kastner et al., 1998).    

Results of this study also suggest that better memory task performance is related to 

deactivation in the dMPFC, findings that are also supported by previous research. Zhu and 

colleagues (2011) found that the dMPFC is heavily involved in memory performance and self-

referencing behavior when completing a task that involved both types of components. 

Specifically, Zhu et al. found that dMPFC activity later predicted memory performance even for 

non self-referencing stimuli. In the present study, we also found that greater deactivation in the 

dMPFC was related to better memory performance. Other researchers have also reported that 

greater deactivation in the dMPFC is related to better memory performance (Sambataro et al., 

2010). Specifically, Sambataro (2010) found that individuals with greater dMPFC deactivation, 

while at rest, performed better on a 2-back task assessing working memory. This suggests that 

individuals with greater deactivation in the dMPFC may also have better cognitive control 
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abilities and are therefore able to suppress interfering information more effectively which in turn 

leads to better task performance (Sambataro et al., 2010; Zhu et al., 2011). Our findings also 

support this position. 

Activity Group Differences in Brain Activity 

Brain activation differences by activity and MVPA groups. For the second objective we 

determined (a) whether high and low physical activity groups differed in brain activity in the 

ROIs associated with self-efficacy and (b) how physical activity, cardiorespiratory fitness, self-

efficacy, and brain activity in the ROIs during the self-efficacy task independently influenced 

memory performance. Results of the first goal showed that the two activity groups did not 

significantly differ in brain activity, however, there was a trend towards individuals in the high 

activity group having more deactivation in the dMPFC than individuals in the low activity group. 

Although the relationship between physical activity group or MVPA group and brain 

activity was not significant, the trend suggest that activation in the dMPFC does significantly 

differ based on physical activity group, whereby individuals in the high active group show 

patterns of deactivation and individuals in the low active group show patterns of activation in 

this brain region. However, it is not clear if physical activity or cardiorespirpatory fitness 

influenced this relationship. Findings by Voss and colleagues (2010) suggest that participating in 

a physical activity intervention, to increase cardiorespiratory fitness, is associated with changes 

in default network or resting state brain connections, specifically within the prefrontal cortex. As 

deactivation was observed in the dMPFC, the current study also provides support that 

participating in physical activity may be important for not only resting brain activity, but also 

brain health in general.  
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Relationship Between Physical Activity, Cardiorespiratory Fitness, Self-Efficacy Brain Activity 

and Memory Performance 

 Initial correlation analyses showed higher self-efficacy was related to better memory task 

performance, to greater cardiorespiratory fitness, greater participation in physical activity and to 

activation in the ACC and deactivation in dMPFC. Results also showed that deactivation in the 

dMPFC was associated with better memory task performance and greater participation in 

physical activity. Findings from a regression analysis showed that physical activity, 

cardiorespiratory fitness, self-efficacy and brain activation together did not influence 

performance on the memory task (proportion of correct responses or d prime).  

Although the correlations and regression findings do not suggest that physical activity, 

cardiorespiratory fitness, self-efficacy, and brain activity may have a significant influence on 

memory performance. Previous research conducted by Szabo et al. (2011) did find a significant 

relationship between cardiorespiratory fitness, hippocampal volume, memory performance, and 

F of F in older adults. This difference in findings could be related to the difference in the type of 

relational memory task used to investigate memory performance. In Szabo et al’s study, a spatial 

relational memory task was used, while in the current study participants completed a face-scene 

relational memory paradigm. In addition, Erickson and colleagues (2009) has also reported a 

significant relationship between spatial relational memory and cardiorespiratory fitness. Erickson 

et al. found that individuals with higher levels of fitness not only performed better on a spatial 

relational memory task, but this relationship was also mediated by hippocampal volume. 

Together Szabo et al. (2011) and Erickson et al.’s (2009) findings suggest that relational memory 

should be related to cardiorespiratory fitness. Even so, other longitudinal randomized control 

trial findings by Erickson et al. (2011) have indicated that this may not be the case. Specifically, 
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Erickson et al. (2011) found that although cardiorespiratory fitness and hippocampal volume 

increase in a group of older adults participating in a year-long aerobic exercise intervention, 

these changes were not associated with significant improvements in spatial relational memory 

performance. Similarly, those individuals who participated in a stretching and strengthening 

control group, who did not experience significant increases in fitness or hippocampal volume, 

did not show memory performance declines. Therefore, It is possible that relational memory 

performance is relatively stable as compared to other cognitive functions (i.e., executive 

function), which are consistently shown to be influenced by participating in physical activity to 

increase cardiorespiratory fitness (Colcombe et al., 2006; Colcombe & Kramer, 2003; Kramer et 

al., 1999).  

