
1

Geometric Programming Based Optimization of
Multiple Periodic Resources in

Hierarchical Scheduling
Man-Ki Yoon∗, Jung-Eun Kim∗, Richard Bradford†, and Lui Sha∗
∗University of Illinois at Urbana-Champaign, Urbana, IL 61801

Email: {mkyoon, jekim314, lrs}@illinois.edu
†Rockwell Collins, Cedar Rapids, IA 52498

Email: rmbradfo@rockwellcollins.com

Abstract

Hierarchical scheduling of periodic resources has been increasingly applied to a wide variety of real-time systems
due to its ability to accommodate various applications on a single system through strong temporal isolation. This leads
to the question of how one can optimally design the resource parameters while satisfying the timing requirements of
real-time applications. A great deal of research has been devoted to deriving the analytic model for the bounds on the
design parameter of a single resource as well as its optimization. The optimization for multiple periodic resources,
however, requires a holistic approach due to the conflictingrequirements of the limited computational capacity of a
system among resources. Thus, this report addresses a holistic optimization of multiple periodic resources with regard
to minimum system utilization. We extend the existing analysis on the parameter bounds of a single resource in order
for the variable interferences among resources to be captured in the resource bound, and then solve the problem with
Geometric Programming (GP). The experimental results showthat the proposed method can find a solution very close
to the one optimized via an exhaustive search and that it can explore more solutions than a known heuristic method.

I. I NTRODUCTION

As the processing power of processors has grown, there has been an increasing trend toward integrating many
real-time applications on a single system and thus efficiently utilizing the system by allowing the applications to
share common hardware devices. In such systems, temporallypartitioned hierarchical scheduling [1]–[5] has been
widely adopted because of its strong isolation among sets ofreal-time applications, which either are independently
developed or have different functionalities or criticalities. For example, in IMA (Integrated Modular Avionics)
architecture [6], applications are often grouped into different partitions according to their design-assurance levels
in order to protect high-criticality applications from thefaulty behavior of other applications and guarantee their
timing requirements. Partitioned resource scheduling canalso be used to implement resource reservation to prevent
aperiodic tasks from being starved [7], [8].

In such a temporally partitioned hierarchical scheduling,one important question is how much of the computational
resource needs to be allocated to each partitioned resourcein order for the system to be optimized for a certain
metric. For instance, it is desirable in system design process to minimize the system utilization while guaranteeing
the timing requirements of both resources and their applications. This is true since a lower-utilized system can be
more utilized by accommodating additional workload or, alternatively, the same workload can be implemented by
a lower-speed system, which can reduce the unit cost of production.

For a single resource case, the optimizedresource design parameters, that is,period and execution length, can
be obtained by a method based either on an exact schedulability test [4], [5] or on resource supply and demand
functions [1]–[3]. However, it is often intractable to find the optimal set of resource parameters mainly because
the local optimality of each resource does not necessarily lead to the global optimal solution [4], [5]. Accordingly,
each design parameter cannot be chosen independently. Thus, the optimal selection requires a brute-force search,
which is only practical when some parameters are fixed and/orthe number of resources is small.

Thus, in this report, we are interested in finding a sub-optimal set of resource design parameters that minimizes
the schedulable system utilization; both resources and their tasks are schedulable. Specifically, we consider the
periodic resource model introduced in [1]–[5]; each resource R is periodically released at everyT and supplies
an execution amount ofL to its tasks. For global and local scheduling, we consider fixed-priority scheduling with
the assumption that priorities are pre-assigned. The results on the resource parameter bound in previous work were

2

derived by calculating the lower-bound on a resource supplythat can satisfy the worst-case demand of the workload.
When other resource parameters are unknown, however, a pessimistic assumption on the minimum supply needs
to be made; each resource suffers the maximum possible delay. We tackle this problem by parameterizing the
worst-case resource supply with the unknown parameters of other resources that can be holistically optimized via
Geometric Programming (GP)[9], [10]. GP is a non-linear optimization method that can solve a specially formed
non-convex problem by transforming it into a convex one through a logarithmic transformation, thus finding the
optimal solution efficiently. We present a GP formulation asthe solution to the design parameter optimization of
multiple periodic resources. As will be shown later, our method can find a solution that is close to the one that can
be found by an exhaustive search, and it can explore more solutions than a known heuristic method [5].

The remaining sections of this report are organized as follows: Section II summarizes the related work, and
then Section III introduces the system model we consider andthen formally describes the parameter optimization
problem of multiple periodic resources. In Section IV, we review the previous literature on the analysis of single
resource bounds, and then extend these findings to multiple resources in Section V. In Section VI, we explain how
to formulate and transform the considered optimization problem to geometric programming. The evaluation results
are given in Section VII. Finally, Section VIII concludes this report.

II. RELATED WORK

Shinet al. [1] proposed the periodic resource model in a hierarchical scheduling that facilitates the schedulability
analysis of the workload of tasks (child) under a periodic resource supply (parent). The authors presented the
exact schedulability analysis of a workload set in a periodic resource under RM and EDF scheduling and derived
the utilization bounds. In [2], Almeidaet al. analyzed a similar periodic server model by introducing theserver
availability function. They also developed a heuristic algorithm for server (resource) parameter optimization for
the minimum system utilization, in which the search space isreduced to a set ofdeadline points. Lipari et al. [3]
also considered the server parameter optimization problemin a hierarchical scheduling system with a different
approach of schedulability analysis. These three works allused linear models of resource supply to represent the
resource supply (supply bound function, availability function, characteristic function, respectively) and considered
a single resource. In contrast, Daviset al. [4], [5] presented the exact worst-case response time analysis of tasks
under deferrable server, periodic server, and sporadic server. The authors also addressed the parameter selection
optimization of multiple servers and provided a greedy algorithm. Through an empirical investigation, the authors
claimed that the optimal parameter selection for multiple resources is a holistic problem. In Section VII, we compare
the heuristic method in [5] with our GP-based optimization method. Additionally, in [11], Saewonget al. developed
a response time analysis for real-time guarantees of tasks under sporadic server and deferrable server.

