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Abstract

Hierarchical scheduling of periodic resources has beem@singly applied to a wide variety of real-time systems
due to its ability to accommodate various applications oimgls system through strong temporal isolation. This leads
to the question of how one can optimally design the resouatarpeters while satisfying the timing requirements of
real-time applications. A great deal of research has beeotel@ to deriving the analytic model for the bounds on the
design parameter of a single resource as well as its optiimizalhe optimization for multiple periodic resources,
however, requires a holistic approach due to the conflicteggiirements of the limited computational capacity of a
system among resources. Thus, this report addresses aichgfismization of multiple periodic resources with redar
to minimum system utilization. We extend the existing as@lyon the parameter bounds of a single resource in order
for the variable interferences among resources to be apinrthe resource bound, and then solve the problem with
Geometric Programming (GP). The experimental results ghaivthe proposed method can find a solution very close
to the one optimized via an exhaustive search and that it xpllore more solutions than a known heuristic method.

I. INTRODUCTION

As the processing power of processors has grown, there s deincreasing trend toward integrating many
real-time applications on a single system and thus effilgiarttlizing the system by allowing the applications to
share common hardware devices. In such systems, temppeatiyioned hierarchical scheduling [1]-[5] has been
widely adopted because of its strong isolation among setsaidftime applications, which either are independently
developed or have different functionalities or criticet For example, in IMA (Integrated Modular Avionics)
architecture [6], applications are often grouped intoedht partitions according to their design-assurancddeve
in order to protect high-criticality applications from tifi@ulty behavior of other applications and guarantee their
timing requirements. Partitioned resource schedulingatam be used to implement resource reservation to prevent
aperiodic tasks from being starved [7], [8].

In such a temporally partitioned hierarchical schedulong important question is how much of the computational
resource needs to be allocated to each partitioned resoumeler for the system to be optimized for a certain
metric. For instance, it is desirable in system design m®¢e minimize the system utilization while guaranteeing
the timing requirements of both resources and their apics. This is true since a lower-utilized system can be
more utilized by accommodating additional workload oreaittively, the same workload can be implemented by
a lower-speed system, which can reduce the unit cost of ptimafu

For a single resource case, the optimizesource design parameterthat is, period and execution lengthcan
be obtained by a method based either on an exact schedtylabst [4], [5] or on resource supply and demand
functions [1]-[3]. However, it is often intractable to fintet optimal set of resource parameters mainly because
the local optimality of each resource does not necessadlg to the global optimal solution [4], [5]. Accordingly,
each design parameter cannot be chosen independently, thieusptimal selection requires a brute-force search,
which is only practical when some parameters are fixed andéonumber of resources is small.

Thus, in this report, we are interested in finding a sub-ogliset of resource design parameters that minimizes
the schedulable system utilization; both resources and thsks are schedulable. Specifically, we consider the
periodic resource model introduced in [1]-[5]; each reseuk is periodically released at evefly and supplies
an execution amount af to its tasks. For global and local scheduling, we considedfigriority scheduling with
the assumption that priorities are pre-assigned. Theteesualthe resource parameter bound in previous work were



derived by calculating the lower-bound on a resource sughali/can satisfy the worst-case demand of the workload.
When other resource parameters are unknown, however, anp&is assumption on the minimum supply needs
to be made; each resource suffers the maximum possible.d&aytackle this problem by parameterizing the
worst-case resource supply with the unknown parametershefr cesources that can be holistically optimized via
Geometric Programming (GHP], [10]. GP is a non-linear optimization method that caivea specially formed
non-convex problem by transforming it into a convex one tigto a logarithmic transformation, thus finding the
optimal solution efficiently. We present a GP formulationtlas solution to the design parameter optimization of
multiple periodic resources. As will be shown later, our Inoet can find a solution that is close to the one that can
be found by an exhaustive search, and it can explore moré@muthan a known heuristic method [5].

The remaining sections of this report are organized asvstidSection Il summarizes the related work, and
then Section Il introduces the system model we considerthad formally describes the parameter optimization
problem of multiple periodic resources. In Section IV, weies/ the previous literature on the analysis of single
resource bounds, and then extend these findings to muléptaurces in Section V. In Section VI, we explain how
to formulate and transform the considered optimizatiorbfmm to geometric programming. The evaluation results
are given in Section VII. Finally, Section VIII concludesgheport.

