PRODUCTION NOTE

University of Illinois at Urbana-Champaign Library
THE CREEP OF LEAD AND LEAD ALLOYS USED FOR CABLE SHEATHING

A REPORT OF AN INVESTIGATION

CONDUCTED BY

THE ENGINEERING EXPERIMENT STATION
UNIVERSITY OF ILLINOIS

IN CO-OPERATION WITH

THE UTILITIES RESEARCH COMMISSION

BY

HERBERT F. MOORE

AND

NORVILLE J. ALLEMAN

BULLETIN No. 243

ENGINEERING EXPERIMENT STATION

PUBLISHED BY THE UNIVERSITY OF ILLINOIS, URBANA

PRICE: FIFTEEN CENTS
THE Engineering Experiment Station was established by act of the Board of Trustees of the University of Illinois on December 8, 1903. It is the purpose of the Station to conduct investigations and make studies of importance to the engineering, manufacturing, railway, mining, and other industrial interests of the State.

The management of the Engineering Experiment Station is vested in an Executive Staff composed of the Director and his Assistant, the Heads of the several Departments in the College of Engineering, and the Professor of Industrial Chemistry. This Staff is responsible for the establishment of general policies governing the work of the Station, including the approval of material for publication. All members of the teaching staff of the College are encouraged to engage in scientific research, either directly or in cooperation with the Research Corps composed of full-time research assistants, research graduate assistants, and special investigators.

To render the results of its scientific investigations available to the public, the Engineering Experiment Station publishes and distributes a series of bulletins. Occasionally it publishes circulars of timely interest, presenting information of importance, compiled from various sources which may not readily be accessible to the clientele of the Station, and reprints of articles appearing in the technical press written by members of the staff.

The volume and number at the top of the front cover page are merely arbitrary numbers and refer to the general publications of the University. Either above the title or below the seal is given the number of the Engineering Experiment Station bulletin, circular, or reprint which should be used in referring to these publications.

For copies of publications or for other information address

THE ENGINEERING EXPERIMENT STATION,

UNIVERSITY OF ILLINOIS,

URBANA, ILLINOIS
THE CREEP OF LEAD AND LEAD ALLOYS
USED FOR CABLE SHEATHING

A REPORT OF AN INVESTIGATION
CONDUCTED BY
THE ENGINEERING EXPERIMENT STATION
UNIVERSITY OF ILLINOIS
IN COOPERATION WITH
THE UTILITIES RESEARCH COMMISSION

BY
HERBERT F. MOORE
RESEARCH PROFESSOR OF ENGINEERING MATERIALS

AND
NORVILLE J. ALLEMAN
SPECIAL RESEARCH ASSISTANT IN ENGINEERING MATERIALS

PUBLISHED BY THE UNIVERSITY OF ILLINOIS, URBANA
CONTENTS

I. INTRODUCTION 5
 1. Introductory. 5
 2. Acknowledgments 6

II. MATERIAL, TEST SPECIMENS, AND APPARATUS 6
 3. Material 6
 4. Test Specimens 6
 5. Test Results and Testing Machines 7
 6. Strain Measuring Apparatus 10

III. TEST DATA AND RESULTS. 11
 7. Test Data 11
 8. Results of Creep Tests of Tension Specimens 13
 9. Creep Limits and Rates of Creep for Metals Tested 19
 10. Creep Tests for More than 1000 Hours 20
 11. Rate of Increase in Diameter of Sheathing under Internal Pressure 20
 12. Miscellaneous Test Results 21
 13. Further Lines of Study 22

IV. CONCLUSIONS 23
 14. Summary and Conclusions 23

APPENDIX. 24
 Sheaths on Underground Power Cables, by D. W. Roper 24
LIST OF FIGURES

NO. PAGE
1. Tensile Test Specimen 7
2. Test Rack for Creep Tests at Room Temperature 8
3. Test Rack for Creep Tests at 150 deg. F. 8
4. Apparatus for Creep Tests of Cable Sheathing under Internal Pressure .. 9
5. Diagram of Extensometer 10
6. Dial Micrometer for Measuring Lateral Expansion (Creep) for Sheathing 10
7. Time-Creep Curves for Tensile Specimens 13
8. Rate of Creep for Specimens 14
9. Comparison of Results of 1000-Hour Creep Tests with Results of More Prolonged Creep Tests 16
10. Composite Graphs for Commercially Pure Lead and Lead Alloys 17
11. Comparative Average Creep on Material Basis and on Temperature Basis 18
12. Method of Determining Apparent Creep Limit 18
13. Lateral Expansion (Creep) for Sheathing under Internal Pressure 21