Unlike the present study, previous research using similar relational memory paradigms 

has shown a significant relationship exists between cardiorespiratory fitness and memory 

performance, however, all of this research has been conducted in children (Chaddock et al., 

2010; Chaddock, Hillman, Buck, & Cohen, 2011; Monti, Hillman, & Cohen, 2012). Specifically, 

Chaddock et al. (2010) found that higher-fit children have greater hippocampal volume and 

superior relational memory task performance than lower-fit children and that the relationship 

between fitness and memory performance is mediated by hippocampus volume. Monti and 

colleagues (2012) also found that when aerobic fitness is increased, by participating in an 

exercise intervention, relational memory performance increased as well. Together these findings 

indicate that fitness is associated with relational memory performance in children. However, the 

same has not been found for older adults. Thus, the findings from the present study and previous 

studies (Szabo et al., 2010) suggest that the fitness, physical activity and memory relationship be 

only present for specific types of memory (i.e., spatial and not relational) as aging may adversely 
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effect some types of memory more than others (i.e., spatial and not relational). Yet, more 

research is required to examine this relationship.       

Previous research also suggests that cognitive performance and self-efficacy are both 

significantly related to brain activity such as ERN and Pe amplitudes. Specifically, Themanson et 

al. (2011) found that ERN amplitude mediated the relationship between SE and post-error 

response accuracy in a flanker task in which response accuracy was stressed in the instructions. 

These findings suggest that brain activity is not only related to cognitive task performance, but 

self-efficacy. Thus, the findings by Themanson and colleagues (2011), combined with Szabo et 

al (2011) suggest that there is a relationship between self-efficacy, cardiorespiratory fitness, 

physical activity, memory performance, and brain activation, and although the present study was 

designed to more clearly define the relationships between these variables, the small sample size 

has allowed for limited conclusions.  

Although a majority of the literature on aging, cognitive function and exercise would 

support a significant relationship between cardiorespiratory fitness and cognitive function 

(Colcombe & Kramer, 2003; Erickson et al., 2011; Erickson et al., 2009; Kramer et al., 1999), 

we did not find results to support this claim. The correlation findings suggest that physical 

activity participation (both total and MVPA per day) is more strongly related to memory 

performance than physical fitness. Other researchers have also found similar results. 

Ruscheweyh and colleagues (2011), for example, found physical activity based on changes in 

energy expenditure, rather than changes in fitness, from participating in a six-month exercise 

intervention resulted in significant changes in physical activity (kcal/week) that were related to 

improvements in episodic memory recall and increases in brain volume. Flöel et al. (2010) also 

found that physical activity participation was significantly associated with gray matter volume, 
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which in turn was also related to memory performance, however, physical fitness was not related 

to either variable. Together with the present study’s correlations, these findings suggest that 

physical activity participation both cross-sectionally and within the context of an intervention 

may be more strongly related to memory performance. However, more studies assessing both 

physical activity and cardiorespiratory fitness are needed before a definitive conclusion can be 

made.    

Self-Referencing Tasks, Self-Regulation, and Health Behavior 

Although this is the first study to investigate the relationship between self-efficacy, brain 

activity, and health behaviors such as physical activity, results were able to show that those 

regions previously related to self-referencing behaviors are also related to self-efficacy. In 

addition to the literature supporting the role of the dMPFC within the context of self-referencing 

thoughts, such brain regions have also been shown to be important for self-regulation, especially 

when it comes to weight management and eating behaviors. Previous research suggests that the 

prefrontal cortex, including the dMPFC, is not only a critical brain region for homeostatic, 

reward, and self-referencing cognitions, but is also a mediator of appetite. Additionally, the 

MPFC seems to be exceptionally active when subjects exercise self-control, or attempts to self-

regulate their food decisions (Hare, Camerer, & Rangel, 2009). The neural circuits in this region 

have also more generally been associated with executive functions, including memory (Fuster, 

2008; Miller & Cummings, 2007), whereby lesions in this brain region are not only related to 

poor executive function, but also the inability to self-regulate. Thus, the MPFC is also necessary 

for maintaining and monitoring eating-related goals during food consumption, modulating 

reward and satiation, and ultimately cognitively controlling food intake (Alonso-Alonso, 2010). 

