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ABSTRACT

The extensive form game is a formalism used to model environments where agents make sequences

of decisions, possibly in the face of uncertainty about the state of the world and the decisions made

by other agents. Such games can be expressed in the form of a tree. Game-theoretic solutions to

two-player extensive form games are intractable in many cases. This thesis presents a complete

system for modeling and reasoning about such games in a general way under practical computa-

tional restrictions.

We address three key challenges related to reasoning about extensive form games: (1) compact

representation of the game rules; (2) reasoning about an agent’s own knowledge and the knowledge

of its opponents; and (3) making decisions in games where it is not possible to generate the full

game tree.

The utility of any language designed to express games depends on its expressive power, the

ability of game designers to naturally and compactly describe game rules, and the reasoning and

inferential tools that the language constructs enable. We present a description language that cap-

tures the same semantics as extensive form games but allows their expression in more natural and

compact constructs. This logical language is an extension to the Planning Domain Description

Language (PDDL), which is commonly used for AI planning problems. We demonstrate the utility

of our language by showing that it can be used to express the rules of several popular games and

that the language constructs can be used by our game-playing system to make effective decisions.

A second key challenge for our game-playing system is to model the uncertainty related to

opponents’ decisions and chance events. We outline a decision-making framework based on the

notion of information set generation. Information sets are similar to belief states. Whereas a

belief state encodes a probability distribution over possible current worlds, an information set
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represents the set of all possible game histories that are consistent with a player’s observations. By

simulating these possible game histories, an agent can reproduce possible past and future decision

points for its opponents, including a re-creation of the knowledge state that the opponent would

have in making those decisions. We frame information set generation and sampling as a constraint

satisfaction problem and show significant gains in efficiency over the existing method on several

games. We also show that this operation scales efficiently to massively parallel machines. We

achieve speedups of over 500 times in some cases, surpassing current limits of parallelism for fully

observable games.

The third challenge that we address is making decisions in an environment where observation,

deliberation, and action are interleaved. Nash equilibrium solutions are a function of the entire

game tree and are predicated on the assumption that agents are computationally unbounded. In

practice, agents must make decisions about what to do at the present moment, given a sequence

of observations received so far and only limited exploration of the game tree. We present three

different decision-making algorithms and show that their optimality depends on whether the game

has a dominant, pure, or mixed strategy equilibrium. We describe the circumstances under which

an agent can be exploited by an omniscient opponent when using one of these strategies. As a case

study, we implement our opponent modeling strategy for the popular board game Scrabble. Our

reasoning agent outperforms the de facto world champion system.
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CHAPTER 1

INTRODUCTION

One of the key goals of artificial intelligence research is to develop human-level (or better) decision-

making agents. Real-world decision problems are often characterized by and complicated by

several or all of the following: (1) a large number of alternatives to consider; (2) uncertainty

due to noisy sensors and actuators; (3) uncertainty due to random acts of nature; (4) incomplete

knowledge about cause-effect relationships in the environment, especially when those relation-

ships change over time; (5) uncertainty about the knowledge, motives, capabilities, and actions of

other agents, whose decisions affect the utility of outcomes; (6) the need to make a sequence of

decisions, interleaved with acquisition of additional information (e.g. sensor data).

Researchers in mathematics, computer science, economics, and other fields have developed

formalisms for dealing with subsets of these challenges. Examples include Markov Decision Pro-

cesses and their partially observable counterparts, decision trees, and game trees. Each formalism

addresses some subset of the challenges just mentioned. They are useful both because of their

direct utility when applied to decision environments that exhibit only those features which they

support, and also because they provide valuable insight into more complicated problems to which

they cannot be directly applied.

1.1 Extensive Form Games

The focus of this thesis is the extensive form game (EFG) [Kuhn, 1953]. Many real-world deci-

sion problems involving multiple competing agents can be framed as games, including securities

trading, business acquisitions and mergers, and military operations [Papayoanou, 2010]. Typi-

cally depicted in the form of a tree, EFGs can be used to reason about environments which involve
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multiple agents who make finite sequences of decisions in the presence of imperfect information—

uncertainty about the state of the world and the decisions made by other agents.

In this thesis, we assume that all agents know the rules of the game as well as the utility to each

agent of each possible outcome. We assume that the game tree is finite. We further assume common

knowledge about these things: agents know these attributes, they know that the other agents know

them; they know that the other agents know that the other agents know, and so forth [Fagin et al.,

1995]. Non-deterministic events are modeled as actions taken by a special player, CHANCE, whose

decisions are characterized by a known (discrete) probability distribution.

One of the attractive features of the EFG formalism is that it elegantly captures the way agents

can be exploited because of their own uncertainty and the way they can exploit the uncertainties

that the other agents are known to have. Another attractive feature is its intrinsic epistemic system.

The structure of the tree implicitly but precisely encodes what agents know about the current world

state, what agents know about what other agents know, and so forth.

We focus here on recreational games that are accessible and well-defined, allowing thorough

study and evaluation. Examples include card or tile games (e.g., Poker, Scrabble), grid-and-piece

games (Stratego, Kriegspiel), and guessing games (Mastermind, Battleship). Rather than focusing

on strategy for any one particular game, our goal is to identify more general decision principles

that are common to the broader class of partially observable games.

We do not address games involving continuous decision spaces. Environments in which there

is uncertainty about the rules of engagement or about the motives or capabilities of other agents

are also beyond the scope of this thesis.

We address three key challenges to leveraging the extensive form game formalism: (1) rep-

resentation, (2) reasoning about imperfect information, and (3) making decisions under practical

computational constraints.
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1.2 Compact Representation

Popular games like Scrabble and Texas Hold’em Poker can be theoretically formalized as game

trees. Unfortunately, these trees are too large to be explicitly generated. Game description lan-

guages for fully observable games, such as GDL and GDDL, allow game designers to express the

rules of their games compactly using logical constructs [Love et al., 2006; Edelkamp and Kiss-

mann, 2007]. Such languages typically share some syntactic and semantic constructs with first-

order logic. Systems built on these languages depend on the full observability of the game in order

to determine how the world state should be updated based on agent decisions. Partial observability

complicates matters because agents can no longer assume that every proposition of interest can

be definitively proven true or false, even in theory. For example, in a poker game, a player might

benefit significantly from knowing whether (holds opponent ace) is true. Irrespective of

the complexity of any theorem-proving mechanism, the rules of the game may prohibit the player

from definitively knowing this fact one way or the other, unless a showdown forces the opponent

to reveal its hand.

In Chapter 3, we present the Partially Observable Game Domain Definition Language

(POGDDL) as a straightforward extension to PDDL, a language commonly used in the AI-planning

community. POGDDL supports partial observability by including observation specifications for

each agent in the effects declarations of each action. We show that the language is equivalent in

expressivity to the EFG formalism. Our language is similar to Thielscher’s GDL-II but has faster

state transition updates and provides support for numerical fluents [Thielscher, 2010].

POGDDL allows a game designer to express game rules compactly in terms of a collection

of logical predicates and numerical fluents (a.k.a. functions). Action schemata describe chance

events and moves that players may choose to make. Each action schema defines its precondition, a

logical formula that must be satisfied in order for the action to be legal on a given turn. Actions also

define their consequences in terms of Add Effects (predicates that become true when the action is

executed), Delete Effects (predicates that become false), updates to the values of numerical fluents,

and observations provided to each player. Additional constructs define the payoffs to each player

when the game ends, depending on the final values of the domain predicates and fluents.
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Besides defining the rules of the game, a POGDDL description provides a reasoning agent with

the ability to perform operations needed to reason about games in a general way through game tree

search. Each game’s initial state is explicitly defined. The complete state of the game associated

with each node in the game tree comprises the actual truth values of the predicates, the numerical

values of the fluents, and the observation list for each player. The list of observations is the only

explicit representation of an agent’s knowledge. Given a game state, the rules allow an agent to

determine what moves are legal from that state. Given a state and an action, an agent can determine

the next state (the descendant in the game tree), including the observations that each player would

receive1. Finally, given a terminal state, the game description allows an agent to detect that the

game has ended and determine the payoffs for each player. With these operations, an agent can

perform forward search in the game tree. The amount of search that is actually possible depends

on an agent’s computational budget.

1.3 Information Sets

The second challenge comes from the fact that agents must reason effectively about the possible

world and about what other agents know. As noted, the full game state comprises the true state of

the world and the knowledge states (observation lists) of each agent. A natural approach that has

worked well in other domains involving agent uncertainty (e.g., POMDPs) is to estimate a prob-

ability distribution over possible worlds–a belief state–and update this distribution as actions are

taken and observations received. However, no one has yet demonstrated how to apply this approach

to games expressed in a game description language such as GDL-II or GALA [Koller and Pfeffer,

1997]. One key challenge is that it is not possible, in general, to maintain a compact representation

of the distribution of possible worlds. Another challenge is that a belief state would only quantify

the distribution over values of predicates and fluents; it would not capture or adequately account

for the knowledge states of other agents.

1Note that for a particular action, the effects are deterministic, including the observations received by each player.
To describe probabilistic effects or observations, a game designer must specify a deterministic action followed by a
chance event.
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In game theory nomenclature, an information set is the set of all nodes in an EFG that are

indistinguishable to an agent at one of its decision points. For a game described in POGDDL, an

information set corresponds to all nodes in the game tree that share the same list of observations

for the agent whose turn it is to act. We view information sets not only as nodes in the game tree

but as the sequences of actions that lead to those nodes.

Other researchers have noted the need to identify game tree nodes that are consistent with a

player’s observations [Parker et al., 2005; Russell and Wolfe, 2005]. We refer to this operation as

Information Set Generation, or ISG. The existing method involves simulating play from the root of

the game tree and performing depth-first search, comparing observations in the simulation against

observations actually received, and pruning (backtracking) whenever those observations do not

match. Unfortunately, this naı̈ve approach does not scale well; the simulation may need to explore

a large portion of the game tree.

In Chapter 4, we frame information set generation as a constraint satisfaction problem. We

show how our algorithm more effectively prunes large portions of the search space to improve the

likelihood of finding nodes that are consistent with a player’s observations. We give results for

multiple non-trivial games that demonstrate that our algorithm works effectively in many cases

where the existing approach does not.

1.4 Point Decisions

The third challenge stems from the fact that game-theoretic concepts such as Nash equilibrium

are predicated on an assumption that agents are computationally unbounded. In particular, it is

assumed that agents can perform operations on the full game tree in order to find the equilibrium

solution. In reality, agents have only limited capabilities to analyze the potential consequences

of their decisions and to model how their opponents might respond to their actions. A practical

treatment of general extensive form games requires a method for reasoning about game decisions

based on only a limited subset of the nodes in the tree. Rather than relying solely on a theoretical

strategy that specifies decisions for every contingency in the game, it is important for an agent to
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be able to reason about a single decision point at a time, based on whatever observations it has

received up to the present time.

In Chapter 5, we present three algorithms that can be used to reason about games one decision

point at a time, in environments where deliberation, sensing, and action are interleaved. We classify

EFGs according to the complexity of their equilibrium solutions and explain the circumstances

under which each of our algorithms is optimal.

We also present an implementation of our opponent modeling strategy for the game of Scrabble.

We describe our Scrabble-playing system and its winning performance against the de facto world-

champion system QUACKLE. We also present the first general game player for partially observable

games and give examples of the kind of decisions the system is capable of making in non-trivial

games. We discuss the capabilities and practical limitations of our system in terms of reasoning

about imperfect information, opponent modeling, and decision making.

1.5 Context and Scope

In Chapter 6, we discuss related work and describe how the present work extends or complements

the state of the art in decision making in partially observable games. Finally, in Chapter 7, we

summarize our work and discuss promising directions for future research.

In this thesis, we primarily focus on two-player, zero-sum games with elements of chance. We

note specifically those cases where the work generalizes beyond those settings. We also assume

that there is common knowledge about the rules of the game. We do not address environments

where there is uncertainty about the dynamics of the world itself, about opponents’ preferences

over outcomes, or about the legality of actions from a particular (knowledge) state. We also do not

address situations where the decision space is continuous or infinite.
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CHAPTER 2

BACKGROUND

In this chapter, we review the foundational concepts in game theory and game tree search that

are utilized in this work. We first provide a formal definition of extensive form games. We then

review the concept of Nash equilibrium and explain it in the context of game trees with imperfect

information. To make these concepts concrete, we provide a detailed example of a simple poker

game and describe some of the strategic insights that are needed in order to maximize payoffs. A

key focus of this thesis is reasoning about information sets, which stands in contrast to the more

commonly used approach of reasoning about belief states. The two terms are sometimes used

interchangeably, so we include in this chapter a brief explanation of the distinction between the

two. We then review the concept of heuristic evaluation functions which have historically been at

the heart of game tree search programs. The recent development of the Monte Carlo Tree Search

method, which we describe next, has led to systems that do not require a heuristic evaluation

function [Kocsis and Szepesvári, 2006]. We conclude with a discussion of the applicability of

game theory to real-world decision-making problems.

2.1 Formal Definition of the Extensive Form Game

An extensive form game is a tree that describes the outcomes that result from sequences of deci-

sions made by one or more agents (players). Each interior node in the tree represents a decision

point for one of the players. The outgoing edges from each node represent a finite set of alterna-

tives available to the player at that point, and the children of a node represent the consequences of

those choices. Terminal (leaf) nodes correspond to possible outcomes of the interaction. A tuple

associated with each terminal node specifies the numeric utility or payoff for each player if that
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outcome is achieved.

The random acts of nature, such as card shuffling or dice rolls in a recreational game, can

be modeled by a player, CHANCE, whose decisions are made according to a known probability

distribution.

Each node for a particular agent encodes that agent’s knowledge state implicitly. Imperfect

information (partial observability) can be encoded by requiring that the knowledge state at two or

more nodes be the same. An information set comprises all nodes for a particular player where the

knowledge state is the same. A strategy is the (possibly probabilistic) decision of each player at

each of its decision points.

The following is a notational adaptation of Kuhn’s original definition of extensive games [Kuhn,

1953]. An extensive form game Γ is a tuple: 〈K, (V,E), H,A, U, σ0〉, where

1. K is an integer, where K + 1 is the number of players in the game. We refer to the players

as P0, P1, . . . , PK . By convention, P0 denotes CHANCE or nature.

2. The pair (V,E) is a finite directed tree with nodes V and edges E. The set T ⊂ V denotes

the terminal (leaf) nodes of the tree. D = V \ T is the set of decision nodes. For a node x,

N(x) denotes its children.

3. H = {Hkj}1≤k≤K, 1≤j≤Jk is a partition of V into the information sets of the game. The

value Jk is the number of information sets for Pk. For 1 ≤ i ≤ K, Hk =
⋃
j∈Jk Hkj

are the decision points for Pk. For each h ∈ Hkj and for each pair of nodes x, x′ ∈ h,

|N(x)| = |N(x′)|.

4. A is the set of actions. Let Ekj = {(u, v) ∈ E|u ∈ Hkj}, and Ek =
⋃
j Ekj . Note that⋃

k,j Ekj = E. Partition each Ekj into equivalence classes Akji of size |Hkj| for 1 ≤ k ≤

|Ekj|/|Hkj|, where (u, v) ∈ Akji ∧ (u′, v′) ∈ Akji =⇒ u 6= u′. That is, each set Akji

contains exactly one outgoing edge from each node in Hkj . Each Akji is an action, and

A =
⋃
k,j,iAkji.

5. U : T 7→ RK is the utility function for the outcomes. For t ∈ T , Uk(t) is the payoff to Pk if

the game ends at t.

8



6. σ0 : H0 × E0 7→ [0, 1] where ∀j
∑

A0ji∈E0j
σ0(H0j, A0ji) = 1. This is the probability

distribution for decisions at CHANCE nodes.

The definition of actions as sets of edges in the game tree is non-intuitive and merits further

discussion. An information set Hkj is a collection of nodes in the game tree that are indistinguish-

able to Pk. That is, if the true state of the game is a particular node in Hkj , Pk knows only that

the true state of the game is one of those nodes in Hkj but does not know exactly which one. The

outgoing edges from nodes in Hkj represent the alternatives available to Pk in that information set.

The actions available at each node inHkj must be identical; otherwise a player would be able to

distinguish between the nodes based on the different available alternatives. Thus, an action is not

just an edge, but a set of edges, with one edge in the set at each of the nodes in the corresponding

information set. The descendants of nodes in Hkj represent consequences of those decisions. The

consequence of selecting an action obviously depends on which node in Hkj is the true state of the

game, but the decision itself must be dependent only on Hkj . We present a concrete example in

Section 2.3 to further clarify this key concept.

2.2 The Nash Equilibrium Solution Concept

A strategy for Pk, denoted σk, specifies a probability distribution over possible actions for each of

Pk’s decision points in the game. A strategy profile σ = 〈σ0, σ1, . . . , σK〉 specifies a strategy for

each player and therefore a choice for each decision point in the game:

σk : Hk × Ak 7→ [0, 1] where ∀j
∑

Akji∈Ekj

σi(Hkj, Akji) = 1

In essence, a strategy profile assigns a probability to every edge in the tree and satisfies constraints

that require each player to act according to its knowledge (characterized by the information set)

rather than the full state of the world (the actual node in the information set). Since each edge

in the tree is assigned a probability, a strategy profile induces a probability distribution over the

outcomes of the game. The probability of an outcome is the product of the probabilities of each
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edge along the path from the root to the terminal. Let Uk(Γ, σ) be the expected utility for Pk in

game Γ under strategy profile σ. We write Uk(σ) when the specific game is implied.

For a particular player Pk, we denote by σ-k the strategies of all other players, so that σ =

〈σk, σ-k〉. We say that σ∗k is a best response to σ-k for Pk iff

∀σk Uk(〈σk, σ-k〉) ≤ Uk(〈σ∗k, σ-k〉)

A strategy profile σ∗ is a Nash equilibrium iff σ∗k is a best response to σ∗-k for 1 ≤ k ≤ K. Under

a Nash equilibrium, no player can increase its utility by unilaterally changing its own strategy. In a

two-player game, if Pk plays σ∗k that is part of a Nash equilibrium, then Pk is guaranteed a payoff

at least equal to Uk(σ∗). If there is correct, common knowledge about all players being rational

utility maximizers and players are computationally unbounded, then it is arguably reasonable to

assume that all players will in fact play a Nash equilibrium strategy.

In this thesis, we address the problem from the perspective of players who are computationally

bounded. For large games, it would not be feasible to compute—and therefore not reasonable to

play—the Nash equilibrium, nor would it be reasonable to assume that opponents would do so.

Nevertheless, these game-theoretic concepts provide an important frame of reference.

2.3 A Simple Poker Example

To make the above definitions more concrete, we present a small example. Figure 2.1 shows a

simple poker game for two players. The decision point for CHANCE (or P0, the dealer) is depicted

as a circle. Decisions for P1 and P2 are shown as triangles and diamonds, respectively. Both P1

and P2 initially hold two dollars and are required to put one dollar in the pot as an ante.

The dealer, holding a King and a Jack (K > J), randomly deals one card to P1 and the other

to P2, with P1 holding the King in the left subtree and the Jack in the right subtree. P1 is allowed

to look at its card; P2 is not allowed to look at anyone’s card. P1 and P2, in turn, then choose to

fold (left branch) or to bet their other dollar (right branch).

The payoffs shown at the terminals are for P1; P2’s payoffs are the negation of these values.
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Figure 2.1: A simple poker game. Nodes connected by curved lines are in the same information set. Nodes
without curved lines are in singleton information sets.

If one player bets and the other passes, the bettor wins a net payoff of 1 (the other player’s ante).

Otherwise, in the case of a showdown, the player with the stronger hand wins a net payoff of two

dollars if both players bet or one dollar if both folded. The payoffs shown are for P1. The game is

zero-sum, so that U2(t) = −U1(t) for all t ∈ T .

If the game had perfect information, the equilibrium strategy for both players would be to bet

with the King and fold with the Jack; the expected value of the game would be 0 for both players.

But because P2 is not allowed to look at its card, its information is the same at F.1 and F.2. Let

H21 = {F.1, F.2}. In both cases, P2 “knows” only that P1 folded but does not know who has

the stronger hand. These two nodes are therefore in the same information set (shown with the

dotted lines connecting the nodes), and this set captures the fact that P2 does not know whether

CHANCE selected branchK1J2 orK2J1. Similarly, the information setH22 = {B.1, B.2} encodes

the knowledge that P1 has bet.

A player must make its decisions based only on the knowledge that it is has at the time the

decision is made. Thus, each player’s strategy must specify a decision for each of its information

sets. Action set A21 is the partition of the edges from nodes in H21. So A21 = {Ff , Fb}, where Ff

is the set of all edges labeled Ff and Fb is the set of all edges labeled Fb. For example, if P1 decides

to fold with probability pwhen holding the Jack, then σ1(J, Jf ) = p and σ1(J, Jb) = 1−p. P1 must
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also choose probabilities for the singleton information setK such that σ1(K,Kf )+σ1(K,Kb) = 1.

By contrast, the information sets for P2 are both non-singletons. The information set relationships

constrain the strategy probability for the edges labeled Bb to be the same at both B.1 and B.2 even

though the consequences are different (a payoff of −2 vs. 2).

For imperfect information games such as this one, the Nash equilibrium can be found by con-

verting the tree to a linear program, as outlined in [Koller et al., 1994]. In this case, P1 can exploit

the fact that when it bets from J , P2 will not know whether the true state is B.1 or B.2. The Nash

equilibrium is σ1(K,Kb) = 1; σ1(J, Jb) = 1/3;σ2(F, Fb) = 1; σ2(B,Bb) = 2/3. That is, P1 bluffs

1/3 of the time on the Jack, which deters P2 from folding every time P1 bets. P1 receives a payoff

of 2 with probability 1/3 in exchange for incurring a payoff of −2 with probability 1/9. Under the

equilibrium strategy, the value of the game is a net gain of 1/6 dollars for P1. Thus, P1 is able to

exploit P2’s uncertainty to guarantee an advantage of at least 1/6 over the expected value of the

perfect information game under optimal play.

In a perfect information game, the equilibrium value of an interior node (the expected value

of a game that reaches that node) can be computed based only on its descendants. This is true

even in perfect information games that include an element of chance, such as backgammon. But

in an imperfect information game, the node values are complicated by the entangling relationships

induced by the information sets. Once the strategy profile is fixed, this information can be used

much like in the perfect information case to compute the expected value of a game that reaches any

particular node. For example, under the equilibrium strategy V (B.2) = (1/3)(1) + (2/3)(−2) =

−1. Note that this is different than the minimax value (-2) at that node.

2.4 Finding a Nash Equilibrium Through Linear Programming

In this section, we give an overview of how linear programming is used to solve for equilibrium

strategies in a key class of two-player, zero-sum, imperfect information games. This formulation

is key to understanding the nature of equilibrium strategies in imperfect information games, the

limitations of previous work in general game playing, and our results in Chapter 5.
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(Ff , Bf ) (Ff , Bb) (Fb, Bf ) (Fb, Bb)
(Kf , Jf ) 0 0 −1 −1
(Kf , Jb) 1 −1

5
0 −3

2

(Kb, Jf ) 0 1
2

0 1
2

(Kb, Jb) 1 0 1 0

Figure 2.2: Simple poker game in normal form. Rows (resp. columns) correspond to pure strategies
for P1 (resp. P2). Matrix entries specify the expected payoff for P1 under the corresponding
strategy profile, assuming both deals are equally likely.

We previously defined EFGs in terms of nodes, edges, information sets, and payoffs. Such

games may be expressed equivalently in matrix form, also known as normal form. In the two-

player case, each row in the game matrix A corresponds to a pure strategy for P1 and each column

corresponds to a pure strategy for P2. Matrix entry A[i, j] gives the payoff for P1 in expectation

(over the chance nodes) when P1 and P2 employ strategies i and j respectively. The payoff for P2

is understood to be the negation of the corresponding entry1

The payoff matrix for our simple poker example is shown in Figure 2.2. The pure strategy for

P1 shown in the first row is to always fold with the King and always fold with the Jack. The pure

strategy for P2 shown in the first column is to always fold when P1 folds and to always fold when

P1 bets. Under these strategies, the result will be a payoff of 1 (for P1I) when P1 is dealt the King

and −1 when P1 is dealt the Jack, for an expected value of 0, which is the matrix value shown in

the upper-left corner.

A mixed strategy is a linear combination of pure strategies. In order to use the familiar notation

of linear programming, we will say that P1’s strategy is a vector x, where element xi is the proba-

bility assigned to pure strategy in the ith row. Likewise, P2’s strategy is a vector y, where element

yj is the probability assigned to the pure strategy in the jth column. Note that
∑

i xi =
∑

j yj = 1.

The expected value of the game under strategy profile 〈x, y〉 is xTAy. Note that matrix A is dense:

all of the entries may be nonzero.

For a fixed strategy x for P1, the problem of finding a best response y to x can be expressed as

1For games that are not zero-sum, there would be a payoff matrix for each player, and the equilibrium would be
found using techniques for solving linear complementarity problems [Koller et al., 1994]. For games with more than
two players, multi-dimensional grids can be used to define the game, but there is no polynomial-time algorithm to
solve for the equilibrium unless P = NP [Blair et al., 1996].
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a linear program:

maximize
y

(xTB)y

subjectto Fy = f

y ≥ 0

(2.1)

where B = −A. Here, F is just a 1 × n matrix of ones and f is the scalar 1, and this single

constraint enforces the requirement that a mixed strategy must be a probability distribution over

pure strategies. The dual of this linear program has one unconstrained variable for every constraint

in the primal. (In this case, there is only one.) The roles of the objective function and the right-hand

side of the constraint are reversed:

minimize
q

qTf

subjectto qTF ≥ xTB
(2.2)

By the weak duality theorem, a pair of feasible solutions y, q satisfy

qTf = qTFy ≥ (xTB)y

And by the strong duality theorem,

qTf = qTFy = (xTB)y

at optimality. A similar primal-dual pair can be defined for the goal of finding a best response x to

a given strategy y:

maximize
x

(xTA)y

subjectto xTET = eT

x ≥ 0

(2.3)

minimize
p

eTp

subjectto ETp ≥ Ay
(2.4)
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To find an equilibrium, it is necessary to find x and y that are best responses to each other. This

can be done by solving

minimize
y,p

eTp

subjectto −Ay + ETp ≥ 0

−Fy = −f

y ≥ 0.

(2.5)

If the simplex method (see [Cormen et al., 2009] is used to solve Equation 2.5, the strategies

for both P1 and P2 can be extracted from the tableau and the value of the objective function gives

the equilibrium value of the game: the expected payoff when both players play the equilibrium

strategy.

As noted above, matrixA is dense. The number of pure strategies for each player is exponential

in the number of nodes of the game tree. The number and size of the constraints in the LP are

determined by the number of pure strategies for the players. Therefore, the size of the LP is

exponential in the size of the tree.

Koller et al.’s key insight is that the important information to capture for a strategy pair is the

distribution induced over the terminal nodes [Koller et al., 1994]. This can be expressed more com-

pactly than in the dense normal form matrix explained above by reducing the amount of redundant

information that is encoded.

The support of a mixed strategy σk is the set of pure strategies with non-zero probability in σk.

Koller et al. show that for any mixed strategy, there is an equivalent mixed strategy such that the

number of pure strategies in its support is no more than the number of the terminal nodes in the tree.

Using this insight, they are able to reformulate the Nash equilibrium problem as a linear program

that is linear in the size of the game tree. We refer to this algorithm hereafter as ESLP (Equilibrium

through Sparse Linear Programming). We will elaborate on this approach in Chapter 5. To achieve

this efficiency, a game must have perfect recall, which we define below.

While the ESLP algorithm from Koller et al. reduces the time need to find an equilibrium

from exponential in the number of nodes in the tree (using the matrix form) to polynomial (using
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the sequence form) the algorithm still faces significant practical limitations. As noted, for large

games, the number of nodes may be prohibitively large (e.g., more than 10100). And while Koller

and Pfeffer have noted that, empirically, solving the LP takes less time than converting the tree

to an LP, in practice, it is not possible to traverse the whole tree in order to create the LP. And

unfortunately, the algorithm does not have the “anytime” property. It is not clear how to make use

of a partially generated LP, since existing entries in the LP may be updated over time as new nodes

in the corresponding information sets are discovered. As a result, GALA, the game-playing system

built on top of ESLP, has not achieved widespread use [Koller and Pfeffer, 1997].

2.4.1 Perfect Recall

Definition 1. An n-person game has perfect recall iff the following conditions are met:

1. For all information sets h, every path in (V,E) includes at most one member of h.

2. If v and w are nodes in the same information set and there is a node u that precedes v and

D(u) = D(v) (i.e., the same player makes the decision at both nodes) then there must be

some node x that is in the same information set as u and precedes w and the decisions for

D(u) along the path taken from u to v are the same as from x to w.