LIST OF TABLES

1. Composition and Dimensions of Sheathing 7
2. Short-time Tensile Test Results 12
3. Results of Creep Tests of Specimens of Lead and Lead Alloys 19
4. Creep Tests of Cable Sheathing under Internal Pressure 22
THE CREEP OF LEAD AND LEAD ALLOYS USED FOR CABLE SHEATHING

I. INTRODUCTION

1. Introductory.—“For all high voltage cables on the underground systems of fourteen large operating companies, about three to four times as many failures are caused by failure of the sheaths to protect the cable mechanically as are caused by failure of the insulation to withstand the voltage. In addition, many cases of sheath defects are located by frequent inspection and repaired before it becomes necessary to remove the cable. Such data indicate the importance of studies of the mechanical problems involved in providing adequate sheath protection.”

In connection with this statement, which was made by Mr. D. W. Roper, Superintendent, Street Department, Commonwealth Edison Company,* the following methods of mechanical damage to cable may be noted: (1) cracking, which may occur due to the bending of the cable as it is put in place or due to repeated stresses caused by temperature expansions and contractions, or by vibrations; and (2) "creep," which is the continuing deformation of a metal under a steady load. Creep is negligible in the common materials of construction at ordinary temperatures, but becomes noticeable at temperatures of several hundred degrees Fahrenheit. In lead and lead alloys creep under very low stresses is appreciable at ordinary atmospheric temperatures. Creep is to be distinguished from the plastic action which takes place in ordinary metals of construction when the elastic range is exceeded. Under ordinary plastic action deformation takes place, then in a little while internal readjustments take place and the deformation stops even under continued loading. Creep, on the other hand, continues indefinitely.

In an underground electric cable enclosed in a sheathing of lead or lead alloy in which an insulating oil is forced into the cable under slight pressure this question of creep may become of importance. If this pressure in any part of the cable is sufficient to set up appreciable creep the cable would go on expanding at an increasing rate presumably for an indefinite length of time or until rupture occurred. Quite possibly before the creep had reached anywhere near the fracture point insulation troubles would be set up due to voids. In any event

a study of the creep of lead and lead alloys used for cable sheathing seems a worth-while undertaking.

2. Acknowledgments.—This study has been supported by funds contributed by the Utilities Research Commission, Wm. L. Abbott, Chairman. An Advisory Committee was appointed for this study as follows:

E. O. Schweitzer (Chairman), Chief Testing Engineer, Commonwealth Edison Company.

C. E. Betzer, Engineer, Street Department, Commonwealth Edison Company.

C. A. Jaques, Engineer of Conduit and Cable, Public Service Company of Northern Illinois.

H. S. Patton, Assistant to the President, Midland Utility Company.

D. W. Roper, Superintendent of Street Department, Commonwealth Edison Company.

This committee has acted as an advisory committee for all the work reported in this bulletin, and several meetings have been held to consider the progress of the work. The tests described in this bulletin have been made in the Materials Testing Laboratory, University of Illinois. The investigation has been carried on as a part of the work of the Engineering Experiment Station at the University of Illinois and has been under the general administrative direction of Dean M. S. Ketchum, director of the Engineering Experiment Station, and of Prof. M. L. Egger, head of the Department of Theoretical and Applied Mechanics. Acknowledgment is made of the services of C. W. Dollins and E. D. Williams, laboratory assistants with this investigation.

II. Material, Test Specimens, and Apparatus

3. Material.—Specimens of sheathing of various kinds were obtained from users and manufacturers through the Utilities Research Commission. Table 1 gives a list of the different kinds of sheathing from which specimens were cut, or which were tested under internal hydrostatic pressure.

