CELLULAR STRATEGIES FOR CHEMOTACTIC NAVIGATION
IN COMPLEX CHEMICAL ENVIRONMENTS

BY
YUKI KIMURA

DISSERTATION
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Chemical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:
Associate Professor Christopher V. Rao, Chair
Associate Professor Luke Olson
Professor Paul J. A. Kenis
Assistant Professor Hyunjoon Kong
Abstract

Motility is a fundamental cellular behavior that is often prompted by environmental changes and/or stimuli. In particular, many cells exhibit directed movement in response to soluble chemicals in their vicinity - this phenomenon is commonly known as chemotaxis. Chemotactic cell migration is central to a variety of processes including embryogenesis, tissue development, wound healing and cancer metastasis [1, 2, 3, 4]. The key to this response is the ability of cells to sense spatial and/or temporal variation in the concentration of chemoeffectors (often attractants) diffusing from nearby sources. Since concentration typically decreases with distance from the source (as a result of molecular diffusion), these chemical landmarks can serve as a natural basis for cell navigation, as well as for coordinating large populations from the single-cell level. The ubiquity of such chemical gradients in nature also makes them a reliable choice for this purpose.

Understanding how cells detect and respond to chemotactic gradients is an important problem in many areas of biology. To investigate this subject, specialized in vitro techniques - known as chemotaxis assays - have been invaluable in characterizing and quantifying the responsiveness of cells under varied conditions. For instance, Zigmond and Dunn chambers have been used to look at eukaryotic cell motion [5, 6], while capillary assays have been used to study bacterial chemotaxis [7, 8]. These methods have traditionally been applied using simple, single chemoeffector gradients. Recently, however, new studies have exposed additional intricacies in the chemotactic mechanisms of certain cells; these features appear to improve the robustness and efficiency of chemotaxis in the presence of multiple chemical species and/or multiple sources. Such complex, heterogeneous conditions are thought to be a closer representation of the cells’ native environments, and therefore offer a more complete account of the process in physiological settings.
The primary goal of this thesis is two-fold. First, I present new results and insight gained from studying cell behavior under the influence of multiple chemotactic stimuli. This is accompanied by mathematical models that are designed to deconstruct the underlying mechanistic principles. Here, I employ a number of computational tools and simulations to demonstrate my key arguments. The second component is a theoretical discussion on how cells navigate and make optimal decisions in such noisy environments. This subject raises a number of interesting questions pertaining to control theory, optimization (e.g. k-armed bandit), foraging theory, and biomechanics. While the ideas presented here may extend to many organisms and cell types, this work examines two representative systems in particular - the bacterium *Escherichia coli* and a class of mammalian immune cells known as polymorphonuclear neutrophils.
Acknowledgments

This multidisciplinary endeavor would not have been possible without the support of many people. My sincere thanks to my advisor, Dr. Chris Rao, who not only gave me guidance and encouragement in my research, but also the freedom to pursue my many interests and whims. I am truly grateful for the opportunities and experiences I’ve had as part of his research group. I must also acknowledge my co-advisor from the Computer Science Department, Dr. Luke Olson, for providing inspiration and insight when needed, particularly for some of the more technical aspects of this thesis. My collaboration with him was instrumental to my development both as a researcher and a computational engineer.

A very special thank you to my colleagues Dr. Ashish Kapoor and Matt Byrne for their contributions to this project - without their efforts the in vitro experiments to complement this theoretical work would not have been possible. Thanks also to Dr. Paul Kenis and Dr. Fei Wang for helping to oversee our collective efforts, to Yuan He from the Wang Lab for his expertise on neutrophils, and to my wonderful labmates in the Rao Group - Lon Chubiz, Supreet Saini, Tasha Desai, Kang Wu, Angel Rivera, Khushnuma Koita, Shuyan Zhang, Santosh Koirala, Ahmet Badur, Kori Dunn, Payman Tohidifar and Jiewen Zhou - for their valuable friendship and advice. It was always enjoyable to work in this diverse and supportive environment throughout my graduate studies.