However, the regulatory influence of the dMPFC may not be only specific to food.  
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 Even though much of the previous research involving the dMPFC as a behavioral 

regulator is based on eating behaviors, previous research conducted by McAuley et al. (2011) 

may also provide support for the dMPFC’s involvement in maintaining health behaviors like 

physical activity. This is because physical activity participation is also extremely difficult to 

manage and success requires one to be able to effectively self-regulate. McAuley and colleagues 

(2011) suggest that integrating the social/psychological and neurocognitive definitions of self-

regulation through social cognitive theory can provide an effective model for explaining how one 

maintains positive health behaviors such as physical activity. Specifically, these researchers 

suggest that the maintenance of health behaviors, in this case physical activity is determined by 

one’s cognitive abilities and self-regulatory capabilities. This relationship is mediated by self-

efficacy, which was found to influence adherence to a year-long exercise intervention. Therefore, 

if self-efficacy is important for self-regulating physical activity and the dMPFC is important for 

self-regulating eating behaviors one may suggest that the activity in the dMPFC may also be 

related to the maintenance of physical activity over time. However, this position warrants 

empirical testing.  

General Study Strengths and Limitations 

This study is the first to investigate the relationship between brain activity associated 

with self-referencing behaviors, physical activity, cardiorespiratory fitness, and memory 

performance in older adults. This study was successful in showing that those regions thought to 

relate to self-referencing behaviors are also related to self-efficacy. However, as with any study, 

there are a number of limitations that should be acknowledged. This study was limited in sample 

size and although many of the findings were in the hypothesized direction strong conclusions 

were unable to be made. Regardless, this study adds to the literature, by suggesting that self-
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reflective brain regions, such as the dMPFC are related to self-referential behavior as well as 

subsequent memory performance. In addition these findings also validate previous study findings 

that self-efficacy is related to memory performance as well as physical activity and 

cardiorespiratory fitness. 

Another limitation of the current task is that it did not allow for the investigation of 

differences in brain activity based on yes or no response type during the MSE task condition. 

This was due to there being only 24 trials of the MSE task and although response rates were high 

(approximately 95%), self-efficacy for the memory task was low (42%), leaving less than 12 

trials of yes and 12 trials of no responses for comparison. This in turn did not provide enough 

power to perform a comparison of yes vs. no brain activity difference. Future self-

referencing/self-efficacy paradigms should include more trials as fMRI scanning time allows.    

Finally, the present investigation was cross-sectional in nature and therefore it does not 

provide any insight as to how changes in physical activity behavior or cardioresiratory fitness 

can influence both brain activity in the dMPFC or self-efficacy. Both changes in brain activity 

and self-efficacy relative to changes in physical activity and cardiorespiratory fitness should be 

investigated longitudinally, as well as within the context of an exercise intervention. This should 

allow researchers to determine how changes in physical activity and fitness constructs impact 

self-efficacy for cognitive function and self-referencing brain regions such as the dMPFC.  

Future Recommendations 

 These data do provide support for using fMRI to examine the active brain regions 

associated with self-efficacy and their relationship with performance on a memory task. In 

addition, this study also provides initial support that brain activity during a self-referential task 

may differ based on physical activity group status, and that participating in physical activity and 
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having higher cardiorespiratory fitness may influence self-efficacy cognitions. However, future 

studies should first attempt to replicate these findings first with a larger sample size and second 

longitudinally to determine relationships among changes in these constructs across time.  

Future research should also be conducted to attempt to better understand what moderates/ 

mediates the group differences in brain activity and self-efficacy as well as how such factors 

induce changes in self-efficacy for cognitive performance (i.e., changes in physical activity or 

fitness). Both questions were unable to be answered by the current study.  

In addition, to better determine the role of physical activity and fitness in brain function 

relative to self-efficacy, future research on self-efficacy and self-referential thought in general 

should be conducted using a task design consisting of more trials. This type of research would 

not only help to more clearly identify the brain regions associated with self-efficacy, but would 

also help to define conclusions relative to how these brain regions influence subsequent 

cognitive performance. Additionally, more trials would also provide insight as to whether or not 

brain activity is different in those individuals who are highly efficacious as compared to those 

who are not (i.e., difference is brain activity for yes and no responses). Further, different varieties 

of self-efficacy tasks should be developed to determine if the brain regions active during the self-

efficacy task are only related to memory performance on a relational memory paradigm or if 

such brain regions are also active when assessing self-efficacy for other executive function task.    