Intuitively, the definition requires that for any two nodes in the same information set, the se-

quence of choices made by each player in order to arrive at those nodes are the same. This means

that at any particular decision point, a player always remembers its own decisions at all previous

decision points.

One example of a game that can be modeled as not having perfect recall is Bridge. Normally,

the game is played between two pairs of two players who each hold their own set of cards. A player

does not (at first) know the cards held by her teammate. If this game is modeled as a two-player

game, where each player in the model represents a two-handed team, then at each decision point,

the model must enforce that the acting player “remembers” the contents of only one of the hands

of cards. Many games naturally satisfy the property of perfect recall. Indeed, games that do not

satisfy perfect recall seem to be more the exception than the rule.
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2.5 Information Sets vs. Belief States

In large games, it would be unreasonable to compute or even express a full strategy for a player.

(The total size of a strategy profile is proportional to the number of edges in the game tree.) In-

stead, decision-making agents are often required to make one decision at a time, with opportunities

between “turns” to perform additional limited deliberations based on new observations. In partially

observable environments, agents’ decisions should depend on the probabilities that they have as-

signed to possible world states.

The term belief state is sometimes used interchangeably with information set to refer to a

probability distribution over possible worlds. We make a key distinction here. A node in a game

tree denotes not only the current state of the game, but also uniquely defines a path—a sequence

of actions—from the initial state or root node. Thus, a game tree node implicitly encodes not only

the current state of the game but also the complete history of all decisions made by all players

(including nature) up to that point in the game. Generating an information set means identifying

all game histories that are consistent with a player’s observations up to a certain point in the game.

In the example above, it would be dangerous for P2 to assume when making a decision from

information set {B.1, B.2} that B.1 and B.2 are equally likely to be the “real world” just because

both of the initial deals are equally probable. In fact, P1’s strategies at both K and J impact the

relative likelihood of B.1 and B.2.

By evaluating possible complete histories, an agent can recreate decision points faced by other

players—including the knowledge that other players had when they made their decisions. The dual

view of a game tree node as corresponding both to the current state of the world and the complete

history of the game will be a key theme in this thesis.

2.6 Heuristic Evaluation Functions

We assume that an agent can determine the payoffs for each player when it encounters a terminal

node in the game tree. These values can be propagated backwards in the tree to determine the

expected value of each interior node. However, since many trees are too large to fully explore,
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game-playing agents often seek to approximate the values of non-terminals.

A Heuristic Evaluation Function (HEF) returns an estimate of the minimax value of a node

based on extracted features of the game state at that node2. For example, the HEF for the DEEP-

BLUE chess engine included over 8,000 features that were selected by human grandmasters and

tuned through computer analysis of millions of specific positions [Campbell et al., 2002]. These

features included material comparisons (e.g., a queen is worth more than a rook) and positional

assessments, such as pawn structure, king safety, and control of the center.

Tesauro’s temporal difference learning-based backgammon agent employed an evaluation func-

tion with over 4,000 features [Tesauro, 1995]. This function was tuned through more than a million

games of self-play.

Obviously, if the HEF were completely accurate, there would be no need for search. A program

could simply apply the function to the current node’s children and choose the move that leads to

the best value. In reality, HEFs give only an approximation to the true value of a node. Ostensibly,

the quality of these estimates improves as the agent gets closer to the end of the game. Nau has

shown that certain properties of the evaluation function can cause MINIMAX to actually perform

worse as search proceeds deeper into the tree [Nau, 1983]; such situations are beyond the scope of

this thesis.

In some domains, many endgame positions are completely solved and therefore do not require

an HEF. For example, databases have been created that return the exact equilibrium values for all

checkers positions involving fewer than 10 pieces [Schaeffer et al., 2007]. The exact value can

also be computed for many endgame chess positions that involve only a few pieces.

It is not always clear what features should be used for an HEF. For example, despite concerted

effort by the research community, a good HEF has proven elusive for the game of Go. HEF-based

computer Go systems can still be beaten by relatively weak human players.

2Some authors use the term static evaluation function to mean the same thing.
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2.7 Monte Carlo Tree Search

Historically, game-playing programs have used HEFs in conjunction with alpha-beta pruning [Knuth

and Moore, 1975; Huntbach and Burton, 1988]. The goal of a pruning algorithm is to avoid ex-

ploring parts of the game tree that are provably not on the optimal path for either player. In the

best case, alpha-beta pruning can compute the true minimax value of the root of an n-node game

tree by examining only Θ(
√
n) nodes.

A new family of algorithms, called Monte Carlo Tree Search (MCTS) obviates the need for

an HEF by using what is called simulation or rollout-based techniques. These methods, described

in this section, have revolutionized the field of game tree search. New MCTS-based Go agents

are now competitive with some of the lower-level professional players [Gelly and Wang, 2006;

Lee et al., 2009]. MCTS also plays a central role in the CADIAPLAYER system for general game

playing, which won the AAAI General Game Playing competition in 2007 and 2008 [Finnsson,

2007].

A Monte Carlo Tree Search algorithm consists of four main subroutines: selection, expansion,

simulation, backpropagation. The individual components may vary somewhat based on the imple-

mentation and application. The algorithm generates only a (connected) subset of the nodes in the

full game tree, and these nodes compose the search tree.

Algorithm 2.1 Generic Monte Carlo Tree Search Algorithm
1: function MONTECARLOPLANNING(node,timeLimit)
2: while currentTime() ≤ timeLimit do
3: currentNode = node
4: while currentNode.hasChildren() do
5: currentNode = SELECTONE(currentNode.children())
6: simulationNode = EXPAND(currentNode)
7: simulationResult = SIMULATE(simulationNode)
8: BACKPROPAGATE(simulationNode,simulationResult)
9: return bestAction(state,0)

Pseudocode for Monte Carlo Tree Search is shown in Algorithm 2.1. The algorithm generates

as many game simulations (samples) as time will allow. For each sample, the algorithm traverses

the search tree from the root using its selection subroutine. When the selection routine requests an
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ungenerated child of an existing node, the expansion routine is called to generate it. Now at the

fringe of the search tree, the algorithm performs a rollout (described below) to rapidly arrive at a

terminal node. The payoff value at that terminal is then propagated back up the search tree from

the node on the fringe of the search tree to the root. We next describe each subroutine in more

detail.

Selection The (recursive) decision of which node to explore/expand in the search tree can be

compared to the widely studied k-armed bandit problem. In the classic formulation, an agent is

faced with k slot machines (or k different arms on the same machine) denoted m1, . . . ,mk, each

with its own unknown reward distribution. The agent is allotted n trials and wishes to maximize

the expected value of its sampling strategy, E[V (A)], where

V (A) =
n∑
i=1

XA(i).

The A(i) ∈ {1, . . . , k} subscript is the index of the machine sampled by algorithm A on the ith

trial. For 1 ≤ j ≤ k, the random variable Xj captures the reward distribution for mj .

Let µj be the expected value of the reward distribution for mj , µ∗ the expected reward from the

optimal machine, and Aj(n) be the number of times that mj is sampled in the first n trials under

allocation strategy A. Then the regret of strategy A is defined as

µ∗n−
k∑
j=1

E[Aj(n)].

In other words, it is the expected loss incurred by A as a result of the fact that the optimal arm

is not selected on every trial. It has been shown that the regret of the optimal allocation strategy

is logarithmic in the number of trials [Lai and Robbins, 1985]. Pseudocode for UCB13, a simple

algorithm that achieve these bounds, is shown in Algorithm 2.2[Auer et al., 2002].

Initially, each arm/machine is sampled once. Thereafter, the decision about which arm to

sample is based on an index, computed for each arm, which consists of the sum of two terms. The

first term is the mean reward achieved over all prior samples for that particular arm. The second

3UCB stands for Upper Confidence Bounds
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Algorithm 2.2 Solution to k-armed bandit problem
1: function UCB1 (k,N )
2: Sample each arm once
3: for n = k + 1 to N do
4: choose arm j that maximizes x̄j +

√
2 ln(n)
nj

term depends on the number of times the arm has been sampled compared to the total number

of samples that have been taken so far. This bonus decreases each time the arm in question is

sampled and increases whenever any other arm is sampled. Thus, even when an arm with a high

mean reward initially appears poor simply because of “unlucky” early sampling, the second term

will eventually become high enough that the arm will be sampled again. The form of this second

term is not arbitrary; it is directly related to the Chernoff-Hoeffding bounds, which are used to

prove the logarithmic bounds on the regret.

Intuitively, this puts a concrete upper bound on the probability that the sum (mean) of several

samples (the rewards from the arms of the bandit) will deviate from the expected sum (mean) by

more than a certain amount. Using the bonus term just described, Auer et al. showed that the

number of times that non-optimal arms will be sampled results in logarithmic regret in the worst

case, provided only that the distributions of the rewards for each arm have their support on [0, 1].

In MCTS, this selection rule is applied recursively for each sample. Note that the values used

to compute the first term in the indices for each arm (i.e., the x̄j values) depend on the outcomes

of the sampling that takes place lower in the search tree. As a result of this, the distribution of the

reward functions for nodes closer to the root is likely to vary significantly between early trials and

later trials.

In their seminal work on MCTS, Kocsis et al. demonstrate that the variation exhibited satisfies

some concretely defined “drift conditions.” Using this property, they are able to show that the

overall procedure is consistent. In other words, if the search tree is sampled indefinitely in this

manner, eventually the estimates of the true expected values of each node will converge to the

proper values.

Expansion When the selection algorithm reaches the fringe of the search space, new nodes

are added to the search tree to extend the frontier. Coulom proposed an expansion algorithm
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whereby only a single new node is added to the search tree on each iteration [Coulom, 2006]. The

primary motivation for this conservative approach is memory usage. By adding only a single node

each time, the result is that the nodes stored in the tree are primarily those nodes that are visited

numerous times throughout the exploration. More aggressive algorithms are certainly possible, but

we will assume hereafter that this expansion algorithm is used. Note that if the selection algorithm

is able to traverse the search tree all the way to a terminal node, no expansion takes place on that

iteration.

Simulation Starting from the node just added to the search frontier, if there is one, the MCTS

algorithm then performs a single rollout. In its simplest (and computationally least expensive)

form, a rollout descends through the tree by choosing actions uniformly at random until it reaches

a terminal node. The payoff of that terminal node is returned as the result of the simulation. Note

that from any node u in the tree, the expected value of a simulation is the average over all terminals

of the subtree rooted at u. The nodes generated during the rollout are not stored in memory for

future use.

Backpropagation Given a newly expanded node and the result of a single rollout from that

node, the backpropagation subroutine of the MCTS algorithm determines how that information

will change the estimates of the values of the nodes further up in the search tree. This information,

in turn, affects which paths in the tree will be selected for exploration on future iterations. A

common method is to estimate the value of a node as the average reward achieved by all trials that

have passed through the node.

This seems counterintuitive at first since it does not appear to account for the preferences of

the MAX and MIN players. However, when combined with the aforementioned selection criterion,

this method does lead to convergence and seems to work well in practice. Over time, the UCB1

selection criterion will cause the best child c of a node u to be selected significantly more often

than the other children of u. Thus, the ratio of total rewards to total trials at u will come to be

dominated by c, which is the desired outcome.

Again, a key reason for the preference of this backpropagation method is its simplicity. The

search tree is completely updated by performing two additions and one division operation (to
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update the value estimate) at each node along the path from the simulated node to the root at each

iteration. No other nodes in the search tree are affected.

An alternative backpropagation function can be used if the value estimates at each node are

defined as the best reward-per-trial value for any of the node’s children. This method will also

converge and is perhaps more intuitive, since this corresponds exactly to the MINIMAX definition

of the value of a node.

Before convergence, this second method will tend to overestimate the true value (at MAX

nodes) because the early overperformance of any of a node’s children due to sampling error will

be magnified. The first backpropagation method, on the other hand, will tend to underestimate the

value (at MAX nodes) before convergence, because the samples of suboptimal children dilute the

strength of the parent [Van den Broeck et al., 2009].

The theoretical bounds, simplicity of implementation, and effectiveness in practice have led to

widespread usage of the MCTS approach. Although MCTS does not require an HEF, it can take

advantage of one. In the same way that an HEF can be used to limit search depth in an alpha-beta

or minimax search, an HEF could be used to limit the depth of a rollout simulation in MCTS.

2.8 The Applicability of Game Theory

It is reasonable to challenge the applicability of game-theoretic concepts to real-world decision

problems. Blindly playing a Nash equilibrium may be too conservative when there is reason to

believe that opponents are weak, as it fails to exploit their faults. Furthermore, the concept of

Nash equilibrium is predicated on several key assumptions that may not hold in practice: (1) all

agents know the strategies available to each player; (2) all agents know the utility that each agent

assigns to each outcome; (3) all agents are rational (expected) utility maximizers; (4) agents are

computationally unbounded; (5) there is common knowledge of all of the above.

When navigating traffic, a driver is unlikely to know a priori whether her fellow travelers

are trying to minimize their travel time, maximize their fuel economy, or simply avoid a collision

while talking on a cell phone. There is certainly no common knowledge about strategies or utilities.
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When shopping for a home, a buyer may struggle to pin down his own valuation of a property, let

alone know exact valuations of the seller or competing prospective buyers. These are questions of

psychology as much as economics. And such complexities are beyond the scope of this thesis.

Here, we focus on a paradigm where assumptions 1, 2, 3 and 5 are reasonable. Such appli-

cations might include participation in a computer network file-sharing scheme or online market-

place for securities, where adherence to published protocols is a prerequisite for participation. The

emerging field of mechanism design [Nisan et al., 2007] is concerned with the engineering of

multi-agent interaction environments that have desirable properties: fairness for all players, max-

imum overall benefit to society achieved when agents play selfishly, etc. An understanding and

respect for game theoretic principles are essential in such applications.

Even in less formal interactions where there is unlikely to be common knowledge, game theory

can be helpful. Consider a security application. The adversary’s capabilities may be unknown, but

the defender might model the situation as a game according to its own best understanding of the

mechanics. If it can prove that given those rules—and common knowledge among all agents about

those rules—that it has an equilibrium strategy with a utility value above some threshold, this can

be a useful starting point for charting a course of action. The value of the equilibrium strategy may

not be optimal if the opponent turns out to be weaker than expected, but it provides a guaranteed

minimum payoff. Having a lower-bound is often of critical importance in security applications.

And if there is concern about the accuracy of one’s own model of the situation, one might then

proceed to test the sensitivity of that same strategy to variations of the rules or opponents, again

applying game theory analysis.

Of key concern in this thesis is the fourth assumption about unlimited computational resources.

Even when all other assumptions are satisfied, it is still unreasonable to expect that a Nash equi-

librium would be played if one or more of the agents does not have the power to compute it. The

games we consider in this thesis are sufficiently large that even the best known algorithms are

not fast enough to compute the N.E. What then? One of the goals of this thesis is to show how an

understanding of the game theoretic principles and the structure of game trees can inform decision-

making, in cases where agents have the computational resources to truly consider and analyze only
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a subset of the nodes in the tree. Where concrete answers may be elusive, we believe that these

theoretical principles at least shed important insights into the nature of the problem.
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CHAPTER 3

EXPRESSING GAMES IN POGDDL

In this chapter, we outline the Partially Observable Game Domain Definition Language (POGDDL)1

The motivation for creating this language is the desire to facilitate the development of general

decision-making systems that are able to reason effectively about a game given only a description

of the rules. While world-class performance in any particular domain will likely require domain-

specific knowledge, there are fundamental principles and building blocks that many decision sys-

tems will have in common. Furthermore, having a common language for expressing games allows

the comparison of different systems.

The key metrics for evaluating a description language are (1) expressive power, (2) verbosity,

(3) ease of reading and writing, and (4) how well it facilitates reasoning algorithms. As we have

seen, one way to describe a game tree is by explicitly enumerating the edges and nodes, together

with the information set partitioning of the nodes and the action set partitioning of the edges. This

is tedious and infeasible for large games. For example, the game tree for Scrabble is estimated to

have over 10100 nodes. Our language uses more intuitive logic constructs and builds on description

languages for other game and planning domains.

Specifically, we have extended the Planning Domain Description Language (PDDL) which

has been used extensively in the AI planning community[McDermott et al., 1998; Fox and Long,

2003]. Notably, it has been used for the biennial international planning competitions affiliated with

ICAPS. PDDL extends the core syntax and constructs of the STRIPS language: actions are defined

using predicate logic constructs that express their preconditions and effects [Lifschitz, 1986]. In

particular, the effects descriptions include lists of Add Effects and Delete Effects; these specify

1A brief overview of POGDDL has been accepted for publication in AAAI-12. This is joint work with Eyal
Amir [Richards and Amir, 2012].
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which propositions become true and false, respectively, when the action is executed.

3.0.1 Example

Figure 3.0.1 shows a PDDL encoding of an airport and cargo domain (modified from [Russell

and Norvig, 2010]). The domain specification (top) defines object types, predicates (with their

associated arities and argument types) and action schemata for the general domain. A problem

(or instance) specification(bottom) defines objects, initial conditions, and goals for a specific task.

The objects and predicates together implicitly define a fixed, finite set of grounded terms or

facts. In this example, the instance specification defines one plane, two airports, and one cargo ob-

ject. This implies that there are two grounded instances of the onground predicate: (onground

p1 a1) and (onground p1 a2). Similarly, there is one grounded in fact (in c1 p1) and

two at facts: (at c1 a1) and (at c1 a2). If the number of grounded facts for a particular

problem instance is n, then the size of the state space is 2n, since each fact can be either true or

false.

The init declaration specifies the subset of the grounded facts that are true in the initial state.

Thereafter, the state can be updated for each action by adding and deleting facts as specified by the

action schema. Note that although the syntax of the language requires action effects to be specified

as a conjunction of literals, the semantics merely requires that the negative literals in the effects be

removed from the state and that the positive literals be added.

The type, object, and action declarations implicitly define a fixed, finite set of grounded

actions. In this example, there would be four grounded fly actions, two load actions, and

two unload actions. Note that some actions, for example, (fly p1 a1 a1), may never be

executable in practice because either the precondition cannot be satisfied or, as is this case here,

the Add and Delete Effects conflict. (We cannot both add and delete (onground p1 a1).

As defined, PDDL is appropriate for planning domains where the goal of an automated planner

is to find a sequence of actions that leads to a state where the goal conditions are satisfied. In this

example, a solution would be:

1. (load c1 p1 a1) 2. (fly p1 a1 a2) 3. (unload c1 p1 a2)
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(define (domain airport)
(:requirements :strips :typing)
(:types airport cargo plane)
(:predicates

(onground ?p - plane ?a - airport)
(in ?c - cargo ?p - plane)
(at ?c - cargo ?a - airport))

(:action fly
(:parameters ?p - plane ?f ?t - airport)
(:precondition (onground ?p ?f))
(:effect (and

(not (onground ?p ?f))
(onground ?p ?t))))

(:action load
(:parameters ?c - cargo ?p - plane ?a - airport)
(:precondition (and

(onground ?p ?a)
(at ?c ?a)))

(:effect (and
(not (at ?c ?a))
(in ?c ?p))))

(:action unload
(:parameters ?c - cargo ?p - plane ?a - airport)
(:precondition (and

(onground ?p ?a)
(in ?c ?p)))

(:effect (and
(not (in ?c ?p))
(at ?c ?a)))))

(define (problem airport1)
(:domain airport)
(:objects

p1 - plane
a1 a2 - airport
c1 - cargo)

(:init
(onground p1 a1)
(at c1 a1))

(:goal (at c1 a2)))

Figure 3.1: A PDDL description of an airport domain. Cargo can be moved between airports by
loading it onto a plane, flying the plane to another airport, and unloading the cargo. A domain file
defines the predicates and the actions of the environment. A problem (a.k.a. instance) file defines
specific objects, initial conditions, and goal conditions for a specific task. Applying an action,
when its preconditions are satisfied, changes the world by removing some facts from the state and
adding others.
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Later versions of PDDL support additional features that capture more realistic constraints:

plans may be required to satisfy some optimality criterion (e.g., shortest, cheapest); actions may

be of non-instantaneous duration; multiple actions may be executed in parallel; action effects may

be conditioned on state variables; etc.

Edelkamp and Kissmann have shown how to extend PDDL for games; they call their language

the Game Domain Definition Language (GDDL) [Edelkamp and Kissmann, 2007]. GDDL requires

the declaration of special objects to define the players and one additional syntactic construct to

define the payoffs that players realize at the end of the game:

(:gain <typed list(variable)> <f-exp> <GD>)

The first parameter specifies a list of players (usually one). The second parameter specifies a

numerical reward which those players attain when the goal condition, a logical formula given by

the third parameter, is achieved in a terminal state. For example,

(:gain p1 100
(and

(sunk p2 battleship)
(sunk p2 carrier)))

specifies that player p1 achieves a payoff of 100 if p2’s ships are sunk.

A PDDL planner can be used to identify a viable plan before any actions are executed. The

output of the system is a complete sequence of actions which can then be executed to achieve

the goal. Alternatively, for large planning problems where it is not reasonable to solve the whole

problem in advance, a planning system can be used to identify a single “next action” to take, based

on the current state and some limited analysis of which actions are likely to lead toward the goal.

In such cases, we say that deliberation and action are interleaved.

In GDDL, a decision-making system would be given the game description and would be as-

signed one of the pre-defined roles. Other decision-making agents would assume the other roles.

Random events can be modeled by an additional system whose actions are taken according to some

probability distribution.

The situation is now complicated by the fact that the best actions to take may depend on the

choices made by other agents. With this additional complexity, it becomes even less plausible, in
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practice, to identify in advance an optimal sequence of decisions. The determination of the optimal

probability to assign to every possible action in every possible situation that an agent may find itself

in, given some assumptions about the other players’ behaviors, is referred to as a strategy in the

game theory literature. Since many games are too large to find a complete strategy a priori, we

focus our efforts on decision-making systems that do some limited analysis to choose one action

at a time. Given the current state of the environment (or, in the case of partial observability, our

sequence of percepts), we seek to identify a single next action that will maximize our eventual

payoff. This goal informs the decisions we make about the design and implementation of our

game description language.

3.1 Syntax

We now present our Partially Observable Game Domain Definition Language (POGDDL) for de-

scribing and reasoning about general games of imperfect information. In order to support partial

observability, we extend level 2 of PDDL 2.2 [Edelkamp and Hoffmann, 2004]. Notably, this sub-

set of PDDL offers support for derived predicates and numerical fluents. Again, due to PDDL’s

modularity, advanced features provided by later versions (timed initial literals, durative actions,

spontaneous events, etc.) may potentially be used later as general game playing technology ma-

tures. We start with the GDDL gain extension just mentioned.

The key syntactic extension that we add to support imperfect information is an observe

construct that specifies what observations are provided to which players as a result of the execution

of an action. These observations may vary by player. For example, the result of an action by P0

to deal a King to P1 could be that P1 receives the observation (dealt p1 king) and all other

players receive (dealt p1 ).

The changes/additions needed to the formal grammar given in the appendix of [Edelkamp and

Hoffmann, 2004] are as follows.

<p-effect> ::= <observation>
<observation> ::=

(observe (<term> <atomic formula(term)>)*)
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The first item in each pair of the observe list specifies a recipient—the player who will

receive the message—and the second item an atomic logical formula that contains the actual ob-

servation to be given to that player.

Adding <observation> to the list of possible p-effect productions allows a game de-

signer to specify observations wherever Add Effects, Delete Effects, and/or updates to numerical

fluents are allowed. In particular, observations may be included as conditional effects.

The full grammar for POGDDL is given in Appendix A. In this section we give only a brief

summary of the main constructs.

The game description includes lists of

1. object types (e.g., card, tile, square)

2. player (role) names (e.g., p1, p2, chance)

3. predicate names, together with the number and types of their arguments

4. observation names, together with the number and types of their arguments

5. typed (constant) objects (e.g., ace king jack - card)

6. action schemata (parameters, preconditions, effects, observations)

7. gain descriptions (payoffs for each player in terminal states)

As in PDDL, ground predicates are defined over all combinations of declared objects of the ap-

propriate types. Therefore, the objects and predicates sections together define a fixed, finite

set of propositional variables that can have intuitive names, e.g., (holds p1 queen hearts)

or (whose turn p1). We will refer to this ground set of predicates as P . The sets of actions

and observations are similarly finite and fixed. A special symbol, ‘ ’, provides a placeholder in

observations that facilitates an intuitive withholding of information, e.g., dealt(p1 ).

An action is defined by (1) a precondition, expressed as a logical formula over P; (2) a list of

Add Effects and Delete Effects (disjoint subsets of P); and (3) a list of observations together with

the names of the players who should receive them. Observations have the same form as atomic

predicates: a name followed by a list of arguments.
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3.2 Semantics

A POGDDL definition describes typed objects and the relationships those objects may have with

each other. The grounded actions defined by the action schemata describe how those relationships

may change and the observations that are given to each player when specific actions are applied.

This section explains how these constructs, taken together, can be interpreted as an extensive form

game.

A POGDDL game Π defines a tuple 〈K,P ,O,A, S, T,G,H, s0〉, where

1. K is an integer, where K + 1 is the number of players in the game. We refer to the players

as P0, P1, . . . , PK . By convention, P0 denotes nature.

2. P is a set of propositions. Let 2P denote the power set of P . For 0 ≤ k ≤ K, the special

proposition wk indicates whose turn it is to move; wk is TRUE iff it is Pk’s turn to move.

3. O is a set of observations. Let o1:t denote a sequence of t observations o1, o2, . . . , ot, where

oi ∈ O for 1 ≤ i ≤ t. LetO+ denote the set of all observation sequences o1:t, 1 ≤ t ≤ Tmax.

4. A is a set of actions. For each a = 〈a∗, a−, a+〉 ∈ A, let precondition a∗ be a logical formula

over P; a+ ⊆ P is the set of Add Effects; and a− ⊆ P is the set of Delete Effects.

5. S ⊆ 2P × OK+ is a set of states, where for s ∈ S, the state s = 〈P, o(1)
1:t , . . . , o

(K)
1:t 〉. P ∈ P

is the set of propositions that are TRUE in s, and o(i)
1:t represents the sequence of observations

that Pi has at state s. In practice, t represents the distance of s from the root.

6. T ⊆ S ×A× S is the transition relation. For all s−, a, s+, (s−, a, s+) ∈ T iff,

• s− = 〈P−, o(1)
1:t , . . . , o

(K)
1:t 〉 ∈ S;

• a = 〈a∗, a−, a+〉 ∈ A;

• s+ = 〈P+, o
(1)
1:t+1, . . . , o

(K)
1:t+1〉 ∈ S;

• s− |= a∗;

• P+ = P− \ a− ∪ a+; and

32



• For 1 ≤ k ≤ K, o(k)
1:t+1 = o

(k)
1:t o

(k)
t+1 for some o(k)

t+1 ∈ O.

The following conditions must also hold:

• Unique achievability. For all s, a, s′, a′, s′′, if (s, a, s′′) ∈ T and (s′, a′, s′′) then s′ = s

and a′ = a.

• Reachability. If (s, a, s+) ∈ T then s = s0 or there exists s′ and a′ such that

(s′, a′, s) ∈ T .

7. G is a set of gain structures. For each state s ∈ S and each g = 〈φ, x, Pk〉 ∈ G, player g.Pk

realizes a gain of g.x (a real value) iff s |= g.φ.

8. H is a partition of S into information sets for each player:

• For all states s ∈ S, there exist i and j such that s ∈ Hij

• For all i, j and for all s, s′ ∈ Hij such that s = 〈P, o(1)
1:t , . . . , o

(K)
1:t 〉 ∈ S and s′ =

〈P′, o(1)′

1:t , . . . , o
(K)′

1:t 〉 ∈ S, the following must hold:

– wi ∈ P and wi ∈ P′;

– For i 6= m: wm 6∈ P,wm 6∈ P ′;

– o
(i)
1:t = o

(i)′

1:t .

– For all a ∈ A, s |= a∗ ⇐⇒ s′ |= a∗

9. s0 ∈ S is the initial state, which is known.

The semantics of the game description is then as follows:

• TheK+1 players are named in the constants sections as having the type role. The keyword

chance is a reserved name for P0.

• The sets of predicates P and observations O are defined by the list of constants, predicates,

and observation declarations. These in turn define the space for the set of states S.
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• The action schemata define the set of actions. The actions may be parameterized to allow for

a more compact representation. Each action schema includes a list of parameters, together

with a precondition (a Boolean expression over ground terms), Add Effects, Delete Effects,

and Observation Effects. These action schemata define the set of actions A.

• The actions and S together define the relation T .

• An information set Hij consists of all the states s where s |= wi and o(i)
1:t match. The number

of distinct values of o(i)
1:t over all the states in S determines the maximum value of j for each

i (i.e., the number of information sets per player).

• The gain statements in the description define G.

3.3 Expressive Power

We now show that POGDDL is equivalent in expressive power to the extensive form game (EFG)

formalism.