And lastly, I am deeply indebted to my parents, my brothers and my girlfriend; none of this work could have been accomplished without their love, encouragement and support.
Table of Contents

List of Figures ... viii

List of Tables ... xi

List of Abbreviations ... xii

List of Symbols ... xiii

Chapter 1 Introduction .. 1
 1.1 Background ... 1
 1.2 Motivation ... 3
 1.2.1 Chemotaxis in a physiological context 3
 1.2.2 Modeling chemotaxis on the macroscale 8
 1.2.3 Building a flexible framework for cellular dynamics simulations 10

Chapter 2 *Escherichia Coli* chemotaxis 13
 2.1 Introduction .. 13
 2.2 Background .. 14
 2.2.1 The *E. coli* chemotaxis mechanism 14
 2.2.2 *E. coli* as an optimist .. 19
 2.2.3 Existing agent-based models for *E. coli* chemotaxis 20
 2.3 Theoretical review .. 23
 2.3.1 Extending the one-dimensional RTBL model 23
 2.3.2 Case study - static Gaussian gradients 33
 2.3.3 Computational analysis .. 35
 2.3.4 Summary .. 42
 2.4 Cellular dynamics simulation .. 45
 2.4.1 Model description .. 45
 2.4.2 Capillary assays .. 51
 2.4.3 Simulation of a dual capillary assay 56
 2.5 Discussion ... 61
Chapter 3 Neutrophil chemotaxis

3.1 Introduction

3.2 Background

- 3.2.1 Neutrophil physiology and chemotaxis
- 3.2.2 Chemotaxis in dual chemoattractant gradients

3.3 Microfluidic experiments

- 3.3.1 Background
- 3.3.2 Materials and methods
- 3.3.3 Response to isotropic chemoattractant environments
- 3.3.4 Response to single chemoattractant gradients
- 3.3.5 Response to single gradients superimposed over an alternate isotropic attractant field
- 3.3.6 Response to dual intermediary attractant gradients

3.4 Compass-based model

- 3.4.1 Model description
- 3.4.2 Chemotaxis in two opposing attractant gradients
- 3.4.3 Chemotaxis in complex environments

3.5 Receptor-level sensory adaptation models

- 3.5.1 Single ligand, single receptor model
- 3.5.2 Receptor internalization
- 3.5.3 Receptor desensitization and internalization
- 3.5.4 Modified internal memory model
- 3.5.5 Oelz-Schmeiser-Soreff (OSS) model

3.6 Pseudopod-based feedback model

- 3.6.1 Model description

3.7 Discussion

- 3.7.1 Challenges in modeling neutrophil chemotaxis
- 3.7.2 Significance of this work

3.8 Concluding remarks

Chapter 4 Parallel framework for simulating cell population behavior

4.1 Introduction

4.2 Background

- 4.2.1 Review of the finite element method (FEM)
- 4.2.2 Discontinuous Galerkin FEM
4.3 Hybrid particle-continuum approach .. 161
4.4 Parallel implementation and challenges ... 165
 4.4.1 Test simulations ... 168
4.5 Concluding remarks .. 173

References ... 174
List of Figures

1.1 Illustration of cell chemotaxis ... 2
1.2 Chemotaxis as a gradient or hill-climbing problem 4
1.3 Marginal value in the context of foraging theory 6
1.4 Lévy walk search theory .. 7

2.1 Run-and-tumble dynamics of E. coli locomotion 17
2.2 The E. coli chemotaxis signal transduction pathway 18
2.3 Simulation of the extended RTBL model in 1-D 38
2.4 Steady-state behavior of pragmatic cells given varying source separation 38
2.5 Steady-state behavior of pessimistic cells given varying source separation ... 39
2.6 Steady-state behavior of optimistic cells given varying source separation ... 39
2.7 Comparison of steady-state behaviors given varying source separation ... 39
2.8 Steady-state behavior of pragmatic cells given varying source width ... 40
2.9 Steady-state behavior of pessimistic cells given varying source width ... 41
2.10 Steady-state behavior of optimistic cells given varying source width ... 41
2.11 Comparison of steady-state behaviors given varying source width ... 41
2.12 Graphical representation of E. coli model parameters 49
2.13 Effect of γ\text{up} and γ\text{down} on chemotactic efficiency 50
2.14 Schematic of a bacterial capillary assay ... 51
2.15 Sensitivity curves for single capillary simulation ... 55
2.16 Single capillary simulation geometry ... 55
2.17 Cell trajectories in capillary assay simulation ... 56
2.18 Geometry of dual capillary assays ... 57
2.19 Snapshots of coaxial dual capillary assay simulation ... 58
2.20 Snapshots of tandem dual capillary assay simulation ... 59
2.21 Effect of γ on chemotaxis assay ... 60