Findings from this study suggest that self-efficacy and the brain regions associated with 

self-efficacy cognition are related to memory performance. Although, not conclusive, physical 

activity and cardiorespiratory fitness were also related to self-efficacy and the brain regions 

active during a self-referential task indicating that these variable may also be important for 
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cognitive function as well. Although this research is in its infancy, there is some support for self-

efficacy’s potential as an important factor in brain health and the maintenance of cognition.  

Conclusions 

In conclusion, these data provide initial evidence that ROIs associated with self-

referential tasks (i.e., retrosplenial cortex, ACC, dMPFC, TPJ, and vMPFC) are active during a 

task developed to assess self-efficacy. Also, these ROIs are significantly related to performance 

on a relational memory paradigm. Specifically, better memory performance (i.e., greater 

proportion of correct responses and d prime score) was associated with greater activation in the 

dMPFC. This study also provides evidence that participating in more physical activity (i.e., 

based on physical activity and MVPA groups) is associated with greater deactivation in the 

dMPFC during a self-efficacy task. Also, evidence suggested that deactivation in the dMPFC is 

associated with better memory task performance. Although there was limited evidence to suggest 

that relational memory performance is associated with physical activity or fitness, additional 

research is need to clearly define this relationship as aging seems to more adversely influence 

certain types of memory more than others. Together, these findings provide an initial 

understanding about the relationship between self-efficacy and the brain regions associated with 

it, as well as how participating in more physical activity, may positively impact brain activity 

within its associated regions. However, more research is needed before strong conclusions can be 

made. Regardless, this study does provide an initial stepping stone to establish how self-efficacy 

and its associated brain regions are related to brain health and cognitive function in older adults.  
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Table 1  

Sample characteristics means and standard deviations 

 Total sample Low-active High-active t p 

N  46 23 23   

N of females 
32 

16 16   

Age 65.33 (4.3) 65.35 (4.68) 65.26 (4.05) -.034 .973 

Education (College or >) 73.9% 56.5% 91.3% 1.965 .057 

Are you in a life long learning program? 8.6% 0.0% 17.4% 2.152 .043 

BMI 27.6 (5.1) 30.53 (4.79) 24.82 (3.61) -4.618 .000 

Physical activity counts per day (epochs) 267,350 

(98,655.9) 

221,060 (67,597.5) 313,640 (104,202) 3.575 .001 

MVPA counts per day (epochs) 27.86 (19.45) 19.39 (10.78) 36.34 (22.53) 3.254 .003 

VO2 (mL/kg) 25.22 (8.97) 21.02 (5.54) 29.10 (9.56) 3.562 .001 

F of F total score 47.74 (10.63) 45.35 (11.23) 49.61 (9.78) 1.372 .177 

MCI present ability subscale 15.78 (4.10) 15.35 (4.42) 16.22 (3.81) .715 .479 

MCI potential improvement subscale 16.26 (3.80) 15.35 (3.36) 17.17 (2.90) 1.657 .106 

MCI effort utility subscale 16.30 (3.30) 15.86 (3.36) 16.74 (3.26) .890 .378 
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Table 1 (cont.) 

Sample characteristics means and standard deviations continued 

 Total sample Low-active High-active t p 

MCI inevitable decrement subscale 9.74 (3.97) 9.86 (3.96) 9.61 (4.06) -.221 .826 

MSE score (%) 42.75% (22.67) 46.38% (24.08) 39.13% (21.09) -1.086 .283 

Mean MSE RT (ms) 758.129 (123.994) 755.446 (107.925) 760.813 

(140.660) 

.145 .885 

Mean MSE yes RT (ms) 721.314 (295.639) 697.891 (396.873) 744.736 

(141.853) 

.533 .597 

Mean MSE no RT (ms) 704.162 (292.926) 651.277 (372.338) 757.046 

(176.147) 

1.231 .227 

NSE score (% yes responses) 29.9% (14.2) 10.94% (2.28) 16.52% (3.44) 1.447 .155 

Mean NSE RT (ms) 808.841 (168.864) 776.498 (169.019) 841.184 

(166.046) 

1.309 .197 

NSE yes RT (ms) 817.671 (280.260) 754.081 (231.025) 881.261 

(314.379) 

1.563 .125 

NSE no RT (ms) 812.977 (167.960) 790.932 (163.258) 835.022 

(166.046) 

.888 .379 

Proportion of correct responses on memory task (%) 70.33% (8.85) 69.98% (9.10) 70.69% (8.77) .270 .788 

d prime  1.22 (.61) 1.16 (.61) 1.27 (.62) .597 .553 

Note. BMI = body mass index; MVPA= moderate to vigorous physical activity; VO2= cardiorespiratory fitness (mL/kg); F of F= 

frequency of forgetting; MCI = memory controllability inventory; MSE = memory self-efficacy; RT = reaction time; NSE = non self-

efficacy 

 