Theorem 1. For every valid POGDDL instance, there is a valid extensive form game.

Proof. Recall the earlier definitions:

• For extensive form games: G = 〈K, (V,E), H,A, U, σ0〉

• For POGDDL descriptions: Γ = 〈K,P ,O,A, S, T,G,H, s0〉

We will use dot notation to refer to constituent parts. So, for example, Γ.S refers to the set of states

in POGDDL game Γ.

We prove, by construction, that for every POGDDL instance Γ, there is a corresponding exten-

sive form game GΓ:

• GΓ.K = Γ.K

• For every s ∈ Γ.S, there is a corresponding node (call it vs) in GΓ.V .

34



• There is an edge from vs to vs′ in GΓ.E iff there exists an a ∈ Γ.A such that (s, a, s′) ∈ Γ.T .

• For every s ∈ Γ.s where s |= w0, vs ∈ GΓ.H0.

• The information sets in GΓ.H are of the same number and size as those in Γ.H . For all

information sets Hij (i > 0) and for every pair vs, vs′ ∈ GΓ.V , let vs, v′s be in GΓ.Hij iff

s, s′ ∈ Γ.Hij .

• Let GΓ.Eij denote the set of edges in GΓ.E that originate in GΓ.Hij . These edges are parti-

tioned into action setsGΓ.Aijk, (1 ≤ k ≤ |Eij|/|Hij|). Two edges (vs, vs′), (vs′′ , vs′′′) ∈ Aijk
iff there exists an a ∈ Γ.A such that (s, a, s′) ∈ Γ.T and (s′′, a, s′′′) ∈ Γ.T .

• For every s ∈ Γ.S where there does not exist a, s′ with (s, a, s′) ∈ Γ.T , set GΓ.Ui(vs) =∑
g∈G∗ g.x, where G∗ = {g|g ∈ Γ.G, s |= g.φ, g.Pk = i}.

Theorem 2. For every EFG, there is a corresponding POGDDL description.

Proof. This proof is also by construction. We can construct a POGDDL description Γ that corre-

sponds to an EFG G as follows:

• G.K = Γ.K. For every player in G there is a corresponding player in Γ.

• For v1, . . . , vn ∈ G.V , let there be v1, . . . , vn ∈ Γ.P . For each information set hij ∈ G.H ,

let there be hij ∈ Γ.P .

• For each information set hij ∈ G.H , let there be h′ij ∈ Γ.O.

• Let h ∈ Γ.P denote the predicate corresponding to the information set that contains the

vertex v ∈ V at the root of the game tree. Let Γ.s0 = h.

• For every edge (vs, vd) in G.E such that vs ∈ G.Hij and vd ∈ G.Hi′j′ , define an action

a = 〈a∗, a−, a+〉 ∈ Γ.A in the following way:

1. a∗ = hij ∧ wi
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2. a− = {hij, wi}

3. a+ = {hi′j′ , wi′ , vd}

• For each vs ∈ G.T , define Γ.g = 〈φ, x, Pk〉 so that φ = vs and G.Uk(vs) = x.

• For Γ.s ∈ Γ.S, Γ.s.o
(k)
1:t = {oε, . . . , oε, h′ij, oε, . . . , oε, h′i′j′} is an observation sequence of

length t such that the h′ij correspond to the time steps where Pk is the active agent, and the

oε null observations occur at all other time steps.

• In the set P at Γ.s, vi is true iff the state corresponding to vi is passed through on the way to

Γ.s.

• Γ.T is defined so that (Γ(vs), a,Γ(vd)) ∈ Γ.T iff the corresponding edge (vs, vd) ∈ G.V .

We note that in our construction of Γ from G, the number of propositions in Γ.P is equal to

|G.V G.T | + |G.H| and is therefore verbose. In practice, POGDDL descriptions can be useful

only if they are sufficiently compact.

3.4 A Simple Poker Example

Figure 3.2 shows the key constructs of a POGDDL encoding of the poker game shown in

Figure 3.3. For P1, the information set (labeled H11 in the tree) that corresponds to observa-

tion sequence [(stronger max)] is [deal-stronger(max)], and for observation sequence

[(stronger min)], it is [deal-stronger(min)] (which corresponds toH12 in the diagram).

For P2, the information set H21 corresponding to sequence [(stronger unknown),

(maxplayed pass)] is [ deal-stronger(max), max-choice(pass)],

[ deal-stronger(min), max-choice(pass)] and for observation sequence

[(stronger unknown), (maxplayed bet)], the information set (H22 in the tree) is

[ deal-stronger(max), max-choice(bet)], [deal-stronger(min),

max-choice(bet)].
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(:constants
max min chance - role
bet pass - choice
all unknown - other)

(:init
(= (potsize) 1)
(whoseturn chance)
(gambler max) (gambler min)
(potadding bet))

(:action deal-stronger
:parameters (?p - role)
:precondition (and
(whoseturn chance)
(gambler ?p))
:effect (and
(not (whoseturn chance))
(whoseturn max)
(stronghand ?p)
(observe (max (stronger ?p))

(min (stronger unknown)))))

(:action max-choice
:parameters (?c - choice)
:precondition (whoseturn max)
:effect (and
(not (whoseturn max))
(whoseturn min)
(decision max ?c)
(observe (all (maxplayed ?c)))))

(:action min-choice
:parameters (?c - choice)
:precondition (whoseturn min)
:effect (and

(not (whoseturn min))
(decision min ?c)
(when (and

(potadding ?c)
(decision max bet))
(assign (potsize) 2))

(observe (all (minplayed ?c)))))

(:gain ?p (potsize)
(or

(and
(stronghand ?p)
(or

(decision ?p bet)
(exists (?o - role)

(and
(oppof ?p ?o)
(decision ?o pass)))))

(and
(decision ?p bet)
(exists (?o - role)

(and
(oppof ?p ?o)
(decision ?o pass))))))

• Information SetH11: O1 = [(stronger max)]

– a1 = [deal-stronger(max)]

• Information SetH12: O1 = [(stronger min)]

– a1 = [deal-stronger(min)]

• Information SetH21: O1:2 = [(stronger unknown),(maxplayed
pass)]

– a1:2 = [deal-stronger(max), max-choice(pass)]

– a1:2 = [deal-stronger(min), max-choice(pass)]

• Information Set H22: O1:2 = [stronger(unknown),(maxplayed
bet)]

– a1:2 = [deal-stronger(max), max-choice(bet)]

– a1:2 = [deal-stronger(min), max-choice(bet)]

Figure 3.2: Example actions in a POGDDL description of a simple poker game.
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Figure 3.3: A simple poker game. Nodes connected by curved lines are in the same information set. Nodes
without curved lines are in singleton information sets.
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Given an observation sequence, a player can simulate any action sequence in the correspond-

ing information set—as though he were the moderator—to identify a possible world state. Us-

ing this full world state, he can identify what his legal actions are. In order for the game to be

well-defined, the same subset of actions must be legal from every node in an information set.

This follows directly from the definition of imperfect information games [Kuhn, 1997]. So, for

example, if P2 receives observation sequence [(stronger unknown), (maxplayed pass)],

he can simulate the sequence [deal-stronger(min),max-choice(pass)] and see that the

world state in that case would be s ={(whoseturn min), (decision max pass), ...,

(potsize)=0}, from which he could determine that his legal actions are min-choice(pass)

and min-choice(bet). Because of conditional effects, the actual effects of either of those

actions may be different in the different possible world states, but the legality of the actions must

be the same.

POGDDL descriptions for several non-trivial games are provided in Appendix B.

3.5 Epistemic Reasoning System

We mentioned at the beginning of the chapter that a key aspect in evaluating the utility of a game

description language is how effectively it facilitates reasoning algorithms for decision-making sys-

tems. If the goal is to find the equilibrium strategy of the game, then any description language

that allows an efficient traversal of the game tree will suffice. The GALA system, for example, is

embedded in the PROLOG language and converts a game description to a linear program which is

then solved using the ESLP algorithm [Koller et al., 1994; Koller and Pfeffer, 1997]. If the game

is too large to fully enumerate the tree, however, GALA is unable to do any reasoning whatsoever.

A key design consideration for POGDDL has been to facilitate single-point decision algorithms

that do not assume that the full tree can be generated. When reasoning about partially observable

games in this manner, it is crucial for agents to be able to reason effectively not only about which

predicates may be true in the current state but also about what other agents know. None of the

constructs in the language explicitly define what an agent knows about the current state or what an
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agent knows about what other agent knows. Instead, the epistemic system of POGDDL is implicit.

The information that an agent has to work with when deliberating are the POGDDL description

of the game rules and the sequence of observations that it has received up to the current point in the

game, as provided by those rules. The POGDDL description gives the agent the ability to perform

the following operations: (1) given a game state, determine which actions are legal; (2) apply an

action to a state to produce a new state and determine which observations each player should re-

ceive; (3) determine payoffs for each player given a terminal state. By simulating action sequences

according the rules, the agent can identify possible sequences of moves that are consistent with its

observations.

For example, suppose that Pk has received observation sequence o1:t. Suppose the agent sim-

ulates a random sequence of t actions a1:t that are legal according to the rules. The result of the

simulation is a full game state s = 〈P, o(1)
1:t , o

(2)
1:t , . . . , o

(K)
1:t 〉. This simulated state defines truth val-

ues for all predicates and observation lists for Pk and all its opponents. Is this the true state of the

game? The agent does not know. If s.o(k)
1:t 6= o1:t, then it definitely is not, because the observations

actually received are inconsistent with the observations that would have been received under a1:t.

On the other hand, if s.o(k)
1:t does match o1:t, then a1:t is a plausible game history and s is a plau-

sible current state. Suppose that, through simulation, Pk is able to identify all the plausible action

sequences and, therefore, all the possible current states. The player’s information set comprises

these states. Now, how can Pk use this information to reason about what its opponent, P-k, knows?

For each possible state s, Pk can identify the observation list s.o(-k)
1:t that P-kwould have received if

that were the true state. Using that list of observations and the ability to simulate action sequences

from the game rules, Pk can identify the action sequences that P-k would consider possible if in

fact s were the current state.

The ability to reason about information sets in this manner is the key feature of POGDDL.

It may not be reasonable to assume that a player can generate all of the states in its information

set. For some games, the information sets are simply too large. However, if an agent can at

least effectively sample from the information set, then it can get an idea of what might be the

current state, and what its opponents might consider possible. The ability to perform this operation
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effectively is the subject of the next chapter.

3.6 Extensions

Our implementation of POGDDL includes additional features for convenience, which complicate

the presentation of the formal semantics but which do not fundamentally change the intuition

behind it. POGDDL supports universally and existentially quantified variables in preconditions

and universally quantified variables in effects. Still, the set of ground terms is fixed and finite, so

these features amount to syntactic sugar to make the expression of action schemata more compact

in practice.

Conditional effects are allowed in POGDDL and have the same syntax as they do in PDDL.

But note that they are not syntactic sugar as they are in PDDL, where an action a with a con-

ditional effect premised on φ can be replaced with a pair of actions a′, a′′ where preconditions

a′∗ = a∗ ∧ φ and a′′∗ = a∗ ∧ ¬φ. This transformation cannot be done in POGDDL. Because of

partial observability in POGDDL, the effects of an action—including the observations provided to

each player—may depend on values of propositions that are not known to the player executing the

action. A well-defined game requires that the same actions be legal from all nodes (states) in the

same information set, so this kind of flattening is not possible.

POGDDL also supports derived predicates, as in PDDL 2.2, which facilitates the expression of

transitive closures, such as the reachable spaces for pieces in a kriegspiel game.

POGDDL has limited support for numerical fluents. These can be useful for keeping track of

a running score in a game like Scrabble or a pile of chips in poker, where the use of a successor

relation (common in GDL games) would be cumbersome. In practice, our reasoning system cannot

be effectively applied to games where action preconditions include tests on fluents whose values

are not known to all players. Nevertheless, we believe that their availability provides convenience

often enough to justify their inclusion in the language.

Stochastic Effects Although we treat problems with uncertainty related to chance events, we

view all actions as having deterministic effects. This is admittedly an unnatural worldview for
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those accustomed to stochastic action languages. Such languages allow the specification of a

probability distribution over effects, given a chosen action. Consider the specification of a robot

navigating the physical world. A move action may be modeled as having a certain probability

of success, of moving the requested distance in the specified direction. With some probability,

the action results in a movement that is more or less than what the robot intended, due to wheel

slippage or other circumstances.

We cannot model such an action directly in POGDDL because all effects are deterministic.

However, we can model stochastic action effects by using a sequence of two actions. The first

action is viewed as the decision to act and leads to deterministic observations for each player and a

transfer of control to the Chance player. The moves that are then available to Chance correspond to

the stochastic effects in the standard formulation, e.g., move-exact, slip-high, slip-low.

POGDDL treats all alternatives for the Chance player as having equal probability, but the language

could be modified to allow the specification of specific probabilities

(choose
:parameters (?x ?y)
:condition (is-wet)
:select (05 (slip-low(?x ?y))

.95 (slip-high(?x ?y))))
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CHAPTER 4

REASONING ABOUT INFORMATION SETS

The relationship between a description language for games and a general game playing system is

similar to the relationship between a general purpose programming language and a compiler. In

order for the compiler to produce optimized code, the language constructs must force the program-

mer to expose and concretely define key data structures and relationships that the compiler can

reason about and efficiently manipulate. The language designer’s dilemma is to create a syntax

and semantics that are both easy to understand and use but that also provide the compiler with the

information it needs in order to generate efficient code. Similarly, in order for a game-playing sys-

tem to act effectively in partially observable domains, the description language constructs must be

sufficiently intuitive to write and read but must also enable the system to perform key operations.

Existing game description languages for perfect information games allow a designer to de-

scribe the initial state of the game, the preconditions for each action, and the way the state of the

world changes based on agent decisions. Using these operators, agents can theoretically explore

the whole tree. In imperfect information games, a subset of the nodes of the tree may be indistin-

guishable to the agent because of its lack of full information. The current set of possible nodes is

called the agent’s information set. The key motivating factor behind our development of POGDDL

is to facilitate the implementation of an operation that we call information set generation1 This is

the ability to identify plausible game histories that are consistent with an agent’s observations.

In this chapter, we describe the prevailing approach for information set generation and explain

its limitations. We then present our novel approach, which is based on a constraint-satisfaction

1The work in this chapter is based on joint work with Eyal Amir, presented at the GIGA-09 workshop [Richards
and Amir, 2009]. The algorithms and results presented in Sections 4.3 and 4.4 have been accepted for publication
in AAAI-12 [Richards and Amir, 2012]. The work in Section 4.6 is a collaboration with Abhishek Gupta, Osman
Sarood, and Laxmikant Kale. Figure 4.4 was created by Osman Sarood.
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formulation of the problem. We give information set generation results for well-known games,

described in POGDDL. Our method performs effectively in many cases where the existing method

fails to find even a single node in the information set.

Although our approach is effective, it is still computationally intensive. This can be problem-

atic, since information set generation is only one of many subroutines that is repeatedly called

by our game-playing system. We show that, in contrast to some operations needed for reasoning

about perfection information games, the information set generation operation can be effectively

parallelized. We give results for the game of kriegspiel (partially observable chess) that show

efficient parallelization on up to 1,024 processors.

4.1 Definitions

A path through a game tree, determined by the choices of agents and the random acts of nature,

can be described as a sequence of actions a1, a2, . . . , at, where each ai labels an edge of the tree

and can be named by a grounded action in a POGDDL description or by a member of some Akji

action set in the corresponding EFG definition. An action sequence is abbreviated by a1:t. We

use a1:t−1at to denote the extension of a1:t−1 by at to produce action sequence a1:t. We use the

following definitions in our subsequent discussion of information set generation.

Definition 2. Let S(a1:t) denote the state that is reached when action sequence a1:t is executed

from the start state:

S(a1:t) =


s′

s0

undefined

when

when

otherwise

(S(a1:t−1), at, s
′) ∈ T

t = 0

Definition 3. Given a sequence of observations o(k)
1:t for Pk, the information set I(o

(k)
1:t ) is the set of

action sequences that lead to a state where Pk would have those observations. That is, a sequence

a1:t ∈ I(o
(k)
1:t ) iff S(a1:t) is defined and for the state s′

def
= 〈P′, o(1)′

1:t , . . . , o
(K)′

1:t 〉 such that s′ = S(a1:t),

the observations s′.o(k)
1:t = o

(k)
1:t .
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For every node v in a game tree, there is a unique path from the root of the tree to v. That path

may be encoded as a sequence of actions. We can therefore view each member of an information

set as a node in the tree or as the sequence of actions that leads to that node. We will use both

perspectives. Viewing a member of an information set as a sequence of actions is useful, in com-

bination with opponent modeling techniques, to assess the probability that that member represents

the true state. On the other hand, viewing members of information sets as nodes is useful when

estimating the value of that member, e.g., through a heuristic evaluation function or through the

use of limited lookahead from that node.

The information set generation problem is to identify nodes in the game tree where the world

state is consistent with a player’s observations, or in other words, to identify which game histories

are possible. Note that information set generation deals only with the question of what is possible,

not what is probable. We will show that separating these two questions leads to more scalable

solutions for practical, online decision-making system for general games.

4.2 Information Set Generation as Depth-First Search

Algorithm DFS-Infoset, shown in Figure 4.1, outlines a naı̈ve but generally applicable way for

identifying sequences of actions that are consistent with a player’s observations. This straightfor-

ward approach is alluded to in [Parker et al., 2005] and [Russell and Wolfe, 2005].

Given a list of observations o(k)
1:t , the algorithm traverses the game tree in a depth-first man-

ner, returning all sequences of actions for which the observations for Pk would be exactly those

specified by o(k)
1:t .

At the ith level of recursion, the function checks that the simulated observation for Pk at a node

at the ith level of the tree is the same as the actual observation oi given in the input, and only makes

a recursive call if they match.

While straightforward and generally applicable in theory, the algorithm is often prohibitively

expensive.

Suppose the first move of the game is a random face-down deal of one of n house cards, such
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1: function DFS-INFOSET(a1:t, o
(k)
1:T , I , s, t)

2: if t > T then
3: I ← I ∪ a1:t

4: else
5: for each legal action a at s do
6: s′ = GETNEXTSTATE(s,a)
7: if s′.o(k)

t+1 = o
(k)
t+1 then

8: DFS-INFOSET(a1:ta, o(k)
1:T , I , s′, t+ 1)

Figure 4.1: Information set generation as depth-first search. The function should be called with an empty
action sequence, Pk’s current observation list, I = {}, s = s0, and t = 0. When the top-level call returns, I
holds the full information set.

that Pk’s observation is (dealt ?), regardless of which card is dealt. Then, m moves later, that

card is revealed to be c1, so that o(k)
m+1 = (house c1). Let the branching factor of the game

tree be b for levels 2 to m + 1. Now suppose that the first branch searched at level 1 corresponds

to move (deal c0). The DFS-Infoset function may potentially search a subtree of size

bm exhaustively, pruning only at level m + 1 each time when it is discovered that the simulated

observation (house c0) does not match the actual observation (house c1).

Such effort is both inefficient and unnecessary. Pk should be able to infer from o
(k)
m+1 =

(house c1) that a1 =(deal c1), without having to search a large portion of the game tree

up to depth m + 1. Systems targeted to one game tend to hard-code such domain-specific under-

standing.

4.3 Information Set Generation as Constraint Satisfaction

A better approach for the general case is to frame the information set problem as a more general

constraint satisfaction problem that makes it possible to use all relevant observations to appro-

priately prune the search space. Algorithm CSP-InfosetSample (Figure 4.2) follows this

approach.

This algorithm solves a general T -variable constraint satisfaction problem, where T is the total

number of actions that have been executed by all players up to the current point in the game. For

1 ≤ t ≤ T , the tth variable corresponds to the tth action taken, and the possible values are the

45



1: function CSP-INFOSETSAMPLE(SG, o(k)
1:T , A[])

2: if INCONSISTENT(SG) then
3: return ∅
4: else if COMPLETE(A) then
5: return A
6: else
7: t← RANDOMUNSETTIMESTEP(SG)
8: L← PLAUSIBLYLEGALMOVES(SG)
9: a = RANDOMELEMENT(L)

10: A[t]← a
11: SG’ = PROPAGATE(SG, t, a, o(k)

1:T )
12: CSP-INFOSETSAMPLE(SG’, o(k)

1:T , A)

Figure 4.2: Information Set Generation as a Constraint Satisfaction Problem.

possible actions in the game. A player’s information set is the set of all feasible solutions to the

CSP. As written, the algorithm returns a single feasible action sequence (or ∅, if the algorithm’s

non-deterministic choices lead to a conflict.) A sample of possible nodes from the information set

can be obtained by running the algorithm repeatedly.2

The basics of the backtracking search are implemented in CSP-INFOSETSAMPLE 4.3. The

inputs are an initialized special data structure which we call a stage graph (described in detail

below), the observation sequence for the active player up to the current point in the game, and an

empty fixed-length vector A representing an action sequence.

At the initial invocation, each action in A is undefined. The call to CSP-INFOSETSAMPLE

results in either a conflict, an action sequence representing a node from the information set, or a

recursive call with an additional slot in A fixed to a single concrete action. In the latter case, the

time step selected is chosen at random (line 7) from among all the remaining time steps for which

actions have not already been fixed by previous calls to the function. 3

Having selected a particular time step t, the algorithm uses the game rules and information in

the stage graph to identify all possible actions whose preconditions and effects are not inconsistent

2Alternatively, the algorithm can be modified to produce the full information set by changing the random selection
at line 9 to iterate over all legal actions and then to collect the sequences found at line 5 into a set. This may be
prohibitively expensive in games with large information sets.

3Rather than choosing at random, a commonly applied heuristic for such problems is to select the most constrained
remaining variable, i.e., the decision point for which there are the fewest possible actions, given the constraints imposed
by the other existing variable assignments.
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1: function PROPAGATE(SG[], t, a, o(k)
1:T )

2: Redo[i]← FALSE for 1 ≤ i ≤ T
3: Update SG[t-1] with precondition of a
4: Update SG[t] with effects of a
5: Redo[t-1], Redo[t+ 1]← TRUE

6: return REEVALUATE(SG, Redo, o(k)
1:T )

7:
8: function REEVALUATE(SG[], Redo[], o(k)

1:T )
9: while ∃i Redo[i] = TRUE do

10: for each t s.t. Redo[t] = TRUE do
11: Redo[t]←FALSE

12: [DefPre,DefEff,PossEff]←
13: PLAUSIBLEACTIONINFO(SG[t-1],SG[t],o(k)

t )
14: for each p ∈ DefPre s.t. SG[t-1,p]=UNKNOWN do
15: SG[t-1, p]← TRUTHVAL(DefPre, p)
16: Redo[t-1]← TRUE

17: for each p ∈ DefEff s.t. SG[t,p]=UNKNOWN do
18: SG[t,p]← TRUTHVAL(DefEff, p)
19: Redo[t+ 1]← TRUE

20: return SG

21:
22: function INITGRAPH(o(k)

1:T , s0 )
23: SG[0] = s0

24: for 1 ≤ t ≤ T do
25: [DefPre,DefEff,PossEff]←
26: PLAUSIBLEACTIONINFO(SG[t-1],SG[t],o(k)

t )
27: for each p ∈ DefPre s.t. SG[t-1,p]=UNKNOWN do
28: SG[t-1, p]← TRUTHVAL(DefPre,p)
29: Redo[t-1]← TRUE

30: for each p ∈ P do
31: if p ∈ DefEff then
32: SG[t, p]← TRUTHVAL(DefEff,p)
33: else if p ∈ PossEff then
34: SG[t, p]←UNKNOWN

35: else
36: SG[t, p]← SG[t-1, p]
37: return REEVALUATE(SG, Redo, o(k)

1:T )

Figure 4.3: Helper functions for CSP-INFOSETSAMPLE. TRUTHVAL(S,p) returns TRUE when p appears
as a positive literal in S and FALSE when p is a negative literal.
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with other actions in A that have been fixed by previous calls and whose resulting observation

matches ot. From this set of possible actions, one is randomly selected (line 9). From the per-

spective of solving a CSP, this corresponds to assigning a value to a variable. Fixing a particular

action a for A[t] (line 10) constrains the truth value of some predicates at time t-1 because of the

preconditions of a and constrains some predicates at time t because of the effects of a.4

The PROPAGATE function returns an updated stage graph that encodes these ramifications

(line 11). Then CSP-INFOSETSAMPLE is recursively called with the updated stage graph and

action sequence. If a subset of actions selected in A lead to a situation where there are no legal ac-

tions possible for one or more other time steps, then a conflict is generated and the function returns

(line 3). Otherwise, if an action is successfully assigned at every time step in A, then the action se-

quenceA corresponds to a node in the information set and is returned. The CSP-INFOSETSAMPLE

function can be viewed as the high-level management of the backtracking search for feasible solu-

tions.

The PROPAGATE, REEVALUATE, and INITGRAPH functions manage the stage graph data

structure that serves to reduce the branching factor of the search for solutions in the CSP by elimi-

nating many actions from consideration. A stage graph is similar to the planning graph structures

used in AI planning [Blum and Furst, 1995; Blum and Furst, 1997]. For each time step, there is a

stage that stores the set of potential actions that are plausible at that timestep and a vector with one

of three values for each proposition in the resulting state: TRUE, FALSE, or UNKNOWN.

In function INITGRAPH, The 0th stage of the graph is initialized with the (known) start state;

there is no action associated with the 0th stage (line 23). For timesteps t from 1 to T , stage t of

the graph is initialized (lines 24–36) by (1) computing the set of actions for which the resulting

observation would match the observation o(k)
t actually received and for which the preconditions do

not conflict with the propositional values at stage t-1 (line 26); (2) setting known values for the

propositions at t that are common effects of all the potential actions (line 32); (3) propagating the

values from stage t for propositions that are unaffected by any of the potential actions (line 36);

and (4) marking as UNKNOWN those propositions that appear in the effects of at least one plausible

action but not in all (line 34). Additionally, if there are any propositions entailed by the disjunction
4Our convention is that s0 is the initial state and that action ai is applied to state si−1 to produce si, for i ≥ 1.
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of the preconditions of potential actions at t that were UNKNOWN at stage t-1, those values are

updated and stage t-1 is marked to be re-evaluated. Specifically, the plausible action set at that

stage must be recomputed. (lines 27–29).

The PLAUSIBLEACTIONINFO function identifies actions for a particular time step that are

not inconsistent with information already stored in the stage graph. This is different than simply

identifying provably legal actions because of the presence of UNKNOWN values in the stage graph.

Suppose we are considering plausible actions at time t. If action a has precondition p1 ∧ p2

and stage t holds that p1 = TRUE and p2 = FALSE, then the action is definitely not plausible.

However, if p1 = TRUE and p2 = UNKNOWN, then a might be legal. We cannot prove that it is

legal, but neither can we prove that it is not. We therefore say that it is “plausible” and that it does

not conflict with the information in the stage graph.

Propositions (or their negations) that are entailed by the disjunction of the preconditions of all

plausible actions must hold at the previous time step. These “definite preconditions” are returned

from PLAUSIBLEACTIONINFO as DefPre. Similarly, the set of propositions that are entailed by

the disjunction of the effects of possible actions must hold at t. These “definite effects” are returned

as DefEff. Both DefPre and DefEff include one set of known positive literals and one set of

known negative literals.

Propositions that are entailed by the effects of one or more of the possible actions but not all of

them are “possible effects” and are returned as PossEff. The PLAUSIBLEACTIONINFO function

requires as parameters the observation at time t and the graph stages for time steps t-1 and t. The

function ensures that an action is excluded from the plausible set for t iff its precondition conflicts

with known predicate truth values at t-1 or its effects conflict with known predicates at t.

During the initialization of stage t, it is possible to identify propositions whose truth values

at t-1 are determined by DefPre but whose values were UNKNOWN during the initialization of

stage t-1 (lines 27–29). Therefore, a vector of Boolean flags Redo is maintained that keep track

of stages whose set of plausible actions may need to be recomputed.

The REEVALUATE function (lines 8–20) runs a fixed point calculation that repeatedly computes

plausible action sets until there are no additional propositions at any stage whose values can be
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changed from UNKNOWN to either TRUE or FALSE.

When a particular action a is fixed for time step t in CSP-INFOSETSAMPLE, the PROPAGATE

function (lines 1–6) updates the stage graph to reflect the fact that the preconditions of a hold at

t-1 and the effects of a hold at t. As in stage graph initialization, the ramifications of these updates

are computed by invoking REEVALUATE. 5

Time and Space Complexity The space taken by the stage graph is O(|P|T ), where |P| is the

number of ground propositions in the game description.The overall running time depends primarily

on the REEVALUATE function, and in particular on the number of iterations of the loop at lines 9–

19. The number of iterations is bounded by the number of propositions marked as UNKNOWN

during the stage graph initialization phase. Each iteration of the REEVALUATE function (other

than the last) reduces the number of UNKNOWNs by at least 1, so there are at most |P|T iterations.