II. RELATED WORK

Shinet al.[1] proposed the periodic resource model in a hierarchicaéduling that facilitates the schedulability
analysis of the workload of tasks (child) under a periodisotgce supply (parent). The authors presented the
exact schedulability analysis of a workload set in a peda@source under RM and EDF scheduling and derived
the utilization bounds. In [2], Almeidat al. analyzed a similar periodic server model by introducing skever
availability function. They also developed a heuristicaalthm for server (resource) parameter optimization for
the minimum system utilization, in which the search spacediced to a set adeadline pointsLipari et al. [3]
also considered the server parameter optimization prolitem hierarchical scheduling system with a different
approach of schedulability analysis. These three worksisgd linear models of resource supply to represent the
resource supply (supply bound function, availability ftioe, characteristic function, respectively) and conside
a single resource. In contrast, Dawt al. [4], [5] presented the exact worst-case response time sisaty tasks
under deferrable server, periodic server, and sporadiesefhe authors also addressed the parameter selection
optimization of multiple servers and provided a greedy atgm. Through an empirical investigation, the authors
claimed that the optimal parameter selection for multipsources is a holistic problem. In Section VII, we compare
the heuristic method in [5] with our GP-based optimizatiogtihod. Additionally, in [11], Saewonet al. developed
a response time analysis for real-time guarantees of tasttsrisporadic server and deferrable server.

In [12], Easwaran introduced a generalized periodic resoumodel calledExplicit Deadline Periodic(EDP)
resource model, and proposed an exact algorithm for det@rgithe optimal resource parameter that minimizes
the ratio of length to period of an EDP resource. The samel@molfor periodic resource model was addressed
by Shin et al. [13], in which the authors presented a polymbitiine sufficient algorithm. Both problems were
addressed by Dewaet al. [14] and Fisher [15] by proposing fully-polynomial-time@eximation algorithms that
improve both the optimality and time complexity. None ofdag@apers, however, consider the problem of optimizing
the parameters of multiple resources.

Geometric Programming [9], [10] has been widely applied boaad range of non-linear, non-convex optimization
problems such as digital circuit gate sizing [16], resowaliecation in communication systems [17], information
theory [18], etc. An extensive discussion of geometric progming can be found in [10].

IIl. PROBLEM DESCRIPTION
A. System Model

We consider a uniprocessor consisting of a set of indepémpaegiodic resource®t = {R;|i = 1,..., N®}. Each
resourceR; is characterized by an unknown tuple @;, L;), whereT; and L; are the period and the execution
length of the resource, respectively. In each reso®gea setl; = {r;[j = 1,..., Nt} of tasks run in a fixed-
priority preemptive schedule such as Rate Monotonic [18ttEtaskr; is represented by; := (e;,p;, d;)*, where
e; is the worst-case execution time; is the minimum inter arrival time between successive relgaandl; is the

IMore precisely, each task should be represented; asif the task belongs to resourde For the simplicity of notations, however, we use
the abbreviationr;.



relative deadline. In this report, we assume that= p,;. We then further assume that there is no synchronization
or precedence constraints among tasks, and task rele@sastaround to the release of resources [5].

The resource$R are also scheduled in a fixed-priority manner and we assumie deadline,D;, is equal to
the period. In addition, we consider that resource prigsitare given, assuming, for example, the priorities are
assigned according to criticalities. We note that the ogttion method in this report cannot be applied to cases
when resource priorities are not given. Additionally, aowgse is idled if there is no task ready to execute. We
also assume that there is no resource release jitter.

Finally, there is no strict assumption on the smallest timié af resource parameters, i.€;, L; € R* for all
1. However, we also consider cases when the parameters astainad to integers, i.€T}; or L; € N. As will be
shown later, the integrality constraint makes the paranmiimization much harder to solve.

B. Problem Description

Given a set of resourcdsk,;} and the corresponding task s¢Is; }, our problem is to find the set of the resource
parameters{(T;, L;)} for i = 1,..., N?}, which minimizes the overall system utilizatiobi, while guaranteeing
the schedulabilities of the resources and the tasks. Haeep\terall system utilization can be represented by

N‘J\
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where{ is the resource context-switch overhead, and» are weights given by the system designer [3]. In this
report, we set botl; andcy; to 1 and assume that each resource will consume a contetxhsoxverhead ob at
each release.
In summary, task sets and their temporal characteristes {ie;, p;,d;)|vVr; € Iy} for all R; € R, are given
as input, and we will find the optimal set of resource paramet€l;, L;)|VR,; € PR} for a giveney, ¢z, andd.

IV. PARAMETER BOUNDS OFSINGLE RESOURCES

In this section, we summarize the previous literature onahalysis of single resource bounds. The analysis
presented in this section is primarily based on the periogource model introduced in [1]. It should be noted,
however, that the periodic server model in [2] can be siryilased without loss of generality.