3.1 Image of typical neutrophil leukocyte ... 68
3.2 Neutrophil activation and transmigration ... 69
3.3 Neutrophil chemotaxis in vivo .. 70
3.4 Proposed mechanism of intracellular signaling hierarchy 72
3.5 Neutrophil motion toward distant intermediary attractant sources 74
3.6 Schematic of microfluidic device setup ... 78
3.7 Cross-sectional concentration profile for single gradient 79
3.8 Cross-sectional concentration profile for hill-type gradient 79
3.9 Cell trajectories within microfluidic device 81
3.10 Migration in isotropic attractant conditions 83
3.11 Chemotaxis in single attractant gradients 85
3.12 Chemotaxis in an fMLP gradient in the presence of intermediary species 87
3.13 Chemotaxis in intermediary chemoattractant gradients 88
3.14 Sample cell trajectories in dual opposing intermediary attractant gradients 90
3.15 Sample cell trajectories under varying intermediary attractant conditions 91
3.16 Oscillatory behavior based on zero crossings 91
3.17 The phenomenon of directional persistence 92
3.18 Chemotaxis model based on directional persistence 95
3.19 Biased correlated random walk .. 95
3.20 Confirmation of the biphasic dose response characteristics of model 100
3.21 Simulated cell trajectories in opposing intermediary attractant gradients 102
3.22 Simulated cell migration toward end target chemoattractants 104
3.23 Cell trajectories in an alternating array of static intermediary attractant sources 104
3.24 Asymptotic behavior of single ligand, single receptor model 109
3.25 Constant velocity assumption in single ligand single receptor model 110
3.26 Asymptotic behavior of model with internalization 112
3.27 Asymptotic behavior of model with signaling from internalized receptors 114
3.28 Asymptotic behavior of model with internalization and desensitization 117
3.29 Asymptotic behavior of model assuming internal state memory 119
3.30 Behavior of OSS model with opposing gaussian gradients 121
3.31 Behavior of OSS model with opposing linear gradients 123
3.32 Illustration of the pseudopod-based feedback model 125
3.33 Oscillatory behavior of the pseudopod-based feedback model 126
3.34 Behavior of pseudopod-based feedback model 127
3.35 Comparison of theoretical and experimental neutrophil responses to varying conditions 129
3.36 An example of an activator-inhibitor model for neutrophil polarization 130
3.37 Illustration of neutrophil polarization and chemotaxis models 135
List of Tables

2.1 Parameter sets for RTBL model and cellular dynamics simulations 44
2.2 Amino acid diffusivities in bacterial motility assays . 44
3.1 Nominal parameter set for neutrophil model in complex environments 105
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFT</td>
<td>Optimal foraging theory</td>
</tr>
<tr>
<td>MVT</td>
<td>Marginal value theorem</td>
</tr>
<tr>
<td>MSD</td>
<td>mean square displacement</td>
</tr>
<tr>
<td>RTBL</td>
<td>Rivero, Tranquillo, Buettner and Lauffenburger (model)</td>
</tr>
<tr>
<td>SRW</td>
<td>simple (isotropic) random walk</td>
</tr>
<tr>
<td>BRW</td>
<td>biased random walk</td>
</tr>
<tr>
<td>CRW</td>
<td>correlated random walk</td>
</tr>
<tr>
<td>BCRW</td>
<td>biased correlated random walk</td>
</tr>
<tr>
<td>fMLP</td>
<td>formyl methionyl leucyl phenylalanine</td>
</tr>
<tr>
<td>IL-8</td>
<td>interleukin 8</td>
</tr>
<tr>
<td>LTB₄</td>
<td>leukotriene B₄</td>
</tr>
<tr>
<td>C5a</td>
<td>complement component 5a</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>PIP3</td>
<td>phosphatidylinositol (3,4,5)-trisphosphate</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
</tr>
<tr>
<td>OU</td>
<td>Ornstein-Uhlenbeck</td>
</tr>
<tr>
<td>OSS</td>
<td>Oelz-Schmeiser-Soreff (model)</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface</td>
</tr>
</tbody>
</table>
List of Symbols

v cell velocity
θ cell orientation
τ persistence time
σ persistence index
V_B chemotactic drift velocity
θ_s chemoattractant gradient orientation
s chemoattractant concentration
D chemoattractant diffusivity
μ random motility coefficient
χ chemotaxis coefficient
∂W standard Weiner process
k_D receptor dissociation constant
Chapter 1

Introduction

1.1 Background

Chemotaxis, or directed cell migration, plays a central role in many physiological processes. Some well-studied examples include the movement of leukocytes toward sites of infection [4], the aggregation of slime mold amoebae [9], the attraction of spermatozoa to follicular factors [10], and the orchestration of neuronal wiring during early brain development [11]. All chemotactic cells have the ability to sense soluble chemical mediators known as chemoattractants (or chemorepellents) via corresponding receptors on the cell surface. These chemical ligands are typically small inorganic or organic molecules that include a variety of formyl peptides, chemokines, inorganic salts, amino acids and sugars. Receptor activation by these signals elicits translocation, typically toward regions of higher (or lower) concentration, by regulating intracellular pathways that govern cell motility. This process allows them to seek more favorable environmental conditions in a controlled fashion.

