PHASOR REPRESENTATION IN POWER SYSTEM DYNAMIC MODELING

MICHAEL PATRICK RANSICK

Power Affiliates Program
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

PAP-TR-95-10
January 1996
FOREWARD

This technical report is a reprint of the thesis written by Michael Patrick Ransick as partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering at the University of Illinois.

Peter Sauer
Thesis Advisor
January 1996
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>MODELING</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Full Model</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Reduced Model</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>The dq to abc Transformation</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>The dq Phasors</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>PHASOR MEASUREMENTS</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>The Discrete Fourier Transform</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>The DFT Properties</td>
<td>7</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Frequency response</td>
<td>7</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Aliasing</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Picket-fence effect</td>
<td>11</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Leakage</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>SIMULATION</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Generator Data</td>
<td>13</td>
</tr>
<tr>
<td>4.2</td>
<td>Full Model Results</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Full model phasors</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2</td>
<td>DFT error due to frequency</td>
<td>16</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The dc phasor</td>
<td>17</td>
</tr>
<tr>
<td>4.3</td>
<td>Reduced Model Results</td>
<td>17</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Reduced model phasors</td>
<td>19</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The dc phasor</td>
<td>21</td>
</tr>
<tr>
<td>4.4</td>
<td>Half-Cycle DFT Results</td>
<td>22</td>
</tr>
<tr>
<td>4.5</td>
<td>The dc Component Rejection in One-Cycle DFT</td>
<td>27</td>
</tr>
<tr>
<td>4.6</td>
<td>Phasor Comparison</td>
<td>29</td>
</tr>
<tr>
<td>5.</td>
<td>CONCLUSIONS</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A. FORTRAN CODE</td>
<td>32</td>
</tr>
<tr>
<td>A.1</td>
<td>Full Model</td>
<td>32</td>
</tr>
<tr>
<td>A.2</td>
<td>Reduced Model</td>
<td>41</td>
</tr>
<tr>
<td>A.3</td>
<td>Half-Cycle Phasor Subroutine</td>
<td>51</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Advances in computing power and time synchronization offer new opportunities in analysis, simulation, and control of power systems. The math intensive task of computing phasors was at one time only practical in an off-line analysis or simulation mode. With the cost of microprocessors plummeting and the availability of memory increasing, real-time phasor measurements are now practical. Real-time phasor measurements coupled with the now common availability of time synchronization signals allow the precise state of a power system to be monitored in real time [1]. The real-time power system measurements can be used to control power flow [2] and possibly correct power swings before service is lost or equipment is damaged. To effectively use real-time phasor measurements, the user must understand how the phasors relate to the traditional d-q phasors obtained by system simulation. This thesis explores the similarities and differences between real-time phasor measurements and the traditional d-q magnitude and phase obtained by simulation and focuses on a single synchronous machine with a balanced three-phase resistive load and balanced three-phase resistive fault for the initial explanations of real-time phasors.
2. MODELING

2.1 Full Model

The model used for simulation is presented here without derivation. The model used has transformed the system from the a-b-c to the d-q-o reference frame and scaled all variables to be in per-unit values. The following model is well-accepted as a representation of the dynamics associated with a single generator serving a resistive load [3]:

\[
\frac{1}{w_s} \frac{d\psi_{d}}{dt} = R_s I_d + \frac{w}{w_s} \psi_q + V_d \tag{1}
\]

\[
\frac{1}{w_s} \frac{d\psi_{q}}{dt} = R_s I_q - \frac{w}{w_s} \psi_d + V_q \tag{2}
\]

\[
\frac{d\delta}{dt} = w - w_s \tag{3}
\]

\[
\frac{2H}{w_s} \frac{dw}{dt} = T_M - \psi_d I_q + \psi_q I_d \tag{4}
\]

\[
T_{do} \frac{dE'_q}{dt} = -E'_q - (X'_d - X'_q) [I_d - \frac{(X'_d - X'_q)}{(X'_d - X'_q)} \psi_{1d} + (X'_d - X'_q) I_d - E'_q] + E_{jd} \tag{5}
\]

\[
T_{do} \frac{d\psi_{1d}}{dt} = -\psi_{1d} + E'_q - (X'_d - X'_q) I_d \tag{6}
\]

\[
T_{dq} \frac{dE'_d}{dt} = -E'_d + (X_q - X'_q) [I_q - \frac{(X'_q - X'_q)}{(X'_q - X'_q)} \psi_{2q} + (X'_q - X'_q) I_q - E'_d] \tag{7}
\]

\[
T_{dq} \frac{d\psi_{2q}}{dt} = -\psi_{2q} - E'_d - (X'_q - X'_q) I_q \tag{8}
\]

\[
T_E \frac{dE_{jd}}{dt} = -(K_E + S_E) E_{jd} + V_R \tag{9}
\]
\[T_p \frac{dR_f}{dt} = -R_f + \frac{K_F}{T_p} E_{fa} \]
(10)

\[T_A \frac{dV_R}{dt} = -V_R + K_A R_f - \left(\frac{K_A}{T_F} \right) E_{fa} + K_A (V_{ref} - V_t) \]
(11)

\[T_{CH} \frac{dT_M}{dt} = -T_M + P_{SV} \]
(12)

\[T_{SV} \frac{dP_{SV}}{dt} = -P_{SV} + P_C - \frac{1}{R_d} \left(\frac{w}{w_s} \right) \]
(13)

With algebraic equations for the currents, terminal constraints, and limit constraints,

\[I_d = \frac{1}{X_d} \left(-\psi_d + \frac{(X_d - X_b)}{(X_d' - X_{ls})} E_{q} + \frac{(X_d - X_d')}{(X_d' - X_{ls})} \psi_{1d} \right) \]
(14)

\[I_q = \frac{1}{X_q} \left(-\psi_q - \frac{(X_q - X_b)}{(X_q - X_{ls})} E_{d} + \frac{(X_q - X_q')}{(X_q' - X_{ls})} \psi_{2q} \right) \]
(15)

\[V_d = I_d R_{load} \]
(16)

\[V_q = I_q R_{load} \]
(17)

\[V_t = \sqrt{V_d^2 + V_q^2} \]
(18)

\[V_{R_{min}} \leq V_R \leq V_{R_{max}} \]
(19)

\[0 \leq P_{SV} \leq P_{SV_{max}} \]
(20)

The states are

- \(w \) is the rotor speed.

- \(\psi_d \) and \(\psi_q \) are the scaled stator d and q axis fluxes.

- \(\delta \) is the rotor angle.
\(E_d', E_q', \psi_{1d} \) and \(\psi_{2q} \) are the scaled rotor fluxes.

\(E_{fd} \) is the output of the main exciter.

\(V_R \) is the output of the voltage regulator.

\(R_f \) is the system stabilizer feedback.

\(P_{sv} \) is the position of the steam valve.

\(T_M \) is the shaft mechanical torque.

The d and q axis variables are

\(I_d \) and \(I_q \) are the scaled stator d and q axis currents.

\(V_d \) and \(V_q \) are the scaled stator d and q axis voltages.