A. Sufficient Resource Bound for Task Schedulability

In a partitioned resource whose peridgdand lengthZ; are unknown, we can derive the lower-boundlgf(or
the upper-bound of;) with respect tal; (or L;) that makesr; in R; schedulable by using the periodic resource
model introduced in [1], [2]. Informally speaking, the kalea of previous work is that a task can be schedulable if
the minimum resource supplgi§fr(¢) in [1] or A (¢) in [2]) can match the maximum workload demand generated
by 7; and its higher-priority tasks during a time interval

In fixed-priority global scheduling, the minimum supply oénodic resource is delivered to tasks when its
(k — 1)*" execution has just been finished at tifiavith minimum interferences from higher-priority resousce
Then, the subsequent executions from Affe release is maximally delayed by higher-priority resour&isce no
assumption is made on the periods and lengths of other m=nurve assume that the worst-case occurs when the
resource suffers zero interference in tike— 1)*" release and’; — L; thereafter, as depicted in Figure 1. For this
worst-case minimum supply we can derive the linear lowerdgbsupply functiorisbfr,(¢) as in [1], which is
defined as follows: I

ISbei (t) = Tl . (t —2- (Tz — Lz)) (2)
Note that it is identical to4’_8(t) with o = :LF— andA =T, — L, in [2].

Now, let us consider task; in resourceR; whose periodl’; is fixed. Then, let us definé;”m(rj,ﬂ) as the
minimum required length oR; that guarantees to schedule In order to deriveL"(r;, T;), we can consider the
situation in whichr; barely meets its deadline at tinie= d; with the worst-case interference from higher-priority
tasks. Since we make no assumption on task offsets, the-s@gstresponse time of occurs wherr; and the tasks
with higher priority thanr; are released simultaneously at the en®Rg6 execution and then suffers the worst-case
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Fig. 1: The worst-case release pattern of a periodic resddrcwhen the parameters of higher-priority resources
are unknown.

preemptions from the higher-priority tasks frarft* release and thereafter, which we definatascritical instant?
Now, let us denotd; as the worst-case workload generated7hyand the higher-priority tasks from the critical
instant to the deadline af; as follows:

Ij =e; + Z [ﬁ—‘ * €h,

Pn
ThEhP(T;)

wherehp(7;) is the set of tasks with higher priority than. In order to guaranteg;’s schedulability, the minimum
supply delivered by the resource has to be greater than @l émthe worst-case workload during the time interval
d;. Thus,
L;
Isbfr,(dj) = 7 - (dj =2 (Ts = Li)) 2 Ij. ®)
Accordingly, the minimum required resource length, i (r;,T;), for taskr; with a given resource periof;
can be obtained by solving the quadratic inequality in Eg,. \i@ich results in
min —(d;—2T;)++/(d; —2T;)? + 81, T;

Lpin(r;, 1) = 4 “(; AL ()
Note that Eq. (4) is equivalent to Eq. (23) in [1] and to Eq.)(#2th 5 = 1 in [2]. It is also important to note
that Eq. (3) is only sufficient and not necessary conditigncan be schedulable if and only if there exists a time
instantt < d; such thaflsbfr, (t) > I,. In this report, we use the sufficient condition in Eq. (3)csirthe presence
of time in the necessary condition makes the proposed apiinn method not applicable to the problem under
consideration.

B. Optimization of Single Resource Bound

As seen in the previous section, the required resource Hetigit can guarantee the schedulability 79fin
R; is lower-bounded by Eq. (4). Figure 2 shouig*"(r;,T;) for an example periodic resource consisting of
{m = (5,20), 72 = (10,100), 73 = (15,150)}, whered; = p, for all j. In order to find the minimum required
length of a resource for a given periodl;, we take the maximum of the boundg™"(r;,T;) over all tasks in
T';, which therefore can be defined as follows:
L™ (T}) = max (L;“i"(Tj,TZ—)). ()

‘rjeI‘i

2In this report, we do not consider task jitters. Howeverhwitt loss of generality, the presented analyses in thisrra@m be similarly
applied to cases with jitters. For example, the worst-cétsation of 7; is when all the higher-priority tasks have experiencedrtheximum
jitters and are released at the same time with
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Fig. 2: Minimum required resource lengff""*(r;,T;) for {m1 = (5,20), 72 = (10, 100), 73 = (15,150)}.

Thus, if we takeL; from the feasible region, that i (T;) < L, < T3, all 7; € T'; are guaranteed to meet their
deadlines. For example, we can see from Figure 2 &t (T;) is lower-bounded byr; until aroundT; = 11.6.
For T; > 11.6, L""(ry,T;) becomes the new bound. T; = 15, the resource lengtlh; has to be longer than
approximately9.12 in order to guarantee that the tasks meet their deadlines.