 

 



 

 99 

Table 2  

 

Sample characteristics means and standard deviations for MVPA groups 

 Total sample  Low-MVPA High-MVPA t p 

N 46 28 18   

N of females 32 19 13 .307 .760 

Age 65.33 (4.3) 66.29 (4.814) 63.83 (2.895) -2.156 .037 

Education (College or >) 73.9% 57.1% 100% 3.546 .001 

Are you in a life long learning program? 8.6% 7.1% 1.5% .457 .650 

BMI 27.6 (5.1) 28.56 (5.16) 26.11 (4.99) -1.591 .119 

Physical activity counts per day (epochs) 267,350 (98,655.9) 212,340 (61,134.8) 352,920 

(84,215.6) 
6.121 .000 

MVPA counts per day (epochs) 27.86 (19.45) 15.13 (7.38) 47.68 (15.25) 8.445 .000 

VO2 (mL/kg) 25.22 (8.97) 21.44 (6.77) 31.10 (8.97) 3.909 .001 

F of F total score 47.74 (10.63) 44.67 (10.14) 51.83 (10.14) 2.335 .024 

MCI present ability subscale 15.78 (4.10) 15.10 (3.85) 16.83(4.36) 1.407 .166 

MCI potential improvement subscale 16.26 (3.80) 15.46 (3.58) 17.50 (3.91) 1.814 .077 
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Table 2 (cont.)      

Sample characteristics means and standard deviations for MVPA groups continued 

 Total sample Low-MVPA High-MVPA t p 

MCI effort utility subscale 16.30 (3.30) 15.78 (3.01) 17.11 (3.66) 1.339 .188 

MCI inevitable decrement subscale 9.74 (3.97) 10.35 (3.36) 8.77 (4.69) -.1.328 .191 

MSE score (%) 42.75% (22.67) 39.29% (24.22) 48.15% (19.45) 1.304 .199 

Mean MSE RT (ms) 758.129 (123.994) 740.961 (98.544) 784.836 

(155.028) 

1.176 .246 

Mean MSE yes RT (ms) 721.314 (295.639) 680.689 (360.058) 784.508 

(136.053) 

1.167 .249 

Mean MSE no RT (ms) 704.162 (292.926) 669.160 (341.788) 758.608 

(190.894) 

1.011 .318 

NSE score (% yes responses) 29.9% (14.2) 27.53% (15.30) 33.8% (11.60) 1.482 .145 

Mean NSE RT (ms) 808.841 (168.864) 768.547 (154.458) 871.521 

(175.372) 

2.093 .042 

NSE yes RT (ms) 817.671 (280.260) 793.401 (330.894) 855.426 

(177.591) 

.729 .470 

NSE no RT (ms) 812.977 (167.960) 776.769 (149.884) 869.299 

(182.967) 

1.874 .068 

Proportion of correct responses on memory task (%) 70.33% (8.85) 68.37% (9.76) 73.38% (6.28) 1.929 .060 

d prime  1.22 (.61) 1.10 (.68) 1.39 (.42) 1.622 .112 

Note. BMI = body mass index; MVPA= moderate to vigorous physical activity; VO2= cardiorespiratory fitness (mL/kg); F of F= 

frequency of forgetting; MCI = memory controllability inventory; MSE = memory self-efficacy; RT = reaction time; NSE = non self-

efficacy 
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Table 3  

All selected ROIs 

A. Selected MSE >NSE ROIs 

ROI X Y Z Z value 

Left Retrosplenial -6 -46 10 2.51 

Left ACC -6 10 40 3.07 

Left dMPFC -52 2 40 3.62 

Left TPJ -60 -46 20 3.62 

Left vMPFC -54 8 0 4.17 

 

B. Other MSE > NSE ROIs 

ROI X Y Z Z value 

Left OCC -32 -86 18 4.79 

Left PrG -24 -20 76 4.52 

Left TP -54 14 -8 4.49 

Left SFG -8 10 72 4.16 

Right TOF 36 -42 -20 4.14 

Left PAC -6 14 40 3.65 

Right PAC 6 10 44 3.91 
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Table 3 (cont.) 

All selected ROIs continued. 