4. Test Specimens.—Creep tests of lead were made in two ways: (1) on tensile specimens loaded with dead weights and (2) on specimens of lead sheathing under internal oil pressure. Figure 1 shows
Table 1
Composition and Dimensions of Sheathing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E..........</td>
<td>3% Sn</td>
<td>1.0</td>
<td>0.094</td>
</tr>
<tr>
<td>G..........</td>
<td>100% Pb</td>
<td>1.875</td>
<td>0.115</td>
</tr>
<tr>
<td>H..........</td>
<td>100% Pb</td>
<td>1.875</td>
<td>0.125</td>
</tr>
<tr>
<td>I..........</td>
<td>100% Pb</td>
<td>1.875</td>
<td>0.125</td>
</tr>
<tr>
<td>J..........</td>
<td>100% Pb</td>
<td>3.084</td>
<td>0.187</td>
</tr>
<tr>
<td>K..........</td>
<td>3% Sb</td>
<td>2.875</td>
<td>0.141</td>
</tr>
<tr>
<td>L..........</td>
<td>0.04% Ca</td>
<td>2.625</td>
<td>0.125</td>
</tr>
<tr>
<td>M..........</td>
<td>1% Sb</td>
<td>0.056</td>
<td>0.075</td>
</tr>
<tr>
<td>N..........</td>
<td>1% Sn</td>
<td>1.0</td>
<td>0.100</td>
</tr>
<tr>
<td>O..........</td>
<td>1% Sn</td>
<td>1.0</td>
<td>0.094</td>
</tr>
<tr>
<td>P..........</td>
<td>1% Sb</td>
<td>3.0</td>
<td>0.100</td>
</tr>
<tr>
<td>Q..........</td>
<td>2% Sn</td>
<td>4.25</td>
<td>0.156</td>
</tr>
<tr>
<td>R..........</td>
<td>100% Pb</td>
<td>Flat sheet</td>
<td>0.100</td>
</tr>
</tbody>
</table>

![Fig. 1. Tensile Test Specimen](image)

The form and size of the tensile specimen used. This specimen was about as long as could be cut in a transverse direction from the smallest cable specimens studied. Some specimens were cut with axes transverse to the axis of the sheathing and others with axes parallel to the axis of the specimen. Flat sheets from which specimens were cut were made by sawing off five-inch lengths of sheathing, splitting longitudinally at the thickest section, and flattening under a 2000-lb. load.* Specimens were formed from these flat sheets by cutting with a sharp draw-knife round a pair of steel templates between which the flattened-out sheathing was clamped.

5. Test Results and Testing Machines.—The tensile specimens of lead were tested by being loaded with dead weights. Figure 2 shows a test rack containing twelve such specimens. Tests were run at ordinary room temperature, at 32 deg. F., and at 150 deg. F., covering the range of temperatures usually found in service. For tests at 32 deg. F. the specimens were enclosed in a wooden box, insulated with 4 in. of cork-board, and were viewed through a window which consisted of

*The pressure of 2000 lb. produces an average pressure of only about 50 lb. per sq. in. over the area of sheet under pressure. Moreover, the center of length of the tension specimen was located at a thin place in the sheet, and hence was probably subjected to a pressure decidedly less than 50 lb. per sq. in.
three thicknesses of glass to avoid frosting. The temperature was kept at 32 deg. F. by means of a thermostatically controlled mechanical refrigeration unit. Figure 3 shows a rack for tests at 150 deg. F. The specimens were surrounded by a Celotex insulated box provided
with a double-glass window in front. Temperature was maintained by means of electrical heating coils and controlled by means of a bimetallic thermoregulator. The heating coils placed at the rear of the box were shielded by vertical baffles to eliminate radiation and promote air circulation, insuring even specimen temperature.

A special rack for tests at room temperature was fitted with a screw jack by means of which some of the weights were lifted at intervals so that the effect of intermittent loading could be studied.

Short-time tension tests of lead specimens as a preliminary to the long-time creep tests were made. The specimens were the same as those shown in Fig. 1, and the tests were made on a 1000-lb. semiautographic testing machine. This machine was fitted with a special speed-reducing gear so that tests could be made at a pulling speed as low as 0.02 in. per min.

The apparatus for conducting experiments on full-sized cable sheath under hydraulic pressure is shown in Fig. 4. Three specimens of sheathing (S, S', and S'') are tested in this apparatus. Constant pressure is supplied by the mercury column M, which transmits its pressure to the oil in the sheathing. The oil level is at N-N. The mercury does not touch the sheathing, as this would cause amalgamation of the mercury and lead. The gage G indicates the pressure, from which the circumferential bursting stress can be computed. A constant oil pressure of 25 lb. per sq. in. is maintained.
6. Strain Measuring Apparatus.—The principle of the strain apparatus employed for the long-time tension tests is shown in Fig. 5. A pair of clamps fitted with a 10:1 lever L grips the specimen S. The change in distance y measures the creep of the metal over any interval of time. The distance y is measured at intervals by means of the microscope M, which is fitted with cross-hairs. The microscope is moved up and down by means of the screw Q. It is focused at b, a
reference mark on the moving arm, and then at a, a reference mark on the frame. The difference in reading between the two positions as shown on the dial micrometer K is noted, and the change in this difference between readings gives the creep which has occurred. The sensitivity of this apparatus is 0.0001 in.