Although the main consideration of this report is the optiation of multiple resources, we briefly address the
effects of various constraints for the case of a single nesoun Figure 3, we drew the resource utilization function

s L™(T)
Ui(T:) = ORI

for T; € [1,20] of the example used in Figure 2: (a) no context-switch ovadh@ = 0), (b) § = 1, (c) § = 4,
and (d)é = 1 and integrality constraint oA, First of all, if context-switch overhead is not a considiena, the
minimum resource utilization is achieved at the minimumsgilds period because

O (E Ty 5
oT; T; -

if I; < d;. Note that ifI; = d;, L™™"(r;,T;) becomesl;, which means that a dedicated processor needs to be
allocated to the resource in order to make the task schedulthen a context-switch overhead is considered, in
contrast, the resource utilization function is no longemutonically increasing withl’;, and the optimal period
appears at a longer period due to the hyperbolic natur% off an integrality constraint on resource length is
enforced, the graph becomes a sawtooth function and thmab[uenod in such a case is not necessarily identical
to the one obtained with real-valudd,. The optimization of a single resource has been extenssteigied in
previous literatures. Interested readers can refer td51,]{12]-[15], [20].

V. PARAMETER BOUNDS OFMULTIPLE RESOURCES

In this section, we extend the analysis of the single resobozind in the previous section to the case of multiple
resources via a parameterization of unknown resource Eessn

A. Lower-bound Supply Function Considering Unknown Patanseof Higher-Priority Resources

The bound for single resources explained in Section IV wasveld with the assumption that each resource
experiences no interference in tle— 1)*" release and then suffers the delayldf- L; from the k" release. This
is a pessimistic assumption, since, in reality, high ptyoresources would suffer no (if they are the highest ones)
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Fig. 3: Resource Utilizatiort/;(T;) for T; € [1,20] with (a) 6 = 0 (no context-switch overhead), (b)= 1, (c)
§ =4, and (d)§ = 1 and integrality constraint ol (T;). Each circle represents the minimuif(7;) for each
case.

or only a few preemptions. Thus, an exact method is requdégd$], which is not useful for an optimization of
multiple resource parameters due to its high time compleXihis necessitates holistic optimization of multiple
resource parameters.

Thus, we now parameterize the linear lower-bound supplgtfan Isbfg, () (Eq. (2)) with the periods and
execution lengths of the higher-priority resourcks(R;). The worst-case release pattern/f occurs wherR;
andhp(R;) are released simultaneously. The worst-case busy peridti,oflenoted asvy, , is the maximum time
duration thatR,; can take to executé; when it is released simultaneously with the higher-pryorésources at the
k" release, which can be obtained by the traditional exactyaisal

wk
wit =Li+ ) [T—iw - Lp,
Rr€hp(R;)

wherew$, = L; and the worst-case busy period Bf, is wy, when it converges, i.ewy = wj = w%’:l for
somek. Thus, the worst-case delay at thé release and also thereafter (called thigial latency in [2]) can be

represented as w
Ar,= Y [Tﬂ-Lh- (6)

However, this iterative method can only be applicable tddsfarce optimization. Thus, we take a different approach;
we approximateAr,. During a time interval off;, the maximum workload generated &, and hp(R;) can be

represented by:
T;
Rh,th(Ri)
Note that with this equation, we can avoid iterative caltataby assuming the number of invocations of higher-
priority resources during;, not during the exact busy period &;. Also note that it is a safe bound as long as
R; meets its deadline, i.el); = T;. Now, we remove the ceiling in order to linearizg, , which results in

T;
wr, = Li+ Z (T—h-l-l)-Lh,
Rh,Ehp(Ri)
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Fig. 4: The worst-case release pattern70f considering the periods and execution lengths of highieripr
resources.

becauséx| < z+1. Then, the new linear lower-bound supply functior?fduring a time intervat parameterized
with hp(R;) can be presented as follows:

L;

Isbr,(t) = 7+ (t = (T = L)) = Ar,), (@)
where T
Ap. = L4 1)-Ly. 8
= X (gt) b ®
Rrehp(R;)

If the resource periods are harmonic with each other, we sel\g, = Zmehp(m) (%) - Lj, instead.

Now, the minimum supply ofR; is delivered to tasks when it experiences no interferencthén(k — 1)t"
execution and the maximum preemption delay from its higit@rity resources thereafter, that &z, (Figure 4).
Now, the sufficient resource bound constraint for task saladydlity, i.e., Eq. (3), is refined as follows:

L;
Isbfr, (dj) = T : (dj —(Ti = Li) = Ag,) > I;. ©)

Accordingly, the minimum required resource length for taskvith a given resource period;, i.e., L7 (1;,T;)
in Eq. (4), becomes

—(dj=T=Ar,) +/(d; = Ti-Ag,)*+4L,; T

L7y, Ti) = 5

(10)
Again,

L7 (1) = may (L7 (73, T)). (11)
Although the bound presented here is not exact and may ipgrogimation error, it enables us to optimize multiple
resources holistically with high efficiency, as will be delsed in Section VI.