In [12], Easwaran introduced a generalized periodic resource model calledExplicit Deadline Periodic(EDP)
resource model, and proposed an exact algorithm for determining the optimal resource parameter that minimizes
the ratio of length to period of an EDP resource. The same problem for periodic resource model was addressed
by Shin et al. [13], in which the authors presented a polynomial-time sufficient algorithm. Both problems were
addressed by Dewanet al. [14] and Fisher [15] by proposing fully-polynomial-time approximation algorithms that
improve both the optimality and time complexity. None of these papers, however, consider the problem of optimizing
the parameters of multiple resources.

Geometric Programming [9], [10] has been widely applied to abroad range of non-linear, non-convex optimization
problems such as digital circuit gate sizing [16], resourceallocation in communication systems [17], information
theory [18], etc. An extensive discussion of geometric programming can be found in [10].

III. PROBLEM DESCRIPTION

A. System Model

We consider a uniprocessor consisting of a set of independent periodic resourcesR = {Ri|i = 1, . . . , NR}. Each
resourceRi is characterized by an unknown tuple of(Ti, Li), whereTi andLi are the period and the execution
length of the resource, respectively. In each resourceRi, a setΓi = {τj |j = 1, . . . , NΓi} of tasks run in a fixed-
priority preemptive schedule such as Rate Monotonic [19]. Each taskτj is represented byτj := (ej , pj , dj)

1, where
ej is the worst-case execution time,pj is the minimum inter arrival time between successive releases, anddj is the

1More precisely, each task should be represented asτi,j if the task belongs to resourcei. For the simplicity of notations, however, we use
the abbreviationτj .

3

relative deadline. In this report, we assume thatdj = pj. We then further assume that there is no synchronization
or precedence constraints among tasks, and task releases are not bound to the release of resources [5].

The resourcesR are also scheduled in a fixed-priority manner and we assume their deadline,Di, is equal to
the period. In addition, we consider that resource priorities are given, assuming, for example, the priorities are
assigned according to criticalities. We note that the optimization method in this report cannot be applied to cases
when resource priorities are not given. Additionally, a resource is idled if there is no task ready to execute. We
also assume that there is no resource release jitter.

Finally, there is no strict assumption on the smallest time unit of resource parameters, i.e.,Ti, Li ∈ R
+ for all

i. However, we also consider cases when the parameters are constrained to integers, i.e.,Ti or Li ∈ N. As will be
shown later, the integrality constraint makes the parameter optimization much harder to solve.

B. Problem Description

Given a set of resources{Ri} and the corresponding task sets{Γi}, our problem is to find the set of the resource
parameters,{(Ti, Li)} for i = 1, . . . , NR, which minimizes the overall system utilization,Us, while guaranteeing
the schedulabilities of the resources and the tasks. Here, the overall system utilization can be represented by

Us =

NR∑

i=1

c1 · δ + c2 · Li

Ti

, (1)

whereδ is the resource context-switch overhead, andc1, c2 are weights given by the system designer [3]. In this
report, we set bothc1 and c2 to 1 and assume that each resource will consume a context-switch overhead ofδ at
each release.

In summary, task sets and their temporal characteristics, i.e., {(ej , pj, dj)|∀τj ∈ Γi} for all Ri ∈ R, are given
as input, and we will find the optimal set of resource parameters {(Ti, Li)|∀Ri ∈ R} for a givenc1, c2, andδ.

IV. PARAMETER BOUNDS OFSINGLE RESOURCES

In this section, we summarize the previous literature on theanalysis of single resource bounds. The analysis
presented in this section is primarily based on the periodicresource model introduced in [1]. It should be noted,
however, that the periodic server model in [2] can be similarly used without loss of generality.

A. Sufficient Resource Bound for Task Schedulability

In a partitioned resource whose periodTi and lengthLi are unknown, we can derive the lower-bound ofLi (or
the upper-bound ofTi) with respect toTi (or Li) that makesτj in Ri schedulable by using the periodic resource
model introduced in [1], [2]. Informally speaking, the key idea of previous work is that a task can be schedulable if
the minimum resource supply (sbfΓ(t) in [1] or A s(t) in [2]) can match the maximum workload demand generated
by τj and its higher-priority tasks during a time intervalt.

In fixed-priority global scheduling, the minimum supply of periodic resourcei is delivered to tasks when its
(k − 1)th execution has just been finished at time0 with minimum interferences from higher-priority resources.
Then, the subsequent executions from thekth release is maximally delayed by higher-priority resources. Since no
assumption is made on the periods and lengths of other resources, we assume that the worst-case occurs when the
resource suffers zero interference in the(k − 1)th release andTi − Li thereafter, as depicted in Figure 1. For this
worst-case minimum supply we can derive the linear lower-bound supply functionlsbfRi

(t) as in [1], which is
defined as follows:

lsbfRi
(t) =

Li

Ti

· (t− 2 · (Ti − Li)). (2)

Note that it is identical toA
′

s(t) with α = Li

Ti
and∆ = Ti − Li in [2].