The overall expense of information set generation depends on the expected number of times that

CSP-INFOSETSAMPLE must be called in order to obtain a viable action sequence. This efficiency

varies greatly from game to game and will require additional analysis.

4.4 Empirical Results

We have encoded three non-trivial games in POGDDL. Racko and Battleship are popular table

games; the Game of Pure Strategy comes from the game theory literature [Luce and Raiffa, 1957].

For each game type, we varied complexity parameters (number of cards, size of game grid, etc.) to

measure the performance and scalability of both DFS-Infoset and CSP-InfosetSample.

For each game instance, we generated ten random positions and tested each algorithm’s ability to

sample from the current player’s information set. For each position studied, each algorithm was

allotted up to 30 seconds to search for nodes in the information set.

5In fact, the stage graph need only allocate space for the mutable subset of P , i.e., those propositions that appear
in at least one action’s effects.
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4.4.1 Racko

Racko consists of a deck cards numbered 1 to n and a rack for each player with k ordered slots,

with n > 2k. The cards are shuffled and then the first 2k cards are dealt into the players’ rack slots,

such that players see only their own cards. The next card is placed face-up as the initial discard

pile, and the remainder of the cards are placed face-down as the draw pile. Each player’s goal is to

get the cards in his rack in ascending order. On each turn, a player may exchange a card on his rack

with the top card from the draw pile or the most recently discarded card. The card that is swapped

out is placed face-up on the discard pile. The game ends when one player’s rack is totally ordered

or when a set number of turns have been played.

Results for information set generation in Racko are shown in Table 4.1 (left). The table

shows experimental data for instances of the game ranging in complexity from six slots per player

and 30 total cards to the standard configuration of 10 slots per player and 60 total cards. Each

entry in the table shows the number of information set nodes identified within the time limit.

CSP-InfosetSample successfully samples information set nodes in each case. By contrast,

DFS-Infoset is not able to find a single information set node in 19 of 20 games.

In the standard game, a player may have over ten billion nodes in its information set, so the

ability to sample from the information set (rather than enumerate it in full) is critical. As play

proceeds and a player has opportunities to see what cards the opponent swaps out of its initial

rack, the size of the information sets decreases. The propagation of the ramifications of these

observations through the stage graph allows the CSP-InfosetSample algorithm to concretely

identify the only plausible actions by the dealer during the rack initialization phase, which greatly

improves the efficiency of search. This kind of inference would be hard-coded in a system designed

specifically to play Racko. CSP-InfosetSample implements this reasoning in a generalized

form.
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crds 30 40 50 60 cells 4 6 8 10 crds 10 20 30 40
slts ships bids

CSP 6 131 106 109 149 1 86 287 177 555 2 300 300 300 300
DFS 0 30 0 0 86 232 114 166 300 300 60 30

CSP 7 175 158 126 158 2 70 121 2161 792 4 300 300 300 300
DFS 0 0 0 0 70 117 141 36 0 30 0 30

CSP 8 278 146 180 228 3 39 656 318 792 6 300 300 300 300
DFS 0 0 0 0 39 65 0 0 0 0 0 0

CSP 9 260 158 118 87 4 1598 90 345 865 8 300 300 300 300
DFS 0 0 0 0 194 1 0 0 0 0 0 0

CSP 10 308 273 106 179 5 NA 173 1087 1074 10 300 300 300 300
DFS 0 0 0 0 0 0 0 0 0 0 0

Table 4.1: (left) Racko. Variables: slots per player (row), total cards (column). (middle) Battleship.
Variables: ships per player (row), grid cells per side (column). (right) Game of Pure Strategy (GOPS).
Variables: bidding rounds (row), extra cards (column).

4.4.2 Battleship

In Battleship, players secretly deploy five ships on a 10x10 grid. Each ship occupies 2–5 consec-

utive horizontal or vertical grid spaces. Players then take turns calling out grid cells where they

believe the opponent’s ships are. When a player calls out a cell, the opponent responds with ‘hit’

if the cell is occupied by a ship and ‘miss’ if it is not. The opponent is required to declare which

ship was hit and must also declare ‘sunk’ if all other cells occupied by that ship have already been

hit. The first player to sink all of her opponent’s ships wins.

We varied the number of ships in the game from one to five and the size of the grid (per side)

from four cells to ten. In our experiments (Table 4.1, middle), CSP-InfosetSample is always

successful in sampling information set nodes and in many cases produces the full information

set. By contrast, the DFS algorithm finds fewer nodes in the information set and cannot find any

information set nodes for many of the larger instances (more than three ships, or grids larger than

6x6).
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4.4.3 Game of Pure Strategy

The Game of Pure Strategy (GOPS) is described in [Luce and Raiffa, 1957]. A subset of a deck

of cards is dealt such that each player has n cards and n additional cards lie in the middle. One by

one, the cards in the middle are exposed. Players use the cards in their own hands to bid on the

card shown. Players simultaneously declare their own bids, with the high bidder winning the card

and scoring the number of points shown on the card. The player who has accumulated the most

points at the end of the n bidding rounds wins.

Our results for GOPS (Table 4.1, right) show that, once again, CSP-InfosetSample suc-

ceeds in every case, while the DFS-Infoset is unable to find any information set nodes in over

half of the game instances.

4.5 Information Set Sampling as Particle Filtering

An alternative approach to information set sampling would be particle filtering. Algorithm 4.1

shows a straightforward adaptation of the basic particle filtering algorithm described in [Russell

and Norvig, 2010]. Particle filtering algorithms are designed to efficiently approximate probability

distributions in dynamic Bayesian networks (DBNs) by iteratively updating a population of sam-

ples using the conditional probability tables of the DBNs and reweighting the samples based on

how consistent they are with a given observation sequence.

Particle filtering could be adapted for use in general imperfect information games as follows.

Each particle in the population of samples represents a possible node in the game tree, encoded

implicitly as a sequence of actions. At iteration t, the ith particle in the population of samples,

S[i], encodes some sequence of actions a1:t. Recall that actions are edges in the game tree, so that

a sequence of actions from the root of the game tree maps to a unique node in the tree.

The proportion of samples at iteration T that represent a particular action sequence a1:T gives

the approximate probability of the corresponding node in the information set at time T . At each

iteration, each sample S[i] is updated (line 11) by (1) using knowledge of the rules Γ to identify

legal moves from the current game represented by S[i], and (2) depending on whose turn it is at
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Algorithm 4.1 Information Set Generation using Particle Filtering
1: function PARTICLE-INFOSET(o1:T , t, N , Γ, σk, σ̂−k)
2: inputs: o1:T , the observation sequence for sequence up to current depth T
3: t, depth of current samples
4: N , the number of samples to be maintained
5: Γ, description of game rules, including the transition model P(st+1|s0, a1:t),
6: the observation model P(ot|st, at), and σ0, the true strategy for CHANCE

7: σk, the current player’s true strategy, and σ̂−k, a model for opponents
8: persistent: S, a vector of size N , initialized with s0 (maintains full action sequences)
9: local variables: W , a vector of weights of size N

10: for i = 1 to N do
11: S[i]← sample based on S[i], Γ, σk, σ̂−k.
12: W [i]← P (o1:t+1|S[i])

13: S ←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N,S,W )
14: return S

t, using σ0, σk, or σ̂−k to provide the distribution that determines the probability that S[i] will be

extended with any particular action a. Then, at (line 12), the weight for each sample W [i] is de-

termined based on the observation rules given in Γ. The purpose of the resampling phase (line 13)

is to ensure that the proportion of samples in the population with sequence a1:T approximates the

probability that the true state of the game is S(a1:T ).

Although game trees can in fact be viewed as a special case of DBNs, this particle filtering

algorithm is not well suited to the information set generation problem. It is already well known

that particle filtering algorithms can suffer from inefficiency when the evidence variables depend

on many variables that come earlier in the topological ordering of the DBN. In POGDDL, the

probabilistic uncertainty of the environment (such as dice rolls or card shuffling or unknown moves

of the opponent) are captured by the transition function defined in Γ and the strategies of the players

σ. Given a known sequence of actions, the observation sequence is deterministic. Therefore, the

weights produced at line 12 are always 1 or 0. In games with large branching factors, it may not

be uncommon for all particles to acquire 0 weight at the same time.

Suppose that early actions made by CHANCE correspond to random deals of cards whose iden-

tities are only revealed by actions that come late in the sequence. A player’s observations are the

same for all such unknown deals (e.g., oi = dealt(opp, ?), so that samples corresponding to all
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deals are equally likely to be maintained in the early iterations of the filtering. When the card

is actually revealed later on and the observation uniquely corresponds to the card’s identity, the

probability that any of the samples in the population will match (i.e., be assigned a weight of 1 at

line 12) can be vanishingly small.

4.6 Parallel Implementation

As we have noted, theoretical solutions for both fully and partially observable games can be found

in polynomial time in the number of nodes in the tree. Since the size of the tree is often too large

to make even polynomial algorithms feasible, approximation algorithms often rely on tree search,

and efficient implementation becomes critical.

With the current silicon-based uniprocessors approaching their theoretical limitations, addi-

tional speedup for software programs must be achieved through efficient parallelization. High-end

commodity computing systems may have thousands of processing cores, while the number of cores

in state-of-the-art supercomputers is approaching one million. Leveraging this additional process-

ing power to improve decision-making in game tree search programs has proved challenging.

Brute-force tree search capabilities played a key role in the success of IBM’s DEEPBLUE in

its 1996 and 1997 matches against World Chess Champion Garry Kasparov. The move expan-

sion algorithm and heuristic evaluation function were implemented directly in hardware, enabling

DEEPBLUE to evaluate an average of 100 million moves per second [Campbell et al., 2002].

By contrast, GGP systems built around GDL that participate in the annual AAAI competitions

may be running symbolic theorem-proving operations in software to generate successor states and

may be able to generate only tens or hundreds of nodes per second [Genesereth et al., 2005]. Since

tree search is an integral part of successful general game playing algorithms and decision quality is,

to some degree, a function of search depth, some attention must be paid to implementation details.

Early research in parallel game tree search focused on the alpha-beta pruning algorithm, with

applications to chess [Felten and Otto, 1988; Huntbach and Burton, 1988; Marsland and Campbell,

1982; Marsland, 1986; Schaeffer, 1989] and othello [Ferguson and Korf, 1988]. In this section,
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we explore the implementation issues related to the efficient parallelization of our information set

generation routine. We show how some aspects of partially observable games make them more

amenable to parallelization than perfect information games.

Let τ(g, 1) be the running time of a search of tree g on a single processor and let τ(g, p) denote

the running time when search is parallelized on p processors.

The speedup achieved by parallelizing the search in tree g on p processors is

s(g, p) =
τ(g, 1)

τ(g, p)
.

Efficiency is defined as

ε(g, p) =
s(g, p)

p
.

The efficiency is much less than 1 when the parallelization is hampered by (1) communication

between processors, (2) processors idling between computations due to load imbalance or commu-

nication barriers, (3) redundant computations performed to avoid communication between proces-

sors, and/or (4) speculative loss, which is computation that is performed in parallel that would have

been preempted in a sequential execution. Efficiency can be greater than 1 (superlinear speedups)

if the parallel overhead is low and if the parallelization causes significant improvements to the

performance of the memory/storage hierarchy (e.g., better cache performance).

The most straightforward way to parallelize search is to assign the various processors a specific

part of the tree to explore. But it could be the case that all or part of the subtree assigned to, say,

processor p would have been completely pruned based on the results from the search performed by

processors 1 to p− 1. Executing the work in parallel is speculative because some of the work may

turn out to be superfluous. This loss has an adverse effect on the overall speedup achieved by the

parallelization.

DEEPBLUE, in spite of its success, likely suffered from a high level of inefficiency because of

speculative loss. Many of the hundreds of millions of nodes analyzed by the 192 special-purpose

move generator chips may not have been explored had the computation been performed in serial.

Modern chess-playing programs, which are far superior to the top echelon of human players, run

on commodity hardware on a small number of cores (often fewer than 10) and analyze only a few
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million moves per second.

Systems for imperfect information games have much higher potential for high efficiency on

modern machine because there tends to be more work that can be done in parallel. In particular,

for games with large information sets, the information set generation routine shows great promise

for efficient parallelization.

4.6.1 Kriegspiel

We have implemented a search engine for information set generation in kriegspiel (partially ob-

servable chess). Kriegspiel is played on a chessboard with a regular set of chess men. Players see

their own pieces but not their opponent’s. When a player attempts a move that is legal from the

perspective of his own board but is illegal because of the configuration of the opponent’s pieces, a

referee announces that the move is disallowed and the player must make another move.6

4.6.2 Charm++

We built our search engine on top of the CHARM++ run-time system for parallel processing [Kalé

and Krishnan, 1993; Kale and Zheng, 2009]. CHARM++ is an extension to the C++ language

that provides machine-independent infrastructure for parallel computation. The language and its

accompanying runtime system have been ported to many shared-memory and distributed-memory

platforms.

In contrast to other popular parallel programming frameworks such as MPI and OPENMP,

the CHARM++ language is based on object-oriented programming principles. The programmer is

responsible to decompose its problem into a collection of objects that represent elements of work

to be done. Typically the number of work objects far exceeds the number of processing elements

(cores) available. These objects are defined so as to be able to be migrated between processors

during execution, in order to improve the overall load balancing.
6Historically, kriegspiel required a third-party moderator who kept track of the full game state by managing a

board with both sets of pieces. Players submitted their move requests in secret, and he notified the players when it was
their turn to move. It is now common to play kriegspiel over a computer network, with a software system acting as
moderator.
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Work objects, known as chares, communicate with each other via asynchronous message-

passing. Objects can invoke entry methods on other objects, which are executed according to a

schedule set by the CHARM++ runtime system. The runtime is responsible to interleave compu-

tation and communication tasks in order to maximize efficiency. To facilitate this, each processor

maintains an incoming queue of messages targeted to chares that it currently holds. A correspond-

ing outgoing queue collects messages generated by objects on the processor that need to be sent to

objects assigned to other processors.

Some chares may inherently require more computation than others, but the amount of compu-

tation associated with each piece of work is not always known before execution. In tree search, for

example, a chare may be defined as the computation of a minimax value on a node in the tree using

alpha-beta pruning. A natural decomposition is to assign different nodes to different processors

for evaluation. Because some nodes will be pruned at shallower levels of the tree than others, the

amount of work performed at each subtree can vary considerably. In a traditional parallel frame-

work, this would result in many processors idling while a small number of processors execute the

larger workloads. By allowing the CHARM++ runtime system to schedule a large number of small

pieces of work, better adaptive load balancing is achieved.

4.6.3 The CHARM++ Parallel State Space Search Engine

Sun et al. have developed the Parallel State Space Search Engine (PARSSSE) within the CHARM++

framework, which exposes an API that is useful for a variety of graph-based and tree-based search

problems [Sun et al., 2011]. In PARSSSE the fundamental unit of work is the processing of a

node. Generally, this means identifying whether the node corresponds to a solution and/or gener-

ating descendant nodes and spawning work tasks related to them. A task is terminal if it spawns

no children.

A grainsize control parameter specifies a bound on the size of a piece of work that can be

passed along to the runtime system for scheduling. Once a task has been subdivided into an appro-

priate number of subtasks, those tasks run to completion on a single processor without preemption

and without generating any additional parallel tasks. If the grainsize is too large, then the number
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of pieces of work to be done may be lower than the number of processors available, forcing some

processors to idle. If the grainsize is too small, then the runtime system is flooded with a large

number of trivial tasks, and the system gets bogged down by the overhead of creating and schedul-

ing tasks instead of actually doing them. PARSSSE supports an adaptive grainsize management,

so that the threshold for sequential processing can be changed during the execution of the program,

depending on the properties of the problem and/or the realtime performance analysis of the runtime

system.

PARSSSE currently supports two different load balancing strategies. The first is the random-

ized strategy. In this approach, each newly created object is assigned to a random processor.

Generally, if a large enough number of chares is created, the system will achieve an approximately

uniform distribution of work across processors. The approach is also appealing because of its sim-

plicity. However, randomization can sometimes lead to inefficiencies from parallel overhead. For

a program running on p processors, the probability that a piece of work is assigned to a processor

other than the one that created it is 1−1/p. As the number of processors gets large, this probability

approaches 1, which means that the parallel overhead related to the creation and scheduling of a

new task is incurred for almost every piece of new work.

A second load balancing strategy is known as work stealing. In this approach, all new tasks are

inserted in the message queue of the processor that spawns them. Whenever a processor is idle it

becomes a thief. A thief randomly selects another processor as its victim and sends a message to

that processor requesting work. When the victim receives the message, it removes the work with

the highest priority from its own queue and sends it to the thief. If it has no work available, it sends

a negative acknowledgment message to the thief, which causes the thief to look for another victim.

The advantage of the work stealing strategy is that the message-passing overhead is only in-

curred if at least one processor is idling. Furthermore, because victims respond by sending the

highest priority work, the most important tasks are more likely to get done sooner.

In addition to these strategies, a user may define its own load balancing strategies by overriding

CHARM++ task dispersal functions.
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Procs Time (s) Speedup
1 1524 1
2 812 1.88
4 407 3.74
8 208 7.32

16 102 14.8
32 53.2 28.7
64 28.0 54.5

128 14.9 102
256 7.70 197
512 4.59 331

1024 2.64 576

Table 4.2: Speedups for a randomly selected problem instance on 1–1,024 processors. The input
observations were from the 10th ply of the game tree and the size of the information set in this
instance is 4,495,121.

4.6.4 Empirical Results

Table 4.2 shows the performance results of DFS-INFOSET on a randomly selected problem in-

stance in which the size of the information set was about 4.5 million.7 The table shows that the

problem is indeed highly parallelizable. The speedups are nearly linear for up to 32 processors,

and continue to increase up to 1,024 processors.8

In this particular instance, the sequential algorithm takes almost 25 minutes to run. But when

parallelized on 1,024 processors, the search takes less than three seconds. This represents a

speedup of 576 times. It might not be reasonable to use the algorithm at all if it takes 25 min-

utes or more to run for some turns. But if the cost is only a few seconds, it may become feasible.

We also analyzed the isoefficiency of the problem, which is a measurement of how the efficiency

of the parallelization is affected by the size of the problem. To test this we varied the number of

plies in the test instance from 8 to 12. We used the work stealing load balancing strategy. The

results are shown in Table 4.4. In the easiest case (depth 8), there isn’t enough additional parallel

work to justify the jump from 256 to 1,024 processors, and performance actually degrades.

7This instance is not necessarily representative of all games or states of the game, but it was not cherry-picked in
any way.

8The performance results reported in this section were obtained by running our program on the Blueprint machine
with up to 1,024 processors.
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Figure 4.4: Running times for three different sizes of problem as the number of cores used in-
creases, with a linear y-axis for the running time and a log-scale x-axis for the number of cores.

Aside from this anomaly, however, we see consistent speedups as we increase the number of

processors, an indication that the search algorithm is able to take advantage of more processors

when the problems become more difficult.

In addition to the random instances, we also evaluated our information set generation routine on

40 positions from actual kriespiel games, including human vs. human and computer vs. computer

instances. Many of these were trivial to solve in a few seconds or less on a desktop computer. The

running times and speedups for two of the more challenging instances are shown in Tables 4.5–4.6.

These tables show the results for runs on one to 1, 024 cores. Each column corresponds to a

different grainsize parameter. In this case, the grainsize is the number of levels of the search tree

that are searched in parallel. Up to that threshold, each node that is generated spawns a new piece

of work, which the CHARM++ runtime schedules to execute on one of the processing elements

according to its load balancing strategy. Above the threshold the entire subtree is searched to

completion on a single processor, with no additional parallel overhead.

Note that the optimal grainsize varies for the different numbers of cores and the pattern is

relatively consistent across problem instances. The optimal grainsize increases as the number

of cores increases. This makes sense, because as this parameter grows, the number of distinct

pieces of work increases. When the number of pieces of work per processor is high, much of
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Figure 4.5: Kriegspiel position from Virgil-David 1969 with information set size 764,209.
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Figure 4.6: Kriegspiel position from Game 6 of Kbot-Darkboard at the 2006 Computer Chess
championship. Information set size is 5,099,257.
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the overhead of parallelization is wasted. But as the number of cores increases, the work can be

efficiently broken up into smaller pieces and doled out to all the cores. With more pieces of work,

it becomes easier to balance the load.

PE/G 2 4 6 8
1 177 178 184 493
4 71 53 48 75

16 34 19 12 16
64 24 7 3.7 4.1

256 24 4.4 1.2 1.0
1024 26 3.8 0.64 0.40

Table 4.3: Running times, in seconds, to find full information set of size 764,209 at position 10 of
Virgil-David 1969. Optimal grainsize (G) for each number of cores (PE) is shown in bold

PE/G 2 4 6 8
1 617 612 650 3312
4 213 170 158 367

16 83 49 40 64
64 54 19 11 14.9

256 54 9.8 3.5 3.5
1024 58 5.5 1.3 1.2

Table 4.4: Running times, in seconds, to find full information set of size 5,099,257 at position 10
of Game 6 Kbot-Darkboard 2006. Optimal grainsize for each number of cores is shown in bold.

PE/G 2 4 6 8
1 1 0.99 0.96 0.36
4 2.48 3.34 3.63 2.35

16 5.19 9.27 13.8 10.7
64 7.25 23.6 47.39 43.1

256 7.1 40.1 145 172
1024 6.61 46.5 276 443

Table 4.5: Speedups for Virgil-David 1969.

Note that both problems scale well even up to 1,024 processors. We achieve a speedup of 443

in the game between humans and up to 536 in the game between computers. Figures 4.5 and 4.6

show the plots of the running times for the best grainsize for each core setting. These plots show

that the running time continues to decrease as the number of cores increases.
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PE/G 2 4 6 8
1 1 1 0.95 0.19
4 2.89 3.63 3.89 1.68

16 7.41 12.4 15.1 9.57
64 11.3 32.3 52.9 41.4

256 11.3 62.9 172 174
1024 10.6 111 464 536

Table 4.6: Speedups for Kbot-Darkboard 2006.

Our results compare favorably to previous work in parallel game tree search, shown in Ta-

ble 4.7. The previous best parallelization results were for parallelizing alpha-beta pruning. Fergu-

son and Korf achieved a speedup of 12 on 32 cores in the game of Othello [Ferguson and Korf,

1988]. In the game of chess, Felton and Otto showed a speedup of 100 on 256 cores [Felten and

Otto, 1988]. This limited scalability is due to speculative loss. Parts of the game tree that are

searched during the parallel execution would have been pruned had the algorithm run sequentially.

This is a fundamental limitation in alpha-beta search.

For partially observable games, information set generation represents a different variety of tree

search that does not suffer from speculative loss. All of the nodes that are visited in parallel would

have also been visited in a sequential run. The key challenge for parallelizing information set

generation is load balancing: some parts of the tree will be pruned at a higher level than others,

resulting in a wide variation in cost for each subtree. The CHARM++/PARSSSE framework is

perfectly suited to handle the load balancing issues that this problem naturally presents.

Note also that information set generation is just one subroutine needed to reason about par-

tially observable games. Once plausible game histories have been found, an agent may simulate

some sequences of moves up to previous moves made by opponents and then recursively call the

information set generation procedure from the perspective of the opponent. This results in many

parallel applications of information set generation. Furthermore, given a node in an information

set, it is common for an agent to perform forward search on that node (e.g., using MCTS). With

these two additional levels of potential parallelism on top of the information set generation prob-

lem, it is conceivable that the problem of playing partially observable games could scale efficiently

to millions of processors or more.
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Authors Game Year Best Speedup (cores)
Ferguson & Korf Othello 1988 12(32)
Felton & Otto Chess 1988 100(256)
Richards et al. Kriegspiel 2012 178(256)
Richards et al. Kriegspiel 2012 536(1024)

Table 4.7: Best Speedups reported for game tree applications.
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CHAPTER 5

POINT DECISIONS

In this chapter, we develop and analyze algorithms for decision making in partially observable

games, assuming an environment where the agent receives a description of the game rules in a

logical language and then interleaves sensing, deliberation, and action. Recall that in a game

tree, each node represents a decision point or a chance event. From a game-theoretic view of

optimal decision making, a player’s strategy for the game comprises the probability distributions

over alternatives at each of its decision points.

We noted earlier that the ESLP algorithm finds the Nash equilibrium of a game by converting

the game tree to a linear program [Koller et al., 1994]. ESLP is the back end for GALA, a general

game playing description language and reasoning engine [Koller and Pfeffer, 1997].

In practice, however, game trees are often so large that not all decision points and their as-

sociated alternatives can be enumerated, rendering ESLP intractable. A more practical approach,

which we adopt here, is to search for the optimal probability distribution only for the current deci-

sion point, based on observations received during the game and limited computation. We refer to

this as a point decision.

Theoretically, we could apply the point-decision algorithm at every decision point in the game

and then combine the probability distributions for each individual decision into a mixed strategy

for the whole game. Ideally, the global strategy induced by repeated application of the local deci-

sion algorithm should be a Nash equilibrium solution, and the performance of the induced global

strategy should approach the performance of the Nash equilibrium solution as the number of nodes

explored by the search agent approaches the number of nodes in the tree.

We have noted that the performance of a tree search-based decision agent depends, to a large

degree, on its heuristic evaluation function. Whether the HEF is computed through MCTS or
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through traditional means, the goal of applying an HEF to a node is generally the same: to estimate

the expected value of a game that passes through that node.

In this chapter, we explore the idea of an ideal HEF. We noted earlier that if a heuristic eval-

uation function for perfect information games is perfect (i.e., returns the true minimax value for

every node), then there is no need for advanced search procedures. A player could act optimally by

applying the HEF to descendants of the current node and returning the action that leads to the node

with the best value. This would result in optimal (equilibrium) behavior. However, this approach

does not translate exactly to the imperfect information case.

In Section 5.1 we review the concept of point decisions and the practical use of HEFs in the

context of perfect information games. In Section 5.2, we present additional definitions needed to

extend these concepts to partially observable games.

In Section 5.3, we reframe the general HEF-based point-decision algorithm of [Parker et al.,

2005] in terms of information sets. This algorithm requires no explicit opponent modeling. We

show that if the game has a dominant strategy, then there is an HEF that can be used with this

algorithm to induce an optimal global strategy.

In Section 5.4, we expand this algorithm to use explicit opponent modeling, and we derive a

general method for doing that modeling. We show that if the game has a pure strategy equilibrium,

then there is still an ideal HEF that induces a globally optimal strategy. We also show, however,

that if there is no pure strategy, then there is no HEF that induces a global strategy.

This suggests the need for an alternate approach for dealing with mixed-strategy games. In

Section 5.5, we present a linear programming approach that is based on ESLP. We show that under

certain restrictions, there is an HEF for this algorithm that induces the global mixed equilibrium

strategy.

Since a perfect HEF function for any non-trivial game is unlikely to be found, even if it exists

in theory, the key benefit of these results is in providing general frameworks in which different

kinds of partially observable games can be approached. Some games may not have dominant

strategies but may have pure strategies which are close to optimal. And since optimal opponents

also generally do not exist in practice, strategies which are close to optimal may often be good
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enough. As a case study, we consider the game of Scrabble in Section 5.61. We present an agent

based on our opponent modeling techniques which outperformed the de facto world champion

computer program.

Throughout this chapter, we assume there is common knowledge about the mechanics of the

game. In particular, we assume that an agent can perform the following operations: (1) given a

logical representation of a complete world state, determine the set of legal actions; (2) given a state

and a legal action, determine the next state and the observations that will be provided to each agent;

(3) given a sequence of observations, identify the set of sequences of actions that characterize the

active player’s information set; (4) given a terminal state, recognize that the state is terminal and

determine the payoff for each player; (5) given a non-terminal state, provide a heuristic estimate of

the expected value of the game if that node is reached. We assume that there is common knowledge

that all agents have these capabilities.

Each of these operations requires a non-trivial amount of computation, particularly the informa-

tion set generation operation, as we saw in Chapter 4. The decision-making algorithms described

here will be of practical use only in situations where these operations can be performed efficiently

enough to be repeatedly applied. From a POGDDL game description, identifying the legal moves

from a fixed position requires checking the satisfiability of an arbitrary logical formula. It is pos-

sible to design games for which this operation alone is exponential in the size of the input. On

the other hand, for many games of interest, each of these operations can in fact be performed ef-

ficiently in practice, and the computational challenge stems from the size of the game tree rather

than any single tree search operation. For the purposes of this chapter, we will therefore treat all of

these queries as primitive operations. We model the computational boundedness of the agents by

assuming that they are capable of performing only a fixed number of these primitive operations,

rather than exploring the game tree in its entirety.