The intracellular machinery for chemotaxis has been shown to differ among various organisms - in particular, prokaryotic and eukaryotic systems differ fundamentally in how they interpret their environment, as well as how they move. For most bacteria and archaea, chemotactic control is achieved through a modified two-component system, in which phosphorylation of a response regulator communicates receptor activation to flagellar motors. Cell motion is enabled through the movement of filaments attached to these complexes. Due to their small size, prokaryotes cannot directly detect concentration gradients; instead, they rely on a technique known as temporal sampling. By integrating the local chemoattractant concentration as they
traverse their environment, these cells are able to estimate the effective gradient over sufficiently long times. This information is then used to bias flagellar activity.

![Chemotaxis Diagram]

Figure 1.1: Chemotaxis in response to soluble chemicals known as chemoeffectors, which can function as either attractants (e.g. nutrients) or repellents (e.g. toxins).

Eukaryotic cells, on the other hand, are large enough to sense gradients in their full spatiotemporal context. This allows for finer evaluation of the chemical landscape, as well as navigation without the need for constant motion. Such functionality, however, comes at the cost of greater mechanistic complexity; in these cells, chemotaxis requires the coordination of three processes: gradient sensing, polarization and motility. Unlike bacteria, eukaryotic cells sense gradients by quantifying the number of ligand-bound receptors along the cell membrane. Subtle differences in the receptor occupancy are then amplified, inducing localized recruitment of key molecules to opposite ends of the cell. This polarization process is coupled to motility through cytoskeletal rearrangement; the morphological changes influence the formation of pseudopods (cytoplasmic protrusions), which enable the cell to crawl on solid substrates.

The signaling networks that regulate chemotaxis are generally better understood in prokaryotes, where they involve far fewer components. In particular, the chemotaxis pathway of *Escherichia coli* is one of the best-studied chemosensory systems in biology. Owing to rich experimental data collected over decades of research, we now have a fairly thorough understanding of how signals are received, transduced and modulated.
in these cells. By contrast, chemotactic signaling in eukaryotic cells can involve over 100 unique components, many of which are known to participate concurrently in other cellular activities. In many cases, the major components of these networks have been identified; yet, several key aspects of the process remain unclear. Some of these points will be addressed in the following chapters.

1.2 Motivation

1.2.1 Chemotaxis in a physiological context

Bacteria have a remarkable ability to survive in adverse environments. In particular, *E. coli* are known to thrive in the harsh conditions of the mammalian gastrointestinal tract, where they play an important role in maintaining the balance of normal gut flora, as well as host intestinal immunity. Outside of the body, they are also resilient to toxins, limited resources and other environmental stresses. Chemotactic motility is essential for this adaptability, as it allows the cells to seek more favorable locations as conditions deteriorate. Neutrophils, on the other hand, are specialized mammalian immune cells that are normally found in the bloodstream. These white blood cells provide the first line of defense against infections by rapidly clearing foreign invaders and cellular debris from affected tissues. Following recruitment from the blood by inflammatory signals, these cells are able to locate their pathogenic targets by following chemical trails. Not surprisingly, chemotaxis plays a central role here as well.

While *E. coli* and neutrophils exist in markedly different settings, both face common challenges with regard to navigating via chemotaxis; physiological environments often contain multiple chemoattractant sources, a variety of attractant types, fluid flows, chemical reactions, and signaling from other cells. Successful migration necessitates a robust and accurate method for interpreting these chemical landscapes and coordinating subsequent movement; such mechanisms are simply not required in the single-source and simple gradient cases tested in conventional assays. But how exactly do cells simultaneously integrate multiple
signals? What is the functional form of the response? Are there combinatorial effects between different attractants? How is overall behavior regulated temporally and spatially? The process might also involve optimization - given multiple chemoeffectors sources, where should a cell go? And how is this established and enacted from the intracellular level?

Without global position and orientation data, chemotactic cells *in vivo* must effectively solve a real-time optimization problem based on other available signals (e.g. local concentrations and gradients). Generally, for well-behaved objective functions and stable algorithms, convergence to a locally-optimal solution is feasible using a choice of heuristic approaches. Finding a global optimum, however, is typically NP-hard, since a robust method that ensures convergence is nearly impossible to construct and demonstrate (especially for nonconvex problems). Without resorting to an exhaustive search of the solution space, one known approximation method is to inject random probing signals into the system. This sort of control strategy can sometimes help to minimize detainment around local optima, and lead to faster convergence to the global optimum in the long run (at the cost of weaker short-term performance). In such a scheme, the optimal balance between "exploration" and "exploitation" is sought.