Now, let us consider taskτj in resourceRi whose periodTi is fixed. Then, let us defineLmin
i (τj , Ti) as the

minimum required length ofRi that guarantees to scheduleτj . In order to deriveLmin
i (τj , Ti), we can consider the

situation in whichτj barely meets its deadline at timet = dj with the worst-case interference from higher-priority
tasks. Since we make no assumption on task offsets, the worst-case response time ofτj occurs whenτj and the tasks
with higher priority thanτj are released simultaneously at the end ofRi’s execution and then suffers the worst-case

4

iT

iL

2()i iT L−

sbf (t)
iR

lsbf (t)
iR

iT iT(1)thk − thk (1)thk +

R
es

ou
rc

e
S

up
pl

y

t

iL

iR iR iR

Fig. 1: The worst-case release pattern of a periodic resource Ri when the parameters of higher-priority resources
are unknown.

preemptions from the higher-priority tasks fromkth release and thereafter, which we define asthe critical instant.2

Now, let us denoteIj as the worst-case workload generated byτj and the higher-priority tasks from the critical
instant to the deadline ofτj as follows:

Ij = ej +
∑

τh∈hp(τj)

⌈ dj
ph

⌉
· eh,

wherehp(τj) is the set of tasks with higher priority thanτj . In order to guaranteeτj ’s schedulability, the minimum
supply delivered by the resource has to be greater than or equal to the worst-case workload during the time interval
dj . Thus,

lsbfRi
(dj) =

Li

Ti

· (dj − 2 · (Ti − Li)) ≥ Ij . (3)

Accordingly, the minimum required resource length, i.e.,Lmin
i (τj , Ti), for taskτj with a given resource periodTi

can be obtained by solving the quadratic inequality in Eq. (3), which results in

Lmin
i (τj , Ti) =

−(dj−2Ti)+
√
(dj−2Ti)2 + 8IjTi

4
. (4)

Note that Eq. (4) is equivalent to Eq. (23) in [1] and to Eq. (12) with β = 1 in [2]. It is also important to note
that Eq. (3) is only sufficient and not necessary condition;τj can be schedulable if and only if there exists a time
instantt ≤ dj such thatlsbfRi

(t) ≥ Ij . In this report, we use the sufficient condition in Eq. (3) since the presence
of time in the necessary condition makes the proposed optimization method not applicable to the problem under
consideration.

B. Optimization of Single Resource Bound

As seen in the previous section, the required resource length that can guarantee the schedulability ofτj in
Ri is lower-bounded by Eq. (4). Figure 2 showsLmin

i (τj , Ti) for an example periodic resource consisting of
{τ1 = (5, 20), τ2 = (10, 100), τ3 = (15, 150)}, wheredj = pj for all j. In order to find the minimum required
length of a resourcei for a given periodTi, we take the maximum of the boundsLmin

i (τj , Ti) over all tasks in
Γi, which therefore can be defined as follows:

Lmin
i (Ti) = max

τj∈Γi

(
Lmin
i (τj , Ti)

)
. (5)

2In this report, we do not consider task jitters. However, without loss of generality, the presented analyses in this report can be similarly
applied to cases with jitters. For example, the worst-case situation of τj is when all the higher-priority tasks have experienced their maximum
jitters and are released at the same time withτj .

5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

T
i
 (Resource Period)

L
i (

R
es

ou
rc

e
Le

ng
th

)

L
i
min(τ

1
, T

i
)

L
i
min(τ

2
, T

i
)

L
i
min(τ

3
, T

i
)

Feasible Region

L = T

τ
1

τ
3

τ
2

Fig. 2: Minimum required resource lengthLmin
i (τj , Ti) for {τ1 = (5, 20), τ2 = (10, 100), τ3 = (15, 150)}.

Thus, if we takeLi from the feasible region, that is,Lmin
i (Ti) ≤ Li ≤ Ti, all τj ∈ Γi are guaranteed to meet their

deadlines. For example, we can see from Figure 2 thatLmin
i (Ti) is lower-bounded byτ3 until aroundTi = 11.6.

For Ti > 11.6, Lmin
i (τ1, Ti) becomes the new bound. IfTi = 15, the resource lengthLi has to be longer than

approximately9.12 in order to guarantee that the tasks meet their deadlines.
Although the main consideration of this report is the optimization of multiple resources, we briefly address the

effects of various constraints for the case of a single resource. In Figure 3, we drew the resource utilization function

Ui(Ti) =
δ

Ti

+
Lmin
i (Ti)

Ti

for Ti ∈ [1, 20] of the example used in Figure 2: (a) no context-switch overhead (δ = 0), (b) δ = 1, (c) δ = 4,
and (d)δ = 1 and integrality constraint onLmin

i . First of all, if context-switch overhead is not a consideration, the
minimum resource utilization is achieved at the minimum possible period because

∂

∂Ti

(Lmin
i (τj , Ti)

Ti

)
≥ 0

if Ij ≤ dj . Note that if Ij = dj , Lmin
i (τj , Ti) becomesTi, which means that a dedicated processor needs to be

allocated to the resource in order to make the task schedulable. When a context-switch overhead is considered, in
contrast, the resource utilization function is no longer monotonically increasing withTi, and the optimal period
appears at a longer period due to the hyperbolic nature ofδ

Ti
. If an integrality constraint on resource lengthLi is

enforced, the graph becomes a sawtooth function and the optimal period in such a case is not necessarily identical
to the one obtained with real-valuedLi. The optimization of a single resource has been extensivelystudied in
previous literatures. Interested readers can refer to [1]–[5], [12]–[15], [20].

V. PARAMETER BOUNDS OFMULTIPLE RESOURCES

In this section, we extend the analysis of the single resource bound in the previous section to the case of multiple
resources via a parameterization of unknown resource parameters.

A. Lower-bound Supply Function Considering Unknown Parameters of Higher-Priority Resources

The bound for single resources explained in Section IV was derived with the assumption that each resource
experiences no interference in the(k− 1)th release and then suffers the delay ofTi−Li from thekth release. This
is a pessimistic assumption, since, in reality, high priority resources would suffer no (if they are the highest ones)

6

0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
i
 (Resource Period)

U
i(T

i)
(R

es
ou

rc
e

U
til

iz
at

io
n)

(c)U
i
(T

i
) = L

i
min(T

i
) / T

i
 + 4 / T

i

U
i
(T

i
)=L

i
min(T

i
) / T

i
 + 1 / T

i(d)

U
i
(T

i
) = L

i
min(T

i
) / T

i
 + 1 / T

i(b)

(a)U
i
(T

i
) = L

i
min(T

i
) / T

i

Fig. 3: Resource UtilizationUi(Ti) for Ti ∈ [1, 20] with (a) δ = 0 (no context-switch overhead), (b)δ = 1, (c)
δ = 4, and (d)δ = 1 and integrality constraint onLmin

i (Ti). Each circle represents the minimumUi(Ti) for each
case.

or only a few preemptions. Thus, an exact method is required [4], [5], which is not useful for an optimization of
multiple resource parameters due to its high time complexity. This necessitates holistic optimization of multiple
resource parameters.