B. Non-convexity of Multiple Resource Optimization

We present a simple example of two resources in order to shewaon-convexity of the optimization problem
of multiple resources. Let us consider Figure 5, which shthesutilization functions{/; andU,, of two randomly
generated resource§R 1, R»}, and the system utilization functiob, = U; + Uz, over the period i1, 140]. In
this example, the resources have the same periodyi.e= T», for simplicity of representation, antlis set tol.

R1 has a higher priority thaRs, thus Az, = 0 and Ag, = 2 - L. From the graphs, we can first see that the
system utilization functiod/, is not convex (and neither i8;), which is shown by the straight line drawn between
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Furthermore, while the resources achieve minimum utibimatit 7; = 20.3 and7; = 63.9, respectively, these do
not necessarily lead to the global optimality which occurd’a= 71 = T, = 23.1; this issue is addressed also
in [4]. Additionally, as in the single resource case in Fig@ if L;s are to be discrete, the optimal solution occurs
at a different point " = 30.3). In fact, when we consider such integrality constrainestedmining the optimal
solution requires extensive branch and bound searches.

In this example, the resources have the same period. Theiaption of multiple resource parameters will be
harder to solve once we consider a higher number of resoarasrbitrary resource periods.

V1. HoLIsTIC OPTIMIZATION OF RESOURCEPARAMETERS VIA GEOMETRIC PROGRAMMING

In this section, we formulate the parameter optimizatioobgm of multiple periodic resources with Geometric
Programming (GP) [9], [10].

A. Geometric Programming Formulation
A non-linear, non-convex optimization problem can be solisg geometric programming if the problem can be
formulated in a special form as follows [10]:
Minimize
Subject to

fo(x)
fi(X)Sl,i:17...,np7
g](x):17 .j:17"'7nm7

wheref andg areposynomiabndmonomialfunctions, respectively, andare the optimization variables. A function
g;(x) is monomial if it can be represented as:

nj
g9;(x) = ¢; [ [ ==,
k=1



wherec; € RT anday, € R. A posynomial function is a sum of monomials, and thus canxXpessed as:

E Ckxalk azk x;llnk’

wherec, € RT andaj, € R. Also, f/g is a posynomlal ang? is also a posynomidlif a, € R*.
In summary, the objective function and the inequality comets must be in posynomial forms, and the equality
constraints can only be in monomial forms.

We now formulate the optimization problem of the multiplsaarce parameters in a GP form. As previously
stated in Section IlI-B, we are given a set of periodic resesfR;} with unknown parameterd;; and L;, their
task sets{(e;,p;,d;)|Vr; € T';}, and the resource context-switch overhead are kaowhus, the optimization
variables arél’ = (T3,...,Ty») andL = (Lq,..., Ly»).

Objective Function
The objective function (1) in Section IlI-B is already in agymomial form, thus it can be represented as follows:

N‘.R
fo(T,L) = > (c16 + caLy) - T; 1, (12)
1=1
wherecy, ¢, > 0.

Resource Bound Constraint

The resource bound for each resoufgis constrained by Eq. (9) for eaeh) € I';, which can be reexpressed

as follows:
T;-(Li +I;) + Ag, - L;

L;- (Ll—l—d]) -

(13)

whereAg, = Zmehp(m) (% + 1) - Ly, (i.e., Eq. (8)),d; is the relative deadline of;, and/; is the worst-case
workload generated by the task itself and the higher-fiyideisks during the time interval af;, both of which
are constants for a given input. However, the above inefyudties not conform to a posynomial form because
of the posynomial term in the denominator, i.&,;- (L; + d;) = L? + L; - d; (recall that a denominator must
be monomial). Observe, however, that+ d; can be approximated with a monomial by the following geoioetr
mean approximation [17]. Let us first denote it as

gi(Li) = u1(Li) + ua(L

i);
whereu, (L;) = L; andus(L;) = d;. Then, we now approximatg (L;) with
L;

Gi(Li) = (%) ( iz )> , (14)
where (20) (20)
_ui(xo _ U2(Zo
T i) andyz = gi(zo)

wherez, € R* is a constant that satisfies(zo) = g¢:(zo). The approximated monomiai(L;) then can be

rewritten as: " s
- L; d;
Y1 Y2

Zo dj
and~y, = .
To + dj V2 Ty + dj

with

Y1 =

3If a, is allowed to be a non-integer, the form is callé@neralized Geometric Program (GGRyhich can be transformed to GP.
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Finally, Eq. (13) can be formulated as the following posyiedraonstraint:

(T; - (Li + Ij) + Ar, - Li) - (Li - Gi(Li)) " < 1, (15)
where
Ar,= > ((Ti+Tw) T, " Ly).
Rn€hp(Rq)

Note that the approximation quality @f(L;) depends on the choice af), as shown in Figure 6. Thus, in the
optimization procedure, we iteratively approximatéL;) by updatingy; and~, according to the intermediate
solution of L;. That is, until the objective value converges, we iiseat k*" step asr, at (k + 1) step. In our
experiment, the initial value af, was chosen as 1, and the objective value converged withirootweo iterations.