![Figure 1.2: The hill climbing algorithm is an optimization technique based on local search. It is an iterative approach that starts with an arbitrary solution and attempts to incrementally improve the solution. While this method is good for finding a local optimum, it does not address the challenge of finding the globally optimal solution.](image)
Optimal foraging theory (OFT) is a branch of behavioral ecology that studies the foraging behavior of organisms relative to patches of resources in their environment, assuming that they migrate in a way that is in some way most optimal. Specifically, the theory is based on the notion that an organism seeks to maximize energy gain while minimizing things like energy expenditure, search time or distance [12, 13]. Through a quantitative approach, OFT plays an important role in explaining concepts such as adaptation, competition and calorific flow; for example, the theory can help to identify behaviors that are most favored by natural selection, by maximizing a function representing Darwinian fitness. The effectiveness of OFT, however, rests on the assumption that energy optimization is in some way related to fitness maximization - it is therefore important to identify traits that have substantial adaptive value, and also consider alternative energy maximization rules that may involved in the process.

A central component of OFT is the marginal value theorem (MVT) by Charnov [14], which dictates that an optimally foraging animal should leave a particular patch when the expected energy gain from lingering drops to the expected gain from moving to a new patch. This decision is influenced by the expected travel time among patches and the rate of energy intake within each patch - since individuals are more likely to stay as the distance between patches increases or the patch itself is more profitable. The optimal time spent in a patch (T_{opt}) can be explained graphically by the tangent to the resource intake curve that intercepts the time axis at the expected travel time, shown in Figure 1.3. Other factors that could influence this trade-off include the rate of encounters with predators, the effectiveness of vigilance in reducing predation and the marginal value of energy to the forager. Though few foragers in nature are truly "optimal" (due to their inability to predict exploitation rate or the existence of distant patches), the MVT has successfully been used to predict many aspects of real behavior [15, 16, 17].
Figure 1.3: *Travel time* refers to time between patches (left side) and *Time spent in patch* refers to time within a patch (right side). The slope of the tangent corresponds to the optimal rate of gain. There is an interesting relationship between time spent within and between patches. If patches yield very little average gain (e.g., calories, or information value), patches are easily exhausted, and foragers are forced to travel to a new patch.

In addition to searching for targets within patches, many foragers may also be required to search for the patches themselves, if the environment is highly dynamic or if the foragers have limited cognitive or perceptual abilities (such as in the case of chemotactic cells). One way in which OFT can better integrate the search component (at different scales of the foraging process) may be to draw on Lévy walk (LW) search theory, which involves identifying migratory patterns that are advantageous when searching for sparsely-distributed patches. In particular, theoretical studies have shown that the fractal and superdiffusive properties of the Lévy walk with parameter $\mu = 2$ can improve the probability of patch encounters compared to simple Brownian or purely ballistic trajectories (particularly when patches are not assumed to be depleted or only allow single visits). This value of $\mu = 2$ appears to be a robust finding, applicable to many animals in nature [18, 19]. Other forms of the Lévy walk have also been studied in the context of migrating eukaryotic cells [20].
Figure 1.4: Sample trajectories of [Left] a Lévy flight and [Right] a uniform (Brownian) random walk, given an equal number of steps. A Lévy flight is a random walk in which the step lengths have a probability distribution with a heavy tail.

The OFT shares many things in common with the multi-armed bandit (or k-armed bandit) problem in probability theory, which describes optimal rules to maximize payoff in a multiple choice situation. In casinos, gamblers must choose repeatedly between options (slot machines) that differ in reward probability, without prior information on the options’ relative profitabilities. This conundrum resembles that confronted by animals choosing between rewards (e.g. food), since the highest-rewarding option is typically not chosen exclusively, and in fact reflect a sort of adaptive sampling strategy. Here, the agent must simultaneously acquire new knowledge while also working to optimize its subsequent decisions using existing information [21]. As previously mentioned, striking a balance between reward maximization and information seeking is often referred to as the "exploitation vs. exploration" tradeoff. The so-called "semi-uniform" approaches to solve this problem (e.g. epsilon-greedy, epsilon-first) are typically characterized by "greedy" behavior, in which the best option (based on previous observations) is selected by default, except for when a uniformly random action is taken.