The apparatus for measurement of lateral expansion of the full-sized lead sheath specimens is shown in Fig. 6. The lateral expansion was measured by a dial micrometer spanning various pairs of steel balls, which were fitted into brass sockets, which, in turn, were soldered to the surface of the test sheath. Any effect due to soldering the brass socket on the metal affects only a small area, while creep depends on all the metal in the specimen. The micrometer head M (Fig. 6) was used to change the range of the apparatus and the actual indication of distance between steel balls is shown on the micrometer dial D, which is sensitive to one ten-thousandth of an inch. The short length of test sheath shown in Fig. 6 is used as a "standard bar" for the measurement of the expansion of the sheaths. This standard bar is kept close to the test sheaths and is assumed to change temperature with them. A piece of steel fitted with ball contacts for the micrometer serves as a second "standard bar." The readings of the micrometer on these standard bars give the changes in size due to temperature, and suitable allowances for these temperature changes may be made while measuring creep. Readings of lateral expansion (creep) were taken along each test sheath at sections one foot apart.

III. TEST DATA AND RESULTS

7. Test Data.—Table 2 gives the results of the short-time tension tests. Nearly all these short-time tests were run using a pulling speed of 0.02 in. per min. To show that speed of pulling has a marked effect, two series of tests on metal L were run, using higher pulling speeds, as noted in Table 2.

Figure 7 shows typical time-creep records for two tension specimens under a constant steady load. A time-creep graph for a metal may, in general, be divided into three parts: (1) a short period of rapid stretch under load, (2) a period of steady "creep" which follows closely a "straight line" relation, and (3) a period of accelerated creep, terminating in fracture. The rate of creep for a specimen is determined from the slope of the middle "straight line" part of the graph (y/x in Fig. 7).

A graph corresponding to those shown in Fig. 7 was plotted for every creep test, and its rate of creep determined and expressed as
The number of hours necessary for a creep of 1 per cent. This value of 1 per cent is an arbitrary value tentatively selected after discussion with electrical engineers of the Utilities Research Commission. Obviously the selection of a limiting value of creep below which it is assumed that creep does no damage must be based on the experience of users of cable.

Figure 8 shows graphically the data of the creep tests of tensile specimens in the form of diagrams plotted with stress as ordinates and with values of hours necessary for 1 per cent creep plotted to a logarithmic scale as abscissas. A graph for the expansion of one lead
sheath under oil pressure is shown in Fig. 13. The numbers on the graphs refer to cross-sections spaced one foot apart along the sheath.

8. Results of Creep Tests of Tension Specimens.—The results of creep tests for the tension specimens are shown graphically in Figs. 7 to 9. Figure 10 shows composite graphs for the specimens from commercially pure lead sheathing, lead-antimony sheathing, and lead-tin sheathing. The "scatter" of test results is shown by the width of a shaded band covering all the test results. As might be expected, in view of the fact that the lead-antimony and the lead-tin specimens cover an appreciable range of percentage of alloying ingredients, the width of this band is greater for the lead-antimony and the lead-tin graphs than for the pure lead graphs.

Figure 11a gives a comparison of average creep at the three temperatures studied for each of the three metals, lead, lead-antimony, and lead-tin. Figure 11b gives a comparison of the three metals for each of the test temperatures used—32 deg. F., room temperature, and 150 deg. F. The lines plotted are the "average" lines for the bands in Fig. 10.

A comparison of the results of the tests of specimens from the sheath made of lead-calcium alloy with the results for lead, lead-antimony, and lead-tin specimens may be made by the use of Fig. 8.

The graphs vary markedly in character. For some metals they show a sharp "knee" (e.g., 1 per cent antimony alloy M, 32 deg. F.). Other graphs show no well-defined "knee" (e.g., commercially pure
FIG. 8. RATE OF CREEP FOR SPECIMENS
lead I, room temperature). A few graphs seem to approach a fairly definite horizontal asymptote (e.g., commercially pure lead G).