Resour ce Schedulability Constraint
Each resource must be schedulable, thatjsi Ax, < T;, which can be expressed as the following posynomial
constraint:

(Lt > (@+m) -1 L)) T <1 (16)
Rh,Ehp(Ri)

B. Mixed-Integer Geometric Programming for Integrality ri3traints

In a real system, the resource periods and execution leragthsnultiples of the smallest time unit because
of scheduling granularity. In this case, we can think of gnédity constraints orif; and L; values, however this
makes the optimization problem much harder to solve astiited in Section IV-B. A GP is calleMlixed-Integer
Geometric Programming (MIGH)LO] if one or more variables are constrained to be integénstanch and bound
method [21] can be used and often finds a global optimal swiuthowever, it cannot be scalable with problem
size. In this report, we use a heuristic for rounding frawtiovariables. The heuristic is not a globally optimal
method but can efficiently find a near-optimal solution. Weerthat the choice of a branching or rounding method
is orthogonal to the optimization presented in the previswssection.

The key idea of the rounding heuristic is that we first find tpéroal solution without any integrality constraint,
which is calledGP RelaxationThen, we round each variable up or down to its nearest integjae at each step.
Here we assume the integrality constraint on resource &reaciengths,L; however, this can be similarly applied
to T. Now, let us denotd T*,L*} as the optimal solution found with the relaxed GPor eachL! € L*, we

4The problem itself is infeasible if no solution exists foettelaxed GP.
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TABLE |: Evaluation parameters.

Parameter Value
Number of resourcesy™ {2,3,4,5}
Number of tasks per resourcdr:  [2,8]
Task execution timeg; [1,30]
Task periodp, [50, 2000]
Context-switch overhead, 1

calculate the distance betweéri and its nearest integer as follows:
e(Ly) = min (L], IL}]),
wherez! = [z] — z andz* = z — |x|. Then, we find the least fractionalf such that

L; =arg min (=(L))).

Once we have found such?, we then solve the GP by adding the following monomial caistrto the original
GP:
—~—1
L;- Ly =1,

whereL? is L} + L} or L7 — L}* depending onL;"| and|L}"|.

Now let us consider the case when bdhand L are to be integers. The rounding process is similar to that
described above; however, in each iteration we roundBnand oneL,; up or down, where is not necessarily
equal toj. The heuristic works as follows. We first find the relaxed wyti solution{T*,L*}. Then, we round
the least fractional; up or down to its nearest integéf;". We then again solve the modified GP and then find
the least fractional;. If 7 is an integer we round; up. Otherwise, we find its nearest integer as described
above. In the next iteration, we find the least fractiofiallamong the remaining fractiondl*. However, this time
we check if L} is already an integer. If this is the case, we roudfjd down. In summary, the heuristic iterates
N? times, and during each iteration we update one pair of vaati7;* and L7; however, T (L}) can only be
rounded down (up) if its correspondidg (77) is already an integer. The reason is that for eagtfound by GP,
its correspondind.} is the lower-bound of_,. Thus, if L} is already an integefl;* cannot be rounded up even if
it is closer to[7;] because this will make the problem infeasible by violating tesource bound constraint (15).
A similar argument is applied té;. Note that we need to updage(L;) (Eq. (14)) as well in each iteration.

We note that this rounding heuristic is based on the hopestiuatter solution of parameter pairs could be found
by independently rounding each parameter of a resourcegtingoboth”;* and L} of a resource at the same time
may increase the possibility of local optima by moving ratlicin the feasible region. As previously mentioned,
however, the presented rounding heuristic does not gusgahe optimality of the solution.

VIl. EVALUATION
In this section, we evaluate the proposed optimization nteftresented in Section V and VI.