1This joint work with Eyal Amir was originally published in IJCAI-07 [Richards and Amir, 2007]
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1: function CHOOSEMOVE(Node S(a1:t))
2: L = LEGALMOVES(S(a1:t))
3: for each a ∈ L do
4: V (S(a1:t), a)← V (S(a1:ta))

5: return argmaxa∈L V (S(a1:t), a) . argmin for min player

Figure 5.1: Decision procedure for a computationally unbounded agent in fully observable games.

5.1 Point Decisions in Fully Observable Games

A basic method for decision making in perfect information games is backwards induction. For

computationally unbounded agents, the value of a node V (S(a1:t)) can be computed as follows:

V (S(a1:t)) =



U(S(a1:t)) if S(a1:t) ∈ T

maxa∈L(S(a1:t)) V (S(a1:t)) if D(S(a1:t)) = P1

mina∈L(S(a1:t)) V (S(a1:t)) if D(S(a1:t)) = P2∑
a∈L(S(a1:t))

σ0(S(a1:t), a)V (S(a1:t)) if D(S(a1:t)) = P0

For terminal nodes, the value is the utility (payoff) to P1, where it is assumed that the payoff

to P2 is the negation of that value. For non-terminal nodes that are decision points for P1, the

value is the maximum value of any of its descendants, since P1 will seek to maximize the game’s

value. The value for P2’s decision points will be the minimum over the descendants, as P2 seeks to

minimize the game’s value. The value of a chance node is its expected value: the sum of the values

of the descendants, weighted by the probability σ0(S(a1:t), a) that the descendant will be reached.

Figure 5.1 outlines a simple decision-making method based on this node evaluation scheme.

Note that invoking CHOOSEMOVE from the root node would require the exploration of the entire

game tree because of the recursive computations required to evaluate the node values at line 4.

In practice, for games described in logic, the costs of the node value computation are dominated

by the determination of the legal moves at each non-terminal, and the identification of a next state

given a state-action pair. A computationally bounded agent may perform only a limited number of

such operations, making the full exploration of the tree infeasible.

Note also that in Figure 5.1 the modeling of the opponent is implicit: it is assumed that the
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opponent employs the Nash equilibrium/expectiminimax solution). This may be a reasonable as-

sumption when the game is small enough that both an agent and its opponent can run the minimax

(or alpha-beta pruning) algorithm to completion. It is less clear how to proceed when the agents

are computationally bounded.

Because real-world agents are bounded in the number of tree exploration operations they can

perform at each decision point, it is generally necessary to approximate the node values. This can

be done by (1) performing a limited lookahead search that evaluates possible future sequences of

moves up to a certain depth and then (2) estimating the value of nodes beyond the search frontier.

These estimates are made by way of a heuristic evaluation function An HEF uses locally available

information to estimate a node’s value. (See Section 2.6.)

We noted that Monte Carlo Tree Search algorithms do not require an HEF (See Section 2.7). An

alternative view is that the simulated rollouts in MCTS act as a special kind of heuristic evaluation

function. They involve some additional tree search operations, but this computational expense is

bounded by a small constant (related to the maximum depth of the tree).

From the perspective of Pk using opponent model σ̂-k, d-level lookahead in the tree, and HEF

φ, the estimated expected value of a game that reaches u is :

V̂d(u) =



φ(u) if d = 0

U(u) if u ∈ T

maxv∈N(u) V̂d-1(v) if Pk = P1, D(u) = 1

minv∈N(u) V̂d-1(v) if Pk = P2, D(u) = 2∑
a∈L(u) σ̂-k(u, a)V̂d-1(N(u, a)) if D(u) = -k∑
a∈L(u) σ0(u, a)V̂d-1(N(u, a)) if D(u) = 0

As a general rule, it is expected that the deeper an agent searches and the closer the nodes

on the search frontier are to the terminal nodes, the better those estimates will be. That is, for

d′ > d, we expect that |V̂d′(u)−V (u)| ≤ |V̂d(u)−V (u)|, and in particular, that |V̂d′(u)−V (u)| ≤

|φ(u) − V (u)|. Otherwise, we would make decisions by simply choosing the descendant of the

current state with the best φ value.
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We noted that in MCTS, the implementation of φ may involve a small, bounded number of

additional tree search operations. The computation of σ̂-k, the agent’s opponent model, might

similarly involve some additional search operations, this time from the perspective of the opponent.

The decision CHOOSEMOVE procedure in Figure 5.1 is easily adapted to use V̂d(u) instead

of V (u) on line 7. The value of d is tuned based on the agent’s computational budget. At each

decision point u, an agent computes the values of V̂d for each descendant of u and chooses the

action that leads to the child with the best expected value.

Note the similarity between how opponent nodes and chance nodes are treated. Since an oppo-

nent model is simply an estimate of the probability distribution that P-k uses at its decision points,

it is possible to compute a best response to the model by taking the weighted average of possible

future states, just as with chance nodes.

5.2 Additional Prerequisites for Partially Observable Games

In a partially observable game, the true probability that a particular node is reached can be com-

puted as follows:

P (a1:t) =
t∏

t′=1

σD(S(a1:t′ ))
(S(a1:t′-1), at′). (5.1)

Recall that σk(x, a) is the probability that Pk will choose a at x under strategy σk and that

D(x) = k if it is Pk’s turn to move at x. Let Dk(a1:t) = {t′|1 ≤ t′ ≤ t,D(S(a1:t)) = k} and let

Πk =
∏

t′∈Dk(a1:t)
σk(S(a1:t′-1), at′). Then an equivalent expression is

P (a1:t) = Π0ΠkΠ-k (5.2)

Intuitively, the probability of reaching a node S(a1:t) is the product of all the probabilities along

the path a1:t that leads to it. Assuming perfect recall, the Πk term will be equivalent for all nodes
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in the active player’s current information set. Thus, P (a1:t) will be proportional to the products of

the chance moves and the opponent’s moves:

P (a1:t) ∝ Π0Π-k (5.3)

Definition 4. For algorithm X , σk[X] is the complete strategy induced if Pk invokes algorithm X

at each of its decision points.

Definition 5. For action sequence a1:t, let E(a1:t) be the set of all extensions of a1:t. A sequence

a1:T is in E(a1:t) iff a1:t is executable and a1:T = a1:tat+1:T for some at+1:T . We denote by E+(a1:t)

the set of terminal extensions: a1:T ∈ E+(a1:t) if a1:T ∈ E(a1:t) and S(a1:T ) is terminal.

Definition 6. The value of the node S(a1:t) under strategy profile σ reached by action sequence

a1:t is

Vσ(S(a1:t)) =

∑
a1:T∈E+(a1:t)

Pσ(a1:T )U(S(a1:T ))

Pσ(a1:t)

Definition 7. The value of the information set I(o1:t) under strategy profile σ characterized by

observation sequence o1:t is

Vσ(I(o1:t)) =

∑
a1:t∈I(o1:t)

∑
a1:T∈E+(a1:t)

Pσ(a1:T )U(S(a1:T ))∑
a1:t∈I(o1:t) Pσ(a1:t)

Definition 8. A strategy σ+
k is dominant iff ∀σ-k ∀σk Uk(〈σ+

k , σ-k〉) ≥ Uk(〈σk, σ-k〉).

Definition 9. A strategy σk is pure iff for all S(a1:t) such that D(S(a1:t)) = k and for all a ∈

L(S(a1:t)), σk(S(a1:t), a) ∈ {0, 1}. That is, all point decisions in σk are deterministic.

Definition 10. A strategy σk is mixed iff it is not pure.

Definition 11. A strategy σk is consistent with an opponent model σ̂-k iff ∀σ-k U-k(σk, σ̂-k) ≥

U-k(σk, σ-k).
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5.3 Games with Dominant Strategies

Algorithm 5.1 Simple Decisions for Partially Observable Games (SDPOG)

1: function CHOOSEMOVE(Obs o1:t, φ̂, σ̂-k)
2: I = INFORMATIONSET(o1:t)
3: L = LEGALMOVES(I)
4: for each a1:t ∈ I do
5: for each a ∈ L do
6: P̂ (a1:t)← ESTPROBHISTORY(a1:t, σ̂-k)
7: V̂ (a1:t, a)← φ̂(S(a1:ta))P̂ (a1:t)

8: return argmaxa∈L
∑

a1:t∈I
V̂ (a1:t, a)

Algorithm 5.1 is a first-cut approach to decision making in partially observable games. This

is the general game-playing algorithm from [Parker et al., 2005], recast in terms of information

sets. We refer to this as SDPOG (Simple Decisions for Partially Observable Games). Instead of

passing in a set of possible game states as an argument, we pass in a player’s observations and use

an information set generation routine to identify the possible game histories. This emphasizes the

fact that identifying possible states at each decision point requires computation. Parker and Nau

describe a number of heuristics for the probability estimates (line 7) in a specific game, kriegspiel.

They assume the use of a perfect-information search routine to estimate the state-action values at

line 8. Here, we use an HEF φ̂ that produces the expected payoff under equilibrium if this node is

reached.

Theorem 3. If Pk has a dominant strategy σ+
k for Pk, then there is a perfect HEF φ̂ such that

σk[SDPOG(φ̂)] is σ+
k .

Proof. Let Vσ∗(u) be the expected value of u under equilibrium σ∗. If there exists σ+
k , then for all

o
(k)
1:t , ∃a∀a1:t ∈ I(o

(k)
1:t )∀a′ 6= a.Vσ∗(S(a1:ta)) ≥ Vσ∗(S(a1:ta

′)). We need to show that a will be

selected with probability 1. Now let P̂ (·) be any probability estimates. Choose φ̂ = Vσ∗ . Since

V̂ (a1:t, a) = Vσ∗(S(a1:ta))P̂ (a1:t) ≥ Vσ∗(S(a1:ta
′))P̂ (a1:t) = V̂ (a1:t, a

′)
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for all a′, it must be that

∑
a1:t∈I(o(k)1:t )

Vσ∗(S(a1:ta))P̂ (a1:t) ≥
∑

a1:t∈I(o(k)1:t )

Vσ∗(S(a1:ta
′))P̂ (a1:t)

for all a′. Therefore a will be the action selected.

While SDPOG is provably optimal for games with a dominant equilibrium strategy, it can be

applied to any game, as long as the information set generation and HEF functions can be efficiently

implemented. Given its simplicity, it is also a good candidate to try first when an off-the-shelf

algorithm is needed.

5.3.1 Empirical Results

We now present some empirical results for SDPOG. The implementation of this algorithm for

POGDDL descriptions represents the first general purpose point-decision system for partially ob-

servable games. We first present a simple game, which we call Difference. The game is played

with cards numbered 1 to n, with one card dealt initially to the center and one card face-down to

each player. Each player, in turn, draws up his hand to two cards and then plays one of his cards

on the center card, scoring the absolute value of the difference between the card played and the

previous center card (i.e., playing 7 on 3 or 3 on 7 scores four points). The game ends when the

deck is exhausted; high score wins. The full POGDDL description is provided in Appendix B.4.

A simple HEF is to play whichever card scores the most points on the current turn. We refer

to this as GREEDY. A more sophisticated strategy would consider probable opponent responses,

based on the cards already played and those yet unseen. MCTS can be used as an alternative

HEF. We created MCTS players that were allowed 100 and 1000 samples. The RANDOM strategy

chooses uniformly at random over all legal moves. The results are shown in Table 5.1. For each

entry, the first (resp. second) number gives the number of wins for the row (resp. column) player.

For each pairing, we simulated 200 games, 100 games for each player acting as P1.

As expected the GREEDY heuristic far outperforms RANDOM, winning more than 75% of
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Difference Greedy MCTS-100 MCTS-1000
Random 47-153 28-172 25-175
Greedy 79-121 67-133
MCTS-100 91-109

Table 5.1: Results for SDPOG in the game of Difference.

the time. Against RANDOM, the MCTS-100 and MCTS-1000 players are even stronger than

GREEDY is. The MCTS algorithms also win handily against GREEDY, and, as expected the addi-

tional samples for MCTS improve its relative performance. In the head-to-head matchup between

MCTS players, the extra computation gives the stronger player a 55% to 45% edge.

These results are significant because the MCTS algorithm requires no game-specific knowl-

edge. All the agent needs is the encoding of the rules. There is no explicit understanding that

scoring points is good or that an agent should consider possible counter moves of its opponent

when deciding what to play. But the emergent behavior is consistent with those elements of intel-

ligence.

The results for Battleship, Racko, and GOPS are shown in Table 5.2. We have not yet imple-

mented greedy HEF for these games. The high variation in the outcome of GOPS (due to luck)

reduces the variability in the results for the different agents. But overall, the results are generally

consistent with the results for DIFFERENCE. The MCTS algorithm produces results that are signif-

icantly better than RANDOM. And allowing MCTS to take more samples leads to better outcomes,

albeit with an expected diminishing return (i.e., 10 times the number of samples does not mean 10

times the performance).

These results are encouraging because they represent the first online general game player for

partially observable games. It is difficult to assess the true strength of the agents, because we are

only comparing other agents of our own creation. Still, we can see from the game logs that the

behavior of the MCTS agents is consistent with what we might consider intelligence. For example,

when the Battleship agent registers a hit on its opponent, it fires in adjacent squares, as it should.

The MCTS results will serve as a baseline for future researchers to compare against.
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Battleship MCTS-100 MCTS-1000
Random 16-184 12-188
MCTS-100 63-137

Racko MCTS-100 MCTS-1000
Random 1-199 3-197
MCTS-100 82-118

GOPS MCTS-100 MCTS-1000
Random 74-121 80-119
MCTS-100 99-99

Table 5.2: Results for SDPOG in Battleship, Racko, and GOPS.

5.4 Games with Pure Strategy Equilibria

Theorem 3 shows that for games with a dominant solution, the estimates of the probability that a

particular member of the information set is the true current state are immaterial. However, in other

circumstances, these probability estimates are crucial to competent decision making. As a special

case, we next consider the class of games for which there is a pure strategy equilibrium.

Since these values are not known, we use an opponent model σ̂-k to estimate them. Because

the tree is large, we assume that σ̂-k is not given in closed form. Rather, we assume that these

probabilities are computed “online” as they are required. Because one of our ways of viewing

information sets is as a set of possible game histories, we can simulate each possible game history

up to each decision point of our opponent. By simulating the moves in a prefix a1:t′ of a possible

game history a1:t, we are not only able to recreate what the true state of the world S(a1:t′) would

have been, we are also able to determine what P-k’s observations S(a1:t′).o
(-k)
1:t′ would have been at

that point. Using the information set generation subroutine, we can then determine I(o
(-k)
1:t′ ): the set

of all worlds (or game histories) that P-k would have believed were possible at S(a1:t′).

The nature of P-k’s decision at the simulated point along a possible game history is the same

as the decision that Pk faces in the present: to make a decision about the future based on a set of

observations. Given that the agents are computationally bounded, it is not feasible for Pk to use

tree search to simulate P-k exactly as though Pk itself were making the decision at that point (i.e.,

by determining what it (Pk) what would do if it were in P-k’s situation and then assuming that
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that is what P-k would do), because that would lead to an infinite amount of nesting of opponent

modeling. Instead, we assume that Pk models P-k’s decisions as being based on fundamentally less

computation than Pk’s.

As a first attempt at opponent modeling, suppose that σ̂-k is evaluated by assuming that P-k

applies SDPOG with d = 1 and an HEF φ̂. Pk uses σ̂-k to estimate the probability P (a1:t) for

each member of the information set. We call this DOMIS (Decision-making through Opponent

Modeling and Information Sets). This algorithm applies limited local search and optimization to

produce a deterministic move at each decision point. If the algorithm is applied at each of Pk’s

decision points in the game, the global strategy induced is σk[DOMIS(φ̂, σ̂-k)].

Theorem 4. Under opponent model σ-k[SDPOG(φ̂, d = 1)], there exists φ̂ = φσ∗ for which

σ̂k[DOMIS(φ̂, σ̂-k)] is consistent with σ̂-k iff the game has a pure strategy equilibrium solution.

Proof. (⇐) First, we show that if the game has a pure strategy equilibrium σ∗ = 〈σ∗k, σ∗-k〉, then

there is an HEF that can be used with DOMIS to produce a consistent strategy. Let φσ∗(u) be the

expected value of the game if u is reached and if both players play according to σ∗ thereafter. Let

φ̂ = φσ∗ . The deterministic decisions returned by σ̂-k are those that optimize with respect to the

true equilibrium values and must therefore match those in σ-k. Otherwise, σ-k could be improved

upon. The probabilities computed at line 6 therefore reflect the true probabilities under σ∗, and the

deterministic best response computed by Pk matches σk.

(⇒) We must show that if there is a φ that makes the strategy induced by DOMIS consistent

with the opponent model it uses, then there must be a pure strategy equilibrium. Equivalently,

if there is no pure strategy equilibrium, then there is no φ that makes the strategy induced by

DOMIS consistent with the opponent model it uses. Assume initially that Pk = P1. Let σ=〈σ∗1, σ∗2〉

denote the mixed equilibrium solution. By definition of Nash equilibrium, ∀σ1∀σ2 U(σ1, σ
∗
2) ≤

U(σ∗1, σ
∗
2) ≤ U(σ∗1, σ2). Because we are requiring that σ∗ be a mixed strategy, then any pure

strategy, σP2 must not have the same safety guarantee as σ∗2 . That is, there is a best response

strategy B(σP2 ) for P1 that will strictly improve P1’s payoff:

U(σ1, σ
∗
2) ≤ U(σ∗1, σ

∗
2) ≤ U(σ∗1, σ2) < U(B(σP2 ), σP2 )

78



DOMIS models the opponent as making deterministic decisions and computes a deterministic

best response. Let σ̂-k = σP2 be strategy that P1 assumes for P2, and σk[DOMIS(σ̂-k)] = B(σP2 )

be the best response strategy that P1 computes to counter σP2 . But note the leftmost inequality

in the expression: if P2 switches to σ∗2 , then the payoff will be strictly lower for P1 (and thus

higher for P2) because the left-hand-side inequality holds for all σ1, including B(σP2 ). Therefore

σ̂-k must not be consistent. Analogous reasoning applies if P2 is the active player and P1 is the

opponent.

In short, DOMIS cannot produce a consistent strategy to its deterministic opponent model for

games that have only mixed equilibria because it is not capable of producing randomized strate-

gies. Consistent opponent modeling techniques for games with mixed strategies require a way for

agents to model probabilistic decisions of their opponent and to respond probabilistically. This

unpredictability is the key to not being exploited by a clever opponent.

5.5 Games with Mixed Strategy Equilibria

In this section, we take key steps towards the development of a consistent, general algorithm for

generating probabilistic point decisions in games with mixed strategy equilibria. Our method,

Bounded Equilibrium through Linear Programming (BELP), shown as Algorithm 5.1 avoids the

philosophical and computational complications of opponents modeling the opponent models of

their opponents. The key to this algorithm is the reasoning agent’s ability to generate information

sets.

We begin by generating a search tree (line 2), which is a fragment of the full game tree. The

search tree is initialized by all the nodes along the paths from the root to each member of the

information set characterized by input parameter o1:t, the current player’s observations. Nodes

are added to the search tree by repeatedly applying the operations outlined in the introduction to

this chapter (e.g., finding successor states and generating information sets). The set of generated

nodes always maintains the tree property because identifying a node S(a1:t) in the information set

I(u.o
(k)
1:t ) of an existing node u in the tree implies that all nodes S(a1:t′) (t′ < t) along the path to
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that node are also identified (and included in the search tree).

Once the computational budget for tree exploration has been expended, we process the gener-

ated search tree T , according to ESLP , with some modification to allow for the approximation of

information set values for nodes that are terminal in T but not in Γ. The resulting linear program

includes variables for each of Pk’s actions and for each of P-k’s information sets in T . In the linear

expression to be optimized, the coefficient for the root information set is 1; all other coefficients are

zero. The probability distribution for each point decision for Pk and the utilities of the information

sets for P-k can be extracted from the solution to the primal linear program. A strategy for P-k and

information set values for Pk can be extracted from the solution to the dual.

The constraints in the LP are of two kinds: inequality constraints corresponding to each of P-k’s

actions and equality constraints corresponding to each of Pk’s information sets, both with respect

to T . The inequality constraints are used to ensure that the value of an information set does not

exceed the worst-case value of an information set for any of its children. The equality constraints

are used to ensure that the total probabilities assigned by Pk at any of its decision points is exactly

equal to the sum of the probabilities assigned to its descendants.

For all the nodes in an information set, there is an outgoing edge corresponding to each possible

choice that a player has in that set. This set of edges is collectively referred to as an action in Kuhn’s

definition of extensive form games. When a logical description language is used to express game

rules, the same syntactic action e.g.,bet may be possible in different information sets. However,

the information sets can be uniquely named with a list of observations. Thus, we can use an

observation-list + action-name pair to uniquely name the coefficients in the linear program.

Each node τ in T is processed in a loop (lines 3-10). We use Pk′ to denote the active player

at τ . The PREVACTION subroutine invoked at line 5 finds the previous action taken by P ′k in the

game history specified by τ . This is used to augment a tree structure Ik′ that tracks the parent-child

relationships among information sets for Pk′ .

A value v is computed for each terminal in T . If τ is a leaf node in the full game tree, this

v is simply the payoff of the game at that point (the cost of the game, since the LP minimizes).

Otherwise, τ represents a node on the frontier of the search tree, whose value must be approximated
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with the expected value of the information set of which τ is a member, not the expected value of τ

itself.

Lines 11-14 complete the construction of inequality constraints by adding information about

all possible descendant information sets. The result is that the inequality constraint for (o, a) says

that the cost associated with information set o is not greater than the total costs for all Pk responses

that lead to terminals (in T ) plus the value of any information set descendants of o.

Lines 15-19 construct the equality constraints using the structure for Pk built at line 6.

Line 20 produces an equilibrium strategy profile σ∗ by solving the linear program for the game

T , where terminals in T that are not terminal in Γ have been approximated by HEF ψ. σ∗k encodes

the strategy for all of Pk decision points that were discovered in the generation of T . From this,

the algorithm extracts the decision probabilities specified for the information set specified by input

parameter o1:t and returns a choice for this current decision point according to that distribution.

As noted earlier, the LP for game trees can be both constructed and solved in polynomial time

in the number of nodes in the tree. Our algorithm presents the user with a tradeoff by reduc-

ing the number of tree nodes to |T |, which depends on the computational budget allotted to the

GENERATESEARCHTREE routine, in exchange for the increased computational expense needed to

approximate the information set values of nodes that are terminal in T but not in Γ.

Definition 12. A node S(a1:t) in Γ is information set independent if for all a1:t′ ∈ E(a1:t) and for

all k ∈ {1, . . . ,Γ.K}, the following condition holds: a1:t′ ∈ I(S(a1:t′).o
(k)
1:t′)⇒ a1:t′ ∈ E(a1:t).

Definition 13. A node S(a1:t) in Γ has a sub-game dominant solution if for all a1:t′ ∈ E(a1:t), the

following condition holds: there exists a and σ∗k with σ∗k(S(a1:t′), a) = 1 such that for all σ′k with

σ′k(S(a1:t′), a) 6= 1 and for all σ-k, Uk(σ∗k, σ-k) ≥ Uk(σ
′
k, σ-k).

Definition 14. A node S(a1:t) in Γ is sub-game independent if it is information set independent or

has a sub-game dominant solution.

Theorem 5. If GENERATESEARCHTREE(·) returns a tree T such that every terminal in T is

terminal or sub-game independent in Γ, then there exists HEF φ∗ for which BELP[φ∗] induces the

Nash equilibrium strategy, σ∗k, even if σ∗k is mixed.
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Algorithm 5.1 Bounded Equilibrium Linear Programming

1: function CHOOSEMOVE(Obs o1:t, ψ̂)
2: T ← GENERATESEARCHTREE(o1:t, ψ̂)
3: for τ ∈ T do
4: Pk′ ← D(τ)
5: (o, a)(k′) ← PREVACTION(τ, k′)
6: Insert ((o, a)(k′), τ.o(k′)) into Ik′
7: if NT (τ) = ∅ then
8: v ← U(τ)Π0(τ) if τ ∈ TΓ else ψ̂(τ)
9: In Ineq[(o, a)(-k′))]

10: Increase coeff. of (o, a)(k′)) by v
11: for each ineq. const. (key ((o, a)(-k))) do
12: Coeff. (o, a)(-k) ← −1
13: for each x-k s.t. ((o, a)(-k), x-k) ∈ I-k do
14: Coeff. x-k ← 1

15: for each eq. const. (key o(k)) do
16: Find (o, a)(k) s.t. ((o, a)(k), o(k)) ∈ Ik
17: Coeff (o, a)(k) ← −1
18: for each a, o(k)′ s.t. ((o(k), a), o(k)′) ∈ Ik do
19: Coeff of (o(k), a)← 1

20: Solve for σ∗ according to generated constraints.
21: return move acc. to σ∗i (o1:t).
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Proof. The full proof requires detailed understanding of the composition of the constraints in the

ESLP algorithm. Here, we only sketch the details. Let LP be the linear program that is constructed

and solved by ESLP for Γ and LP ′ be the linear program for BELP. For every constraint in LP ′,

there is a corresponding constraint in LP . Because the search tree T in BELP is only a subtree

of Γ, some of the constraints in LP do not appear in LP ′. And some of the variables in the

constraints of LP do not appear in the corresponding constraints of LP ′. Because of the sub-game

independent requirement on the terminals in T , there is a mechanical transformation from LP to

LP ′ by iteratively removing the extra constraints and variables from LP while ensuring that the

optimum solution is unchanged and that the variable assignments for the solution to LP ′ are the

same as the variable assignments to the corresponding variable assignments in the solution for LP .

BELP is a first step towards general reasoning for games in which bluffing and deception are

key components of a winning strategy. We have not yet implemented BELP in our game-playing

system.

5.6 Case Study: Point Decisions in Scrabble

We now describe the application of our opponent modeling techniques to Scrabble. In addition to

a quality decision-making procedure, high-level play in Scrabble also requires an efficient move

generation function. We therefore implemented our opponent modeling scheme within QUACKLE,

an existing open-source Scrabble framework (and de facto world champion player), in order to

take advantage of that heavily optimized functionality [O’Laughlin et al., 2006].

Scrabble is a popular crosswords game played by millions of people worldwide. Competitors

make plays by forming words on a 15 x 15 grid (see Figure 5.2), abiding by constraints similar to

those found in crossword puzzles. The individual tiles are assigned a point value that is loosely

related to frequency of usage in real words: common letters, including all the vowels, are worth

one point each, while less frequently used letters Q and Z are worth ten points each. Each player

has a rack of letter tiles that are randomly drawn from a bag that initially contains 100 tiles. The
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distribution of tiles is also somewhat correlated to frequency of usage in real words: there are 12

E tiles and only one Z. Two blank tiles, denoted ‘?’, are wild; they may be used to represent any

letter.

On each turn, a player replenishes her rack to seven tiles and then places one or more tiles from

her rack onto the same row or column of the board, combining with at least one tile already on

the board2 to form one or more words. All words formed must be listed in the Official Scrabble

Player’s Dictionary. The score for the play is the sum of the point value for each new word formed.

The score for a word is the sum of the scores for the individual tiles. Premium squares on the board

double or triple the letter or word on which they are played. These squares only score a bonus on

the turn in which they are played upon.

Achieving a high score requires a delicate balance between maximizing one’s score on the

present turn and managing one’s rack in order to achieve high-scoring plays in the future. Defen-

sive considerations are also important; skilled players avoid opening positions on the board where

the opponent is likely to be able to make a high-scoring play.

Figure 5.2: A sample Scrabble game. The shaded premium squares on the board double or triple the value
of single letter or a whole word. Note the frequent use of obscure words.

Because opponent’s tiles are hidden and because tiles are drawn randomly from the bag on each

turn, Scrabble is a game of imperfect information. We have shown empirically that for state-of-the-

art computer players, being allowed to know the opponent’s letters leads to 40% more victories,
2The requirement for the first word played is only that it cover the center square of the board.
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all other player parameters being equal [Richards and Amir, 2007].

In a real game, we would not know exactly what tiles our opponent has, but we can make some

inferences based on his most recent move. Consider the game situation shown in Figure 5.3. Our

opponent, playing first, held ?IIMNOO and played <8E IMINO (?O) 16>on row 8, column E for

16 points, leaving letters ?O on his rack.We can observe only the letters he played—IMINO—and

the letters on our own rack GLORRTU, leaving 88 letters which we have not seen: 86 in the bag

and two on his rack. When the opponent draws five letters to replenish his rack, each of the tiles

in the bag is equally likely to be drawn. But it would be an oversimplification to assume that the

two letters left on his rack can also be viewed as being randomly and uniformly drawn from the 88

letters that we have not seen.

Figure 5.3: The state of the board after observing the opponent play IMINO with a leave of ?O. The active
player holds GLORRTU. Between the two letters left on the opponent’s rack and the letters left in the bag,
there are 88 unseen tiles.