Thus, we now parameterize the linear lower-bound supply function lsbfRi
(t) (Eq. (2)) with the periods and

execution lengths of the higher-priority resources,hp(Ri). The worst-case release pattern ofRi occurs whenRi

andhp(Ri) are released simultaneously. The worst-case busy period ofRi, denoted aswRi
, is the maximum time

duration thatRi can take to executeLi when it is released simultaneously with the higher-priority resources at the
kth release, which can be obtained by the traditional exact analysis:

wk+1
Ri

= Li +
∑

Rh∈hp(Ri)

⌈wk
Ri

Th

⌉
· Lh,

wherew0
Ri

= Li and the worst-case busy period ofRi is wRi
when it converges, i.e.,wRi

= wk
Ri

= wk+1
Ri

for
somek. Thus, the worst-case delay at thekth release and also thereafter (called theinitial latency in [2]) can be
represented as

∆Ri
=

∑

Rh∈hp(Ri)

⌈wRi

Th

⌉
· Lh. (6)

However, this iterative method can only be applicable to brute-force optimization. Thus, we take a different approach;
we approximate∆Ri

. During a time interval ofTi, the maximum workload generated byRi andhp(Ri) can be
represented by:

wRi
= Li +

∑

Rh∈hp(Ri)

⌈ Ti

Th

⌉
· Lh.

Note that with this equation, we can avoid iterative calculation by assuming the number of invocations of higher-
priority resources duringTi, not during the exact busy period ofRi. Also note that it is a safe bound as long as
Ri meets its deadline, i.e.,Di = Ti. Now, we remove the ceiling in order to linearizewRi

, which results in

wRi
= Li +

∑

Rh∈hp(Ri)

(Ti

Th

+ 1
)
· Lh,

7

iT

iL

()i iT L−

sbf (t)
iR

lsbf (t)
iR

iT iT(1)thk − thk (1)thk +

R
es

ou
rc

e
S

up
pl

y

t

iL

iR∆

iR iR iR

Fig. 4: The worst-case release pattern ofRi considering the periods and execution lengths of higher-priority
resources.

because⌈x⌉ ≤ x+1. Then, the new linear lower-bound supply function ofRi during a time intervalt parameterized
with hp(Ri) can be presented as follows:

lsbfRi
(t) =

Li

Ti

· (t− (Ti − Li)−∆Ri
), (7)

where
∆Ri

=
∑

Rh∈hp(Ri)

(Ti

Th

+ 1
)
· Lh. (8)

If the resource periods are harmonic with each other, we can use∆Ri
=
∑

Rh∈hp(Ri)

(
Ti

Th

)
· Lh instead.

Now, the minimum supply ofRi is delivered to tasks when it experiences no interference inthe (k − 1)th

execution and the maximum preemption delay from its higher-priority resources thereafter, that is,∆Ri
(Figure 4).

Now, the sufficient resource bound constraint for task schedulability, i.e., Eq. (3), is refined as follows:

lsbfRi
(dj) =

Li

Ti

· (dj − (Ti − Li)−∆Ri
) ≥ Ij . (9)

Accordingly, the minimum required resource length for taskτj with a given resource periodTi, i.e.,Lmin
i (τj , Ti)

in Eq. (4), becomes

Lmin
i (τj , Ti) =

−(dj−Ti−∆Ri
)+
√
(dj−Ti−∆Ri

)2+4IjTi

2
. (10)

Again,
Lmin
i (Ti) = max

τj∈Γi

(
Lmin
i (τj , Ti)

)
. (11)

Although the bound presented here is not exact and may incur approximation error, it enables us to optimize multiple
resources holistically with high efficiency, as will be described in Section VI.

B. Non-convexity of Multiple Resource Optimization

We present a simple example of two resources in order to show the non-convexity of the optimization problem
of multiple resources. Let us consider Figure 5, which showsthe utilization functions,U1 andU2, of two randomly
generated resources,{R1,R2}, and the system utilization function,Us = U1 + U2, over the period in[1, 140]. In
this example, the resources have the same period, i.e.,T1 = T2, for simplicity of representation, andδ is set to1.
R1 has a higher priority thanR2, thus∆R1

= 0 and∆R2
= 2 · L1. From the graphs, we can first see that the

system utilization functionUs is not convex (and neither isU1), which is shown by the straight line drawn between

8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T=T
1
=T

2
 (Resource Period)

U
s (

S
ys

te
m

 U
til

iz
at

io
n) U

s
 = U

1
 + U

2
 (System Utilization)

U
1
 (Utilization of Resource 1)

U
2
 (Utilization of Resource 2)

Fig. 5: System utilization of two resources,{R1,R2}, and its non-convexity. The sawtooth-shaped graph represents
the system utilization when the resource execution lengthsare constrained to integers. Circles represent the minimum
utilization of the system and the resources.

T = 60 andT = 120:

Us(90) �
Us(60) + Us(120)

2
.

Furthermore, while the resources achieve minimum utilization at T1 = 20.3 andT2 = 63.9, respectively, these do
not necessarily lead to the global optimality which occurs at T = T1 = T2 = 23.1; this issue is addressed also
in [4]. Additionally, as in the single resource case in Figure 3, if Lis are to be discrete, the optimal solution occurs
at a different point (T = 30.3). In fact, when we consider such integrality constraints, determining the optimal
solution requires extensive branch and bound searches.