All the specimens tested showed some creep even at stresses as low as 200 lb. per sq. in. Evidently, if any absolute limiting creep stress exists, it is somewhat lower than this value. However, an examination of Fig. 8 shows that in the specimens tested in tension there was a distinct tendency for the graphs to change slope as the stress becomes less, and, as noted previously, several of the graphs show a fairly well-defined "knee," while some seem to be asymptotic to a fairly well-defined horizontal (stress coordinate) line.
The following arbitrary method of locating a creep limit is suggested, and has been used in this bulletin: Locate the apparent creep limit at a stress for which the slope of the graph—ordinates stress, abscissas hours (log scale) to cause 1 per cent creep—has one-tenth the value which it has for a stress of 1000 lb. per sq. in. The value of 1000 lb. per sq. in. is suggested because the rate of creep for that stress corresponds to a "straight-line" portion of nearly all the graphs, and may be regarded as the "initial" slope of the graph. Figure 12 shows the method of applying this arbitrary rule. The slope of the graph for 1000 lb. per sq. in. stress is given by bc/ab; bd is laid off equal to one-tenth bc; ad is drawn and $a'd'$ parallel to it. The point of tangency of $a'd'$ with the graph is located at t, and tg or its equal Ot' is the arbitrarily determined creep limit. While this value cannot be regarded as an absolute creep limit it does locate a stress for which the lowering of rate of creep with diminishing stress is very greatly diminished from the initial ratio, and below which creep will
THE CREEP OF LEAD CABLE SHEATHING

Fig. 10. Composite graphs for commercially pure lead and lead alloys.
certainly proceed very slowly indeed. Such an arbitrary limiting stress may serve practical needs, as do the arbitrarily determined elastic limits of metals. This method is offered as tentative; further study may develop a better method.
Table 3

Results of Creep Tests of Specimens of Lead and Lead Alloys

<table>
<thead>
<tr>
<th>Metal</th>
<th>Direction of Axis of Specimen</th>
<th>Temperature in deg. F.</th>
<th>Stress for Creep of 1 per cent lb. per sq. in.</th>
<th>Apparent Creep Limit* lb. per sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>in 1 week</td>
<td>in 1 month</td>
</tr>
<tr>
<td>3% Tin Alloy...</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>230</td>
</tr>
<tr>
<td>E</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Commercial Pure Lead...</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>G</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Trans.</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Commercial Pure Lead...</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Trans.</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Trans.</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Trans.</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>Commercial Pure Lead...</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>I</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>3/4% Antimony Alloy K</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>L</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>0.04% Calcium Alloy L</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>M</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>1% Antimony Alloy M</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>N</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>1% Tin Alloy...</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>O</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>1% Antimony Alloy P</td>
<td>Trans.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>R</td>
<td>Long.</td>
<td>Room</td>
<td>220</td>
<td>200</td>
</tr>
<tr>
<td>and Trans.</td>
<td>Room</td>
<td></td>
<td>220</td>
<td>200</td>
</tr>
</tbody>
</table>

Slope of Test Graph 1/10 that under stress of 1000 lb. per sq. in.

†Rather uncertain; results show considerable "scatter."

9. Creep Limits and Rates of Creep for Metals Tested.—By using the method of locating apparent creep limit described in the preceding paragraph, the values given in the right-hand column of Table 3 have been determined. The highest creep limit value at room temperature was found for the calcium alloy, but the test results for this metal show considerable "scatter," and the value should be checked by further tests (now in progress). The calcium alloy did not show an
especially high value for 150 deg. F., but the time required to approach this limit was more than ten times that for any other metal. The \(\frac{3}{4}\) per cent antimony alloy, longitudinal specimens (cable K) showed a high value for 32 deg. F., and its value for 150 deg. F. was also high. At the higher stresses cables L (calcium), K (\(\frac{3}{4}\) per cent antimony), and P (1 per cent antimony) stand out as having very slow creep rates.

No very systematic variation in apparent creep limit was shown for changes of temperature from 32 deg. F. to 150 deg. F. There seems to be as much variation between different metals as between specimens of one metal at different temperatures.

However, when the stress necessary to cause 1 per cent creep in one week and in one month was considered, a marked difference was found between the tests at different temperatures. This was found to be particularly true for the alloyed materials. A decidedly higher stress is necessary to cause a creep of 1 per cent per week at 32 deg. F. than is required at 150 deg. F. There also appear more clearly marked differences between the different metals.

Based on the data obtained so far, and subject to revision as further long-time test data become available, the tentative conclusion seems to be justified that, with the possible exception of the calcium alloy and the \(\frac{3}{4}\) per cent antimony alloy K, a stress of 200 lb. per sq. in. seems a fair average value to assign as a practical creep limit for the alloys studied, over the range of temperature covered in the tests, but that under higher stresses creep becomes more rapid as the temperature is increased from 32 deg. F. to 150 deg. F.