Of the 372 possible two-letter pairs for the opponent’s leave (??, ?A, . . . , ?Z, AA, AB, . . . ,

AZ, . . . , YZ), some are considerably more probable, given the most recent play. Suppose our

opponent’s leave is ?H. That would mean that he held ?HIIMNO before he played. If he had

held that rack, he could have played <8D HOMINId 80>, a bingo which would have earned him

64 more points than what he actually played. Were our opponent a human, we would have to

account for the possibility that he does not know this word or that he simply failed to recognize the
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opportunity to play it. But since our opponent is a computer, we feel confident that he would not

have made this oversight and conclude that his leave after IMINO was not ?H. Likewise, we can

assume that his leave was not ?L (<8D MILlION 72>).

Suppose his leave was NV. With IIMNNOV, he could have played <8G VINO (IMN) 14>.

While this would have scored two fewer points than IMINO, it has a much better leave (IMN in-

stead of NV) and would likely have been preferred. In general, we can consider each of the possible

leaves that an opponent may have had (based on the set of tiles we have not seen), reconstruct what

his full rack would have been in each case, generate the legal moves he could have made with that

rack, and then use that information to estimate the likelihood of that leave. Using Bayes’ theorem

P (leave | play) =
P (play | leave)P (leave)

P (play)

The term P (leave) is the prior probability of a particular leave. It is the probability of a par-

ticular combination of letters being randomly drawn from the set of all unseen (by us) letters. This

is the implicit assumption that QUACKLE makes about the opponent’s leave. The prior probability

for a particular draw D from a bag B is

P (leave) =

∏
α∈D

(
Bα
Dα

)(|B|
|D|

)
where α is a distinct letter, Bα is the number of α-tiles in B, Dα is the number of α-tiles in D,

and |B| and |D| are respectively the size of the bag and size of the draw.

We will be interested in computing probabilities for all of the possible leaves; we can therefore

take advantage of the fact that

P (play) =
∑
leave

P (play | leave)P (leave)

The P (play | leave) term is our model of the opponent’s decision-making process. If we

are given to know the letters that comprise the leave, then we can combine those letters with

the tiles that we observed our opponent play to reconstruct the full rack that our opponent had

when he played that move. After generating all possible legal plays for that rack on the actual
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board position, we must estimate the probability that our opponent would have chosen to make

that particular play. We are assuming that our opponent is a computer, so it might be reasonable to

believe that our opponent also makes his decisions based on the results of some simulations.

Unfortunately, simulating our opponent’s simulations would not be practical from a computa-

tional standpoint. Instead, we naively assume that the opponent chooses the highest-ranked play

according to the same static move evaluation function that we use. In other words, we assume that

our opponent would make the same move that we would make if we were in his position and did

not do any simulations.

This model of our opponent’s decision process is admittedly overly simplistic. However, it is

likely to capture the opponent’s behavior in many important situations. For example, one of the

things we are most interested in is whether our opponent can play a bingo (or would be able to

play a bingo if we made a particular move). If a bingo move is possible, it is very likely to be the

highest-ranking move according to our static move evaluator anyway.

A key advantage of modeling the opponent’s decision-making process in this way is that the

calculation of P (play | leave) is straightforward. If the highest-ranked word for the corresponding

whole rack matches the word that was actually played, we assign a probability of 1; otherwise, we

assign a probability of 0. Let M be the set of all leaves for which P (play | leave) = 1. Then the

computation simplifies to

P (leave | play) =
P (leave)∑

leave∈M P (leave)

Returning to our earlier example, if the opponent plays IMINO, there are only 27 of 372 pos-

sibilities to which we assign non-zero probability. Using only the prior values for P (leave), the

actual leave ?O is assigned a probability of 0.003. After conditioning on play, that leave is as-

signed a 0.02 probability. In this example, there were only 372 possible leaves to consider, but in

general, there could be hundreds of thousands.

It may be too expensive to run simulations for every possible leave, but we would like to

consider as much of the probability mass as possible. Using the posterior probabilities, 60% of

the probability mass is assigned to about 10 possible leaves. Using only the priors, the 10 most
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probable leaves do not even account for 10% of the probability mass. However many samples we

can afford computationally, we expect to get a much better feel for what our opponent’s response

to our next move might be if we bias our sampling of leaves for him to those that are most likely

to occur.

During simulation, after sampling a leave according to the distribution discussed above, we

randomly draw tiles from the remaining unseen letters to create a full rack. We have created an

Inference Player in the QUACKLE framework that is very similar to QUACKLE’s Strong Player3.

It runs simulations to the same depth and for the same number of iterations as the Quackle player.

The only difference is in how the opponent’s rack is composed during simulation.

Experimental Results Table 5.3 shows the results from 630 games in which our Inference agent

competed against QUACKLE’s Strong Player. While there is still a great deal of variance in the

results, including big wins for both players, the Inference Player scores, on average, 5.2 points

per game more than the QUACKLE Strong Player and wins 18 more games. The difference is

statistically significant with p < 0.045.

With Inferences Quackle
Wins 324 306
Mean Score 427 422
Biggest Win 279 262

Table 5.3: Summary of results for 630 games between our Inference Agent and QUACKLE’s Strong Player.

The five-points-per-game advantage against a non-inferencing agent is also significant from a

practical standpoint. To give the difference some context, we performed comparisons between a

few pairs of strategies. The baseline strategy is the greedy algorithm: always choose the move that

scores the most points on the present turn. An agent that incorporates a static leave evaluation into

the ranking of each move defeats a greedy player by an average of 47 points per game.

When the same Static Player competes against QUACKLE’s Strong Player, the simulating agent

wins by an average of about 30 points per game. To be able to average five points more per

3QUACKLE is an open-source software package for word-playing games and includes multiple agents for playing
Scrabble
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game against such an elite player is quite a substantial improvement. In a tournament setting,

where standings depend not only on wins and losses but also on point spread, the additional five

points per game could make a significant difference. The improvement gained by adding opponent

modeling to the simulations would seem to justify the additional computational cost. The expense

of inference calculations has not been measured exactly, but it is not excessive considering the

costs of simulation in general.

In addition to publication at IJCAI-07 [Richards and Amir, 2007], our work on Scrabble was

also featured in New Scientist and IEEE Computer magazines and on the front page of the Daily

Illini, the University of Illinois at Urbana-Champaign’s daily newspaper.
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CHAPTER 6

RELATED WORK

In this chapter, we provide additional details about related work that this thesis extends, comple-

ments, utilizes, or supercedes. We first give a broad overview of how this thesis work fits into

the overall landscape of the state of the art in reasoning under uncertainty. In the remaining sub-

sections, we review related work in the areas of economics and game theory, game tree search,

planning under uncertainty, and representation languages for sequential reasoning problems (both

planning and game playing).

6.1 State of the Art in Reasoning Under Uncertainty

This thesis touches on a variety of topics and concepts that are broadly explored in many dis-

parate fields of research, including economics and game theory, game tree search, planning, and

knowledge representation. Here, we outline some key similarities and differences of our work in

comparison to these fields.

Game theory focuses on the formalization of concepts such as rationality and optimality in

multi-agent decision-making environments. We focus primarily on Nash equilibrium solutions

for two-player, zero-sum games, which guarantee that neither agent can improve its utility by

changing its strategy, as long as the other agent does not change its strategy. A key distinction

in our treatment of games compared to the game theory literature is that we do not assume that

agents are computationally unbounded. Instead, we present a novel model where we assume that

agents have common knowledge about the transition function (generating a successor state from a

current state and action) and can determine the payoffs to all agents in a terminal state. However,

agents must model their opponents and reason about their own decisions using only a bounded
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number of such operations. Instead of aiming to identify a Nash equilibrium solution for the

whole game before actually playing, we assume that agents have an opportunity to perform limited

deliberations between each received observation. The theoretical goal in our framework is for the

global strategy that would result by calling our decision procedure at every decision point to be a

Nash equilibrium, were the number of operations allowed to tend to infinity.

As such, our work relies heavily on the game tree search literature. We utilize the increasingly

popular Monte Carlo Tree Search method to determine which nodes to expand when performing

forward search in the tree from a particular node. The key distinction in our work is our use

of the information set generation operation to look backward in the game tree, i.e., to identify

possible game histories. Relative to other systems designed to play one game, our system is notable

for its ability to reason about games in a general way, without any game-specific expert domain

knowledge.

Our work also has much in common with the AI planning literature. We explore the differences

between AI-planning and game-playing below. Two differentiating factors of our work stand out.

First, success in our framework depends on an agent’s ability to identify many terminal states

with varying payoffs to the players. Second, in the general case, agents need to reason about the

knowledge and likely actions of their opponent. However, we do not model the knowledge of

agents explicitly in terms of those predicates that can be proved true or false at a particular point

in the game or in terms of a more general formula that can be proved to be satisfied. Instead, we

reason in terms of information sets. We use our information set generation procedure to enable

an agent to identify possible game histories that are consistent with its observations. The agent’s

knowledge comprises this set of sequences. Another key distinction in the way that we reason

about knowledge is in our clear separation between determining what is possible and estimating

what is probable.

Our game description language (POGDDL) has much in common with other languages for de-

scribing planning and game-playing environments. A key contrast with planning languages is the

ability to specify observations and payoffs for each participating agent. Compared to GDL-II, an-

other previously published language for imperfect information games, we demonstrate equivalent
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theoretical expressive power but provide more computationally efficient state transition operations,

as well as limited support for numerical fluents.

There are some key aspects of decision-making under uncertainty that we do not address at

all. We do not consider continuous or infinite horizon decision problems. We also do not consider

situations where the dynamics of the world or the agents’ preferences over outcomes are not com-

mon knowledge. The Harsanyi transformation allows games with these aspects of uncertainty to be

converted into extensive form games [Harsanyi, 2004]. However, an assessment of the practicality

of this theoretical transformation is beyond the scope of this work.

6.2 Economics and Game Theory

A key goal of game theory, which is often studied in connection with economic theory, is to

predict how rational agents will behave when they interact. We focus here on two-agent adversarial

environments, where outcomes that are favorable for one agent are necessarily unfavorable for the

other. Other works treat collaborative and multiplayer environments [Shoham, 2009; Rasmussen,

2006].

Predicting how rational agents will behave requires a definition of “rational.” We adopt the

common view that a rational agent is one that seeks to selfishly maximize its own utility (in expec-

tation). In theory, any altruistic utility–value achieved when others experience high payoffs–can

be incorporated into an agent’s own utility function.

Game theory reduces multi-agent interactions to sets of strategies and payoffs. In sequential

games, a strategy specifies a plan for every contingency in the game. Each player chooses a strategy

and the joint selection—the strategy profile—determines the payoffs for each agent. In two-player,

zero-sum games, the payoff for one player is the negation of the payoff for the other. The basics of

game theory can be found in several introductory text books [Kuhn, 1997; Kuhn, 2003; Osborne

and Rubinstein, 1994; Rasmussen, 2006]. Real-world applications of game theory are discussed in

[Papayoanou, 2010; Rasmussen, 2006; Nisan et al., 2007].

In order to address decision making mathematically, game theorists typically make concrete
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assumptions about the possible strategies, outcomes, and knowledge of each agent involved in an

interaction. A solution concept specifies a subset of the combinations of strategies of the players

that satisfy some properties of interest, typically with a goal of predicting agent behavior in the

game.

We focus primarily on Nash equilibrium solutions, which guarantee that no agent can improve

its utility by changing its strategy, as long as all other agents do not change their strategies. Some

works focus on special cases of Nash equilibria or on altogether different solution concepts. For

example, a strategy profile is Pareto optimal if there is no other solution in which no player has a

lower utility and at least one player has a strictly higher utility. In other words, Pareto optimality

implies that no player’s payoff can be increased without reducing another player’s payoff. Pareto

optimality is generally of interest when games are not zero-sum.

Koller et al. show how a Nash equilibrium for a non-zero sum game can be computed in

polynomial time by converting the game tree to a linear complementarity problem [Koller et al.,

1994]. We do not treat such games in this thesis, but the information set generation and Monte

Carlo Tree Search algorithms that we describe would be equally applicable to them. The decision-

making algorithms in Chapter 5 would need to be adapted.

As mentioned, we address the computational limitations of real-world agents by assuming

limited tree search capabilities. Gilpin and Sandholm provide an alternative approach to handling

large games for a subset of EFG known as signaling games [Gilpin, 2009; Gilpin and Sandholm,

2005]. A signaling game is a two-player game in which CHANCE selects a game to be played

according to a known distribution. P1 is informed of the choice and makes a move. P2 then

moves, knowing P1’s choice but not CHANCE’s [Shoham, 2009]. Gilpin and Sandholm show how

to automatically transform such game trees into smaller games, while preserving their equilibrium

properties. This approach enabled them to find exact solutions to poker games that are four times

larger than games that had been solved previously. However, many games are still too large to

solve exactly, and not all extensive form games satisfy the signaling game conditions.

While the Nash equilibrium is perhaps the most widely studied solution concept in the game

theory literature, it is predicated on several assumptions that may not hold in practice (see Sec-
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tion 2.2). A key distinction in our work is that we do not assume that agents are computationally

unbounded. Even elite human players are not able to solve for a Nash equilibrium in complicated

games such as chess or Poker. Their competent levels of play stem from an ability to think about

the game at a high level, to abstract key features and patterns of a game state to estimate its overall

utility [Li, 1994; Hsu, 2002; Chen, 2006]. They may also benefit from the suboptimal, technically

irrational behavior of their opponents, who also are unable to compute the optimal solutions. In-

stead, humans perform some limited analysis of potential move and counter-move sequences and

then consider the quality of the resulting state according to those features and patterns. Their move

choices are informed by their assessments of their opponents’ knowledge and tendencies. Our

model of rationality (that agents are able to perform bounded tree search capabilities and seek to

maximize their expected worst-case payoffs against similarly endowed opponents) is motivated by

the fact that human reasoning can be approximated this way.

6.3 Game Tree Search

We use the term game tree search to refer to algorithms that explore a subset of the nodes in a

game tree in order to determine which move to actually make at a particular decision point. Such

strategies have been popular since Shannon proposed his chess-playing system in 1950 [Shannon,

1950]. The key components of a tree search algorithm are (1) given the nodes in the tree that have

been visited so far, determine which node to visit (generate) next; and (2) given the nodes that have

been generated, determine which move to make in the game at the current decision point. Under

assumptions of rationality, common knowledge about the world dynamics, and computational un-

boundedness, the optimal decision can be found by backward induction in the perfect information

case and by linear programming in the imperfect information case. (See Chapter 2.) Both algo-

rithms require full traversal of the tree. We assume, by contrast, that agents can perform only a

bounded number of tree expansion operations.

Our general decision-making algorithms for game trees rely extensively on Monte Carlo Tree

Search Techniques [Kocsis and Szepesvári, 2006; Coulom, 2006], which we review in section 2.7.
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The basic MCTS search method requires no heuristic evaluation function. Non-terminal node

values are estimated by randomly sampling their terminal descendants. The number of sam-

ples allocated to each non-terminal is based on recursive k-armed bandit strategies, which bal-

ance exploration and exploitation in the tree [Audibert et al., 2009; Berry and Fristedt, 1985;

Hardwick and Stout, 1991; Gittins, 1989; Holland, 1992]. Node value estimates converge to their

true minimax values in perfect information game trees, as the number of samples approaches in-

finity. MCTS strategies have been applied to many games, including backgammon [Lishout et al.,

2009], Go [Gelly and Wang, 2006], and poker [Van den Broeck et al., 2009].

In this section, we discuss related search techniques for both perfect and imperfect information

games.

6.3.1 Alpha-Beta Pruning

Computing the MINIMAX value of the root node of a game tree using backward induction requires

the traversal of the whole tree. The alpha-beta pruning algorithm reduces the number of nodes

that must be visited to determine the MINIMAX value (and the corresponding strategy profile that

achieves that outcome) by pruning (ignoring) those parts of the tree which are provably suboptimal

for either of the players [Knuth and Moore, 1975; Huntbach and Burton, 1988]. The number of

nodes traversed is minimized when the best child of each node is examined first. In the best case,

the number of nodes searched is approximately twice the square root of the number of nodes in

the tree [Slagle and Dixon, 1969]. Pearl showed that the number of terminal nodes reached by

alpha-beta pruning is asymptotically optimal [Pearl, 1982]. Alpha-beta pruning is typically used

in conjunction with heuristic evaluation functions, to limit the depth of the search.

Numerous extensions to the standard alpha-beta pruning algorithm have been proposed. Many

of these have specific utility in the game of chess, which has been widely studied in the AI com-

munity. One such adaptation is singular extensions, which increase the search depth at positions

deemed to be volatile [Anantharaman et al., 1990; Beal, 1990]. For example, in a chess position

with many pieces attacking the same square, the search engine would extend the search to see how

capture-and-recapture sequences would likely play out before applying the heuristic evaluation.
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The SCOUT algorithm [Pearl et al., 1980; Reinefeld, 1983], invented by Judea Pearl, consists

of two procedures, EVAL and TEST. The EVAL method returns the minimax value of a node

and is called along the principal variation (first child) of each node. Then the TEST procedure

speculatively searches for a better value among the siblings, searching only as long as it is possible

for the optimal value to be along that branch. If the TEST procedure indicates that it is possible,

then the EVAL procedure is called on that node to determine the exact value. The result is that

while some nodes are visited more than once, the total amount of search tends to be reduced.

A search agent using the null move heuristic attempts to deepen its search by allowing one

player to take two consecutive turns [Adelson-Velskiy et al., 1988; David-Tabibi and Netanyahu,

2002]. The idea is that a player’s move is likely to be less desirable if allowing an additional free

move does not leave the player in a significantly stronger position. Assessing the applicability of

the null move heuristic requires game-specific knowledge and is not considered here.

Many of these search control heuristics could be adapted for use in our general game-playing

system, provided that suitable heuristic evaluation functions can be automatically learned. Efforts

to perform such learning have been moderately successful in perfect information games [Kuhlmann

et al., 2006; Schiffel and Thielscher, 2007; Boyan and Moore, 1996]. Their approaches could be

adapted to the imperfect information case, but it is not clear whether heuristic functions should be

applied to individual nodes, information sets, or both.

6.3.2 Systems Targeted to One Perfect Information Game

Numerous tree search-based AI agents have been developed that demonstrate mastery of a sin-

gle specific game environment [Schaeffer, 2000; Schaeffer and van den Herik, 2002]. The game

of checkers has been completely solved; Schaeffer et al. showed that perfect play leads to a

draw [Schaeffer et al., 2007]. Adaptations of MCTS have been effective in producing agents for

the game of Go that are competitive with mid-level professional human players [Gelly and Wang,

2006; Lee et al., 2009]. IBM’s DEEPBLUE defeated human champion Garry Kasparov in chess in

1997 [Campbell et al., 2002; Hsu, 2002]. Tesauro’s TDGAMMON won a match against the human

backgammon champion [Tesauro, 1995]. All of these systems required and exploited extensive,
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game-specific human expertise. For example, while the heuristic evaluation functions used for

chess and backgammon are carefully tuned through extensive computer experiments, the features

employed in those functions are suggested by expert human players. Our system is unique in that

the same data structures and search algorithms can be used for any game, given only a description

of the rules.

6.3.3 General Tree Search in Perfect Information Games

Finnsson and Bjornsson won the AAAI General Game Playing competition in 2007 and 2008 by

applying MCTS to games described in GDL [Finnsson, 2007; Finnsson and Bjornsson, 2008].

Much of their work focuses on parameter tuning; they use the basic MCTS algorithm described

in [Kocsis and Szepesvári, 2006]. Their work does highlight the effectiveness of MCTS– which

requires no game-specific knowledge– in a variety of games.

6.3.4 Tree Search in Imperfect Information Games

A key difference when searching in imperfect information game trees is that the node correspond-

ing to the current state could be any one of the nodes in the active player’s current information set.

In addition to the forward search that an agent performs from a particular node in order to estimate

its value, agents must also be able to perform search in the tree in order to identify nodes in the

information set.

Parker et al. [Parker et al., 2005] informally describe the challenge of generating (or sampling

from) information sets by randomly simulating paths in a game tree and comparing the simulated

observations to the observations actually received. They propose alternative sampling methods

that, for example, match only the most recent observation received. This heuristic is fundamentally

error prone, as nodes that match only on the last observation may be fundamentally different from

the nodes in the information set (which, by definition, match on all observations). Their goal

is to address the problem of kriegspiel, rather than game playing in general. Their inability to

identify nodes in the information set by ordinary tree search from the root of the game tree is a key
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motivation for our current work. Our constraint-based approach to information set search allows

us to essentially reshape the search space and to use all of the observations together to improve

pruning behavior.

6.3.5 Systems Targeted to One Game

AI systems that are competitive with or superior to the top human players in a single game

of imperfect information exist for bridge [Ginsberg, 1996; Ginsberg, 1999], some variants of

poker [Billings et al., 2002; Bowling et al., 2008; Davidson, 2002; Gilpin, 2009; Oliehoek, 2005;

Van den Broeck et al., 2009; Waugh et al., 2009], and Scrabble [Richards and Amir, 2007;

Sheppard, 2002]. DARKBOARD, the state-of-the-art system for kriegspiel, is an above-average

player with a record of 6170-5633 on the Internet Chess Club [Paoloc, 2012]. Kriegspiel engines

based on MCTS are now emerging as well [Ciancarini and Favini, 2009; Favini, 2010].

As is the case with the aforementioned single-game engines targeted to perfect information

games, these systems rely heavily on extensive, game-specific human knowledge of the targeted

game environment. For example, success in poker requires an understanding of the nature of

bluffing and the necessity of disguising one’s strategy through unpredictable play. Success in

bridge requires the ability to estimate the value of one’s own hand (including the partner’s cards)

by considering the possibilities and probabilities for how the remaining cards are distributed among

the two opponents and how the sequence of tricks would play out.

We note also that the success of QUACKLE, the top Scrabble-playing program, relies on a

heavily optimized move generation algorithm [Gordon, 1994; O’Laughlin et al., 2006]. While

the rules (and dictionary) of Scrabble could theoretically be encoded in a description language

like GDL-II or POGDDL, the performance of the move generation algorithm would likely be

several orders of magnitude slower than the state-of-the-art. Similarly, our parallelized information

set generation system for kriegspiel is carefully optimized for that game. For example, we take

advantage of the fact that a chessboard has 64 squares and modern computer architectures are

optimized for some 64-bit data structures. These implementation advantages are necessarily lost

in our general POGDDL-based system. The advantage of our POGDDL system is its generality.
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6.4 Planning with Partial Observability

6.4.1 Planning vs. Game-Playing

Many aspects of reasoning under uncertainty are addressed in both the game-playing literature and

the planning literature. Broadly speaking, the inputs to both planning and game-playing systems

may include (1) a set of states; (2) a set of actions; (3) a transition function that maps state-action

pairs to states; (4) an observation model or description of available sensors; (5) a specification

of the initial state (or initial belief state if there is uncertainty about the initial state); and (6) a

description of the goal state(s). The output is a sequence of actions to be executed to achieve

the goals. In both cases, agents are required to make sequences of decisions, potentially in the

presence of uncertainty about how the world is affected by the agent’s actions or chance events.

Our description of extensive form games includes all of these elements in some form.

Problems such as Free-cell, the 15-puzzle, and peg solitaire1 are colloquially referred to as

games and can be made to fit into our definition of extensive form games with a single player, plus

CHANCE. But such problems can also be naturally expressed in a planning language such as PDDL

and solved using common planning techniques. Thus, the choice to label a problem as a game or

a planning problem or a control problem may depend more on the background and understanding

of the researchers than on the nature of the problem itself.

One important difference to consider when framing a problem as planning or game-playing is

the presence of other decision-making agents. Our view of information sets as sequences of actions

is critical to the success of our general game-playing agent because it allows us to simulate possible

game histories from the perspective of an opponent and then reason about how the opponent might

act. This kind of opponent modeling, in general, is a key element of game-playing that receives

less attention in the planning community.

The classification of a problem as planning or game playing may depend not so much on the

presence of specific features but on which features of the problem present the greatest challenge.

1In this problem, pegs are placed in holes on a board. A single agent moves by “jumping” one peg over an adjacent
peg into an empty slot, removing the peg that was jumped over from play. The goal is to end with a single peg in the
middle of the board. The agent fails if multiple non-adjacent pegs remain on the board
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For many AI planning problems, it can be computationally difficult to identify any sequence of

actions that leads to a goal state (e.g., peg solitaire or Rubik’s cube). In other planning problems,

goal-satisfying paths may be plentiful, but the challenge is to find a sequence of actions that is

optimal under some criterion. For example, in a logistics planning problem, an agent may be

charged to minimize the amount of time or fuel needed to move resources to their desired locations.

Planning problems may be complicated by the sheer number of actions required to achieve the

goal. The number of possible action sequences may be infinite. Actions may often be executed in

parallel and may be continuous, rather than discrete events in time. Some actions may require a

longer duration than others.

By contrast, in the game-playing problems that we consider in this thesis, the number of pos-

sible sequences of actions by all agents–including CHANCE–is finite. The number of actions from

the root to a terminal state is at most a few hundred. And the number of goal (i.e., “winning”) states

tends not to be vanishingly small in relation to the total number of terminal states. All actions are

modeled as discrete, instantaneous events in time.

All of these features are critical to the applicability of Monte Carlo Tree Search, upon which

our most general decision-making algorithms rely. In Poker or Scrabble, an agent might expect

to identify some winning positions simply by simulating random sequences of moves. This is not

always the case. In chess or kriegspiel, for example, an agent simulating random moves has an

extremely low probability of producing a checkmate position for either player. The vast majority

of random sequences lead to draws and therefore do not provide adequate feedback to the MCTS

selection algorithm. The MCTS technique described in this thesis is likely to be effective only in

those games with a high variance in the utility of terminal nodes reached by random search.

The challenge in game-playing tends not to be in identifying possible sequences of actions that

lead to a desired outcome but in identifying a course of action that is (1) optimal given the expected

behavior of other agents or (2) guarantees the best worst-case performance. (Nash equilibria satisfy

both criteria under standard rationality assumptions.) Considering the motives and capabilities of

other agents is therefore paramount. In particular, an agent may need to account for how its own

actions are likely to be modeled and countered by its opponents.
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As our focus is on sequential decision processes that can be naturally framed as extensive form

games, we do not treat topics involving continuous variables or navigation of physical spaces that

are common in robot motion planning or control theory. A good overview of all of these types of

planning, including their relationships to game-playing, can be found in [LaValle, 2006].

Whether deemed to fall under the umbrella of planning or game playing, the type of problems

targeted in this work have the following properties:

1. The sequence of decisions to be made is finite. Every decision therefore includes an element

of progression towards the ultimate goal. In some cases, this feature is added artificially. For

example, a kriegspiel game can be defined to end in a draw if a fixed number of consecutive

moves is made without a pawn advancement or capture, as in chess. We assume that this

number is small enough that it is reasonable for a decision maker to cache the sequence of

decisions made.

2. The number of states and actions is large enough that it is infeasible to specify a probability

distribution for actions over every contingency.

3. Sensing and acting are interleaved with deliberation. Rather than devising a fixed sequence

of actions up front, the decision-making process emphasizes the selection of the next action,

based on the entire sequence of observations received.

4. The initial state is known. Again, this condition can be artificially added. For example, one

view of a poker game is that the start state is unknown because of the unseen cards held by

opponents and possibly unseen community cards. Our view of a poker game is that the start

state is fixed and known as the state where the dealer holds the whole deck of cards. The first

several actions are made by CHANCE (or “the world” or “nature”); these actions randomly

distribute the cards. When a player first acts, its information set includes all possible initial

deals, and they are all equally probable.

5. Consequences of actions are deterministic. The modeling of stochastic effects must be

framed as an agent choice followed by a chance event. For simplicity, we assume in POGDDL

that at decision points for CHANCE, all legal actions are selected with equal probability. It
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would be a straightforward syntactic extension to allow specification of arbitrary probability

distributions over CHANCE actions.

6. Some case-by-case analysis is deemed to be necessary. Our approach is unlikely to be suit-

able for environments in which the solution depends on a high-level “trick”. It would not

be difficult to design environments that would be trivial for humans to solve and would be

difficult or impossible for our system.

7. Opponents are to be modeled based on an evaluation of their possible past decisions and

potential future prospects. We therefore emphasize the concept of information sets as corre-

sponding to plausible game histories rather than emphasizing belief states as a single logical

formula or probability distribution over primitive features at the current time step.

8. Identifying possible paths to a utility-maximizing goal state is not the key challenge. Agents

can easily simulate some sequences of actions that lead to desirable outcomes. The chal-

lenge instead lies in making decisions in the presence of other decision-making agents with

competing motivations.

9. Performance is measured by the expected payoff when playing against another agent or

perhaps a set of other agents in a tournament setting.