In this example, the resources have the same period. The optimization of multiple resource parameters will be
harder to solve once we consider a higher number of resourcesand arbitrary resource periods.

VI. H OLISTIC OPTIMIZATION OF RESOURCEPARAMETERS VIA GEOMETRIC PROGRAMMING

In this section, we formulate the parameter optimization problem of multiple periodic resources with Geometric
Programming (GP) [9], [10].

A. Geometric Programming Formulation

A non-linear, non-convex optimization problem can be solved by geometric programming if the problem can be
formulated in a special form as follows [10]:

Minimize f0(x)

Subject to fi(x) ≤ 1, i = 1, . . . , np,

gj(x) = 1, j = 1, . . . , nm,

wheref andg areposynomialandmonomialfunctions, respectively, andx are the optimization variables. A function
gj(x) is monomial if it can be represented as:

gj(x) = cj

nj∏

k=1

xak

k ,

9

wherecj ∈ R
+ andak ∈ R. A posynomial function is a sum of monomials, and thus can be expressed as:

fi(x) =

ni∑

k=1

ckx
a1k

1 xa2k

2 · · ·xank
n ,

whereck ∈ R
+ andajk ∈ R. Also, f/g is a posynomial andfax is also a posynomial3 if ax ∈ R

+.
In summary, the objective function and the inequality constraints must be in posynomial forms, and the equality

constraints can only be in monomial forms.

We now formulate the optimization problem of the multiple resource parameters in a GP form. As previously
stated in Section III-B, we are given a set of periodic resources{Ri} with unknown parameters,Ti andLi, their
task sets{(ej, pj , dj)|∀τj ∈ Γi}, and the resource context-switch overhead are knownδ. Thus, the optimization
variables areT = (T1, . . . , TNR) andL = (L1, . . . , LNR).

Objective Function
The objective function (1) in Section III-B is already in a posynomial form, thus it can be represented as follows:

fo(T,L) =

NR∑

i=1

(c1δ + c2Li) · T
−1
i , (12)

wherec1, c2, δ ≥ 0.

Resource Bound Constraint
The resource bound for each resourceRi is constrained by Eq. (9) for eachτj ∈ Γi, which can be reexpressed

as follows:
Ti · (Li + Ij) + ∆Ri

· Li

Li · (Li + dj)
≤ 1, (13)

where∆Ri
=
∑

Rh∈hp(Ri)

(
Ti

Th
+ 1
)
· Lh (i.e., Eq. (8)),dj is the relative deadline ofτj , andIj is the worst-case

workload generated by the task itself and the higher-priority tasks during the time interval ofdj , both of which
are constants for a given input. However, the above inequality does not conform to a posynomial form because
of the posynomial term in the denominator, i.e.,Li · (Li + dj) = L2

i + Li · dj (recall that a denominator must
be monomial). Observe, however, thatLi + dj can be approximated with a monomial by the following geometric
mean approximation [17]. Let us first denote it as

gi(Li) = u1(Li) + u2(Li),

whereu1(Li) = Li andu2(Li) = dj . Then, we now approximategi(Li) with

g̃i(Li) =

(
u1(Li)

γ1

)γ1

·

(
u2(Li)

γ2

)γ2

, (14)

where

γ1 =
u1(x0)

gi(x0)
andγ2 =

u2(x0)

gi(x0)

wherex0 ∈ R
+ is a constant that satisfies̃gi(x0) = gi(x0). The approximated monomial̃gi(Li) then can be

rewritten as:

g̃i(Li) =

(
Li

γ1

)γ1

·

(
dj
γ2

)γ2

,

with
γ1 =

x0

x0 + dj
andγ2 =

dj
x0 + dj

.

3If αx is allowed to be a non-integer, the form is calledGeneralized Geometric Program (GGP), which can be transformed to GP.

10

1 5 10
20

25

30

35

40

45

50

55

L
i

g i(L
i)

an
d

ap
pr

ox
im

at
e

va
lu

e

g̃i(5)

g̃i(1)

gi(Li) = Li + 30

g̃i(10)

Fig. 6: gi(Li) = Li + 30 and its approximated monomial̃gi(Li) at x0 = 1, 5, and10. g̃i(x0) is tangent togi(Li)
at Li = x0.

Finally, Eq. (13) can be formulated as the following posynomial constraint:

(Ti · (Li + Ij) + ∆Ri
· Li) · (Li · g̃i(Li))

−1 ≤ 1, (15)

where
∆Ri

=
∑

Rh∈hp(Ri)

(
(Ti + Th) · T

−1
h · Lh

)
.

Note that the approximation quality of̃gi(Li) depends on the choice ofx0, as shown in Figure 6. Thus, in the
optimization procedure, we iteratively approximateg̃i(Li) by updatingγ1 and γ2 according to the intermediate
solution ofLi. That is, until the objective value converges, we useLi at kth step asx0 at (k + 1)th step. In our
experiment, the initial value ofx0 was chosen as 1, and the objective value converged within oneor two iterations.

Resource Schedulability Constraint
Each resource must be schedulable, that is,Li+∆Ri

≤ Ti, which can be expressed as the following posynomial
constraint:

(
Li +

∑

Rh∈hp(Ri)

(
(Ti + Th) · T

−1
h · Lh

))
· T−1

i ≤ 1. (16)

B. Mixed-Integer Geometric Programming for Integrality Constraints

In a real system, the resource periods and execution lengthsare multiples of the smallest time unit because
of scheduling granularity. In this case, we can think of integrality constraints onTi andLi values, however this
makes the optimization problem much harder to solve as illustrated in Section IV-B. A GP is calledMixed-Integer
Geometric Programming (MIGP)[10] if one or more variables are constrained to be integers.A branch and bound
method [21] can be used and often finds a global optimal solution; however, it cannot be scalable with problem
size. In this report, we use a heuristic for rounding fractional variables. The heuristic is not a globally optimal
method but can efficiently find a near-optimal solution. We note that the choice of a branching or rounding method
is orthogonal to the optimization presented in the previoussubsection.