It is important to note that the preceding model was developed with four general assumptions, which are [4]

a. Stator has three coils in a balanced symmetrical configuration centered 120 electrical degrees apart.

b. Rotor has four coils in a balanced symmetrical configuration located in pairs 90 electrical degrees apart.

c. The relationship between the flux linkages and currents must reflect a conservative coupling field.

d. The relationship between the flux linkages and currents must be independent of \(\Theta_{shaft} \) when expressed in the d-q-o coordinate system.
2.2 Reduced Model

For reduced-order modeling the fast dynamics of the stator are neglected [4]. Then the first two differential equations of the full model (for \(\psi_d \) and \(\psi_q \)) become algebraic.

\[
0 = R_i I_d + \psi_q + V_d \tag{21}
\]

\[
0 = R_i I_q - \psi_d + V_q \tag{22}
\]

2.3 The dq to abc Transformation

The original "abc" variables can be recovered from this model through the transformation [4],

\[
I_a = \sqrt{2} \sqrt{I_d^2 + I_q^2} \cos(w_i t + \delta + \tan^{-1} \frac{I_q}{I_d} - \frac{\pi}{2}) \tag{23}
\]

\[
I_b = \sqrt{2} \sqrt{I_d^2 + I_q^2} \cos(w_i t + \delta + \tan^{-1} \frac{I_q}{I_d} - \frac{\pi}{2} - \frac{2\pi}{3}) \tag{24}
\]

\[
I_c = \sqrt{2} \sqrt{I_d^2 + I_q^2} \cos(w_i t + \delta + \tan^{-1} \frac{I_q}{I_d} - \frac{\pi}{2} + \frac{2\pi}{3}) \tag{25}
\]

2.4 The dq Phasors

The following complex variables can be defined for the models:

\[
\overline{I_{DQ}} = (I_D + jI_Q) = (I_d + jI_q)e^{j(\delta - \pi/2)} \tag{26}
\]

\[
\overline{V_{DQ}} = (V_D + jV_Q) = (V_d + jV_q)e^{j(\delta - \pi/2)} \tag{27}
\]

where \(I_d \) and \(I_q \) are the \(d \) and \(q \) coordinate currents and \(V_d \) and \(V_q \) are the \(d \) and \(q \) coordinate voltages of the model. These are referred to as the exact dynamic phasors for the full model and as the approximate dynamic phasors for the reduced-order model.
3. PHASOR MEASUREMENTS

3.1 The Discrete Fourier Transform

The fundamental component of the Discrete Fourier Transform (DFT) is defined in [2] as

$$\bar{I}_a_{\text{DFT}} = \frac{\sqrt{2}}{N} \sum_{k=1}^{N} I_{ak} e^{-j \frac{2\pi}{N} k}$$

where I_{ak} is the kth sample of the phase a current, N is the number of samples, and k is the sample number. \bar{I}_a_{DFT} is then the DFT of the phase a current. We will call it the measured dynamic phasor. Similarly, the nth harmonic component of the waveform is defined as

$$\bar{I}(n)_{a_{\text{DFT}}} = \frac{\sqrt{2}}{N} \sum_{k=1}^{N} I_{ak} e^{-j \frac{2\pi}{N} nk}$$

where n is the harmonic number. By replacing n in Equation (29) with the desired harmonic component number, the phasor of any component can be measured. Unless otherwise specified, the phasors in this thesis are calculated for the fundamental component. Therefore, n is replaced by one. Similarly, if the dc component is desired, n is replaced by zero. For the second harmonic, n is replaced by two. When the fundamental component of all three phases is calculated, the following positive sequence phasor can be defined [5]:

$$\bar{I}_{\text{POS}_{\text{DFT}}} = \frac{1}{3}(\bar{I}_a_{\text{DFT}} + \bar{I}_b_{\text{DFT}} e^{\frac{2\pi}{3}} + \bar{I}_c_{\text{DFT}} e^{-\frac{2\pi}{3}})$$

This is referred to as the "measured" dynamic phasor. We will compute the phasor at every sample by discarding the oldest sample and adding the latest sample to the calculation. This is called a sliding DFT since it is moving with time. This allows us to look at each frequency component as it changes in time instead of looking at a snapshot of the waveform as is done in
spectral analysis. A judicious choice of sampling frequency results in computationally efficient algorithms [6].

3.2 The DFT Properties

3.2.1 Frequency response

When the DFT is calculated for one frequency component, such as the fundamental, it acts as a band-pass filter for that frequency. The response varies with the length of the data window.

Figure 1 is the traditional frequency response plot for the fundamental component. The graph is developed by transforming the DFT equation into the z domain and running a frequency response curve. This is not a true frequency response as we know it. This is the DFT response for one frequency input.

![Figure 1. Traditional DFT frequency response.](image)

When running a one-cycle DFT without windowing, the frequency response actually looks quite different. When performing a DFT on a partial cycle of a waveform, energy is spread into other
frequencies. For instance, if the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 0 \), the frequency response actually has a peak of 1.024 pu versus 1.0 pu for the traditional frequency response. The frequency response is shown in Figure 2.

![Frequency response of \(\sin(wt+0) \)](image)

Figure 2. One cycle DFT frequency response with input = \(\sin(wt+0) \).

If the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 45 \) degrees, the frequency response is shown in Figure 3. If the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 90 \) degrees, the frequency response is shown in Figure 4. The frequency response changes when the angle of the input waveform changes. This occurs because the one cycle of data used for the DFT has discontinuities at the end points of the data window. The discontinuity changes as the phase angle changes.
In all four graphs, the magnitude of the fundamental component is one. The graphs show that if the frequency of the signal being measured is not exactly the fundamental frequency, there is an
error. Phadke and Thorp have expressed this error for the positive sequence phasor in geometric terms in [2]. (Their error assumes the frequency response in Figure 1.) The complex attenuation factor which distorts the true phasor varies with frequency. The equation is

\[
\frac{\sin \frac{N\Delta w \Delta t}{2}}{\Delta w \Delta t} e^{-j(N-1)\frac{\Delta w \Delta t}{2}} N \sin \frac{\Delta w \Delta t}{2}
\]

(31)

The magnitude is plotted in Figure 5.

![Figure 5. DFT attenuation factor versus frequency.](image)

The phase is plotted in Figure 6.
During simulations this attenuation and phase shift of the traditional response can be corrected since the frequency is known exactly as it is one of the states.

3.2.2 Aliasing
Aliasing refers to the condition that occurs when frequency components are present at frequencies above the Nyquist frequency or two times the sampling rate. In practice, this is fixed by providing an anti-aliasing filter with a cut-off frequency of 1/3 to 1/2 the sampling rate before the waveform is sampled. In simulations, this is not a problem if the step size is small enough.

3.2.3 Picket-fence effect
The preceding graph of an attenuation factor is part of what is known as the picket-fence effect [7]. When the analyzed waveform contains frequencies that are not integer multiples of the fundamental frequency, the energy is spread across several frequencies. The total energy content remains the same.
3.2.4 Leakage
When the DFT window contains only a partial cycle, energy is distributed into adjacent frequencies. When a sliding DFT is used on a waveform with abrupt changes, energy appears at all frequencies due to the leakage effect. Leakage and the picket-fence effect are very similar phenomena. Both occur because the DFT assigns energy to frequencies in discrete steps, sometimes referred to as bins, and because the DFT transformation incurs no loss. If the data being measured contain frequencies that do not fall precisely at integer multiples of the fundamental, energy is leaked into adjacent bins (it has to go somewhere since the transformation incurs no loss). Leakage of spectral energy is caused by applying a window to the signal [8]. A rectangular window is used in the thesis as all samples have equal weight.
4. SIMULATION

4.1 Generator Data

The data for the generator used in the simulation is given in Table 1.

Table 1. Generator data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 60)</td>
<td>(R_s = 0.0017 \text{ pu})</td>
</tr>
<tr>
<td>(w_s = 2\pi 60 \text{ rad/s})</td>
<td>(T_{do} = 9.6 \text{ sec})</td>
</tr>
<tr>
<td>(X'_d = 0.27 \text{ pu})</td>
<td>(X'_q = 0.83 \text{ pu})</td>
</tr>
<tr>
<td>(X''_d = 2.1 \text{ pu})</td>
<td>(X''_q = 2.5 \text{ pu})</td>
</tr>
<tr>
<td>(T_E = 0.8 \text{ sec})</td>
<td>(K_E = 1.0 \text{ pu})</td>
</tr>
<tr>
<td>(K_F = 0.06 \text{ pu})</td>
<td>(V_{R_{\text{min}}} = 5.0 \text{ pu})</td>
</tr>
<tr>
<td>(P_{SV_{\text{min}}} = 0 \text{ pu})</td>
<td>(P_{SV} = 5.0 \text{ pu})</td>
</tr>
</tbody>
</table>

The generator is initially running at rated speed \(w_s \) and open circuited with \(V_t = 1.0 \text{ pu} \). A balanced 0.01pu resistive load is switched in at time = 0.05 sec. The balanced load resistance is then changed to 2.0 pu at time = 0.15 second. The simulation was performed using fourth-order Runge-Kutta integration with a time step of \(1/3600 \text{ sec} \). The positive sequence DFT is calculated using a non-recursive one-cycle algorithm with 60 samples/cycle. The source code is given in Appendix A.
4.2 Full Model Results

Figures 7, 8, and 9 are the per unit a, b, and c currents for the full model.