10. Creep Tests for More than 1000 Hours.—Figure 9 shows the graphs for tests which have already run beyond 1000 hours, together with the graphs for tests for 1000 hours. The test results for more than 1000 hours are shown by solid black circles. It will be noted that these points fall along the graph for the 1000-hour tests. These and other prolonged creep tests are still in progress, and the results so far obtained give no ground for changing the conclusions drawn from the 1000-hour tests.

11. Rate of Increase in Diameter of Sheathing under Internal Pressure.—Figure 13 shows graphically the increase in diameter of one of the full-sized specimens of sheathing tested under a hydrostatic pressure of 25 lb. per sq. in. The rate of increase in diameter, measured in days necessary to increase the diameter 1 per cent, is obtained by the average slope of the lines in the figure for each test sheath,
THE CREEP OF LEAD CABLE SHEATHING

respectively.* Table 4 gives the summarized results of the test so far. Definite creep appears to be taking place for each test sheath, and the average rate of expansion in diameter seems to be rather less than the rate of creep for tension specimens under the same stress. The slow but regular rate of increase in diameter apparently indicates that no absolute creep limit has been determined even at stresses as low as 200 lb. per sq. in., and the specimens of antimony and of tin alloy apparently show a somewhat higher rate of increase in diameter at the low stresses applied than does the specimen of commercially pure lead sheathing.

The temperature over the 197-day period varied from 73 to 84 deg. F., the maximum being reached at a time corresponding to the increased stretch readings.

12. Miscellaneous Test Results.—As noted, one test rack for tension specimens was fitted with an arrangement for removing the load at intervals from six of the specimens. These specimens were tested

*Each line in Fig. 13 gives the increase in diameter for a definite cross-section of the test sheath. See p. 11 for the details of location of cross-sections.
<table>
<thead>
<tr>
<th>Material</th>
<th>Diameter* of Sheathing in.</th>
<th>Bursting Stress (Circumferential) lb. per sq. in.</th>
<th>Time under Pressure days</th>
<th>Increase of Diameter in.</th>
<th>Time for 1 percent Increase in Diameter days</th>
<th>Time for 1 percent Creep Nearest Corresponding Tension Specimens† days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Pure Lead</td>
<td>2.716</td>
<td>230</td>
<td>197</td>
<td>0.0037</td>
<td>1445</td>
<td>1130</td>
</tr>
<tr>
<td>3% Antimony Alloy</td>
<td>2.724</td>
<td>230</td>
<td>197</td>
<td>0.0062</td>
<td>866</td>
<td>675</td>
</tr>
<tr>
<td>2% Tin Alloy</td>
<td>2.555</td>
<td>200</td>
<td>197</td>
<td>0.0065</td>
<td>514</td>
<td>375</td>
</tr>
</tbody>
</table>

*Average of outside and inside diameters.
†Average of different metals tested in tension.

with the load “on” eight hours and “off” sixteen hours. The rate of creep under these conditions for the actual time under load showed a slight but not marked increase over the rate of creep under continuous load.

A comparison of tests of specimens cut longitudinally and transversely from the test sheaths furnished shows no clear difference in “creep” properties. In some cases the transverse specimens show higher rate of creep, in others the longitudinal. The arbitrary creep limits determined do not seem to vary widely between these two.

One set of specimens was cut from sheet lead bought at a plumber’s shop in Champaign, Illinois. This lead was thinner than the lead from the sheaths, the rate of creep was somewhat less, but the arbitrary creep limit was about the same as the general run of specimens from the sheaths. The results are shown by Material R, Fig. 8. This would indicate that it might be possible to study various alloys of lead by means of extruded ribbons of lead from a comparatively small amount of alloy. This would be much less expensive than the actual making of sheaths in a lead press.

13. Further Lines of Study.—As indicated in the preceding paragraph a systematic study of various alloys of lead produced in small quantities and furnished in the form of extruded ribbons would apparently be the most promising way of carrying on the study of specific alloys. A large amount of profitable work could be done in this field.

Tests are in progress of the strength of specimens so cut that the welded seam of the sheathing crosses the specimen at the middle of
its length. The object of these tests is to determine whether the weld found in most extruded sheathing is markedly weaker than the base metal.

Metallographic study of the crystal structure of lead and its alloys after it has been subjected to various periods of creep under various stresses might be expected to add some important data. Whether a general change of crystalline structure accompanies creep, whether the action is along definite planes, like ordinary plastic slip, or whether creep is accompanied by definite cracking, as has been found to be the case in aluminum,* are questions of further study.

IV. CONCLUSIONS

14. Summary and Conclusions.—This bulletin describes an investigation of the “creep” under load of lead and some of its alloys used in the construction of cable sheathing. Specimens of pure lead and of lead alloyed with antimony, tin, and calcium were studied.