While our lack of understanding of the biology precludes a more formal OFT-based or probabilistic treatment of the chemotactic systems studied here, it is evident that the general principles established above may be applicable in our discussion. For instance, chemotaxis in bacteria is a mechanism for survival during
starvation that is likely very tightly linked to evolutionary fitness. A mechanism that could enhance the foraging behavior of a bacterium, such as the one proposed here in Chapter 2, may confer a strong competitive advantage relative to other cells, thus resulting in a conserved trait. Meanwhile, chemoattractant signaling during the inflammatory response could also be related to foraging - in this case, the resources sought by neutrophils in the extravascular environment may be regions of high intermediary chemoattractant concentration localized as sparsely-distributed patches within a larger network. Effective inflammatory resolution may be contingent on minimizing stagnation at these intermediate sources, and thus the mechanisms responsible for optimizing this search process is a subject of great interest.

1.2.2 Modeling chemotaxis on the macroscale

One of the central objectives in modern cell biology is to relate interactions at the molecular level to macroscopic functions and behavior - chemotaxis is an inherently multiscale problem, in that it operates from the level of transcriptional regulation up to the dynamics of entire cell populations. Thus, despite seeming limited, this subject has been an active area of interest to a range of disciplines (e.g. chemical engineering, statistical thermodynamics, biophysics and stochastic optimization). In the pursuit of a true multiscale understanding of chemotaxis, several groups to date have attempted to reconstruct the signaling networks of cells using results from intracellular studies. These bottom-up approaches, however, have generally suffered from lack of key data or provisional assumptions. Instead, top-down approaches have been an effective alternative to deduce cell properties solely from macroscopic observations.

Macroscale models for chemotaxis have typically adopted one of two approaches: fine-grained ("agent-based") models that capture motion at the level of individual cells, or coarse-grained (continuum) models, which describe behavior in the limit of large cell numbers. The most popular of the latter is the Keller-Segel equation, first devised to describe the aggregation of slime molds in response to cAMP gradients [22]. The
generalized version of this PDE model takes the form:

\[\frac{\partial c}{\partial t} = \nabla \cdot (\mu(s) \nabla c) - \nabla \cdot (\chi(s)c \nabla s) + g(c, s) - h(c, s), \] (1.1)

\[\frac{\partial s}{\partial t} = D \nabla^2 s - f(c, s), \] (1.2)

where \(c = c(x, t) \) is the density of the bacterial population, \(s = s(x, t) \) is the chemoattractant concentration at time \(t \) and spatial position \(x \), \(\mu(s) \) is the bacterial diffusion coefficient, \(\chi(s) \) is the chemotactic coefficient, \(D \) is the diffusivity of the chemoattractant, \(g(c, s) \) and \(h(c, s) \) are functions describing cell growth and death, respectively, and \(f(c, s) \) is a function describing attractant degradation. The key assumptions in this model are that (i) cells undergo a combination of random and directed motility; and (ii) the attractant diffuses passively over the field. Variants of the model diverge in their definitions of \(\mu, \chi, f, g \) and \(h \).

The Keller-Segel equations have been used to describe many phenomena involving the migration of cell populations [23]. This model, however, was not originally derived from a first-principles account of individual cell behavior. Thus, in applications where the interaction of cells is more pronounced, or the behavior of single cells is the primary subject of interest, several deficiencies are exposed in the method. One of these is the case of steep attractant gradients around constant point sources, which can lead to finite-time blowup of the cell density unless physical bounds are set on the cell flux. Another example is the production of attractant by the cells themselves (i.e. autocrine signaling), which is known to contribute to some chemotactic processes. There is also no explicit mention of the dose response characteristics of \(\mu \) and \(\chi \); these functions need not be constants, and nonlinearities in these terms can introduce additional numerical difficulties. Lastly, the model lacks support for multiple coexistent chemical gradients, particularly since the functional forms of \(\mu \) and \(\chi \) are not known for such cases.

To remedy some of these shortcomings, the Keller-Segel model has undergone several revisions since its initial formulation. Some of these updates have relied on empirical modifications, in which specific cell
attributes have been incorporated into the equations to handle special cases [24, 25, 26]. New computational approaches have also been proposed to improve the numerical stability of the original model [27, 28, 29, 30]. Meanwhile, other efforts have been made to strengthen the model’s theoretical foundations [31, 32]. For instance, Patlak, Segel, Nossal and Alt [33, 34, 35] offered a better explanation of the macroscale transport coefficients by re-expressing them on the basis of individual cell properties (e.g. speed and orientation). More recently, this work was taken further by Rivero et al. [36], who provided separate derivations for prokaryotic and eukaryotic systems after noting their mechanistic differences. These newer models have been shown to provide reasonable approximations of bacterial and leukocyte assays when compared with experimental data (under some limiting conditions).