Figure 7. Phase a current - full model.

Figure 8. Phase b current - full model.
4.2.1 Full model phasors

Figure 10 gives the exact and measured dynamic phasors for the full model. The magnitude of the measured phasor takes one full cycle to initialize. It acts as a band-pass filter since it measures only the fundamental component.
The phases of the phasors are shown in Figure 11.

Figure 11. Exact and measured phasor phases - full model.

4.2.2 DFT error due to frequency
To see how much error is in the phasor due to off-nominal frequency, the speed (in Hertz) is plotted in Figure 12.

Figure 12. Rotor speed in hertz.
The attenuation error due to frequency (from Figure 5) is less than 0.2 percent.

4.2.3 The dc phasor
It is difficult to tell from the positive sequence DFT of the fundamental that there is a dc component present. The DFT acts as a band-pass filter around the component being measured. We can perform a DFT based on the dc component by replacing \(n \) in Equation (29) with zero. We can then perform a similar positive sequence DFT based on the dc component by substituting Equation (29) into Equation (30). Figure 13 is the dc phasor of the full model.

The bump in near time = 0.15 is due to the leakage effects of the abrupt change in the waveform.

4.3 Reduced Model Results
The results look very similar to those for the full model without the dc component in the \(a, b, c \) currents. Figures 14, 15, and 16 show the \(a, b, \) and \(c \) currents for the reduced model.
Figure 14. Phase a current - reduced model.

Figure 15. Phase b current - reduced model.
4.3.1 Reduced model phasors

The approximate and approximate measured dynamic phasor magnitudes for the reduced model are shown in Figure 17. Again, the magnitude of the measured phasor takes one full cycle to initialize. It acts as a band-pass filter since it measures only the fundamental component.
The measured phasor appears to be very close to the actual phasor. In fact, the measured phasor is a low-pass filtered version of the approximate phasor. The low-pass filtering smoothes the abrupt transitions and delays the signal by a half cycle (30 samples). Figure 18 is the approximate phasor and the approximate measured phasor magnitudes shifted forward 30 samples.

![Figure 18. Approximate and approximate measured phasor magnitudes - shifted 30 samples.](image)

Though the approximate measured phasor is not directly useful, it does demonstrate one important fact. With no dc or harmonic components present in the input waveform, the DFT phasor (measured phasor) is a low-pass filtered approximate phasor with no steady-state error. The approximate and approximate measured dynamic phasor phases for the reduced model are shown in Figure 19.
Figure 19. Approximate and approximate measured phasor phases - reduced model.

4.3.2 The dc phasor

It is difficult to tell from the positive sequence DFT of the fundamental if there is a dc component present. The DFT acts as a band-pass filter around the component being measured. We can perform a similar positive sequence DFT based on the dc component by replacing \(n \) with zero in Equation (29). For the reduced model, the leakage effects of the dc component positive sequence DFT are more dramatic since there is no dc component in the reduced model abc waveforms.

The dc component is from waveform discontinuities encountered by the DFT. Figure 20 is the dc phasor for the reduced model.
4.4 Half-Cycle DFT Results

It is interesting to investigate the effect of changing the window length of the DFT. In particular, it seems as though reducing the cycle length would reduce the delay of the phasor initialization. Reducing the delay of the phasor initialization would allow the real-time controller to see large changes in the measured quantities sooner, thus providing a better chance for successful control. A controller could use a hybrid approach. The half-cycle DFT could be used for faster response while the full-cycle DFT could be used for better steady-state error. The same simulations were run with a half-cycle DFT. The algorithm for the half-cycle DFT is the same as for the full cycle (Equation (28)) except that N is replaced by N/2 and the sum is multiplied by 2. The results from the full model using a half-cycle DFT are shown in Figures 21 and 22.
Figure 21. Half-cycle DFT magnitude - full model.

Figure 22. Half-cycle phasor phase - full model.
It appears as though the DFT has lost the ability to filter the dc component. It is informative to look at the frequency response for sine waves with varying angles as in Figures 2, 3, and 4. The frequency response of the half-cycle DFT is shown in Figures 23, 24, and 25.

If the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 0 \), the frequency response actually has a peak of 1.071 pu versus 1.0 pu for the traditional frequency response. The frequency response is shown in Figure 23.

![Figure 23. Half-cycle DFT frequency response with input = \(\sin(wt+0) \).](image)

If the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 45 \) degrees, the frequency response is shown in Figure 24.
If the input waveform is \(\sin(wt + \Theta) \) with \(w \) varied from 0 to 360 Hz and \(\Theta = 90 \) degrees, the frequency response is shown in Figure 25.
In all three graphs, the magnitude of the fundamental component is one. It can be seen from the graphs that if the frequency of the signal being measured is not exactly the fundamental frequency, there is an error. It is obvious that the dc component is not rejected. It is also obvious that the even-order harmonics are also not rejected. Therefore, if there is a second harmonic due to transformer magnetizing inrush, it will not be rejected. Since the reduced-order model results contain no dc component, we would expect the half-cycle DFT to follow the exact phasors more closely. We would also expect the measured phasor to approach the steady-state value more quickly since the DFT takes a half-cycle to initialize. The results of the half-cycle DFT with the reduced-order model are shown in Figures 26 and 27.

Figure 26. Half-cycle phasor magnitude - reduced model.
4.5 The dc Component Rejection in One-Cycle DFT
Rejection of the dc component leads us to analyze the full-cycle DFT results of the full model from Figure 10. There is a slight ac component in the measured phasor magnitude, which can be explained by the fact that the abc currents and the exact phasor do not have a dc offset. They have a decaying dc offset. A true dc offset would add no error to a full-cycle DFT. The magnitude of the full-cycle DFT at zero Hertz in Figures 2, 3, and 4 is zero. However, the decaying dc offset has a frequency of about 3 Hz. At 3 Hz the additional magnitude is 10%, 6%, and 1.6%, respectively, from Figures 2, 3, and 4. The percentages are percent of the 3 Hz component. Figure 28 shows the full and reduced model phasors plotted together along with the dc phasor and the absolute value of the difference between the full and reduced model phasors.
To check the estimates of 10%, 6% and 1.6% as the DFT slides, the absolute value of the difference between the full and reduced-order phasors divided by the magnitude of the dc phasor times 100 is shown in Figure 29.

Figure 28. Measured phasor comparison.

Figure 29. Phasor difference expressed in percent of dc phasor.
The change in magnitude error as the DFT slides causes an ac error component in the phasor measurement. If the frequency response of the DFT were the same as the traditional frequency response as shown in Figure 1, the phasor error would be a fixed 6% at 3 Hz and no ripple would appear in the phasor. After the initial 20% error, the error oscillates between about 10% and 2% as predicted by Figures 2, 3, and 4.

4.6 Phasor Comparison

Figure 30 compares the measured phasor from the full model with the approximate and approximate measured phasors of the reduced model. It can be seen that except for the ripple on the measured phasor, the measured and the approximate measured phasors are very close.

Figure 30. Phasor comparison.
5. CONCLUSIONS

Phasor results of the full model show that the measured phasor is a band-pass filtered version of the exact phasor (Figure 10). The phasor results of the reduced model show that the approximate measured phasor has no steady-state error compared with the approximate phasor (Figure 18) and that the approximate measured phasor is a band-pass filtered (thus delayed) version of the approximate phasor (Figure 17). The measured phasor from the full model is very close to the approximate measured phasor of the reduced model (Figure 30). This implies that the DFT removes the fast stator transients after they occur while the reduced model removes the fast stator transients before they occur. This is significant because real-time control will use measured phasors and/or a reduced-order model. Because both methods yield approximately the same results through totally different means, we can use the reduced-order model with confidence.
REFERENCES

APPENDIX A FORTRAN CODE

The FORTRAN code used for simulations follows. The code is broken up into three sections.