A. Evaluation Method

Table | summarizes the experimental parameters used fawleations. We consider the cases Wi, 4, and
5 resources, and for each case, we generated 100 random @tpwith the parameters. The number of tasks per
resource, the task execution time and period are uniforamigomly chosen in the given range. For the simplicity of
evaluations, the context-switch overhead was fixetl. id/ith these parameters, we compare the following methods:

o Exhaustive Search: From the highest priority resource ¢oldtvest one, we recursively assign each resource
period from1 to T,,.. with a step size ok. For each period;, L™ is determined by Eq. (11) and (10)
with Ay, calculated by Eq. (6). Recall that the system utilizatiotaoted with this exhaustive search is still
not the exact globally optimal solution as explained in S®ecy.

o GP with the upper-bound of,,...: The GP optimization method presented in Section VI with dditzonal
set of constraints on the upper-bound on resource peribdsis, 7; - 7,1, < 1.

o GP without the upper-bound dh,,,.: Identical to the above except that there is no upper-bound;g, .
Note that in our GP-based optimization, the upper-boundhefresource period is unnecessary.
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The priority of each resource is assigned according to thizaiion sum of tasks in each resource; the higher
the utilization is, the higher its priority. This assumptis only for the evaluation purpose. Readers interested in
priority optimization can refer to [4], [5]. The priority ofach task in each resource is assigned based on Rate
Monotonic priority assignment [19]. The GPs were solvechg<6GPLAB [22].

B. Evaluation Metric

We compare the methods above in terms of the minimum systiéiaation, i.e., Eq (1). We denote the solution
of each method a& Z2", US| andUE P2, respectively. For each input, we calculate the differesfc& 2" from
UEPr andUST:, that is,

G h G h
uch —ygEeh andu&r: — yFeh,

respectively, and then take the average of 100 random irgiatfer each setting. It should be noted that we do
not compare the solving time of each method because while @Psalve a problem within a few seconds, the
exhaustive search normally takes 10—60 minutes or morendémge on the problem size and the choicesipf, ..
ands.

C. Evaluation Results

Figure 7 compares the minimum system utilization found eyekhaustive search and our GP method increasing
the number of resources from 2 to 5. It should be noted thae#maustive search takes a longer time to solve
cases with six or more resources. Thus, we evaluated cafie@ws, 4, and 5 resources. It took about 30 minutes
— 1 hour to solve one input consisting of 5 resources with p stee of 0.5.7},,, and the step size were set
to 100 and 0.5, respectively, and no integrality constraint was posedwascan see from the result, the average
difference of USSP andUF*h, i.e., USPr — UE=h increases with the number of resources. This is mainly isa
of the approximation error i\, described in Section V. Recall that while the exhaustivecteaalculates the
minimum supply of each resource by using the iterative eqndEq. (6)), our GP method takes the ceiling off and
calculates the interference from higher-priority resegrduring the interval of its period (Eqg. (8)). When there are
only two resources, the error of the approximation is sniedlyever as the number of resources increases, the error
accumulates from higher-priority resources to lower4tyoones. Nevertheless, we can see that the differences
between the two methods are quite small, indicating thatmeethod can find a solution that is close to the one
that can be found by the exhaustive seargl07-0.027 average difference compared to the solutions of the
exhaustive search. Another interesting observation is @&, a GP without the upper-bound of,,,., can find
better solutions thaid:P;; the error of GP, compared to the exhaustive search is ofl§06—0.021 on average.
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This result might be expected because of the limited segpabesofGP;: when the workload of a resource is
significantly lower than the other resources, its optimaiqgtemay appear beyond,, ... In fact, for some input
sets,US"2 were lower thanUF*". One can find better optimal solutions with the exhaustivarcde by setting
Tmaz higher, however, this can be limited by the input size. Hiteeave compard/& with UFzh,

With the same inputs, we evaluated the difference& 6f* to UF*" with various base utilizations, i.e., the sum
of all task utilizations, as shown in Figure 8. From the graph can see that the differences increase with the base
utilizations. A similar argument as above can be used toadxghis correlation. That is, a higher base utilization
implies that there exist resources with higher utilizasioand thus those tend to have shorter periods and longer
execution lengths. We attribute this, again, to the appnaxion error ofAz, in Eq. (8).

Next, we evaluate our method when both resource periods &eduton lengths are be integers. For this



14

100——— : ‘ :
[ 1Our GP method
- 90} | I Heuristic in [R. Davis, RTNS 2008} 0.18
c
S 8o 1016
£ g
L ] J [}
2 70 0.147=
o I
= 60 H0.12a. ™
= (Call)
O ol / |
& 50 01 %5
—
O 40 Joos &
o ©
q) f .
Q 30 H{0.06 ©
= E
S
> 20 0.04
10+ H0.02
.— 0

0 L L L

3 4
Number of resources

Fig. 10: The number of solutions found by the proposed GP atke#imd the heuristic in [5] (Bars), and the average
difference of UG andU " (Line).