Despite these improvements, the accuracy of the Keller-Segel is fundamentally limited by its initial continuum assumption, which precludes the addition of behaviors that cannot be captured by μ and χ. What we now understand is that chemotactic cells do not employ a direct Gradient Search method to find chemical sources; these autonomous agents are capable of complex movement and adaptive control. The simplifications made in the Keller-Segel are only applicable at the macroscale, and break down when microscale phenomena are emphasized. Rivero et al. showed that single-cell models can indeed be translated to the macroscale through integration methods, but closed form analytical solutions have become increasingly intractable with more complex models. In this work, I therefore focus on fine-grained approaches that model the movement of individual cells, rather than of cell density measurements. An obvious tradeoff is that these methods are computationally intensive, requiring the assistance of scalable algorithms.

1.2.3 Building a flexible framework for cellular dynamics simulations

The collective dynamics of active particles in suspension (such as cells) is an important consideration in many biological and industrial processes, particularly for self-motile or chemically reactive agents. The accurate
characterization of these systems can require detailed modeling of individual particles, but also necessitate an account of the macroscale interactions with the fluid medium. Here, the inherent separation between the length and time scales can pose a difficult challenge. The final goal of my research was to devise a computational framework to solve these types of problems, particularly in diffusion-dominated scenarios, and to do so in a manner that was sufficiently flexible for applications to other areas. Given the tremendous progress in high-performance computing in the last decade, and the greater availability of such resources to the more general engineering community, these previously intractable problems can be studied in a much more reasonable timeframe with much greater accuracy.

Hybrid numerical methods involving both a particle and continuum component have long been applied in solving suitable physical problems - they are in fact the basis of approaches like the modular particle-continuum (MPC) method and the particle-in-cell (PIC) method for simulations in fluid dynamics, electrodynamics and plasma physics [37, 38]. In the latter, interpolation between a Lagrangian frame of reference (where the particles reside) and an Eulerian frame of reference (where the continuum solution is formed) enables improved control over the granularity of the problem. To efficiently parallelize these methods however, one must overcome a unique set of challenges that are not typically encountered in other schemes. The coupling between the particle and continuum computations at the particle positions makes information transfer and communication a significant bottleneck to performance, while the aggregation of particles within only a subset of the spatial partitions of the domain (as a result of the physics) give rise to the other issue of load-balancing.

Another challenge unique to biological systems is that the equations of motion can be significantly more complex and computation-intensive than particles that are not self-motile, for instance if the intracellular processes dictating cell motion are also to be modeled. With a sufficiently large number of particles, updating their positions can become a significant component of the computation time. In addition, if we consider the
ability of particles to react with the field (e.g. cells metabolizing or releasing chemoattractant), the nature of this reaction can also dictate the resolution and time-stepping scheme required in the PDE solution, depending on whether the kinetics are nonlinear, or whether the diffusivity of the chemoattractant dominates its production/consumption rate. From a numerical analysis perspective, the difficulty here was in choosing how to couple the PDE solution to the particle algorithm without significant loss in accuracy. The final chapter of this thesis addresses these points, as well as providing physical examples to which we applied this framework.
Chapter 2

Escherichia Coli chemotaxis

2.1 Introduction

The modulation of tumbling frequency is the basis of the chemotactic response in peritrichous bacteria; namely, when a cell is swimming up a temporal attractant gradient, ”tumbles” (random reorientations caused by erratic motion) occur less frequently, resulting in longer ”runs” (periods of smooth, unidirectional swimming). This transient shift in activity biases the cell’s random trajectory, allowing it to drift gradually toward more favorable locations. When swimming down an attractant gradient, however, some bacteria do not upregulate their tumbling rate; instead, their behavior resembles that in isotropic environments, such that the frequency of tumbles appears bounded by a basal value. This phenomenon has been referred to as ”optimism” in the literature [39], from the notion that cells respond to positive but not negative stimuli. Other species, meanwhile, adopt an avoidance strategy (”pessimism”), where cells alter their behavior only when moving down an attractant gradient.

The purpose of this work was to quantitatively characterize the effect of optimism and pessimism on the migration behavior of cell populations. By revisiting a former one-dimensional continuum model, we find that differences in the transient and steady-state cell distributions are most apparent in environments containing multiple chemoeffector sources. This was also verified separately using a particle-based cellular dynamics simulation, in which cell trajectories were approximated through a phenomenological model of bacterial motion. These findings highlight the possible inadequacy of traditional bacterial chemotaxis models to describe cell behavior in complex physiological settings. More importantly, this work may provide insight
into how divergent environmental pressures shaped the evolution of motility in different bacterial species. It may also help to explain why the chemotactic pathways of bacteria like *E. coli* and *B. subtilis* differ so drastically [40].