The code used for the full model is given in Appendix A.1. The code for the reduced-order model is given in Appendix A.2. The half-cycle phasor routine is given in Appendix A.3.

A.1 Full Model

`POWER SYSTEM MODEL
WRITTEN BY: MICHAEL P. RANSICK
4TH ORDER RUNGE-KUTTA INTEGRATION
POSITIVE SEQUENCE DFT INCLUDED
VRMIN/MAX FIXED, PSVMIN/MAX FIXED
DATE: 07/10/95
FULL MODEL, BALANCED FAULT
ONE-CYCLE PHASOR

DOUBLE PRECISION DER(13), Y(13), P, IA, IB, IC,
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOPP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 DELTAT, DFTMAG, DFTPH

COMMON /A/WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /B/TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD
1 /C/XD, XDP, XDPP, XLS, XQ, XQP, XQPP, CID, CIQ, RLOAD, PI
1 /D/SCALE, PSVMIN, PSVMAX, VRMIN, VRMAX
DATA DER, Y/26*0.0/

OPEN FILES TO OUTPUT DATA

OPEN(90, FILE='DQ.DAT', STATUS='NEW')
OPEN(91, FILE='FBIA智CDQ.DAT', STATUS='NEW')
OPEN(92, FILE='FBY4.DAT', STATUS='NEW')

OPEN(92, FILE='Y16.DAT', STATUS='NEW')
OPEN(93, FILE='Y713.DAT', STATUS='NEW')
OPEN(94, FILE='FBDFT.DAT', STATUS='NEW')`
C. INITIALIZE CONSTANTS

VT = 1
VREF = 1.0+1./400.
TOTALT = 0.5
DELTAT = 1./3600.
T = 0.0
WS = 60.*2.*3.14159
N = 60
XDPP = 0.27
XQ = 2.1
TE = 0.8
KF = 0.06
VRMAX = 5.0
VRMIN = 0.0
PSVMAX = 5.0
PSVMIN = 0.0
RS = 0.0017
XLS = 0.2
XQP = 0.83
KE = 1.0
TA = 0.2
TCH = 0.3
PC = 20.0
H = 3.2
XD = 2.5
TDOP = 9.6
TDOPP = 0.08
XQPP = 0.29
SE = 0.0
KA = 400
TSV = 0.2
P = 2
XDP = 0.39
TQOP = 1.7
TQOPP = 0.14
TF = 1.0
RD = 0.05
Y(4) = WS
PI = 4.*ATAN(1.0)
SCALE = 0.0
NDP = INT(TOTALT/DELTAT)

C. INITIAL CONDITONS
C....... START MAIN PROGRAM LOOP

DO 100 K=0,NDP
 T = K*DELTAT
 CALL RUNGE(Y,T,DELTAT)
 CALL PHASORS(Y,T,MAGVDQ,PHASEVDQ,MAGIDQ,PHASEIDQ,IA,IB,IC)
 CALL DFT(N,K,IA,IB,IC,DFTMAG,DFTPH)

 IF (MOD(K,1).EQ.0) THEN
 C
 WRITE(90,102) T,CID,CIQ,VD,VQ
 WRITE(91,103) T,IA,IB,IC,MAGIDQ,PHASEIDQ
 WRITE(92,104) T,Y(4)
 C
 WRITE(92,103) T,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
 C
 WRITE(93,103) T,Y(7),Y(8),Y(9),Y(10),Y(11),Y(12),Y(13)
 WRITE(94,101) T,DFTMAG,DFTPH
 101 FORMAT(1X,F11.8,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3)
 102 FORMAT(1X,F11.8,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3)
 103 FORMAT(1X,F11.8,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3)
 104 FORMAT(1X,F11.8,1X,F8.3)
 ENDIF

100 CONTINUE
END

C....... SUBROUTINE TO PERFORM INTEGRATION BY FOURTH ORDER RUNGE-KUTTA

Y(1) = 1.0
Y(2) = 0.0
Y(3) = 0.0
Y(4) = WS
Y(5) = 1.0
Y(6) = 1.0
Y(7) = 0.0
Y(8) = 0.0
Y(9) = 1.0
Y(10) = 0.06
Y(11) = 1.0
Y(12) = 0.0
Y(13) = 0.0
VD = 0.0
VQ = 1.0
SUBROUTINE RUNGE(Y,T,DELTAT)
DOUBLE PRECISION Y(13), DER(13), K1(13), K2(13), K3(13), K4(13),
1 YTEMP(13), T, DELTAT

CALL DERIVE(Y,T,K1)
DO 10 I=1,13
 K1(I)=DELTAT*K1(I)
 YTEMP(I)=Y(I)+K1(I)/2.
 CALL CURRENT(YTEMP,T)
 CALL LIMITS(YTEMP,T)
10 CONTINUE

CALL DERIVE(YTEMP,T+DELTAT/2.,K2)
DO 20 I=1,13
 K2(I)=DELTAT*K2(I)
 YTEMP(I)=Y(I)+K2(I)/2.
 CALL CURRENT(YTEMP,T)
 CALL LIMITS(YTEMP,T)
20 CONTINUE

CALL DERIVE(YTEMP,T+DELTAT/2.,K3)
DO 30 I=1,13
 K3(I)=DELTAT*K3(I)
 YTEMP(I)=Y(I)+K3(I)
 CALL CURRENT(YTEMP,T)
 CALL LIMITS(YTEMP,T)
30 CONTINUE

CALL DERIVE(YTEMP,T+DELTAT,K4)
DO 40 I=1,13
 K4(I)=DELTAT*K4(I)
 Y(I)=Y(I)+(1./6.)*(K1(I)+2.*K2(I)+2.*K3(I)+K4(I))
 CALL CURRENT(Y,T)
 CALL LIMITS(Y,T)
40 CONTINUE

RETURN
END

C...... THE STATES
C...... Y(1)=PD Y(6)=P1D Y(11)=VR
C...... Y(2)=PQ Y(7)=EDP Y(12)=TM
C...... Y(3)=D Y(8)=P2Q Y(13)=PSV
C...... Y(4)=W Y(9)=EFD
C...... Y(5)=EQP Y(10)=RF

C...... SUBROUTINE TO CALCULATE THE DERIVATIVES OF THE STATES
SUBROUTINE DERIVE(Y,T,DER)
DOUBLE PRECISION DER(13), Y(13), N, P, IA, IB, IC,
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOPP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 T1, T2, X1, X2, X3, X4

COMMON /A/ WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /C/ XD, XDP, XDPP, XLS, XQ, XQP, XQPP, CID, CIQ, RLOAD, PI

T1 = (XDP - XDPP) / ((XDP - XLS)**2)
T2 = (XQP - XQPP) / ((XQP - XLS)**2)
X1 = XD - XDP
X2 = XDP - XLS
X3 = XQ - XQP
X4 = XQP - XLS

DER(1) = WS*(RS*CID + Y(4)*(Y(2)/WS) + VD)
DER(2) = WS*(RS*CIQ - Y(4)*(Y(1)/WS) + VQ)
DER(3) = Y(4) - WS
DER(4) = (WS/(2.*H))*(Y(12) - Y(1)*CIQ + Y(2)*CID)
DER(5) = (-Y(5) - X1*(CID - T1*(Y(6) + X2*CID - Y(5)))) + Y(9))/TDOP
DER(6) = (-Y(6) + Y(5) - (X2)*CID)/TDOPP
DER(7) = (-Y(7) + X3*(CIQ - T2*(Y(8) + X4*CIQ + Y(7)))) / TQOP
DER(8) = (1./TQOPP)*(-Y(8) - Y(7) - (X4)*CIQ)
DER(9) = (1./TE)*((-KE + SE)*Y(9) + Y(11))
DER(10) = (1./TF)*(-Y(10) + (KF/TF)*Y(9))
DER(11) = (1./TA)*(-Y(11) + KA*Y(10) - (KA*KF/TF)*Y(9) + KA*(VREF - VT))
DER(12) = (1./TCH)*(-Y(12) + Y(13))
DER(13) = (1./TSV)*(-Y(13) + PC - (1./RD)*(Y(4)/WS))
RETURN
END