Tests were made on tension specimens hung on test racks at temperatures of 32 deg. F., 150 deg. F., and room temperature. The majority of the tests were discontinued after 1000 hours, but others, still in progress, have reached 5000 hours. Creep was measured with a sensitivity of one ten-thousandth of an inch. Creep tests were also made on three full-sized pieces of sheathing under a constant internal oil pressure. The following conclusions may be drawn from the tests:

(1) Some continuing creep under steady load was observed for all metals tested, even for stresses as low as 150 lb. per sq. in., although an ordinary tension test of the metals showed tensile strengths varying from 1530 to 3850 lb. per sq. in.

(2) The short-time tensile tests showed that for one of the alloys tested the pulling speed had a marked effect on the tensile strength. Increase of the pulling speed increased the tensile strength.

(3) Although no absolute creep limit was found for the metals tested there was evidence that the relation between stress and rate of creep changed in character as the stress was reduced. A graph plotted with stress as ordinates and hours for 1 per cent creep as abscissas (abscissas to a log scale) showed a distinct “flattening out” for most of the metals tested, and in some cases seemed to be approaching a horizontal asymptote.

(4) An arbitrary method of determining a value which might serve as a practical creep limit is described, and has been used in this bulletin; with this arbitrary value as an index, the tests carried out so

far seem to show that, with the exception of one calcium alloy and one antimony alloy, a stress of 200 lb. per sq. in. is apparently a fair average value to assign as a practical creep limit for the alloys studied, over the range of temperature covered in the tests, 32 deg. F. to 150 deg. F.

(5) While there was no marked change of arbitrary creep limit observed under the range of temperature studied, there was a distinct acceleration of creep for the higher stresses with increase of temperature.

(6) A few tests which have been in progress for more than 5000 hours have so far given no ground for changing conclusions drawn from the 1000-hour tests.

(7) Definite creep was observed in the tests of full-sized specimens of sheathing under internal oil pressure giving stresses at about 200 lb. per sq. in. The average rate of creep seemed to be somewhat less for these full-sized specimens than for the tension specimens of similar material.

APPENDIX

SHEATHS ON UNDERGROUND POWER CABLES*

D. W. Roper†

For all high voltage cables on the underground systems of fourteen large operating companies, about three to four times as many failures are caused by failure of the sheaths to protect the cable mechanically as are caused by failure of the insulation to withstand the voltage. In addition, many cases of sheath defects are located by frequent inspection and repaired before it becomes necessary to remove the cable. Such data indicate the importance of studies of the mechanical problems involved in providing adequate sheath protection.

Up to October 15 of this year, thirteen replacements of 66 kv. cable of the Commonwealth Edison Company have been necessary because of manufacturing defects in the lead sheaths. Ten replacements were necessary because of failure of the insulation.

A few years ago, comparatively heavy oils or compounds were used in cable insulation and the joints were filled with compounds which did not flow at ordinary temperatures. If cracks or splits developed in the sheaths, it seemed that their presence was not soon made manifest as the compounds would not flow out and water entered very

†Superintendent, Street Department, Commonwealth Edison Company, Chicago, Illinois.
slowly if at all. In the last few years, improvements in cables, especially for extra high voltages, have been produced by using lighter oils, which are fluid at room temperature, in the cable and joints with reservoirs maintaining positive pressures in the joints. Now when an opening develops through the sheath, oil flows out and unless it is replenished at the reservoirs, electrical breakdown of the insulation is imminent. The leak is located by determining which length is taking the excessive amount of oil.

The integrity of the sheaths is even more important for oil-filled cables where the insulation is impregnated with a very thin oil which is kept under about 12 lb. per square inch pressure. The use of thin oil in extra high voltage cables and joints is an important advancement in the art and, in order that it may be successfully employed, efforts should be concentrated upon obtaining the necessary improvements in sheaths.

Several types of manufacturing defects are found. A longitudinal split may open along a line where the lead, as it flowed around the cable in the lead press, was too cold to weld together firmly. The edges of the die often smooth over the surfaces and obscure the defect from view. When the cable is bent, the defect opens readily. Laminated or stratified lead is produced when the sheath does not form one integral mass, but instead separates in the die into two concentric layers for a short distance. The latter kind of troubles was most numerous in sheaths containing about 2 per cent of tin. Dross or foreign substances and unsymmetrically extruded sheaths are other common defects.