The key idea of the rounding heuristic is that we first find the optimal solution without any integrality constraint,
which is calledGP Relaxation. Then, we round each variable up or down to its nearest integer value at each step.
Here we assume the integrality constraint on resource execution lengths,L; however, this can be similarly applied
to T. Now, let us denote{T∗,L∗} as the optimal solution found with the relaxed GP.4 For eachL∗

i ∈ L
∗, we

4The problem itself is infeasible if no solution exists for the relaxed GP.

11

TABLE I: Evaluation parameters.

Parameter Value
Number of resources,NR {2, 3, 4, 5}
Number of tasks per resource,NΓi [2, 8]
Task execution time,ej [1, 30]
Task period,pj [50, 2000]
Context-switch overhead,δ 1

calculate the distance betweenL∗
i and its nearest integer as follows:

ε(L∗
i) = min (|L∗↑

i |, |L∗↓
i |),

wherex↑ = ⌈x⌉ − x andx↓ = x− ⌊x⌋. Then, we find the least fractionalL∗
i such that

L∗
i = arg min

L∗

i
∈L∗

(ε(L∗
i)).

Once we have found suchL∗
i , we then solve the GP by adding the following monomial constraint to the original

GP:
Li · L̃∗

i

−1
= 1,

whereL̃∗
i is L∗

i + L∗↑
i or L∗

i − L∗↓
i depending on|L∗↑

i | and |L∗↓
i |.

Now let us consider the case when bothT andL are to be integers. The rounding process is similar to that
described above; however, in each iteration we round oneTi and oneLj up or down, wherei is not necessarily
equal toj. The heuristic works as follows. We first find the relaxed optimal solution{T∗,L∗}. Then, we round
the least fractionalT ∗

i up or down to its nearest integer,̃T ∗
i . We then again solve the modified GP and then find

the least fractionalL∗
j . If T ∗

j is an integer we roundL∗
j up. Otherwise, we find its nearest integer as described

above. In the next iteration, we find the least fractionalT ∗
i among the remaining fractionalT∗. However, this time

we check ifL∗
i is already an integer. If this is the case, we roundT ∗

i down. In summary, the heuristic iterates
NR times, and during each iteration we update one pair of fractional T ∗

i andL∗
j ; however,T ∗

i (L∗
j) can only be

rounded down (up) if its correspondingL∗
i (T ∗

j) is already an integer. The reason is that for eachT ∗
i found by GP,

its correspondingL∗
i is the lower-bound ofLi. Thus, ifL∗

i is already an integer,T ∗
i cannot be rounded up even if

it is closer to⌈T ∗
i ⌉ because this will make the problem infeasible by violating the resource bound constraint (15).

A similar argument is applied toL∗
j . Note that we need to updatẽgi(Li) (Eq. (14)) as well in each iteration.

We note that this rounding heuristic is based on the hope thata better solution of parameter pairs could be found
by independently rounding each parameter of a resource; updating bothT ∗

i andL∗
i of a resource at the same time

may increase the possibility of local optima by moving radically in the feasible region. As previously mentioned,
however, the presented rounding heuristic does not guarantee the optimality of the solution.

VII. E VALUATION

In this section, we evaluate the proposed optimization method presented in Section V and VI.

A. Evaluation Method

Table I summarizes the experimental parameters used for theevaluations. We consider the cases with2, 3, 4, and
5 resources, and for each case, we generated 100 random input sets with the parameters. The number of tasks per
resource, the task execution time and period are uniformly randomly chosen in the given range. For the simplicity of
evaluations, the context-switch overhead was fixed to1. With these parameters, we compare the following methods:

• Exhaustive Search: From the highest priority resource to the lowest one, we recursively assign each resource
period from1 to Tmax with a step size ofs. For each periodTi, Lmin

i is determined by Eq. (11) and (10)
with ∆Ri

calculated by Eq. (6). Recall that the system utilization obtained with this exhaustive search is still
not the exact globally optimal solution as explained in Section V.

• GP with the upper-bound onTmax: The GP optimization method presented in Section VI with an additional
set of constraints on the upper-bound on resource periods, that is,Ti · T

−1
max ≤ 1.

• GP without the upper-bound onTmax: Identical to the above except that there is no upper-bound on Tmax.
Note that in our GP-based optimization, the upper-bound of the resource period is unnecessary.

12

2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of resources

A
ve

ra
ge

 o
f U

sG
P 1−

U
sE

xh
 a

nd
 U

sG
P 2−

U
sE

xh

GP with T
max

GP without T
max

Fig. 7: The average differences ofUGP1

s andUGP2

s to UExh
s with different numbers of resources.

The priority of each resource is assigned according to the utilization sum of tasks in each resource; the higher
the utilization is, the higher its priority. This assumption is only for the evaluation purpose. Readers interested in
priority optimization can refer to [4], [5]. The priority ofeach task in each resource is assigned based on Rate
Monotonic priority assignment [19]. The GPs were solved using GGPLAB [22].

B. Evaluation Metric

We compare the methods above in terms of the minimum system utilization, i.e., Eq (1). We denote the solution
of each method asUExh

s , UGP1

s , andUGP2

s , respectively. For each input, we calculate the differenceof UExh
s from

UGP1

s andUGP2

s , that is,
UGP1

s − UExh
s andUGP2

s − UExh
s ,

respectively, and then take the average of 100 random input sets for each setting. It should be noted that we do
not compare the solving time of each method because while GP can solve a problem within a few seconds, the
exhaustive search normally takes 10–60 minutes or more depending on the problem size and the choices ofTmax

ands.