C........ SUBROUTINE TO CALCULATE CURRENT, VOLTAGE AND SET LOAD

SUBROUTINE CURRENT(Y,T)
DOUBLE PRECISION DER(13), Y(13), N, P, IA, IB, IC,
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOPP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 TEMP1D, TEMP2D, TEMP1Q, TEMP2Q

COMMON /A/ WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /B/ TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD
1 /C/XD,XDP,XDPP,XLS,XQ,XQP,XQPP,CID,CIQ,RLOAD,PI

TEMPI1D = (XDPP-XLS)/(XDP-XLS)
TEMPI2D = (XDP-XDPP)/(XDP-XLS)
TEMPI1Q = (XQPP-XLS)/(XQP-XLS)
TEMPI2Q = (XQP-XQPP)/(XQP-XLS)

IF (T.LT.0.05) THEN
 CID = 0.0
 CIQ = 0.0
ENDIF

IF (T.GE.0.05).AND.(T.LT.0.15)) THEN
 RLOAD=0.01
 CID = (1./XDPP)*(-Y(1)+TEMPI1D*Y(5)+TEMPI2D*Y(6))
 CIQ = (1./XQPP)*(-Y(2)-TEMPI1Q*Y(7)+TEMPI2Q*Y(8))
 VD = CID*RLOAD
 VQ = CIQ*RLOAD
 VT = SQRT((VD**2)+(VQ**2))
ENDIF

IF (T.GE.0.15) THEN
 RLOAD=2.0
 CID = (1./XDPP)*(-Y(1)+TEMPI1D*Y(5)+TEMPI2D*Y(6))
 CIQ = (1./XQPP)*(-Y(2)-TEMPI1Q*Y(7)+TEMPI2Q*Y(8))
 VD = CID*RLOAD
 VQ = CIQ*RLOAD
 VT = SQRT((VD**2)+(VQ**2))
ENDIF
RETURN
END

C...... SUBROUTINE TO CALCULATE PHASORS AND ABC CURRENTS

SUBROUTINE PHASORS(Y,T,MAGVDQ,PHASEVDQ,MAGIDQ,PHASEIDQ,IA,IB,IC)
 DOUBLE PRECISION DER(I3),Y(I3),N,P,IA,IB,IC,
 MAGIDQ,PHASEIDQ,MAGVDQ,PHASEVDQ,WS,RS,VD,VQ,H,TDOPP,TQOP,R,
 TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD,XD,XDP,XDPP,XLS,
 XQ,XQP,XQPP,CID,CIQ,RLOAD,PI,PSVMIN,PSVMAX,VRMIN,VRMAX,T,
 TEMPVD,TEMPI1D

 COMMON /A/WS,RS,VD,VQ,H,TDOPP,TDOPP,TQOP,TQOPP,R
 /B/TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD
 /C/XD,XDP,XDPP,XLS,XQ,XQP,XQPP,CID,CIQ,RLOAD,PI
 /D/SCALE,PSVMIN,PSVMAX,VRMIN,VRMAX
MAGVDQ = VT
IF (ABS(VD).LT.0.00001) THEN
 TEMPVD=0.00001
ELSE
 TEMPVD=VD
ENDIF
PHASEVDQ=(ATAN2(VQ,TEMPVD))+Y(3)-PI/2.
MAGIDQ=SQRT((CID**2)+(CIQ**2))

TEMPID=CID
IF (ABS(TEMPID).LT.0.00001) THEN
 TEMPID=0.00001
ELSE
 TEMPID=CID
ENDIF
PHASEIDQ=(ATAN2(CIQ,TEMPID))+Y(3)-(PI/2.)+(SCALE*2.*PI)
IF (PHASEIDQ.LT.-PI) THEN
 SCALE=SCALE+1.0
ELSEIF (PHASEIDQ.GT.PI) THEN
 SCALE=SCALE-1.0
ENDIF
PHASEIDQ=(ATAN2(CIQ,TEMPID))+Y(3)-(PI/2.)+(SCALE*2.*PI)
IF (T.LT.0.05) THEN
 PHASEIDQ=0.0
ENDIF
IA=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ)
IB=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ-2.*PI/3.)
IC=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ+2.*PI/3.)
RETURN
END

C....... SUBROUTINE TO CALCULATE DFT'S

SUBROUTINE DFT(N,K,IA,IB,IC,DFTMAG,DFTPH)
DOUBLEPRECISION DFTMAG,DFTPH,IA,IB,IC,PI
COMPLEX PHIA,PHIB,PHIC,ALPHA,X1,SPHIA(60),SPHIB(60),SPHIC(60),
1 SPHIA2(60),SPHIB2(60),SPHIC2(60)
PI=4.*ATAN(1.0)
KCY=KCY+1
ALPHA=CMPLX(COS(2.*PI/3.),SIN(2.*PI/3.))

RIA=(SQRT(2.)/N)*IA*COS(2.*KCY*PI/N)
XIA=(SQRT(2.)/N)*IA*(-SIN(2.*KCY*PI/N))
SPHIA2(KCY)=CMPLX(RIA,XIA)
PHIA=PHIA+CMPLX(RIA,XIA)
APHIA=CABS(PHIA)
RIA=REAL(PHIA)
XIA=AIMAG(PHIA)
TEMPRIA=RIA
IF (ABS(TEMPRIA).LT.0.00001) THEN
 TEMPRIA=0.00001
ELSE
 TEMPRIA=RIA
ENDIF
PPHIA=ATAN2(XIA,TEMPRIA)

RIB=(SQRT(2.)/N)*IB*COS(2.*KCY*PI/N)
XIB=(SQRT(2.)/N)*IB*(-SIN(2.*KCY*PI/N))
SPHIB2(KCY)=CMPLX(RIB,XIB)
PHIB=PHIB+CMPLX(RIB,XIB)
APHIB=CABS(PHIB)
RIB=REAL(PHIB)
XIB=AIMAG(PHIB)
TEMPRIB=RIB
IF (ABS(TEMPRIB).LT.0.00001) THEN
 TEMPRIB=0.00001
ELSE
 TEMPRIB=RIB
ENDIF
PPHIB=ATAN2(XIB,TEMPRIB)

RIC=(SQRT(2.)/N)*IC*COS(2.*KCY*PI/N)
XIC=(SQRT(2.)/N)*IC*(-SIN(2.*KCY*PI/N))
SPHIC2(KCY)=CMPLX(RIC,XIC)
PHIC=PHIC+CMPLX(RIC,XIC)
APHIC=CABS(PHIC)
RIC=REAL(PHIC)
XIC=AIMAG(PHIC)
TEMPRIC=RIC
IF (ABS(TEMPRIC).LT.0.00001) THEN
 TEMPRIC=0.00001
ELSE
 TEMPRIC=RIC
ENDIF
ENDIF
PPHIC=ATAN2(XIC,TEMPRIC)

X1=(1./3.)*(PHIA+ALPHA*PHIB+ALPHA*ALPHA*PHIC)
C NEG X1=(1./3.)*(PHIA+ALPHA*PHIB+ALPHA*ALPHA*PHIC)
C ZERO X1=(1./3.)*(PHIA+PHIB+PHIC)
AX1=CABS(X1)
TEMPX1=REAL(X1)
IF (ABS(TEMPX1).LT.0.00001) THEN
 TEMPX1=0.00001
ELSE
 TEMPX1=REAL(X1)
ENDIF
PX1=ATAN2(AIMAG(X1),TEMPX1)