Many failures are caused by mechanical injuries to the sheath incident to the handling of the cable or to work done in the vicinity of the cable. Such troubles have been reduced during the last few years by better training and supervision of the workmen, improved methods and better design of the conduit systems.

As each section of cable expands and contracts upon heating and cooling incident to daily load cycles, it moves at the manhole ends through distances up to about one inch. Rubbing on the end of the duct will cause destructive wearing unless proper shields are used. The bending of the cable in the manhole often cracks the sheath. Such cracking is minimized by properly designing the manhole to allow bends in the cable of ample radius, and using fireproof covering which will not concentrate the bending at a few points on the cable.

Expansion of the insulating material during heating in normal service causes internal pressures which stress the lead and may cause stretching. Also cable of the ordinary type as furnished has some
entrained gas. On account of these voids and additional space that may be created due to stretching, oil travels from the joints into the cables. Five years of experience has shown no cessation in this tendency for oil to migrate into the cable and the increasing volumes of oil in the cable may lead to high pressures that will cause undesirable sheath stretching. With this and the other conditions described herein, the research at the University of Illinois described in another article in this Bulletin appears important. The other article suggests that the creeping of lead begins at about 200 lb. per square inch. Stresses occurring in service are often of about this magnitude and are occasionally higher.

For cables used in the telephone industry, the lead sheaths have been improved by the addition of about one per cent of antimony, which increases the hardness. Vibration tests of strips of metal held at one end and moved through a small amplitude about 12 cycles per second at the other end indicated that such alloys were greatly superior to commercially pure lead. For power cables, the problem is not mainly one of slight vibrations as with telephone cable, but is one of relatively slow bending of large amplitude. For the latter such alloys have not been found to be superior to lead.

In tests made by the Commonwealth Edison Company, pieces of cable were placed in a dummy manhole, joined and covered with fire-proofing material as is done in service and were subjected to the same bending motions that occur during normal operation. This motion was accelerated to make ten hours of testing equivalent to one year of normal service. In such tests, alloys of lead with antimony, tin and calcium have not been found to be superior to commercially pure lead. More rapid bending of small strips of metal, similar to the tests made by the telephone companies, indicated a superiority of the alloys. It has not been proven that such tests are accurate indications of the serviceability of the metals for power cable sheaths. The studies are continuing.

Of course, the possibilities of improving cable sheaths have not as yet been fully covered by the studies. Research work is in progress both to determine the limitations of the present materials and to discover, if possible, more suitable materials.
RECENT PUBLICATIONS OF
THE ENGINEERING EXPERIMENT STATION†

*A limited number of copies of bulletins starred are available for free distribution.

†Copies of the complete list of publications can be obtained without charge by addressing the Engineering Experiment Station, Urbana, Ill.

*A limited number of copies of bulletins starred are available for free distribution.
The University includes the following departments:

The Graduate School

The College of Liberal Arts and Sciences (Curricula: General with majors, in the Humanities and the Sciences; Chemistry and Chemical Engineering; Pre-legal; Pre-medical; Pre-dental; Pre-journalism; Applied Optics)

The College of Engineering (Curricula: Ceramics; Ceramic, Civil, Electrical, Gas, General, Mechanical, Mining, and Railway Engineering; Engineering Physics)

The College of Agriculture (Curricula: General Agriculture; Floriculture; Home Economics; Smith-Hughes—in conjunction with the College of Education)

The College of Education (Curricula: Two year, prescribing junior standing for admission—General Education, Smith-Hughes Agriculture, Smith-Hughes Home Economics, Public School Music; Four year, admitting from the high school—Industrial Education, Athletic Coaching, Physical Education. The University High School is the practice school of the College of Education)

The College of Law (three-year curriculum based on a college degree, or three years of college work at the University of Illinois)

The College of Fine and Applied Arts (Curricula: Music, Architecture, Architectural Engineering, Landscape Architecture, and Painting)

The Library School (two-year curriculum for college graduates)

The School of Journalism (two-year curriculum based on two years of college work)

The College of Medicine (in Chicago)

The College of Dentistry (in Chicago)

The College of Pharmacy (in Chicago)

The Summer Session (eight weeks)

Experiment Stations and Scientific Bureaus: U. S. Agricultural Experiment Station; Engineering Experiment Station; State Natural History Survey; State Water Survey; State Geological Survey; Bureau of Educational Research; Bureau of Business Research.

The Library Collections contain (July 1, 1931) 832,643 volumes and 221,000 pamphlets (in Urbana) and 45,241 volumes and 7,875 pamphlets (in Chicago)

For catalogs and information address THE REGISTRAR, Urbana, Illinois.