C. Selected MSE > rest ROIs 

ROI X Y Z Z value 

Left OP -14 -100 -6 6.15 

Right OP 16 -98 -4 6.13 

Left PrG -26 -24 70 5.66 

Right FP 2 58 16 5.64 

Left FP -4 56 26 5.55 

 

D. Selected NSE > rest ROIs 

ROI X Y Z Z value 

Right FP 18 52 28 5.29 

Left OP -14 -102 -2 4.04 

Right OP 18 -98 -2 4.44 

Note. ROI = region of interest; MSE = memory self-efficacy; NSE = non self-efficacy task; ACC 

= anterior cingulate cortex; dMPFC = dorsal medial prefrontal cortex, TPJ = temporal parietal 

junction; vMPFC= ventral medial prefrontal cortex; OCC = occipital cortex; PrG = precentral 

gyrus; PAC = paracingulate cortex; TP = temporal pole; SFG = superior frontal gyrus; TOF = 

temporal occipital fusiform; OP = occipital pole; FP = frontal pole  
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Table 4 

Correlation between education, life-long-learning membership, memory performance, and self-referential ROIs 

 1 2 3 4 5 6 7 8 9 

1 Education --- .071 .240 .217 .043 .360* -.117 -.166 -.075 

2 Life-Long  --- -.016 .041 .147 -.140 .129 -.159 .254 

3 Proportion Correct Responses   --- .973** .078 .082 -.292* .001 -.049 

4 d Prime    --- .126 .102 -.259 -.027 -.054 

5 L. Retrosplenial     --- .178 .428** .252 .299* 

6 L. ACC      --- .021 .149 -.136 

7 L. dMPFC       --- .093 .247 

8 L. TPJ        --- .358* 

9 L. vMPFC         --- 

Note. Life-Long = Are you in a life long learning program?; L = left; ACC = anterior cingulate cortex; dMPFC = dorsal medial 

prefrontal cortex, TPJ = temporal parietal junction; vMPFC= ventral medial prefrontal cortex 

* Significant at p > .05; significant at ** p > .01 
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Table 5 

Correlation between education, life-long-learning membership, memory performance, and non-hypothesized ROIs 

 1 2 3 4 5 6 7 8 9 10 11 

1 Education --- .071 .240 .217 .019 .105 -.029 .046 -.123 -.106 .009 

2 Life-Long  --- -.016 .041 .191 .470** .083 .448** -.001 .320* .189 

3 Proportion Correct Responses   --- .973** .214 -.125 -.122 -.045 -.033 -.178 -.146 

4 d Prime    --- .188 -.116 -.126 -.032 -.053 -.156 -.155 

5 L. OCC     --- .260 .483** .494** .522** .201 .123 

6 L. PrG      --- .297* 590** .016 .359* .479** 

7 L. TP       --- .420** .586** .361* .355* 

8 L. SFG        --- .243 .395* .363* 

9 R. TOF         --- .259 .112 

10 L. PAC          --- .832** 

11 R. PAC           --- 

Note: Life-Long = Are you in a life long learning program?; L = left; R = right; OCC = occipital cortex; PrG = precentral gyrus; TP = 

temporal pole; SFG = superior frontal gyrus: TOF = temporal occipital fusiform; PAC = paracingulate cortex 

* Significant at p > .05; significant at ** p > .01 
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Table 6  

Mean brain activity differences by physical activity group      

ROI Total Sample Low-active High -active t p 

Left Retrosplenial .017 -.016 .049 .367 .716 

Left ACC -.028 -.052 -.003 .654 .517 

Left dMPFC -.075 .033 -.183 -1.980 .054 

Left TPJ -.085 -.032 -.138 -1.232 .225 

Left vMPFC -.186 -.203 -.168 .326 .746 

Note. ROI = region of Interest; ACC = anterior cingulate cortex; dMPFC = dorsal medial prefrontal cortex, TPJ = temporal parietal 

junction; vMPFC= ventral medial prefrontal cortex 
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Table 7 

Mean brain activity differences by MVPA group      

ROI Total Sample Low-MVPA High -MVPA t p 

Left Retrosplenial .017 .029 -.002 -.173 .863 

Left ACC -.028 -.060 .023 1.295 .203 

Left dMPFC -.075 .033 -.243 -2.524 .015 

Left TPJ -.085 -.091 -.077 .154 .878 

Left vMPFC -.186 -.159 -.228 -.630 .532 

Note. MVPA= moderate to vigorous physical activity; ROI = region of Interest; ACC = anterior cingulate cortex; dMPFC = dorsal 

medial prefrontal cortex, TPJ = temporal parietal junction; vMPFC= ventral medial prefrontal cortex 
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Table 8 