DFTMAG=AX1
DFTPH=PX1

IF (KCY.EQ.N) THEN
 DO 400 I=1,N
 SPHIA(I)=SPHIA2(I)
 SPHIB(I)=SPHIB2(I)
 SPHIC(I)=SPHIC2(I)
 KCY=0
 400 CONTINUE
ENDIF

IF (K.GE.N) THEN
 PHIA=PHIA-SPHIA(1)
 PHIB=PHIB-SPHIB(1)
 PHIC=PHIC-SPHIC(1)
 DO 401 J=2,N
 SPHIA(J-1)=SPHIA(J)
 SPHIB(J-1)=SPHIB(J)
 SPHIC(J-1)=SPHIC(J)
 401 CONTINUE
ENDIF

RETURN
END

SUBROUTINE LIMITS(Y,T)

DOUBLEPRECISION Y(13),T,VRMIN,VRMAX,PSVMIN,PSVMAX
COMMON /D/SCALE,PSVMIN,PSVMAX,VRMIN,VRMAX

IF (Y(11).LT.VRMIN) THEN
 Y(11)=VRMIN
ENDIF
IF (Y(11).GT.VRMAX) THEN
 Y(11)=VRMAX
ENDIF
IF (Y(13).LT.PSVMIN) THEN
 Y(13)=PSVMIN
ENDIF
IF (Y(13).GT.PSVMAX) THEN
 Y(13)=PSVMAX
ENDIF
RETURN
END

A.2 Reduced Model
CC
CCCCCCCCCCCCCC
C
C POWER SYSTEM MODEL
C WRITTEN BY: MICHAEL P. RANSICK
C 4TH ORDER RUNGE-KUTTA INTEGRATION
C REDUCED ORDER MODEL
C POSITIVE SEQUENCE DFT INCLUDED
C VRMIN/MAX,PSVMIN/MAX FIXED
C DATE: 07/10/95
C BALANCED FAULT
C ONE-CYCLE PHASOR
C
CC
CCCCCCCCCCCC
DOUBLEPRECISION DER(13),Y(13),P,IA,IB,IC,
1 MAGIDQ,PHASEIDQ,MAGVDQ,PHASEVDQ,WS,RS,VD,VQ,H,TDOPP,TQOPP,R,
2 TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD,XD,XDP,XDPP,XLS,
3 XQ,XQP,XQPP,CID,CIQ,RLOAD,PI,PSVMIN,PSVMAX,VRMIN,VRMAX,T,
4 DELTAT,DFTMAG,DFTPH

COMMON /A/WS,RS,VD,VQ,H,TDOP,TDOPP,TQOP,TQOPP,R
 /B/TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD
 /C/XD,XDP,XDPP,XLS,XQ,XQP,XQPP,CID,CIQ,RLOAD,PI
 /D/SCALE,PSVMIN,PSVMAX,VRMIN,VRMAX
DATA DER,Y/26*0.0/

C...... OPEN FILES TO OUTPUT DATA

C
OPEN(90,FILE='DQ.DAT',STATUS='NEW')
OPEN(91,FILE='RBIABCDQ.DAT',STATUS='NEW')
OPEN(92,FILE='RBY4.DAT',STATUS='NEW')
C
OPEN(92,FILE='Y16.DAT',STATUS='NEW')
C
OPEN(93,FILE='Y713.DAT',STATUS='NEW')
OPEN(94,FILE='RBDFT.DAT',STATUS='NEW')

C...... INITIALIZE CONSTANTS

VT = 1
VREF = 1.0+1./400.
TOTALT = 0.5
DELTAT = 1./3600.
T = 0.0
WS = 60.*2.*3.14159
N = 60
XDPP = 0.27
XQ = 2.1
TE = 0.8
KF = 0.06
VRMAX = 5.0
VRMIN = 0.0
PSVMAX = 5.0
PSVMIN = 0.0
RS = 0.0017
XLS = 0.2
XQP = 0.83
KE = 1.0
TA = 0.2
TCH = 0.3
PC = 20.0
H = 3.2
XD = 2.5
TDOP = 9.6
TDOPP = 0.08
XQPP = 0.29
SE = 0.0
KA = 400
TSV = 0.2
P = 2
XDP = 0.39
TQOP = 1.7
TQOPP = 0.14
TF = 1.0
RD = 0.05
Y(4) = WS
PI = 4.*ATAN(1.0)
SCALE = 0.0
NDP = INT(TOTALT/DELTAT)

C....... INITIAL CONDITIONS

Y(1) = 1.0
Y(2) = 0.0
Y(3) = 0.0
Y(4) = WS
Y(5) = 1.0
Y(6) = 1.0
Y(7) = 0.0
Y(8) = 0.0
Y(9) = 1.0
Y(10) = 0.06
Y(11) = 1.0
Y(12) = 0.0
Y(13) = 0.0
VD = 0.0
VQ = 1.0

C....... START MAIN PROGRAM LOOP

DO 100 K=0,NDP
 T = K*DELTAT
 CALL RUNGE(Y,T,DELTAT)
 CALL PHASORS(Y,T,MAGVDQ,PHASEVDQ,MAGIDQ,PHASEIDQ,IA,IB,IC)
 CALL DFT(N,K,IA,IB,IC,DFTMAG,DFTPH)

 IF (MOD(K,1).EQ.0) THEN
 WRITE(90,102) T,CID,CIQ,VD,VQ
 WRITE(91,103) T,IA,IB,IC,MAGIDQ,PHASEIDQ
 WRITE(92,104) T,Y(4)
 WRITE(92,103) T,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)
 WRITE(93,103) T,Y(7),Y(8),Y(9),Y(10),Y(11),Y(12),Y(13)
 WRITE(94,101) T,DFTMAG,DFTPH
 101 FORMAT(1X,F11.8,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3,1X,F8.3)
SUBROUTINE TO PERFORM INTEGRATION BY FOURTH ORDER RUNGE-KUTTA

SUBROUTINE RUNGE(Y,T,DELTAT)
DOUBLE PRECISION Y(13), DER(13), K1(13), K2(13), K3(13), K4(13),
1 N,P,IA, IB, IC, DELTAT, YTEMP(13),
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 TEMP1D, TEMP2D, TEMP1Q, TEMP2Q

COMMON /A/ WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /B/ TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD
1 /C/ XD, XDP, XDPP, XLS, XQ, XQP, XQPP, CID, CIQ, RLOAD, PI

CALL DERIVE(Y, T, K1)
DO 10 I=1, 13
 K1(I)=DELTAT*K1(I)
 YTEMP(I)=Y(I)+K1(I)/2.
 YTEMP(1)=VQ+RS*CIQ
 YTEMP(2)=VD-RS*CID
 CALL CURRENT(YTEMP, T)
 CALL LIMITS(YTEMP, T)
10 CONTINUE
CALL DERIVE(YTEMP, T+DELTAT/2., K2)
DO 20 I=1, 13
 K2(I)=DELTAT*K2(I)
 YTEMP(I)=Y(I)+K2(I)/2.
 YTEMP(1)=VQ+RS*CIQ
 YTEMP(2)=VD-RS*CID
 CALL CURRENT(YTEMP, T)
 CALL LIMITS(YTEMP, T)
20 CONTINUE
CALL DERIVE(YTEMP, T+DELTAT/2., K3)
DO 30 I=1, 13
 K3(I)=DELTAT*K3(I)
YTEMP(I) = Y(I) + K3(I)
YTEMP(1) = VQ + RS * CIQ
YTEMP(2) = -VD - RS * CID
CALL CURRENT(YTEMP, T)
CALL LIMITS(YTEMP, T)
CONTINUE
CALL DERIVE(YTEMP, T + DELTAT, K4)
DO 40 I = 1, 13
 K4(I) = DELTAT * K4(I)
 Y(I) = Y(I) + (1./6.) * (K1(I) + 2. * K2(I) + 2. * K3(I) + K4(I))
 Y(1) = VQ + RS * CIQ
 Y(2) = -VD - RS * CID
CALL CURRENT(Y, T)
CALL LIMITS(Y, T)
CONTINUE
RETURN
END

THE STATES
Y(1) = PD Y(6) = P1D Y(11) = VR
Y(2) = PQ Y(7) = EDP Y(12) = TM
Y(3) = D Y(8) = P2Q Y(13) = PSV
Y(4) = W Y(9) = EFD
Y(5) = EQP Y(10) = RF