6.4.2 Conformant Planning

When there is uncertainty about the effects of an agent’s actions, opponents’ actions, or chance

probabilistic events, a planning agent should ideally identify a sequence of actions that leads to

the goal in every contingency. A search for such plans that guarantee success is called con-

formant planning [Goldman and Boddy, 1996]. Conformant planning addresses the problem

of acting under uncertainty where the decision maker has no sensors. From the perspective of

game playing, this corresponds to a situation where an agent is seeking a “forced win,” a strat-

egy that is guaranteed to succeed regardless of what the other player does. Russell and Wolfe

have explored such problems in the context of kriegspiel endgames [Russell and Wolfe, 2005;
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Wolfe and Russell, 2007]. The connection to this thesis is with the games described in Section 5.3

that have dominant solutions. Games (or subgames) with only pure or mixed strategy equilibria

(but no dominant strategy) cannot be solved by conformant planning techniques.

6.4.3 Planning with Knowledge and Sensing

The Planning with Knowledge and Sensing (PKS) planner uses principles of modal logic to frame

planning problems explicitly in terms of an agent’s knowledge [Bacchus and Petrick, 1998; Petrick

and Bacchus, 2002; Petrick and Bacchus, 2004]. Traditional planning approaches have framed

actions in terms of their preconditions and effects on the state of the world. Petrick and Bacchus

note that in uncertain environments, a planner must design a sequence of actions based only on

its knowledge (observations) rather than on the (unknown) true state of the world. In particular,

the plan must be constructed based on the planner’s understanding of how actions will change its

knowledge and on what knowledge the agent will actually have during the plan’s execution.

Instead of using a single database (i.e., of propositions which may become true or false, depend-

ing on the actions executed), PKS maintains a collection of databases, each maintaining a different

type of knowledge. Actions are defined in terms of how they modify each of these databases.

The first database Kf contains positive and negative literals. For each literal l ∈ Kf , the agent

knows the truth value: K(l). The second database Kw contains a collection of formulas φ. For

each φ, the agent knows that it is true or knows that it is false: K(φ) ∨K(¬φ). The third database

Kv stores information about function values that the agent will come to know at execution time.

Kw and Kv are used in the modeling of sensing actions that an agent may choose to perform. Kw

is used in the case of truth values and Kv in the case of function values. Kx contains information

about knowledge of “exclusive or” relationships among literals, such as the knowledge that exactly

one of l1 and l2 are true.

The agent’s knowledge base KB comprises the information in these four databases. Certain

types of knowledge cannot be modeled in this paradigm. For example, general disjunctions such

as K(P (a) ∨ Q(b)) are not allowed. Our game-playing system targets domains where an agent’s

knowledge might naturally include such disjunctions (e.g., that a player holds either or both of a
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pair of cards).

An example action for the BOMB IN THE TOILET domain would be

Action Precondition Effects

dunk(x) K(¬clogged) add(Kf , disarmed(x))

add(Kf , clogged)

flush add(Kf ,¬clogged)

In this domain, one of p packages contains a bomb. Dunking a package in the toilet has the

effect of disarming the bomb and clogging the toilet. Flushing the toilet unclogs it. The goal is to

ensure that the bomb is defused. A traditional encoding of this domain would have a proposition

xi for each package that is true iff the ith package contains an armed bomb. The FLUSH action

would encode the deleting of xi as its effect, which would do nothing if xi were already FALSE.

In devising a plan, traditional algorithms would end up keeping track of the different possibili-

ties with respect to which of the packages contains the bomb. PKS is able to reason that the only

way to know that the bomb is disarmed is to dunk all the packages, flushing in between each dunk.

Thus, it is able to avoid the paralysis that other planners encounter when the number of possible

worlds is large.

The authors of PKS acknowledge that “plans that could be discovered by reasoning at the level

of possible worlds might not be found” this approach. Domains that do require such reasoning are

the target of our approach in this work.

Another key distinction of our work is the ability of our POGDDL agent to implicitly reason

about knowledge that would be cumbersome to express explicitly in the language of a PKS knowl-

edge base. Our agent’s “knowledge” is simply a set of possible sequences of actions. If that set is

too large to enumerate, we have a straightforward method for sampling from it.

A related effort has focused on converting domain specifications in which actions are defined

in terms of the effects that they have on the world to specifications in which actions are defined

based on their effects on an agent’s knowledge [Petrick and Levesque, 2002].
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6.4.4 Logical Filtering

Somewhat related to planning under uncertainty is logical filtering. Amir and Russell [Amir and

Russell, 2005] show how an agent can update a belief state based on observations expressed in

logical form. They encode belief states and observations as propositional formulas. They prove

that, in general, it is not possible to maintain a compact belief state as the number of observations

increases, but they identify some special cases where the problem is tractable. Nance and Vogel

apply logical filtering to state estimation in kriegspiel [Nance et al., 2006]. However, to maintain

compactness they must assume that the type of piece moved on each turn is known, which is a

major simplification of the problem.

Approximate algorithms for logical filtering may drop some terms from the full belief state

formula in order to maintain compactness. However, it is possible that inferences for future obser-

vations that could have naturally reduced the complexity of the complete belief state formula may

no longer be applicable after the simplifying approximation. In our information set generation ap-

proach, the system is required to permanently maintain only the sequence of observations, which

is linear in the number of time steps. It is possible (and often the case) that observations at the end

of the sequence can uniquely determine the actions that were taken at earlier time steps. In many

such cases, we are able to make useful inferences that would not have been possible with logical

filtering.

6.4.5 Planning as Satisfiability

Kautz and Selman showed how AI planning problems can be converted to instances of SAT [Kautz

and Selman, 1996]. Because of the availability of optimized general-purpose SAT solvers [Eén and

Sörensson, 2006], they were able to solve classical planning problems faster than existing solvers.

This SATPLAN approach works by assigning a propositional variable to each state variable at each

time step, and to each grounded action at each time step. The preconditions and effects of actions

are encoded as Boolean constraints that must hold, depending on what actions are executed at each

time step. The number of time steps is fixed at n, and the SAT problem then has a satisfying
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assignment if and only if there is a plan with length (makespan) n that achieves the goal. If the

SAT solver declares that the problem is unsatisfiable, then the value of n must be increased and the

process repeats. Unfortunately, this approach will search in vain indefinitely if in fact there is no

plan of any length that achieves the goal.

In our initial work on information set generation [Richards and Amir, 2009], we applied the

SAT approach. The number of actions is fixed and known in each instance of the information

set generation problem (i.e., equal to the number of observations), so there is no need to guess the

value of n. The SAT formulation assumes that each game is framed in terms of pieces being moved

to various locations. We showed that every game can be framed this way (though not necessarily

naturally or efficiently). Generic constraints, independent of any particular game, encode the fact

that a piece may be in only one location at any given time. While this approach works effectively

for some games, one key challenge is that each satisfying assignment corresponds to only one node

in the information set. In order to generate all of the nodes in the information set, it is necessary

to iteratively add the negation of the formula corresponding to each discovered node back into to

the SAT problem. Rerunning the SAT-solver on the new problem forces the solver to find another

information set node if there is one.

6.5 Representation Languages

Since explicitly enumerating all of the nodes and branches in a game tree is not practical, a key

element to a general game-playing solution is to identify a description language that is sufficiently

expressive, compact, and intuitive for the game designer. Moreover, the language chosen must

facilitate the computations that are needed to reason effectively about the game. In this section, we

review several description languages for planning and game playing and discuss their advantages

and disadvantages.
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6.5.1 Multi-Agent Influence Diagrams

Koller and Milch have proposed a formalism called Multi-Agent Influence Diagrams (MAIDs)

for expressing games of imperfect information [Koller and Milch, 2001; Koller and Milch, 2003].

They note that the matrix and extensive forms of games can, in many cases, obscure important

game structures. MAIDs exploit structure that is common in many decision environments to im-

prove the compactness of the game representation and increase the efficiency of finding Nash equi-

librium solutions for the game. MAIDs combine some of the features of Bayesian Networks [Pearl,

1988] and Influence Diagrams [Howard and Matheson, 1984] .

A MAID is defined on a set of agentsA and variables V = X∪D∪U whereX is a set of chance

variables, D =
⋃
a∈ADa is a set of decision variables for each agent and U =

⋃
a∈A Ua are a set

of real-valued utility variables for each agent. These variables are arranged in a directed acyclic

graph, as in a Bayesian Network. Utility variables are always leaf nodes. Conditional probability

tables are specified for each interior node. The parents of a decision node are the variables whose

values are known when the agent must decide on a value for that decision variable.

The probability distribution over an agent’s decision nodes define that agent’s strategy for the

game, and the sum of the values of its utility variables determine its payoff. The value of each

utility variable must be a deterministic function of its parents (i.e., for each combination of values

of parent variables, exactly one value of each utility variable has probability 1).

The authors show how this structure can be exponentially more compact than the equivalent

game in extensive or matrix form and how the Nash equilibrium solution can be computed more

efficiently in many cases. The MAID representation of the game is not always more compact and

in some cases is exponentially larger. The main advantage of this representation is that there is an

easily derived graphical rule for identifying which of a node’s parents are relevant to the decision at

that point. Identifying variables that are irrelevant to a particular decision point is key to reducing

computational requirements for finding game-theoretic solutions.

MAIDs are an appealing option when (1) the game can naturally be framed as a sequence

of simple variables whose values are systematically disclosed over time, (2) decisions points are

naturally viewed as choosing the value of a single variable, and (3) the optimal choice for a variable
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does not depend on previous decisions that can have a large combination of values. The games that

we have presented as examples for POGDDL do not satisfy these criteria. For example, in a

poker game, the values of a chance variables could correspond to dealing a card to a hand. The

probability distribution for the result of each card dealt would depend on all of the previous cards

dealt. This would lead to some very large conditional probability tables. Furthermore, it is not

clear how numerical values for tracking dynamically changing values like a player’s running score

or pile of poker chips could be handled.

MAIDs are designed to facilitate the computation of Nash equilibria. We focus in this thesis

on games for which it would not be feasible to even express an explicit strategy for the full game

because of the overwhelming number of contingencies. Regardless of how it is represented, a

full strategy for a poker game would require a betting decision for every player for every possible

deal and every possible combination of previous bets. A full strategy for Racko would require a

decision about whether to draw or swap for every possible initial deal and sequence of preceding

swaps made by both players. The sheer number of possibilities for which a decision must be made

suggests that it is unlikely that a MAID would be able to provide a compact representation of the

game.

Another constraint that MAIDs have is that the information that a player will have at decision

time needs to be explicitly encoded through the structure of the MAID. Consider a situation in a

Racko game where P1 moves after the initial deal. The parents of that first decision node would

be the ten variables corresponding to the player’s ten slots. Suppose that P1 swaps a card from

slot s11. Then P2 will know the value of s11. The node corresponding to P2’s first decision should

have as parents the variables whose values are known. In this case, it was s11. But it could have

been any of the other nine slots. Therefore, we cannot simply define the parents of P2’s first

decision variable as the variables representing P1’s ten slots. Conceivably, an auxiliary variable

that takes on values covering all possible combinations of slots and cards could be added. This

node would be a descendant of P1’s first decision node and a parent of P2’s first decision node.

Such an auxiliary variable would need to be added between each pair of regular decision variables,

and would depend on all variables up to that point in the topological order. The constructs provided
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in POGDDL provide significantly more flexibility and expressivity in terms of what knowledge an

agent has when a decision needs to be made.

6.5.2 GDL

The Game Description Language (GDL) has been used to encode the games for the annual AAAI

General Game Playing Competition since 2005 [Genesereth et al., 2005; Love et al., 2006]. How-

ever, it can only describe games of perfect information. GDL models games with successor-state

axioms in a first-order-like syntax, with a semantics that is similar to Herbrand logic [Hinrichs and

Genesereth, 2006].

The theorem-proving mechanisms that are used to generate legal moves and next states rely on

negation as failure: everything that cannot be proved true is known to be false. This proof system

does not extend well to the case of imperfect information, where the rules of the game prohibit an

agent from being able to prove some things true or false with certainty.

6.5.3 GALA

Koller and Pfeffer embedded the GALA system [Koller and Pfeffer, 1995; Koller and Pfeffer,

1997], which does support imperfect information games, in the PROLOG programming language.

The system is built on the LP algorithms of [Koller et al., 1994], which find exact Nash equilibrium

solutions for games in time that is polynomial in the number of nodes in the game tree. These

algorithms rely on GALA’s ability to generate the full game tree and convert it to a sparse linear

program. Koller and Pfeffer note that in their experiments, generating the full tree took longer

than solving the resulting linear program. Unfortunately, generating the full game tree is tractable

for only very small games. Because GALA generates the full game tree, identifying individual

information sets is easy. The system only needs to be able to detect that two given nodes are in the

same information set. This can be done simply by checking the corresponding information states

for equality (e.g., through a lexicographical comparison of the reveal statement strings). This

is the same way potential paths are checked in the baseline information set algorithm described in
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Chapter 4. Because GALA assumes the full game tree can and will be generated, the language

constructs used in the reveal statements are not critically important.

GALA cannot perform any reasoning about the game until after the tree has been completely

traversed. Thus, for large games where complete traversal is infeasible, GALA has little utility. It

has not achieved widespread use.

6.5.4 RGL

The Regular Game Language [Kaiser, 2007] is another description language for imperfect infor-

mation games. Rules are described in PROLOG with a few additional special predicates. All game

rules are described in terms of the manipulation of pieces and locations. Each piece is character-

ized by one or more specific attributes (e.g., rank, color, suit). The reveal statements allow a

player to know a specific attribute for a particular piece at a known location. The ability to make

observations about movement are conspicuously absent. This formulation was a key inspiration

for our initial work on information set generation [Richards and Amir, 2009]. To our knowledge,

no GGP system has been built based on RGL, so it is difficult to assess its utility.

6.5.5 GDL-II

Thielscher has proposed an extension to GDL to support games of chance and imperfect informa-

tion [Thielscher, 2010]. In addition to the special predicates already included in GDL (role,

init, true, legal, does, next, terminal, goal), GDL-II supports predicates

of the form sees(R,P), which signifies that R perceives P in the next position. For example,

the following expressions specify part of the observation model for kriegspiel players:

sees(R,badMoveTryAgain) ⇐ does(R,M) ∧ ¬validMove(M)

sees(black,yourMoveNow) ⇐ does(white,M) ∧ ¬validMove(M)

sees(white,yourMoveNow) ⇐ does(black,M) ∧ ¬validMove(M)

Here, when an invalid move is made, both players get the same message that indicates that

an invalid move was attempted. Alternatively, when white makes a legal move, black’s only
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observation is yourMoveNow, with the intended meaning that it is now black’s turn to move.

Player white receives similar observations when black moves.

Another special predicate random denotes the role of chance. Players have common knowl-

edge that the choices made by random in position M will be selected uniformly at random from

among all R such that legal(R,M) holds.

Schiffel and Thielscher have shown how GDL-II can be fully embedded in the situation cal-

culus to provide a sound and complete reasoning system [Schiffel and Thielscher, 2011]. This is

important from a theoretical standpoint but does not really address the question of how reasoning

in large games should be done in practice, particularly when information sets are large. To date,

there is no implementation of a general game playing system based GDL-II.
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CHAPTER 7

CONCLUSION

In this work, we have addressed several key aspects of the problem of acting in partially observable

games in a general way, including representation, reasoning about player knowledge, and decision

making. We formally defined the Partially Observable Game Domain Definition Language, a sim-

ple extension of PDDL, to encode partially observable games. The language allows designers to

define game rules using logical constructs, including actions that specify (1) how the state of the

world changes based on agent decisions and (2) observations to be given to each player. State up-

dates in POGDDL are, in general, more computationally efficient than in other existing languages.

POGDDL also provides more convenient support for numerical quantities.

We presented a novel framework for reasoning about games in terms of information sets rather

than belief states. We provided a method of information set generation and sampling based on

constraint satisfaction, which scales much better than previous methods. We also showed that even

a naı̈ve method of information set generation can be efficiently scaled up to thousands of processors

on massively parallel machines. Because information set generation is only a subroutine in a game-

playing engine and because many of the other components are also efficiently parallelizable, this

suggests that game playing in partially observable games is a problem that can effectively scale to

hundreds of thousands of processors or more.

We have shown how our view of information sets as sequences of actions can be used to define

general opponent modeling techniques. These techniques are based on the idea that simulating

possible game histories up to an opponent’s previous decision point allows an agent to recon-

struct the game from that opponent’s perspective and reason about what that opponent would have

known and likely would have chosen. We have shown how to combine these opponent modeling

techniques with Monte Carlo Tree Search methods for forward search in order to produce three
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algorithms for single-point decision making in partially observable games. We have provided a

taxonomy of games that determines which of these algorithms is optimal, based on whether the

game has a dominant, pure, or mixed equilibrium solution. As a case study, we implemented our

opponent modeling techniques to the game of Scrabble. Our reasoning agent outperformed the de

facto world champion system.

Our combination of these components is the first implementation of a general player for im-

perfect information games that does not require complete enumeration of the game tree. We have

encoded several popular games, such as Racko and Battleship, that will provide future researchers

with benchmarks for comparison, as the state of the art in general game playing continues to ad-

vance.

Important areas for future research include efficient automatic translation of games rules be-

tween POGDDL and GDL-II, automatic generation of heuristic functions for imperfect infor-

mation games, and automated analysis to determine the appropriateness of the various decision-

making procedures defined here.

A key motivation for our work was to relax the standard game-theoretic assumption that agents

are computationally unbounded. Other standard requirements that need to be re-assessed in or-

der to broaden the applicability of game-playing systems to more realistic environments are the

assumption that there is common knowledge about the rules. Our working implementation of a

general system for reasoning about knowledge and making decisions in partially observable games

is a foundation upon which future work along these lines can be built.
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APPENDIX A

FORMAL GRAMMAR FOR POGDDL

Additions to PDDL 2.2 that are needed for POGDDL are shown in bold.

<domain> ::= (define (domain <name>)

[<require-def>]

[<types-def>]:typing

[<constants-def>]

[<predicate-def>]

[<functions-def>]:fluents

<structure-def>*)

<require-def> ::= (:requirements <require-key>+

<types-def> ::= (:types <typed list (name)>)

<constants-def> ::= (:constants <typed list (name)>)

<predicateds-def> ::= (:predicates <formula skeleton>+)

<formula skeleton> ::= (<function-symbol> <typed list (variable)>)

<formula skeleton> ::= (<predicate> <typed list (variable)>)

<predicate> ::= <name>

<variable> ::= ?<name>

<function-symbol> ::= <name>

<functions-def> ::= :fluents(:functions <function typed list (function skeleton)>)

<structure-def> ::= <action-def>

<structure-def> ::= :durative-actions <dudrative-action-def>

<structure-def> ::= :derived-predicates <derived-def>

<structure-def> ::= :pogdl <gain-def>
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<typed list(x)> ::= x∗

<typed list(x)> ::= :typing x+- <type> <typed list(x)>

<primitive-type> ::= <name>

<type> ::= (either <primitive-type+ )

<type> ::= <primitive-type>

<function typed list (x)> ::= x∗

<function typed list (x)> ::= :typing x+ - <function type> <function typed list(x)>

<function type> ::= number

<action-def> ::= (:action <action-symbol>

:parameters(<typed list (variable)>)

<action-def body>)

<action-symbol> ::= <name>

<action-def body> ::= [:precondition <GD>]

[:effect <effect>]

<GD> ::= ()

<GD> ::= <atomic formula(term)>

<GD> ::= :negative-preconditions <literal(term)>

<GD> ::= (and <GD>*)

<GD> ::= :disjunctive-preconditions (or <GD>*)

<GD> ::= :disjunctive-preconditions (not <GD>)

<GD> ::= :disjunctive-preconditions (imply <GD> <GD>)

<GD> ::= :existential-preconditions (exists (<typed list(variable)>*) <GD>)

<GD> ::= :universal-preconditions (forall (<typed list(variable)>*) <GD>)

<GD> ::= :fluents <f-comp>

<f-comp> ::= (<binary-comp> <f-exp> <f-exp>)

<literal(t)> ::= <atomic formula(t)>

<literal(t)> ::= (not <atomic formula(t)>

<atomic formula(t)> ::= (<predicate> t∗)
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<term> ::= <name>

<term> ::= <variable>

<f-exp> ::= <number>

<f-exp> ::= (<binary-op> <f-exp> <f-exp>)

<f-exp> ::= (- <f-exp>)

<f-exp> ::= <f-head>

<f-head> ::= (<function-symbol> <term>*)

<f-head> ::= <function-symbol>

<binary-op> ::= + | - | * | /

<binary-comp> ::= > | < | = | <= | >=

<number> ::= integer or floats of form n.n

<effect> ::= ()

<effect> ::= (and <c-effect>*)

<effect> ::= <c-effect>

<c-effect> ::= :conditional-effects (forall (<variable>* <efffect>)

<c-effect> ::= :conditional-effects (when <GD> <cond-effect>)

<c-effect> ::= <p-effect>

<p-effect> ::= (<assign-op> <f-head> <f-exp>)

<p-effect> ::= (not <atomic formula(term)>)

<p-effect> ::= <atomic formula(term)>)

<p-effect> ::= :fluents (<assign-op> <f-head> <f-exp>)

<p-effect> ::= :pogdl<observation>

<observation> ::= :pogdl(observe (<typed list(variable)>

( <atomic formula(term)>)* )

<gain-def> ::= :pogdl (:gain <typed list(variable)> <f-exp> <GD>)

<cond-effect> ::= (and <p-effect>*)

<cond-effect> ::= <p-effect>

<assign-op> ::= assign
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<assign-op> ::= scale-up

<assign-op> ::= scale-down

<assign-op> ::= increase

<assign-op> ::= decrease

<derived-def> ::= (:derived <typed list (variable)> <GD>)
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APPENDIX B

SELECTED POGDDL GAME DESCRIPTIONS

B.1 Battleship
(define (domain battleship)
(:requirements :strips :typing :pogddl :derived-predicates :fluents)
(:types col phase position role row ship)
(:constants

chance p1 p2 - role
placing shooting - phase
all others u - other)

(:predicates
; encodes ship location
(at ?p - role ?s - ship ?c - col ?r - row)
; true if ?p has already shot at ?c, ?r
(guessed ?p - role ?c - col ?r - row)
(lastshot ?p - role ?c - col ?r - row)
(occupied ?p - role ?c - col ?r - row)
; used sequence placement of ships from smallest to largest
(current ?p - role ?s - ship)
(inphase ?p - phase)
(last ?p - role ?s - ship)
(next ?p1 ?p2 - role ?s1 ?s2 - ship)
; restricts placement of horizontal ships to adjacent cells
(adjacentc ?c1 ?c2 - col)
; restricts placement of horizontal ships to vertical cells
(adjacentr ?r1 ?r2 - row)
(whoseturn ?p - role)
(opponent ?r ?o - role)
(pending ?p - role)
(size2 ?s - ship)
(size3 ?s - ship)
(size4 ?s - ship)
(size5 ?s - ship)

)
(:functions

; # of opponent’s ships sunk
(shipssunk ?p - role)
; number of hits per ship
(nhits ?p - role ?s - ship)
; # hits to sink each ship
(maxhits ?s - ship)
; # of ships needed to sink to win
(needtosink)
; # of hits on opponent ships
(totalhits ?p - role)

)
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; Action for placing a ship. Players alternate placing
; ships (in a fixed order) until all 10 ships are placed
; Ships are placed in a straight line and may not overlap
; ?pc - role to place current ship
; ?pn - role to place next ship
; ?s1 - type of ship to place now
; ?s2 - type of ship to place next
; ?d - across or down
; ?c1-?c5 names of cells that ship will occupy
(:action place-across-two

:parameters (?pc ?pn - role ?s1 ?s2 - ship
?r - row ?c1 ?c2 - col)

:precondition (and
(whoseturn ?pc)
(inphase placing)
(current ?pc ?s1)
; for determining next ships to be placed
(next ?pc ?pn ?s1 ?s2)
; make sure ship is right length
(size2 ?s1)
; no overlapping ships
(not (occupied ?pc ?c1 ?r))
(not (occupied ?pc ?c2 ?r))
; cells must be in same row or column
(adjacentc ?c1 ?c2))

:effect (and
(not (whoseturn ?pc))
(whoseturn ?pn)
(not (current ?pc ?s1))
; set next ship to be placed
(current ?pn ?s2)
; prevent future ships here
(occupied ?pc ?c1 ?r)
(occupied ?pc ?c2 ?r)
; records location of ship for shooting phase
(at ?pc ?s1 ?c1 ?r)
(at ?pc ?s1 ?c2 ?r)
(when (last ?pc ?s1) ;

(and
(not (inphase placing))
(inphase shooting)))

; Opponent does NOT observe location
(observe (?pc (placed2a ?pc ?pn ?s1 ?s2

?r ?c1 ?c2 ))
(?pn (placed2s ?pc ?pn ?s1 ?s2))))) ;
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(:action place-across-three
:parameters (?pc ?pn - role ?s1 ?s2 - ship

?r - row ?c1 ?c2 ?c3 - col)
:precondition (and

(whoseturn ?pc)
(inphase placing)
(current ?pc ?s1)
; for determining next ships to be placed
(next ?pc ?pn ?s1 ?s2)
; make sure ship is right length
(size3 ?s1)
; no overlapping ships
(not (occupied ?pc ?c1 ?r))
(not (occupied ?pc ?c2 ?r))
(not (occupied ?pc ?c3 ?r))
; cells must be in same row or column
(adjacentc ?c1 ?c2)
(adjacentc ?c2 ?c3))

:effect (and
(not (whoseturn ?pc))
(whoseturn ?pn)
(not (current ?pc ?s1))
; set next ship to be placed
(current ?pn ?s2)
; prevent future ships here
(occupied ?pc ?c1 ?r)
(occupied ?pc ?c2 ?r)
(occupied ?pc ?c3 ?r)
; records location of ship for shooting phase
(at ?pc ?s1 ?c1 ?r)
(at ?pc ?s1 ?c2 ?r)
(at ?pc ?s1 ?c3 ?r)
(when (last ?pc ?s1) ;

(and
(not (inphase placing))
(inphase shooting)))

; Opponent does NOT observe location
(observe (?pc (placed3a ?pc ?pn ?s1 ?s2

?r ?c1 ?c2 ?c3 ))
(?pn (placed3s ?pc ?pn ?s1 ?s2))))) ;
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(:action place-down-two
:parameters (?pc ?pn - role ?s1 ?s2 - ship

?c - col ?r1 ?r2 - row)
:precondition (and

(whoseturn ?pc)
(inphase placing)
(current ?pc ?s1)
; for determining next ships to be placed
(next ?pc ?pn ?s1 ?s2)
(size2 ?s1)
; no overlapping ships
(not (occupied ?pc ?c ?r1))
(not (occupied ?pc ?c ?r2))
; cells must be in same row or column
(adjacentr ?r1 ?r2))

:effect (and
(not (whoseturn ?pc))
(whoseturn ?pn)
(not (current ?pc ?s1))
; set next ship to be placed
(current ?pn ?s2)
; prevent future ships here
(occupied ?pc ?c ?r1)
(occupied ?pc ?c ?r2)
; records location of ship for shooting phase
(at ?pc ?s1 ?c ?r1)
(at ?pc ?s1 ?c ?r2)
(when (last ?pc ?s1) ;

(and
(not (inphase placing))
(inphase shooting)))

; Opponent does NOT observe location
(observe (?pc (placed2d ?pc ?pn ?s1 ?s2

?c ?r1 ?r2))
(?pn (placed2s ?pc ?pn ?s1 ?s2))))) ;
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(:action place-down-three
:parameters (?pc ?pn - role ?s1 ?s2 - ship

?c - col ?r1 ?r2 ?r3 - row)
:precondition (and

(whoseturn ?pc)
(inphase placing)
(current ?pc ?s1)
; for determining next ships to be placed
(next ?pc ?pn ?s1 ?s2)
(size3 ?s1)
; no overlapping ships
(not (occupied ?pc ?c ?r1))
(not (occupied ?pc ?c ?r2))
(not (occupied ?pc ?c ?r3))
; cells must be in same row or column
(adjacentr ?r1 ?r2)
(adjacentr ?r2 ?r3))

:effect (and
(not (whoseturn ?pc))
(whoseturn ?pn)
(not (current ?pc ?s1))
; set next ship to be placed
(current ?pn ?s2)
; prevent future ships here
(occupied ?pc ?c ?r1)
(occupied ?pc ?c ?r2)
(occupied ?pc ?c ?r3)
; records location of ship for shooting phase
(at ?pc ?s1 ?c ?r1)
(at ?pc ?s1 ?c ?r2)
(at ?pc ?s1 ?c ?r3)
(when (last ?pc ?s1) ;

(and
(not (inphase placing))
(inphase shooting)))