C. Evaluation Results

Figure 7 compares the minimum system utilization found by the exhaustive search and our GP method increasing
the number of resources from 2 to 5. It should be noted that theexhaustive search takes a longer time to solve
cases with six or more resources. Thus, we evaluated cases with 2, 3, 4, and 5 resources. It took about 30 minutes
– 1 hour to solve one input consisting of 5 resources with a step size of 0.5.Tmax and the step size were set
to 100 and0.5, respectively, and no integrality constraint was posed. Aswe can see from the result, the average
difference ofUGP1

s andUExh
s , i.e.,UGP1

s − UExh
s , increases with the number of resources. This is mainly because

of the approximation error in∆Ri
described in Section V. Recall that while the exhaustive search calculates the

minimum supply of each resource by using the iterative equation (Eq. (6)), our GP method takes the ceiling off and
calculates the interference from higher-priority resources during the interval of its period (Eq. (8)). When there are
only two resources, the error of the approximation is small;however as the number of resources increases, the error
accumulates from higher-priority resources to lower-priority ones. Nevertheless, we can see that the differences
between the two methods are quite small, indicating that ourmethod can find a solution that is close to the one
that can be found by the exhaustive search;0.007–0.027 average difference compared to the solutions of the
exhaustive search. Another interesting observation is that GP2, a GP without the upper-bound onTmax, can find
better solutions thanGP1; the error ofGP2 compared to the exhaustive search is only0.006–0.021 on average.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.05

0

0.05

0.1

0.15

Base utilization

D
iff

er
en

ce
s

of
 U sG

P 2
−

 U
sE

xh

Fig. 8: The differences ofUGP2

s andUExh
s with various base utilizations.

2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of resources

A
ve

ra
ge

 o
f U

sG
P 2−

U
sE

xh

Fig. 9: The average differences ofUGP2

s andUExh
s when integrality constraints on resource parameters are posed.

This result might be expected because of the limited search space ofGP1: when the workload of a resource is
significantly lower than the other resources, its optimal period may appear beyondTmax. In fact, for some input
sets,UGP2

s were lower thanUExh
s . One can find better optimal solutions with the exhaustive search by setting

Tmax higher, however, this can be limited by the input size. Hereafter we compareUGP2

s with UExh
s .

With the same inputs, we evaluated the differences ofUGP2

s to UExh
s with various base utilizations, i.e., the sum

of all task utilizations, as shown in Figure 8. From the graph, we can see that the differences increase with the base
utilizations. A similar argument as above can be used to explain this correlation. That is, a higher base utilization
implies that there exist resources with higher utilizations, and thus those tend to have shorter periods and longer
execution lengths. We attribute this, again, to the approximation error of∆Ri

in Eq. (8).

Next, we evaluate our method when both resource periods and execution lengths are be integers. For this

14

2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Number of resources

N
um

be
r

of
 s

ol
ut

io
ns

 fo
un

d

Our GP method
Heuristic in [R. Davis, RTNS 2008]

A
ve

ra
ge

 o
f U

sG
P 2−

U
sH

eu

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 10: The number of solutions found by the proposed GP method and the heuristic in [5] (Bars), and the average
difference ofUGP2

s andUHeu
s (Line).

evaluation, we used the same input as above. In the exhaustive search, the resource periods are recursively assigned
from 1 to 100 with a step size of1. Then, the ceiling of the minimum execution length for each resource period,
⌈Lmin

i (Ti)⌉ (Eq. (11)), was used in Eq. (6). For our GP, the rounding heuristic explained in Section VI-B was used.
As can be seen from Figure 9, the difference between the two methods increases with the number of resources for
the same reasons as above. However, this time the differencebecame bigger with the constraints compared to the
results in Figure 7. One can easily expect that the increaseddifference arises from the simplicity of the rounding
heuristic used. A more accurate method could be combining anestimation-based selection of rounding variables.
Note that resource utilization functions are in different shapes depending on the priorities and workload of tasks,
as can be seen in Figure 5. In the example,R2 is more flexible in choosing its parameters since its utilization
function, Lmin

i (Ti)
Ti

, is almost flat during a wide range of its period. In such a case, it would be better to round off
R2 first and then proceed to higher utilization resources in order to avoid local optima. However, it is still difficult
to find the global optimal solution with such a rounding-based approach due to the sawtooth nature of the curves.
Thus, one may want to consider using a class of branch-and-bound methods to enhance the quality of the solution.

Lastly, we compare our GP method with the heuristic proposedin [5]. The method finds the optimal parameters
for each resource in turn from the highest to the lowest resources; for each resource, it iterates over a range of
periods and for each period, it finds the optimal resource length by a binary search. When the optimal pair of
period and length is found, the same process is applied to thenext priority resource. For the comparison, we used
the same inputs as above. In the heuristic, each resource period is assigned from1 to 1000 with a step size of0.1,
and each resource length was found at the granularity of0.1. For our GP method, bothTmax and integrality were
not assumed. Figure 10 shows i) the numbers of solutions found by each method and ii) the average difference
of the minimum utilization between the two methods. As can beseen from the bars, our GP method finds more
solutions than the heuristic, and in the experiment, all input sets for which a solution was found by the heuristic
were also solved by our method. We can also see that as the number of resources increase, the gap also increases;
with 5 resources, our method found 49 solutions among 100 input sets, but only 7 solutions were found by the
heuristic.5 This follows from the greedy nature of the heuristic; the parameters for a high-priority resource were
locally optimized without considering the feasibilities of lower-priority resources. In contrast, although our method
is not a globally optimal method either, it can explore more solutions due to its ability to take into account the

5It should be noted that the exact number of feasible solutions is unknown as this requires a true optimal method. Among 100input sets for
each case, some input sets may not be feasible in the first place. Also, the main reason that each method finds fewer number ofsolutions as
the number of resources increase is because the base system utilization also increases. For example, the average base utilizations of 100 input
sets with2 and5 resources are0.281 and0.663, respectively.