SUBROUTINE TO CALCULATE THE DERIVATIVES OF THE STATES

SUBROUTINE DERIVE(Y, T, DER)
DOUBLE PRECISION DER(13), Y(13), N, P, IA, IB, IC,
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOPP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 T1, T2, X1, X2, X3, X4
COMMON /A/ WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /B/ TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD
1 /C/ XD, XDP, XDPP, XLS, XQ, XQP, XQPP, CID, CIQ, RLOAD, PI

T1 = (XDP - XDPP) / ((XDP - XLS)**2)
T2 = (XQP - XQPP) / ((XQP - XLS)**2)
X1 = XD - XDP
X2 = XDP - XLS
X3 = XQ - XQP
X4 = XQP - XLS
DER(1) = WS * (RS * CID + Y(4) * (Y(2)/WS) + VD)
DER(2) = $WS*(RS*CIQ-Y(4)*(Y(1)/WS)+VQ)$
DER(3) = $Y(4)-WS$
DER(4) = $(WS/(2.*H))*(Y(12)-Y(1)*CIQ+Y(2)*CID)$
DER(5) = $(-Y(5)-X1*(CID-T1*(Y(6)+X2*CID-Y(5)))+Y(9))/TDOP$
DER(6) = $(-Y(6)+Y(5)-(X2)*CID)/TDOPP$
DER(7) = $(-Y(7)+X3*(CIQ-T2*(Y(8)+X4*CIQ+Y(7))))/TQOP$
DER(8) = $(1./TQOPP)*(-Y(8)-Y(7)-(X4)*CIQ)$
DER(9) = $(1./TE)*(-(KE+SE)*Y(9)+Y(11))$
DER(10) = $(1./TF)*(-Y(10)+(KF/TF)*Y(9))$
DER(11) = $(1./TA)*(-Y(11)+KA*Y(10)-(KA*KF/TF)*Y(9)+KA*(VREF-VT))$
DER(12) = $(1./TCH)*(-Y(12)+Y(13))$
DER(13) = $(1./TSV)*(-Y(13)+PC-(1./RD)*(Y(4)/WS))$
RETURN
END

C...... SUBROUTINE TO CALCULATE CURRENT, VOLTAGE AND SET LOAD

SUBROUTINE CURRENT(Y,T)
DOUBLE PRECISION DER(13), Y(13), N, P, IA, IB, IC,
1 MAGIDQ, PHASEIDQ, MAGVDQ, PHASEVDQ, WS, RS, VD, VQ, H, TDOPP, TQOP, R,
2 TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD, XD, XDP, XDPP, XLS,
3 XQ, XQP, XQPP, CID, CIQ, RLOAD, PI, PSVMIN, PSVMAX, VRMIN, VRMAX, T,
4 TEMP1D, TEMP2D, TEMPIQ, TEMP2Q

COMMON /A/ WS, RS, VD, VQ, H, TDOP, TDOPP, TQOP, TQOPP, R
1 /B/ TA, TE, KE, SE, TF, KF, KA, VREF, VT, TCH, TSV, PC, RD
1 /C/ XD, XDP, XDPP, XLS, XQ, XQP, XQPP, CID, CIQ, RLOAD, PI

TEMP1D = $(XDPP-XLS)/(XDP-XLS)$
TEMP2D = $(XDP-XDPP)/(XDP-XLS)$
TEMP1Q = $(XQPP-XLS)/(XQP-XLS)$
TEMP2Q = $(XQP-XQPP)/(XQP-XLS)$
A11 = 1.0
A12 = $RS/(XDPP+RLOAD)$
A21 = -$RS/(XQPP+RLOAD)$
A22 = 1.0
DET = $1/(A11*A22-A21*A12)$
B1 = $(1/(XDPP+RLOAD))*$(TEMP1D*Y(5)+TEMP2D*Y(6))
B2 = $(1/(XQPP+RLOAD))*$(-TEMP1Q*Y(7)+TEMP2Q*Y(8))
IF (T.LT.0.05) THEN
CID = 0.0
CIQ = 0.0
ENDIF
IF ((T.GE.0.05) .AND. (T.LT.0.15)) THEN
RLOAD=0.01
CID = -DET*(-A22*B1+A12*B2)
CIQ = -DET*(A21*B1-A11*B2)
VD = CID*RLOAD
VQ = CIQ*RLOAD
VT = SQRT((VD**2)+(VQ**2))

ENDIF
IF (T.GE.0.15) THEN
RLOAD=2.0
CID = -DET*(-A22*B1+A12*B2)
CIQ = -DET*(A21*B1-A11*B2)
VD = CID*RLOAD
VQ = CIQ*RLOAD
VT = SQRT((VD**2)+(VQ**2))
ENDIF
RETURN
END

C....... SUBROUTINE TO CALCULATE PHASORS AND ABC CURRENTS

SUBROUTINE PHASORS(Y,T,MAGVDQ,PHASEVDQ,MAGICDQ,PHASEIDQ,IA,IB,IC)
DOUBLE PRECISION DER(13),Y(13),N,P,IA,IB,IC,
MAGIDQ,PHASEIDQ,MAGVDQ,PHASEVDQ,WS,RS,VD,VQ,H,TDOPP,TQOPP,R,
TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD,XD,XDP,XDPP,XLS,
XQ,XQP,XQPP,CID,CIQ,RLOAD,P1,PSVMIN,PSVMAX,VRMIN,VRMAX,T,
TEMPVD,TEMPID

COMMON /A/WS,RS,VD,VQ,H,TDOP,TDOPP,TQOPP,TQOPP,R
B/TA,TE,KE,SE,TF,KF,KA,VREF,VT,TCH,TSV,PC,RD
C/XD,XDP,XDPP,XLS,XQ,XQP,XQPP,CID,CIQ,RLOAD,P1
/D/SCALE,PSVMIN,PSVMAX,VRMIN,VRMAX

MAGVDQ = VT
IF (ABS(VD).LT.0.00001) THEN
TEMPVD=0.00001
ELSE
TEMPVD=VD
ENDIF
PHASEVDQ=(ATAN2(VQ,TEMPVD))+Y(3)-PI/2.
MAGICDQ=SQR((CID**2)+(CIQ**2))

TEMPID=CID
IF (ABS(TEMPID).LT.0.00001) THEN
 TEMPID=0.00001
ELSE
 TEMPID=CID
ENDIF

PHASEIDQ=(ATAN2(CIQ,TEMPID)) + Y(3) - (PI/2.) + (SCALE*2.*PI)
IF (PHASEIDQ.LT.-PI) THEN
 SCALE=SCALE+1.0
ELSEIF (PHASEIDQ.GT.PI) THEN
 SCALE=SCALE-1.0
ENDIF

PHASEIDQ=(ATAN2(CIQ,TEMPID)) + Y(3) - (PI/2.) + (SCALE*2.*PI)
IF (T.LT.0.05) THEN
 PHASEIDQ=0.0
ENDIF

IA=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ)
IB=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ-2.*PI/3.)
IC=SQRT(2.)*MAGIDQ*COS(WS*T+PHASEIDQ+2.*PI/3.)

RETURN
END

C...... SUBROUTINE TO CALCULATE DFT'S

SUBROUTINE DFT(N,K,IA,IB,IC,DFTMAG,DFTPH)
DOUBLEPRECISION DFTMAG,DFTPH,IA,IB,IC,PI
COMPLEX PHIA,PHIB,PHIC,ALPHA,X1,SPHIA(60),SPHIB(60),SPHIC(60),
 1 SPHIA2(60),SPHIB2(60),SPHIC2(60)

PI=4.*ATAN(1.0)
KCY=KCY+1
ALPHA=CMPLX(COS(2.*PI/3.),SIN(2.*PI/3.))