Correlation between memory performance, and self-referential ROIs 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1.Education --- .071 .240 .217 .239 .071 .149 .089 .267 .017 .386** .499** .411** .043 .360* -.117 -.166 -.075 

2 Life-Long  --- -.016 .041 -.029 .055 -.123 -.097 .122 .028 .123 .176 .267 .147 -.140 .129 -.159 .254 

3 Proportion 
Correct 
Responses 

  --- .973** .333* .010 -.077 -.097 .154 .170 .251 .266 .262 .078 .082 -.292* .001 -.049 

4 d Prime    --- .336 -.012 -.106 -.089 .127 .137 .256 .252 .237 .126 .102 -.259 -.027 -.054 

5 FOF total      --- .567** .480** -.562** .571** .289* .396** .361* .327* -.059 .328* -.364 -.003 .025 

6 MCI present 
ability 

     --- .701** -.603** .845** .242 .165 .171 .120 -.198 .095 -.144 .002 .026 

7 MCI utility       --- -.361 .754** .360* -.011 .061 .057 -.290 .068 -.270 -.066 -.082 

8 MCI 
inevitable 
decrement 

       --- -.563** -.371* -.234 -.252 -.214 .214 .025 .192 -.093 .083 

9 MCI potential 
improvement 

        --- .228 .203 .275 .234 -.192 .003 -.208 -.039 -.012 

10 MSE %          --- .067 .118 .251 .143 .054 -.049 -.024 -.066 

11 VO2            --- .683** .554 .133 .135 -.210 .197 .143 

12 Total 
physical 
activity  

           --- .871** .130 .081 -.243 .156 -.030 
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Table 8 (cont.) 

Correlation between memory performance, and self-referential ROIs continued 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 

13 Total MVPA              --- .128 .078 -.314* .026 -.069 

14 L. 
Retrosplenial 

             --- .178 .428** .252 .299* 

15 L. ACC               --- .021 -.149 -.136 

16 dMPFC                --- .093 .247 

17 L. TPJ                 --- .358* 

18 L. vMPFC                  --- 

Note. Life-Long = Are you in a life long learning program?; F of F= frequency of forgetting; MCI = memory controllability 

inventory; MSE = memory self-efficacy MVPA= moderate to vigorous physical activity; VO2= cardiorespiratory fitness (mL/kg); 

ACC = anterior cingulate cortex; dMPFC = dorsal medial prefrontal cortex, TPJ = temporal parietal junction; vMPFC= ventral medial 

prefrontal cortex 

* significant at p > .05; significant at ** p > .01 
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Table 9 

Influence of physical activity, cardiorespiratory fitness, self-efficacy and brain activation on 

proportion of correct responses 

 ß P R
2
 

Education .127 .437 .013 

F of F score .199 .237 .030 

dMPFC activity -.175 .276 .025 

Total MVPA .061 .743 .002 

VO2 (mL/kg) .053 .774 .002 

Note. F of F = frequency of forgetting; dMPFC = dorsal medial prefrontal cortex; MVPA = 

moderate to vigorous physical activity; VO2 = cardiorespiratory fitness (mL/kg) 

 

 

Table 10 

Influence of physical activity, cardiorespiratory fitness, self-efficacy and brain activation on d 

prime 

 ß p R
2
 

Education .102 .533 .008 

F of F score .215 .205 .035 

dMPFC activity -.141 .383 .016 

Total MVPA .031 .867 .001 

VO2  (mL/Kg) .088 .636 .005 

Note. F of F = frequency of forgetting; dMPFC = dorsal medial prefrontal cortex; MVPA = 

moderate to vigorous physical activity; VO2 = cardiorespiratory fitness (mL/kg) 
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Chapter 8: Figures 
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Figure 1 

Social Cognitive Theory: Triadic Reciprocity 
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Figure 2 

Example Encoding and Recognition trial stimuli 
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Figure 3  

A. Active brain regions during self-reference task (MSE > NSE contrast)  

 
* Images are presented in radiological orientation 

Note. ACC = anterior cingulate cortex; dMPFC = dorsal medial prefrontal cortex, TPJ = 

temporal parietal junction; vMPFC= ventral medial prefrontal cortex 

 

B. Other active brain regions during self-reference task (MSE > NSE contrast) 

 

 
* Images are presented in radiological orientation 

Note. L = left; R = right; OCC = occipital cortex; PrG = precentral gyrus; TP = temporal pole; 

SFG = superior frontal gyrus: TOF = temporal occipital fusiform; PAC = paracingulate cortex 
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Figure 3 (cont.) 

