BOOK REVIEWS


The authors are writing for many audiences, and therefore, have provided a manifold purpose for their volume.

For the student, it should be a textbook, educating him not only in methodology but also in the interrelationships between data processing and the library. For the system designer, it should be a summary of the state-of-the-art, serving as a bridge between library objectives and the technology.

Therefore, the authors themselves do not really see this compendium as a handbook. The McGraw-Hill Encyclopedia of Science and Technology defines a handbook as:

A compact, fairly up-to-date, relatively complete, authoritative compilation of specific data, procedures, and professional principles of a subject field. Much of the information is given in tables, graphs, and diagrams, and illustrations are freely used. Symbols, equations, formulas, abbreviations, and concise technical language all help condense much practical information into a handbook, but they also require that the reader already have rather broad knowledge of the field in order to use the work effectively. Hallmarks of a good handbook are an exhaustive index, up-to-date references, expert editorial staff, easy-to-read printing, and convenient format.

The book does not really meet the objectives set forth for it as a textbook, a state-of-the-art, or a handbook. Some of the major criticisms are that the references are relatively out of date, the majority dating from 1967 or before; the index is good, but not exhaustive; no bibliography for the entire work is included, yet is is replete with references.

However, despite numerous typographical errors, the work is easy to read, and the authors are experts in their field. The volume is a curious mixture of polemic, case study using the University of California as a base, and factual data. The Handbook seems to be a compilation of some work which had been done previously, and some that was prepared for this volume. Some evidence follows: The text states that the “THESAURUS OF ENGINEERING AND SCIENTIFIC TERMS (TEST)” is being prepared on computer tape, and that DDC will be responsible for its maintenance, but no reference to the fact that TEST had been published in 1967, and that DDC is responsible (p.37); there is a good section on microfilms, yet no mention is made of ultraliche or its variants; mention is made of the RECON project without referring to the publication which discusses its parameters and costs (p.635), nor is it referred to in the index, nor is retrospective conversion picked up under “conversion” in the index (which might begin to lead to a lack of confidence in it); costs and cost accounting are separated by three chapters; holography is not mentioned at all.

It is interesting that 875 pages of text are committed to the purposes mentioned previously yet there are implied caveats against automation throughout the text. For example:

Libraries are concerned with files of truly enormous magnitude. For example, whereas an inventory control file for a very large company might contain 10 million characters, the card catalog of a typical library will contain 10 times as much—100 million characters. The card catalog of a large research library will contain over 1 billion characters, and the National Union Catalog has been estimated at 100 billion characters! The conversion of such immense files into machine language is almost prohibitively expensive, but the storage and maintenance of them on a continuing basis is even more expensive—particularly since ready access to the catalog is essential.

Unfortunately, again in sharp contrast to business data processing, there is not a comparable degree of utilization by which to justify incurring such expenditures. For example, whereas a typical inventory control file will serve
activity that utilizes an average of 10 percent of the file each day, less than 0.1 percent of a library's catalog will be used each day. There is thus a relatively small base of activity over which to spread costs. The investment in conversion, storage, and maintenance must therefore be justified by "increased benefits" to a much greater extent than in business data processing.

Such warnings are well taken. The volume seems uneven and is redundant in many places; for example, Fig. 19.7, List of Representative Data Bases, p.692-94, and the Inventory of Available Data Bases, p.829-75. If more time had been taken in organizing and editing the text, this would have proved to be an even more valuable contribution.—Henry Voos, Rutgers University.


That higher education in the United States is in trouble today must be fully apparent to anyone who does a fair amount of reading. Unfortunately, this is often clearer to almost any segment of society than the one most seriously affected: the academic community itself. Part of the problem, as we are accustomed to telling each other, comes from the enormous expansion of enrollments and facilities during the sixties with its corollary promises of more education for a larger proportion of the college-age populace. For many of us the short-term problem, as Ashby notes, is M-O-N-E-Y (p.5). Yet these are not the only problems and we delude ourselves in thinking that they are. Fortunately, these two books, one an analytical but highly readable treatise by a British educator and the other a report destined to have significant impact upon the federal government, appear at a propitious moment in academic history. Both should find their way onto the shelves of all academic libraries. They should also be read and discussed by academic librarians both on campus and off.

Any Person, Any Study is the first of a series of essays by "distinguished authorities in other countries" under the sponsorship of the Carnegie Commission on Higher Education, whose books by this point should be familiar to every academic librarian. These books are having an impact upon the general public that hasn't been achieved since James Bryant Conant took on the American high school in the late fifties. Almost every new volume in the Carnegie Commission series results in newspaper headlines, the most provocative so far being Earl Cheit's The New Depression in Higher Education (1971), with its thesis that 71 percent of some forty-one of the nation's most prestigious colleges and universities are either in serious financial trouble or heading that way.

Unfortunately, Sir Eric Ashby's book is not likely to achieve such headlines, though it deserves more attention than many other Carnegie volumes. For Ashby, master of Clare College, Cambridge, and formerly vice-chancellor of Cambridge University, has challenged one of the basic premises of American higher education: that it should be for everyone. Hence, of course, his title, taken from Ezra Cornell's famous statement that he intended to found a university where any person could find any sort of study he wished. Cornell's idea and the land-grant movement went hand in hand, so that a hundred years later his ambition is close to fulfillment in many institutions.

What specifically does this British academician, with some forty years of intermittent experience in American higher education, see as the major question for our society? He answers on the first page of his chapter on "Analysis" (p.23): "... if enrollments continue to rise and finance continues to flow into higher education, will it be good enough simply to enlarge or multiply institutions without reconsidering their pattern, their curricula, their social purpose?" Ashby obviously thinks not and the Newman Report in its analysis concurs (p.61, 82-83). For both books see an urgent reexamination of institutional mission as necessary, with Ashby opting for the university as a place of rational enquiry and discourse, a posture he believes it is now in danger of losing.

Basically, Ashby's book is a well-written