15

variable interferences among resources simultaneously inthe GP optimization process. However, the qualities of
the solutions found by our method are worse than those found by the heuristic, as the line plot in Figure 10 shows.
Each marker on the line is the average of the difference of theminimum system utilization found by our method,
i.e., UGP2

s , to that found by the heuristic, i.e.,UHeu
s , for the input sets that the heuristic found; with2, 3 and 4

resources,UGP2

s − UHeu
s are between0.055 and0.065 in average, and with5 resources, the difference is0.108.

The spike at5 resources could be explained by the low number of solutions found. Although our method achieved
lower system utilization for some input sets, the heuristiccould find better solutions in most cases. Such differences
mainly arise from the optimality of the analysis used by the heuristic. That is, when the parameters of higher-priority
resources and the period of the resource under analysis are fixed, the (local-)optimal resource length is found by
the binary search which is based on the exact analysis [5]. Onthe other hand, as explained Section V, our analysis
considers the worst-case scenarios that are sufficient but not necessary, and it is also based on the approximation
of ∆Ri

, both of which lead to schedulability loss. From this evaluation, we can conclude that there is a trade-off
between the solution feasibility (our GP method) and the solution quality (the heuristic of [5]).

VIII. C ONCLUSION

In this report we addressed the problem of design parameter optimization of multiple periodic resources in
hierarchical scheduling. We extended the existing analysis on a single resource in order for our resource supply
model to be able to capture the variable parameters of higher-priority resources. In order to solve the problem, we
formulated it via Geometric Programming and provided a heuristic method for integrality constraints. The presented
analysis on the resource supply model and its optimization is not a globally optimal method due to the approximation
error of worst-case resource interference. However, we believe that one can benefit from the presented optimization
method in designing a hierarchical system with a large number of partitioned resources due to its ability to yield
a high-quality solution with a high scalability. For futurework, we will investigate the possibility of applying the
presented analysis and optimization method to a hierarchical system under non-preemptive global scheduling such
IMA (Integrated Modular Avionics) scheduling.

REFERENCES

[1] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” inProceedings of the 24th IEEE Real-Time Systems
Symposium, 2003, pp. 2–13.

[2] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions: response-time analysis and server design,” in Proceedings of the 4th
ACM international conference on Embedded software, 2004, pp. 95–103.

[3] G. Lipari and E. Bini, “Resource partitioning among real-time applications,” inProceedings of the 15th Euromicro Conference on Real-Time
Systems, 2003, pp. 151–158.

[4] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive scheduling,” inProceedings of the 24th IEEE Real-Time Systems
Symposium, 2005, pp. 389–398.

[5] R. Davis and A. Burns, “An investigation into server parameter selection for hierarchical fixed priority pre-emptive systems,” inProccedings
of Real-Time and Network Systems, RTNS, 2008.

[6] ARINC Specification 651: Design Guidance for Integrated Modular Avionics, ser. ARINC report. Airlines Electronic Engineering
Committee (AEEC) and Aeronautical Radio Inc, Nov. 1991.

[7] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-real-time systems,”Journal of Real-Time Systems, vol. 1, pp.
27–60, 1989.

[8] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks indynamic priority systems,”Journal of Real-Time Systems, vol. 10, pp. 179–210,
1996.

[9] R. J. Duffin and E. Peterson and C. Zener,Geometric Programming - Theory and Application. John Wiley, New York, 1967.
[10] S. P. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,”Optimization and Engineering, vol. 8,

pp. 67–127, 2007.
[11] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis of hierarhical fixed-priority scheduling,” inProceedings of the

14th Euromicro Conference on Real-Time Systems, 2002, pp. 152–160.
[12] A. Easwaran, “Compositional schedulability analysissupporting associativity, optimality, dependency and concurrency,” PhD thesis,

Computer and Information Science, University of Pennsylvania, 2007.
[13] I. Shin and I. Lee, “Compositional real-time scheduling framework with periodic model,”ACM Transactions on Embedded Computing

Systems, vol. 7, no. 3, pp. 30:1–30:39, May 2008.
[14] F. Dewan and N. Fisher, “Approximate bandwidth allocation for fixed-priority-scheduled periodic resources,” inProceedings of the 16th

IEEE Real-Time and Embedded Technology and Applications Symposium, 2010, pp. 247–256.
[15] N. Fisher, “An FPTAS for interface selection in the periodic resource model,” inProceedings of the 17th International Conference on

Real-Time and Network Systems, 2009, pp. 127–136.
[16] S. P. Boyd, S.-J. Kim, D. D. Patil, and M. A. Horowitz, “Digital circuit optimization via geometric programming,”Operations Research,

vol. 53, pp. 899–932, 2005.
[17] M. Chiang, “Geometric programming for communication systems,”Commun. Inf. Theory, vol. 2, pp. 1–154, Jul. 2005.
[18] M. Chiang and S. P. Boyd, “Geometric programming duals of channel capacity and rate distortion,”IEEE Trans. Inform. Theory, vol. 50,

pp. 245–258, 2004.

16

[19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment,”Journal of the ACM, vol. 20,
no. 1, pp. 46–61, January 1973.

[20] A. Easwaran, M. Anand, I. Lee, and O. Sokolsky, “On the complexity of generating optimal interfaces for hierarchical systems,” in
Workshop on Compositional Theory and Technology for Real-Time Embedded Systems, 2008.

[21] O. K. Gupta and A. Ravindran, “Branch and bound experiments in convex nonlinear integer programming,”Management Science, vol. 31,
pp. 1533–1546, 1985.

[22] “GGPLAB: A Simple Matlab Toolbox for Geometric Programming,” http://www.stanford.edu/∼boyd/ggplab/.