RIA=(SQRT(2.)/N)*IA*COS(2.*KCY*PI/N)
XIA=(SQRT(2.)/N)*IA*(-SIN(2.*KCY*PI/N))
SPHIA2(KCY)=CMPLX(RIA,XIA)
PHIA=PHIA+CMPLX(RIA,XIA)
APHIA=CABS(PHIA)
RIA=REAL(PHIA)
XIA=AIMAG(PHIA)
TEMPRIA=RIA
IF (ABS(TEMPRIA).LT.0.00001) THEN
 TEMPRIA=0.00001
ELSE
 TEMPRIA=RIA
ENDIF
PPHIA=ATAN2(XIA,TEMPRIA)

RIB=(SQRT(2./N)*IB*COS(-2.*KCY*PI/N))
XIB=(SQRT(2./N)*IB*(-SIN(2.*KCY*PI/N)))
SPHIB2(KCY)=CMPLX(RIB,XIB)
PHIB=PHIB+CMPLX(RIB,XIB)
APHIB=CABS(PHIB)
RIB=REAL(PHIB)
XIB=AIMAG(PHIB)
TEMPRIB=RIB
IF (ABS(TEMPRIB).LT.0.00001) THEN
 TEMPRIB=0.00001
ELSE
 TEMPRIB=RIB
ENDIF
PPHIB=ATAN2(XIB,TEMPRIB)

RIC=(SQRT(2./N)*IC*COS(2.*KCY*PI/N))
XIC=(SQRT(2./N)*IC*(-SIN(2.*KCY*PI/N)))
SPHIC2(KCY)=CMPLX(RIC,XIC)
PHIC=PHIC+CMPLX(RIC,XIC)
APHIC=CABS(PHIC)
RIC=REAL(PHIC)
XIC=AIMAG(PHIC)
TEMPRIC=RIC
IF (ABS(TEMPRIC).LT.0.00001) THEN
 TEMPRIC=0.00001
ELSE
 TEMPRIC=RIC
ENDIF
PPHIC=ATAN2(XIC,TEMPRIC)

X1=(1./3.)*(PHIA+ALPHA*PHIB+ALPHA*ALPHA*PHIC)
C NEG X1=(1./3.)*(PHIA+ALPHA*PHIB+ALPHA*PHIC)
C ZERO X1=(1./3.)*(PHIA+PHIB+PHIC)
AX1=CABS(X1)
TEMPX1=REAL(X1)
IF (ABS(TEMPX1).LT.0.00001) THEN
 TEMPX1=0.00001
ELSE
TEMPX1=REAL(X1)
ENDIF
PX1=ATAN2(AIMAG(X1),TEMPX1)
DFTMAG=AX1
DFTPH=PX1

IF (KCY.EQ.N) THEN
 DO 400 I=1,N
 SPHIA(I)=SPHIA2(I)
 SPHIB(I)=SPHIB2(I)
 SPHIC(I)=SPHIC2(I)
 KCY=O
 CONTINUE
400 CONTINUE
ENDIF

IF (K.GE.N) THEN
 PHIA=PHIA-SPHIA(1)
 PHIB=PHIB-SPHIB(1)
 PHIC=PHIC-SPHIC(1)
 DO 401 J=2,N
 SPHIA(J-1)=SPHIA(J)
 SPHIB(J-1)=SPHIB(J)
 SPHIC(J-1)=SPHIC(J)
401 CONTINUE
ENDIF

RETURN
END

SUBROUTINE LIMITS(Y,T)
DOUBLE PRECISION Y(13),T,VRMIN,VRMAX,PSVMIN,PSVMAX
COMMON /D/SCALE,PSVMIN,PSVMAX,VRMIN,VRMAX

IF (Y(11).LT.VRMIN) THEN
 Y(11)=VRMIN
ENDIF
IF (Y(11).GT.VRMAX) THEN
 Y(11)=VRMAX
ENDIF
IF (Y(13).LT.PSVMIN) THEN
 Y(13)=PSVMIN
ENDIF
IF (Y(13).GT.PSVMAX) THEN
Y(13) = PSVMAX
ENDIF
RETURN
END

A.3 Half-Cycle Phasor Subroutine

SUBROUTINE TO CALCULATE DFT'S

SUBROUTINE DFT(N,K,IA,IB,IC,DFTMAG,DFTPH)
DOUBLE PRECISION DFTMAG, DFTPH, IA, IB, IC, PI
COMPLEX PHIA, PHIB, PHIC, ALPHA, X1, SPHIA(60), SPHIB(60), SPHIC(60),
1 SPHIA2(60), SPHIB2(60), SPHIC2(60)

PI = 4. * ATAN(1.0)
KCY = KCY + 1
ALPHA = CMPLX(COS(2. * PI/3.), SIN(2. * PI/3.))

RIA = (SQRT(2. / N) * IA * COS(2. * K * PI / N))
XIA = (SQRT(2. / N) * IA * (-SIN(2. * K * PI / N)))
SPHIA2(KCY) = CMPLX(RIA, XIA)
PHIA = PHIA + CMPLX(RIA, XIA)
APHIA = CABS(PHIA)
RIA = REAL(PHIA)
XIA = AIMAG(PHIA)
TEMPRIA = RIA
IF (ABS(TEMPRIA).LT.0.00001) THEN
 TEMPRIA = 0.00001
ELSE
 TEMPRIA = RIA
ENDIF
PHIA = ATAN2(XIA, TEMPRIA)

RIB = (SQRT(2. / N) * IB * COS(2. * K * PI / N))
XIB = (SQRT(2. / N) * IB * (-SIN(2. * K * PI / N)))
SPHIB2(KCY) = CMPLX(RIB, XIB)
PHIB = PHIB + CMPLX(RIB, XIB)
APHIB = CABS(PHIB)
RIB = REAL(PHIB)
XIB = AIMAG(PHIB)
TEMPRIB = RIB
IF (ABS(TEMPRIB).LT.0.00001) THEN
 TEMPRIB = 0.00001
ELSE
TE:MPRIB=RIB
ENDIF
PPHIB=ATAN2(XIB,TE:MPRIB)

RIC=(SQRT(2.)/N)*IC*COS(2.*K*PI/N)
XIC=(SQRT(2.)/N)*IC*(-SIN(2.*K*PI/N))
SPHIC2(KCY)=C:MPLX(RIC,XIC)
PHIC=PHIC+CMPLX(RIC,XIC)
APHIC=CABS(PHIC)
RIC=REAL(PHIC)
XIC=AIMAG(PHIC)
TE:MPRIC=RIC
IF (ABS(TE:MPRIC).LT.0.00001) THEN
 TE:MPRIC=0.00001
ELSE
 TE:MPRIC=RIC
ENDIF
PPHIC=ATAN2(XIC,TE:MPRIC)

X1=2.*(1./3.)*(PHIA+ALPHA*PHIB+ALPHA*ALPHA*PHIC)
C NEG X1=(1./3.)*(PHIA+ALPHA*ALPHA*PHIB+ALPHA*PHIC)
C ZERO X1=(1./3.)*(PHIA+PHIB+PHIC)
AX1=CABS(X1)
TEPX1=REAL(X1)
IF (ABS(TEPX1).LT.0.00001) THEN
 TEPX1=0.00001
ELSE
 TEPX1=REAL(X1)
ENDIF
PX1=ATAN2(AIMAG(X1),TEPX1)
DFTMAG=AX1
DFTPH=PX1

IF (KCY.EQ.INT(N/2.)) THEN
 DO 400 I=1,INT(N/2.)
 SPHIA(I)=SPHIA2(I)
 SPHIB(I)=SPHIB2(I)
 SPHIC(I)=SPHIC2(I)
 KCY=0
 400 CONTINUE
ENDIF

IF (K.GE.INT(N/2.)) THEN
 PHIA=PHIA-SPHIA(1)
PHIB = PHIB - SPHIB(1)
PHIC = PHIC - SPHIC(1)
DO 401 J = 2, INT(N/2.)
 SPHIA(J-1) = SPHIA(J)
 SPHIB(J-1) = SPHIB(J)
 SPHIC(J-1) = SPHIC(J)
 401 CONTINUE
ENDIF
RETURN
END