evaluation, we used the same input as above. In the exhawsstarch, the resource periods are recursively assigned
from 1 to 100 with a step size ofl.. Then, the ceiling of the minimum execution length for eaebource period,
[L™"(T;)] (EQ. (11)), was used in Eq. (6). For our GP, the rounding Iséiaréxplained in Section VI-B was used.
As can be seen from Figure 9, the difference between the twhads increases with the number of resources for
the same reasons as above. However, this time the diffetsgeame bigger with the constraints compared to the
results in Figure 7. One can easily expect that the incredstmtence arises from the simplicity of the rounding
heuristic used. A more accurate method could be combiningséimation-based selection of rounding variables.
Note that resource utilization functions are in differehfyges depending on the priorities and workload of tasks,
as can be seen in Figure 5. In the examfitg, is more flexible in choosing its parameters since its utilza

function, % is almost flat during a wide range of its period. In such a casegould be better to round off
R, first and then proceed to higher utilization resources ireotd avoid local optima. However, it is still difficult
to find the global optimal solution with such a rounding-tthapproach due to the sawtooth nature of the curves.

Thus, one may want to consider using a class of branch-andebmethods to enhance the quality of the solution.

Lastly, we compare our GP method with the heuristic propasd8]. The method finds the optimal parameters
for each resource in turn from the highest to the lowest nes®y for each resource, it iterates over a range of
periods and for each period, it finds the optimal resourcgtlemy a binary search. When the optimal pair of
period and length is found, the same process is applied tagkepriority resource. For the comparison, we used
the same inputs as above. In the heuristic, each resourmelpgrassigned from to 1000 with a step size 06.1,
and each resource length was found at the granularitylofFor our GP method, botf,, .. and integrality were
not assumed. Figure 10 shows i) the numbers of solutionsdfdiyneach method and ii) the average difference
of the minimum utilization between the two methods. As carmsben from the bars, our GP method finds more
solutions than the heuristic, and in the experiment, aluirgets for which a solution was found by the heuristic
were also solved by our method. We can also see that as theenwhhesources increase, the gap also increases;
with 5 resources, our method found 49 solutions among 10Qtiepts, but only 7 solutions were found by the
heuristic® This follows from the greedy nature of the heuristic; thegmaeters for a high-priority resource were
locally optimized without considering the feasibilitieklower-priority resources. In contrast, although our noeth
is not a globally optimal method either, it can explore mootusons due to its ability to take into account the

51t should be noted that the exact number of feasible solstisrunknown as this requires a true optimal method. Amongiipat sets for
each case, some input sets may not be feasible in the first. pMso, the main reason that each method finds fewer numbsolofions as
the number of resources increase is because the base sydieatian also increases. For example, the average balsmations of 100 input
sets with2 and 5 resources ar@.281 and 0.663, respectively.
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variable interferences among resources simultaneoudllyenGP optimization process. However, the qualities of
the solutions found by our method are worse than those foyrttidoheuristic, as the line plot in Figure 10 shows.
Each marker on the line is the average of the difference ohtlemum system utilization found by our method,
i.e., US™: to that found by the heuristic, i.elj¢*, for the input sets that the heuristic found; wizh3 and 4
resourcesl/¢F2 — UHet are betweer).055 and 0.065 in average, and witts resources, the difference @s108.

The spike ab resources could be explained by the low number of solutionad. Although our method achieved
lower system utilization for some input sets, the heuristiald find better solutions in most cases. Such differences
mainly arise from the optimality of the analysis used by tearistic. That is, when the parameters of higher-priority
resources and the period of the resource under analysisxat the (local-)optimal resource length is found by
the binary search which is based on the exact analysis [5th®mwother hand, as explained Section V, our analysis
considers the worst-case scenarios that are sufficientdiutetessary, and it is also based on the approximation
of Ag,, both of which lead to schedulability loss. From this evétua we can conclude that there is a trade-off
between the solution feasibility (our GP method) and thetsm quality (the heuristic of [5]).

VIII. CONCLUSION

In this report we addressed the problem of design parametiémiaation of multiple periodic resources in
hierarchical scheduling. We extended the existing analgsi a single resource in order for our resource supply
model to be able to capture the variable parameters of higtierity resources. In order to solve the problem, we
formulated it via Geometric Programming and provided a issiarmethod for integrality constraints. The presented
analysis on the resource supply model and its optimizasamt a globally optimal method due to the approximation
error of worst-case resource interference. However, wie\rethat one can benefit from the presented optimization
method in designing a hierarchical system with a large nurob@artitioned resources due to its ability to yield
a high-quality solution with a high scalability. For futuweork, we will investigate the possibility of applying the
presented analysis and optimization method to a hieraathicstem under non-preemptive global scheduling such
IMA (Integrated Modular Avionics) scheduling.
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