 

C. Active brain regions during self-reference task (MSE > rest contrast) 

 

 
* Images are presented in radiological orientation 

Note. OP = occipital pole; FP = frontal pole; PrG = precentral gyrus 

 

D. Active brain regions during non self-reference task (NSE > rest contrast)

 
* Images are presented in radiological orientation 

Note. OP = occipital pole; FP = frontal pole 
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Figure 4  

Mean brain activity by physical activity group      

 
Note. ACC = anterior cingulate cortex; dMPFC = dorsal medial prefrontal cortex, TPJ = 

temporal parietal junction; vMPFC= ventral medial prefrontal cortex 
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Figure 5 

Mean brain activity by MVPA group      

 

Note. MVPA = moderate to vigorous physical activity; ACC = anterior cingulate cortex; dMPFC 

= dorsal medial prefrontal cortex, TPJ = temporal parietal junction; vMPFC= ventral medial 

prefrontal cortex 
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Appendix A 

Memory Self-Efficacy (MSE) Task Items  

Note: Items appeared in random order and all items were Yes or No response 

1. I am confident that I can recognize 1 of 24 face-scene pairs. 

2. I am confident that I can recognize 2 of 24 face-scene pairs. 

3. I am confident that I can recognize 3 of 24 face-scene pairs. 

4. I am confident that I can recognize 4 of 24 face-scene pairs. 

5. I am confident that I can recognize 5 of 24 face-scene pairs. 

6. I am confident that I can recognize 6 of 24 face-scene pairs. 

7. I am confident that I can recognize 7 of 24 face-scene pairs. 

8. I am confident that I can recognize 8 of 24 face-scene pairs. 

9. I am confident that I can recognize 9 of 24 face-scene pairs. 

10. I am confident that I can recognize 10 of 24 face-scene pairs. 

11. I am confident that I can recognize 11 of 24 face-scene pairs. 

12. I am confident that I can recognize 12 of 24 face-scene pairs. 

13. I am confident that I can recognize 13 of 24 face-scene pairs. 

14. I am confident that I can recognize 14 of 24 face-scene pairs. 

15. I am confident that I can recognize 15 of 24 face-scene pairs. 

16. I am confident that I can recognize 16 of 24 face-scene pairs. 

17. I am confident that I can recognize 17 of 24 face-scene pairs. 

18. I am confident that I can recognize 18 of 24 face-scene pairs. 

19. I am confident that I can recognize 19 of 24 face-scene pairs. 

20. I am confident that I can recognize 20 of 24 face-scene pairs. 
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21. I am confident that I can recognize 21 of 24 face-scene pairs. 

22. I am confident that I can recognize 22 of 24 face-scene pairs. 

23. I am confident that I can recognize 23 of 24 face-scene pairs. 

24. I am confident that I can recognize 24 of 24 face-scene pairs. 
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Appendix B 

Non Self-Referential (NSE) Task Items 

Note: Items appeared in random order and all items were Yes or No response  

1. I am confident that it will rain 1 of 24 days this month. 

2. I am confident that it will rain 2 of 24 days this month. 

3. I am confident that it will rain 3 of 24 days this month. 

4. I am confident that it will rain 4 of 24 days this month. 

5. I am confident that it will rain 5 of 24 days this month. 

6. I am confident that it will rain 6 of 24 days this month. 

7. I am confident that it will rain 7 of 24 days this month. 

8. I am confident that it will rain 8 of 24 days this month. 

9. I am confident that it will rain 9 of 24 days this month. 

10. I am confident that it will rain 10 of 24 days this month. 

11. I am confident that it will rain 11 of 24 days this month. 

12. I am confident that it will rain 12 of 24 days this month. 

13. I am confident that it will rain 13 of 24 days this month. 

14. I am confident that it will rain 14 of 24 days this month. 

15. I am confident that it will rain 15 of 24 days this month. 

16. I am confident that it will rain 16 of 24 days this month. 

17. I am confident that it will rain 17 of 24 days this month. 

18. I am confident that it will rain 18 of 24 days this month. 

19. I am confident that it will rain 19 of 24 days this month. 

20. I am confident that it will rain 20 of 24 days this month. 
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21. I am confident that it will rain 21 of 24 days this month. 

22. I am confident that it will rain 22 of 24 days this month. 

23. I am confident that it will rain 23 of 24 days this month. 

24. I am confident that it will rain 24 of 24 days this month. 

 

 