; Opponent does NOT observe location
(observe (?pc (placed3d ?pc ?pn ?s1 ?s2

?c ?r1 ?r2 ?r3))
(?pn (placed3s ?pc ?pn ?s1 ?s2))))) ;
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; Players alternate ’firing’ at a single cell
; Different observations for misses and hits
; Both players ’receive’ the same message
(:action shoot

:parameters (?p ?o - role ?c - col ?r - row)
:precondition (and

(inphase shooting)
(whoseturn ?p)
(opponent ?p ?o)
(not (guessed ?p ?c ?r)))

:effect (and
(not (whoseturn ?p))
(whoseturn chance)
(pending ?o)
(observe (all (shotat ?p ?c ?r)))
(guessed ?p ?c ?r);
(lastshot ?p ?c ?r))) ; Can’t guess same cell twice

(:action declare-miss
:parameters (?p ?o - role ?c - col ?r - row)
:precondition (and

(whoseturn chance)
(opponent ?p ?o)
(pending ?o)
(lastshot ?p ?c ?r)
(not (occupied ?o ?c ?r)))

:effect (and
(not (whoseturn chance))
(not (pending ?o))
(not (lastshot ?p ?c ?r))
(whoseturn ?o)
(observe (all (missed ?p ?c ?r)))))

(:action declare-hit
:parameters (?p ?o - role ?c - col ?r - row ?s - ship)
:precondition (and

(whoseturn chance)
(opponent ?p ?o)
(pending ?o)
(lastshot ?p ?c ?r)
(at ?o ?s ?c ?r)
(occupied ?o ?c ?r)
(< (nhits ?o ?s) (maxhits ?s)))

:effect (and
(not (whoseturn chance))
(not (pending ?o))
(not (lastshot ?p ?c ?r))
(whoseturn ?o)
(increase (nhits ?o ?s) 1)
(increase (totalhits ?p) 1)
(observe (all (hit ?p ?s)))))
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(:action declare-sunk
:parameters (?p ?o - role ?c - col ?r - row ?s - ship)
:precondition (and

(whoseturn chance)
(opponent ?p ?o)
(pending ?o)
(lastshot ?p ?c ?r)
(at ?o ?s ?c ?r)
(occupied ?o ?c ?r)
(= (nhits ?o ?s) (maxhits ?s)))

:effect (and
(not (whoseturn chance))
(not (pending ?o))
(not (lastshot ?p ?c ?r))
(whoseturn ?o)
(increase (shipssunk ?p) 1)
(increase (totalhits ?p) 1)
(observe (all (sunk ?p ?s)))))

; A player wins when all five of the opponent’s ships are sunk
(:gain ?p - role 1

(= (shipssunk ?p) (needtosink))
)
)
(define (problem b1)
(:domain battleship)
(:objects

col01 col02 col03 col04 - col
row01 row02 row03 row04 - row
destroyer cruiser submarine battleship carrier - ship

)
(:init

(size2 destroyer)
(size3 cruiser)
(size3 submarine)
(size4 battleship)
(size5 carrier)
(whoseturn p1)
(inphase placing)
(= (shipssunk p1) 0)
(= (shipssunk p2) 0)
(= (totalhits p1) 0)
(= (totalhits p2) 0)
(= (needtosink) 2)
(= (nhits p1 destroyer) 0)
(= (nhits p2 destroyer) 0)
(= (nhits p1 cruiser) 0)
(= (nhits p2 cruiser) 0)
(= (nhits p1 submarine) 0)
(= (nhits p2 submarine) 0)
(= (nhits p1 battleship) 0)
(= (nhits p2 battleship) 0)
(= (nhits p1 carrier) 0)
(= (nhits p2 carrier) 0)
(= (maxhits destroyer) 1)
(= (maxhits cruiser) 2)
(= (maxhits submarine) 2)
(= (maxhits battleship) 3)
(= (maxhits carrier) 4)
(current p1 destroyer)
(next p1 p2 destroyer destroyer)
(next p2 p1 destroyer cruiser)
(next p1 p2 cruiser cruiser)
(next p2 p1 cruiser submarine)
(next p1 p2 submarine submarine)
(next p2 p1 submarine battleship)
(next p1 p2 battleship battleship)
(next p2 p1 battleship carrier)
(next p1 p2 carrier carrier)
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(next p2 p1 carrier destroyer)
(last p2 cruiser)
(opponent p1 p2)
(opponent p2 p1)
(adjacentc col01 col02)
(adjacentc col02 col03)
(adjacentc col03 col04)
(adjacentr row01 row02)
(adjacentr row02 row03)
(adjacentr row03 row04)

))
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B.2 Racko
(define (domain racko)
(:requirements :strips :typing pogddl :derived-predicates)
(:types card slot role phase)
(:constants

dealer - slot
chance p1 p2 - role
dealing dealtop randomdraw choosesrc drew - phase
all others u - other)

(:predicates
(at ?c - card ?s - slot)
(drawn ?d ?cd - card)
(drawing ?p - role)
(nextdeal ?s1 ?s2 - slot)
(lastdeal ?s - slot)
(current ?s - slot)
(currentdrawn ?c - card)
(inphase ?p - phase)
(owns ?p - role ?s - slot)
(same ?c1 ?c2 - card)
(successor-c ?c2 ?c1 - card)
(successor-s ?s2 ?s1 - slot)
(succeeds-s ?s3 ?s1 - slot)
(succeeds-c ?c3 ?c1 - card)
(top ?c - card)
(whoseturn ?r - role)
(oppof ?r ?other - role)

)
(:derived (succeeds-s ?s3 ?s1 - slot)

(or (successor-s ?s3 ?s1)
(exists (?s2 - slot)

(and
(successor-s ?s3 ?s2)
(succeeds-s ?s2 ?s1)))))

(:derived (succeeds-c ?c3 ?c1 - card)
(or (successor-c ?c3 ?c1)

(exists (?c2 - card)
(and

(successor-c ?c3 ?c2)
(succeeds-c ?c2 ?c1)))))

(:action deal
:parameters (?dest ?next - slot ?p - role ?c - card)
:precondition (and

(inphase dealing)
(whoseturn chance)
(nextdeal ?next ?dest)
(owns ?p ?dest)
(current ?dest)
(at ?c dealer))

:effect (and
(when (lastdeal ?dest)

(and
(not (inphase dealing))
(inphase dealtop)))

(not (at ?c dealer))
(at ?c ?dest)
(not (current ?dest))
(current ?next)
(observe (?p (dealt ?dest ?c))

(others (dealt ?dest u)))))
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(:action init-top
:parameters (?c - card)
:precondition (and

(inphase dealtop)
(whoseturn chance)
(at ?c dealer))

:effect (and
(not (at ?c dealer))
(top ?c)
(not (whoseturn chance))
(not (inphase dealtop))
(inphase choosesrc)
(whoseturn p1)
(observe (all (firsttop ?c)))

))
(:action choose-draw

:parameters (?p - role)
:precondition (and

(inphase choosesrc)
(whoseturn ?p))

:effect (and
(not (inphase choosesrc))
(not (whoseturn ?p))
(whoseturn chance)
(drawing ?p)
(inphase randomdraw)
(observe (all (randomlydrawing)))

))
(:action random-draw

:parameters (?p - role ?t ?c ?cd - card)
:precondition (and

(inphase randomdraw)
(whoseturn chance)
(currentdrawn ?cd)
(drawing ?p)
(top ?t)
(at ?c dealer))

:effect (and
(not (inphase randomdraw))
(inphase drew)
(not (drawing ?p))
(not (whoseturn chance))
(whoseturn ?p)
(drawn ?c ?cd)
(not (at ?c dealer))
(not (top ?t))
(observe (?p (drawncard ?c))

(others (drawncard u)))
))
(:action pass

:parameters (?p ?o - role ?d ?cd ?cdn - card)
:precondition (and

(whoseturn ?p)
(oppof ?o ?p)
(currentdrawn ?cd)
(successor-c ?cdn ?cd)
(drawn ?d ?cd)
(inphase drew))

:effect (and
(not (whoseturn ?p))
(whoseturn ?o)
(not (currentdrawn ?cd))
(currentdrawn ?cdn)
(not (inphase drew))
(inphase choosesrc)
(not (drawn ?d ?cd))
(top ?d)
(observe (all (newtop ?d)))))
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(:action swap-top
:parameters (?p ?o - role ?t - card ?s - slot ?c - card)
:precondition (and

(inphase choosesrc)
(whoseturn ?p)
(oppof ?o ?p)
(not (same ?t ?c))
(top ?t)
(owns ?p ?s)
(at ?c ?s))

:effect (and
(not (whoseturn ?p))
(whoseturn ?o)
(not (top ?t))
(not (at ?c ?s))
(top ?c)
(at ?t ?s)
(observe (all (swapt ?c ?t ?s)))
))

(:action swap-drawn
:parameters (?p ?o - role ?s - slot ?c ?d ?cd ?cdn - card)
:precondition (and

(inphase drew)
(whoseturn ?p)
(successor-c ?cdn ?cd)
(currentdrawn ?cd)
(drawn ?d ?cd)
(oppof ?o ?p)
(not (same ?c ?d))
(owns ?p ?s)
(at ?c ?s))

:effect (and
(not (whoseturn ?p))
(whoseturn ?o)
(not (currentdrawn ?cd))
(currentdrawn ?cdn)
(not (inphase drew))
(inphase choosesrc)
(not (drawn ?d ?cd))
(not (at ?c ?s))
(top ?c)
(at ?d ?s)
(observe (?p (swapd ?d ?c ?s))

(others (swapd u ?c ?s)))
))

(:gain ?p - role 1
(and

(not (inphase dealing))
(not

(exists (?s1 ?s2 - slot ?c1 ?c2 - card)
(and

(owns ?p ?s1)
(successor-s ?s2 ?s1)
(at ?c1 ?s1)
(at ?c2 ?s2)
(not (succeeds-c ?c2 ?c1)))))))

)

128



(define (problem racko10-60)
(:domain racko)
(:objects

u01 d01 u02 d02 u03 d03 u04 d04 u05 d05
u06 d06 u07 d07 u08 d08 u09 d09 u10 d10 - slot
c01 c02 c03 c04 c05 c06 c07 c08 c09 c10
c11 c12 c13 c14 c15 c16 c17 c18 c19 c20
c21 c22 c23 c24 c25 c26 c27 c28 c29 c30
c31 c32 c33 c34 c35 c36 c37 c38 c39 c40
c41 c42 c43 c44 c45 c46 c47 c48 c49 c50
c51 c52 c53 c54 c55 c56 c57 c58 c59 c60 - card)

(:init
(inphase dealing)
(current u01)
(currentdrawn c01)
(lastdeal d10)
(whoseturn chance)
(oppof p1 p2)
(oppof p2 p1)
(at c01 dealer)
(at c02 dealer)
(at c03 dealer)
(at c04 dealer)
(at c05 dealer)
(at c06 dealer)
(at c07 dealer)
(at c08 dealer)
(at c09 dealer)
(at c10 dealer)
(at c11 dealer)
(at c12 dealer)
(at c13 dealer)
(at c14 dealer)
(at c15 dealer)
(at c16 dealer)
(at c17 dealer)
(at c18 dealer)
(at c19 dealer)
(at c20 dealer)
(at c21 dealer)
(at c22 dealer)
(at c23 dealer)
(at c24 dealer)
(at c25 dealer)
(at c26 dealer)
(at c27 dealer)
(at c28 dealer)
(at c29 dealer)
(at c30 dealer)
(at c31 dealer)
(at c32 dealer)
(at c33 dealer)
(at c34 dealer)
(at c35 dealer)
(at c36 dealer)
(at c37 dealer)
(at c38 dealer)
(at c39 dealer)
(at c40 dealer)
(at c41 dealer)
(at c42 dealer)
(at c43 dealer)
(at c44 dealer)
(at c45 dealer)
(at c46 dealer)
(at c47 dealer)
(at c48 dealer)
(at c49 dealer)
(at c50 dealer)
(at c51 dealer)
(at c52 dealer)
(at c53 dealer)
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(at c54 dealer)
(at c55 dealer)
(at c56 dealer)
(at c57 dealer)
(at c58 dealer)
(at c59 dealer)
(at c60 dealer)
(nextdeal d01 u01)
(nextdeal u02 d01)
(nextdeal d02 u02)
(nextdeal u03 d02)
(nextdeal d03 u03)
(nextdeal u04 d03)
(nextdeal d04 u04)
(nextdeal u05 d04)
(nextdeal d05 u05)
(nextdeal u06 d05)
(nextdeal d06 u06)
(nextdeal u07 d06)
(nextdeal d07 u07)
(nextdeal u08 d07)
(nextdeal d08 u08)
(nextdeal u09 d08)
(nextdeal d09 u09)
(nextdeal u10 d09)
(nextdeal d10 u10)
(nextdeal dealer d10)
(owns p1 u01)
(owns p2 d01)
(owns p1 u02)
(owns p2 d02)
(owns p1 u03)
(owns p2 d03)
(owns p1 u04)
(owns p2 d04)
(owns p1 u05)
(owns p2 d05)
(owns p1 u06)
(owns p2 d06)
(owns p1 u07)
(owns p2 d07)
(owns p1 u08)
(owns p2 d08)
(owns p1 u09)
(owns p2 d09)
(owns p1 u10)
(owns p2 d10)
(same c01 c01)
(same c02 c02)
(same c03 c03)
(same c04 c04)
(same c05 c05)
(same c06 c06)
(same c07 c07)
(same c08 c08)
(same c09 c09)
(same c10 c10)
(same c11 c11)
(same c12 c12)
(same c13 c13)
(same c14 c14)
(same c15 c15)
(same c16 c16)
(same c17 c17)
(same c18 c18)
(same c19 c19)
(same c20 c20)
(same c21 c21)
(same c22 c22)
(same c23 c23)
(same c24 c24)
(same c25 c25)
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(same c26 c26)
(same c27 c27)
(same c28 c28)
(same c29 c29)
(same c30 c30)
(same c31 c31)
(same c32 c32)
(same c33 c33)
(same c34 c34)
(same c35 c35)
(same c36 c36)
(same c37 c37)
(same c38 c38)
(same c39 c39)
(same c40 c40)
(same c41 c41)
(same c42 c42)
(same c43 c43)
(same c44 c44)
(same c45 c45)
(same c46 c46)
(same c47 c47)
(same c48 c48)
(same c49 c49)
(same c50 c50)
(same c51 c51)
(same c52 c52)
(same c53 c53)
(same c54 c54)
(same c55 c55)
(same c56 c56)
(same c57 c57)
(same c58 c58)
(same c59 c59)
(same c60 c60)
(successor-s u02 u01)
(successor-s d02 d01)
(successor-s u03 u02)
(successor-s d03 d02)
(successor-s u04 u03)
(successor-s d04 d03)
(successor-s u05 u04)
(successor-s d05 d04)
(successor-s u06 u05)
(successor-s d06 d05)
(successor-s u07 u06)
(successor-s d07 d06)
(successor-s u08 u07)
(successor-s d08 d07)
(successor-s u09 u08)
(successor-s d09 d08)
(successor-s u10 u09)
(successor-s d10 d09)
(successor-c c02 c01)
(successor-c c03 c02)
(successor-c c04 c03)
(successor-c c05 c04)
(successor-c c06 c05)
(successor-c c07 c06)
(successor-c c08 c07)
(successor-c c09 c08)
(successor-c c10 c09)
(successor-c c11 c10)
(successor-c c12 c11)
(successor-c c13 c12)
(successor-c c14 c13)
(successor-c c15 c14)
(successor-c c16 c15)
(successor-c c17 c16)
(successor-c c18 c17)
(successor-c c19 c18)
(successor-c c20 c19)
(successor-c c21 c20)
(successor-c c22 c21)
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(successor-c c23 c22)
(successor-c c24 c23)
(successor-c c25 c24)
(successor-c c26 c25)
(successor-c c27 c26)
(successor-c c28 c27)
(successor-c c29 c28)
(successor-c c30 c29)
(successor-c c31 c30)
(successor-c c32 c31)
(successor-c c33 c32)
(successor-c c34 c33)
(successor-c c35 c34)
(successor-c c36 c35)
(successor-c c37 c36)
(successor-c c38 c37)
(successor-c c39 c38)
(successor-c c40 c39)
(successor-c c41 c40)
(successor-c c42 c41)
(successor-c c43 c42)
(successor-c c44 c43)
(successor-c c45 c44)
(successor-c c46 c45)
(successor-c c47 c46)
(successor-c c48 c47)
(successor-c c49 c48)
(successor-c c50 c49)
(successor-c c51 c50)
(successor-c c52 c51)
(successor-c c53 c52)
(successor-c c54 c53)
(successor-c c55 c54)
(successor-c c56 c55)
(successor-c c57 c56)
(successor-c c58 c57)
(successor-c c59 c58)
(successor-c c60 c59)

))
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B.3 Game of Pure Strategy (GOPS)
(define (domain gops)
(:requirements :strips :typing :pogddl :fluents)
(:types card slot role phase other)
(:constants

dealing announcing bidding determining - phase
chance p1 p2 - role
b01 dealer - slot
all others u - other)

(:predicates
(at ?c - card ?s - slot)
(first ?p - role)
(owns ?p - role ?s - slot)
(lastdeal ?s - slot)
(lastbid ?s - slot)
(whoseturn ?p - role)
(inphase ?p - phase)
(bidby1 ?c - card)
(bidby2 ?c - card)
(oppof ?r ?o - role)
(same ?c1 ?c2 - card)

(current ?s - slot)
(next ?s2 ?s1 - slot)

)
(:functions

(score ?p - role)
(value ?c - card)

)
(:action deal

:parameters (?c - card ?d ?n - slot ?p - role)
:precondition (and

(whoseturn chance)
(inphase dealing)
(at ?c dealer)
(owns ?p ?d)
(current ?d)
(next ?n ?d))

:effect (and
(observe (?p (deal ?c ?d ?n ?p))

(others (deal u ?d ?n ?p)))
(not (at ?c dealer))
(at ?c ?d)
(not (current ?d))
(current ?n)
(when (lastdeal ?d)

(and
(not (inphase dealing))
(inphase announcing)
(current b01)))))

(:action announce
:parameters (?c - card ?s - slot)
:precondition (and

(inphase announcing)
(whoseturn chance)
(at ?c ?s)
(current ?s))

:effect (and
(not (inphase announcing))
(inphase bidding)
(not (whoseturn chance))
(whoseturn p1)
(observe (all (announce ?c ?s)))))
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(:action bid1
:parameters (?c - card ?s - slot)
:precondition (and

(inphase bidding)
(whoseturn p1)
(owns p1 ?s)
(at ?c ?s))

:effect (and
(not (whoseturn p1))
(observe (p1 (bid1 ?c ?s))

(p2 (bid1 u ?s)))
(whoseturn p2)
(not (at ?c ?s))
(bidby1 ?c)))

(:action bid2
:parameters (?c - card ?s - slot)
:precondition (and

(inphase bidding)
(whoseturn p2)
(owns p2 ?s)
(at ?c ?s))

:effect (and
(not (whoseturn p2))
(whoseturn chance)
(not (inphase bidding))
(inphase determining)
(observe (p2 (bid2 ?c ?s))

(p1 (bid2 u ?s)))
(not (at ?c ?s))
(bidby2 ?c)))

(:action determine
:parameters (?c1 ?c2 ?b - card ?s1 ?s2 - slot)
:precondition (and

(whoseturn chance)
(inphase determining)
(current ?s1)
(next ?s2 ?s1)
(bidby1 ?c1)
(bidby2 ?c2)
(at ?b ?s1))

:effect (and
(not (inphase determining))
(inphase announcing)
(not (current ?s1))
(not (bidby1 ?c1))
(not (bidby2 ?c2))
(when (not (lastbid ?s1))

(current ?s2))
(when (> (value ?c1) (value ?c2))

(and
(increase (score p1) (value ?b))
(observe (all (player1wins ?c1 ?c2 ?b ?s1 ?s2)))))

(when (< (value ?c1) (value ?c2))
(and

(increase (score p2) (value ?b))
(observe (all (player2wins ?c1 ?c2 ?b ?s1 ?s2)))))))

(:gain ?p - role 1
(or

(and
(first ?p)
(> (score p1) (score p2)))

(and
(not (first ?p))
(> (score p2) (score p1))))

)
)
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(define (problem gops10-0)
(:domain gops)
(:objects

s11 s21 b02 s12 s22 b03 s13 s23 b04 s14
s24 b05 s15 s25 b06 s16 s26 b07 s17 s27
b08 s18 s28 b09 s19 s29 b10 s110 s210 - slot
c01 c02 c03 c04 c05 c06 c07 c08 c09 c10
c11 c12 c13 c14 c15 c16 c17 c18 c19 c20
c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 - card)

(:init
(first p1)
(lastdeal s210)
(lastbid b10)
(whoseturn chance)
(inphase dealing)
(current b01)
(next b02 b01)
(next b03 b02)
(next b04 b03)
(next b05 b04)
(next b06 b05)
(next b07 b06)
(next b08 b07)
(next b09 b08)
(next b10 b09)
(next s11 b10)
(next s21 s11)
(next s12 s21)
(next s22 s12)
(next s13 s22)
(next s23 s13)
(next s14 s23)
(next s24 s14)
(next s15 s24)
(next s25 s15)
(next s16 s25)
(next s26 s16)
(next s17 s26)
(next s27 s17)
(next s18 s27)
(next s28 s18)
(next s19 s28)
(next s29 s19)
(next s110 s29)
(next s210 s110)
(next b01 s210)
(owns chance b01)
(owns p1 s11)
(owns p2 s21)
(owns chance b02)
(owns p1 s12)
(owns p2 s22)
(owns chance b03)
(owns p1 s13)
(owns p2 s23)
(owns chance b04)
(owns p1 s14)
(owns p2 s24)
(owns chance b05)
(owns p1 s15)
(owns p2 s25)
(owns chance b06)
(owns p1 s16)
(owns p2 s26)
(owns chance b07)
(owns p1 s17)
(owns p2 s27)
(owns chance b08)
(owns p1 s18)
(owns p2 s28)
(owns chance b09)
(owns p1 s19)
(owns p2 s29)
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(owns chance b10)
(owns p1 s110)
(owns p2 s210)
(at c01 dealer)
(at c02 dealer)
(at c03 dealer)
(at c04 dealer)
(at c05 dealer)
(at c06 dealer)
(at c07 dealer)
(at c08 dealer)
(at c09 dealer)
(at c10 dealer)
(at c11 dealer)
(at c12 dealer)
(at c13 dealer)
(at c14 dealer)
(at c15 dealer)
(at c16 dealer)
(at c17 dealer)
(at c18 dealer)
(at c19 dealer)
(at c20 dealer)
(at c21 dealer)
(at c22 dealer)
(at c23 dealer)
(at c24 dealer)
(at c25 dealer)
(at c26 dealer)
(at c27 dealer)
(at c28 dealer)
(at c29 dealer)
(at c30 dealer)
(= (value c01) 1)
(= (value c02) 2)
(= (value c03) 3)
(= (value c04) 4)
(= (value c05) 5)
(= (value c06) 6)
(= (value c07) 7)
(= (value c08) 8)
(= (value c09) 9)
(= (value c10) 10)
(= (value c11) 11)
(= (value c12) 12)
(= (value c13) 13)
(= (value c14) 14)
(= (value c15) 15)
(= (value c16) 16)
(= (value c17) 17)
(= (value c18) 18)
(= (value c19) 19)
(= (value c20) 20)
(= (value c21) 21)
(= (value c22) 22)
(= (value c23) 23)
(= (value c24) 24)
(= (value c25) 25)
(= (value c26) 26)
(= (value c27) 27)
(= (value c28) 28)
(= (value c29) 29)
(= (value c30) 30)
(= (score p1) 0)
(= (score p2) 0)

))
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B.4 Difference Game
(define (domain difference)
(:requirements :strips :typing :pogddl :fluents)
(:types card slot role phase)
(:constants

chance p1 p2 - role
drawing playing - phase
all others u - other)

(:predicates
(at ?c - card ?s - slot)
(center ?c - card)
(dealer ?c - card)
(owns ?p - role ?s - slot)
(inphase ?p - phase)
(whoseturn ?r - role)
(oppof ?r ?other - role)
(pending ?p - role)
(empty ?s - slot)
(first ?r - role)

)
(:functions

(score ?p - role)
(value ?c - card)
(diff ?c1 ?c2 - card)

)
(:action draw
:parameters (?p ?o - role ?s - slot ?c - card)
:precondition (and

(inphase drawing)
(whoseturn chance)
(pending ?p)
(oppof ?p ?o)
(owns ?p ?s)
(dealer ?c)
(empty ?s))

:effect (and
(not (inphase drawing))
(not (whoseturn chance))
(not (pending ?p))
(not (dealer ?c))
(not (empty ?s))
(inphase playing)
(whoseturn ?p)
(at ?c ?s)
(observe (?p (drew ?p ?o ?s ?c))

(?o (drew ?p ?o ?s u)))))
(:action play
:parameters (?p ?o - role ?s - slot ?c ?q - card)
:precondition (and

(whoseturn ?p)
(oppof ?p ?o)
(inphase playing)
(owns ?p ?s)
(at ?c ?s)
(center ?q))

:effect (and
(not (whoseturn ?p))
(not (inphase playing))
(not (center ?q))
(not (at ?c ?s))
(whoseturn chance)
(inphase drawing)
(pending ?o)
(empty ?s)
(center ?c)
(observe (all (played ?p ?o ?s ?c ?q)))
(increase (score ?p) (diff ?c ?q))))
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(:gain ?p - role 1
(and

(or
(and

(first ?p)
(> (score p1) (score p2)))

(and
(not (first ?p))
(>= (score p2) (score p1)))))

))
(define (problem difference-9)
(:domain difference)
(:objects

s11 s12 s21 s22 - slot
c01 c02 c03 c04 c05 c06 c07 c08 c09 - card

)
(:init

(oppof p1 p2)
(oppof p2 p1)
(whoseturn chance)
(inphase drawing)
(pending p1)
(first p1)
(empty s12)
(empty s22)
(owns p1 s11)
(owns p1 s12)
(owns p2 s21)
(owns p2 s22)
(dealer c01)
(dealer c02)
(dealer c03)
(dealer c04)
(dealer c05)
(dealer c06)
(at c07 s11)
(at c08 s21)
(center c09)
(= (score p1) 0)
(= (score p2) 0)
(= (diff c01 c02) 1)
(= (diff c02 c01) 1)
(= (diff c01 c03) 2)
(= (diff c03 c01) 2)
(= (diff c01 c04) 3)
(= (diff c04 c01) 3)
(= (diff c01 c05) 4)
(= (diff c05 c01) 4)
(= (diff c01 c06) 5)
(= (diff c06 c01) 5)
(= (diff c01 c07) 6)
(= (diff c07 c01) 6)
(= (diff c01 c08) 7)
(= (diff c08 c01) 7)
(= (diff c01 c09) 8)
(= (diff c09 c01) 8)
(= (diff c02 c03) 1)
(= (diff c03 c02) 1)
(= (diff c02 c04) 2)
(= (diff c04 c02) 2)
(= (diff c02 c05) 3)
(= (diff c05 c02) 3)
(= (diff c02 c06) 4)
(= (diff c06 c02) 4)
(= (diff c02 c07) 5)
(= (diff c07 c02) 5)
(= (diff c02 c08) 6)
(= (diff c08 c02) 6)
(= (diff c02 c09) 7)
(= (diff c09 c02) 7)
(= (diff c03 c04) 1)
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(= (diff c04 c03) 1)
(= (diff c03 c05) 2)
(= (diff c05 c03) 2)
(= (diff c03 c06) 3)
(= (diff c06 c03) 3)
(= (diff c03 c07) 4)
(= (diff c07 c03) 4)
(= (diff c03 c08) 5)
(= (diff c08 c03) 5)
(= (diff c03 c09) 6)
(= (diff c09 c03) 6)
(= (diff c04 c05) 1)
(= (diff c05 c04) 1)
(= (diff c04 c06) 2)
(= (diff c06 c04) 2)
(= (diff c04 c07) 3)
(= (diff c07 c04) 3)
(= (diff c04 c08) 4)
(= (diff c08 c04) 4)
(= (diff c04 c09) 5)
(= (diff c09 c04) 5)
(= (diff c05 c06) 1)
(= (diff c06 c05) 1)
(= (diff c05 c07) 2)
(= (diff c07 c05) 2)
(= (diff c05 c08) 3)
(= (diff c08 c05) 3)
(= (diff c05 c09) 4)
(= (diff c09 c05) 4)
(= (diff c06 c07) 1)
(= (diff c07 c06) 1)
(= (diff c06 c08) 2)
(= (diff c08 c06) 2)
(= (diff c06 c09) 3)
(= (diff c09 c06) 3)
(= (diff c07 c08) 1)
(= (diff c08 c07) 1)
(= (diff c07 c09) 2)
(= (diff c09 c07) 2)
(= (diff c08 c09) 1)
(= (diff c09 c08) 1)

))
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