2.2 Background

2.2.1 The *E. coli* chemotaxis mechanism

Escherichia coli are Gram-negative, non-sporulating, facultatively anaerobic bacteria that are commonly found in the gastrointestinal tract of humans and other warm-blooded animals. Most strains are generally harmless, excluding a few that are known on occasion to cause illness (such as serotype O157:H7). The avirulent strains are a substantial component of normal gut flora, and serve an invaluable role in intestinal homeostasis; they can improve host metabolism, promote healthier immune function and prevent the establishment of other malignant microbes in the digestive tract [41]. The *E. coli* species is the head of the *Enterobacteriaceae* family, comprised of known pathogenic genera (e.g. *Salmonella* and *Shigella*) as well as other symbiotic colonists of the digestive system (e.g. *Escherichia, Enterobacter* and *Klebsiella*). Members of this family are especially important in medicine for their role in human health and disease. *E. coli* is the best-studied among all of them, serving as a popular model in many genetics and biochemistry studies.

In common with some species, *E. coli* can exhibit chemotaxis when exposed to gradients of soluble chemoeffectors in their environment (particularly when starved). This cellular response is characterized by preferential motion towards attractants (such as metabolites) or away from repellents (such as toxins). Chemotaxis in *E. coli* was first observed in the late 1800s through the collective efforts of Engelmann, Pfefuer, Beyerinck and other microbiologists [42, 43, 44]. The process plays a fundamental role in bacterial survival and the dynamics of microbial populations, allowing cells to actively seek environments that are more amenable to growth and survival. In non-mixed settings, studies have shown that chemotactic cells
have a significantly higher survival rate than their non-motile clones [45, 46, 47]. Moreover, the mechanism for this behavior is likely to be highly optimized (especially in wild-type strains), since even the slightest improvement in chemotactic efficiency can impart a competitive advantage on the evolutionary timescale [48].

Many motile bacteria are equipped with cell surface appendages called flagella that enable them to move in fluid environments. A bacterial flagellum typically consists of three main components: a long, semi-rigid helical filament, a flexible molecular joint or hook, and a highly efficient rotary motor embedded in the cell membrane known as the basal body. The motor is powered by proton motive force (chemiosmotic potential) established on the cytoplasmic membrane. When protons in the periplasm flow down their gradient through the basal body, the motor generates torque, which is then transmitted to a rotor shaft extending through the outer membrane. The hook functions as a torsional adapter, coupling the shaft to the base of the extracellular filament. This linkage allows the flagellar powertrain to drive the rotation of the entire appendage - as the flagellum rotates, it exerts a propulsive force on the surrounding fluid to enable motility. The hydrodynamics of flagellar motion is particularly well-suited to the low Reynolds number regime, due to their ability to generate nonreciprocating motion in viscous-dominated flows.

E. coli and other peritrichous bacteria possess numerous flagella that are uniformly distributed around the entire cell surface. These flagella rotate continuously in either the clockwise or counter-clockwise direction to collectively regulate cell movement. Due to the chirality of the filaments, opposite flagellar rotations can result in two distinct swimming behaviors. Counter-clockwise rotations cause the flagella to come together to form a single coordinated bundle toward one end of the cell. This multiflagellar corkscrew propels the bacterium in a smooth linear motion or "run". By contrast, clockwise rotation of the flagella results in the immediate unraveling of the bundle, initiating a brief interval of highly erratic motion known as a "tumble". Tumbling serves to randomly reorient the bacterium between successive runs while causing
minimal displacement. Through an alternating series of these two modes of motion, *E. coli* trace out a characteristic random walk pattern to effect controlled motility.

In bacteria, motility is tightly coupled to a mechanism for sensing chemical concentration gradients. While eukaryotic cells are able to measure gradients by direct comparisons of chemoeffector concentration along their length, bacteria are simply too small to employ a similar mechanism, measuring only a fraction of the size. Instead, these cells function more like point sensors, perceiving spatial gradients as temporal changes in chemoeffector concentration along runs; by comparing their most recent environment with that of the preceding 3 to 4 seconds, bacteria can determine if conditions are improving (e.g. swimming up an attractant gradient) or deteriorating. An intracellular biochemical network is then used to communicate the temporal differences in concentration to the flagellar motors, which allows the cells to modulate their tumbling frequency accordingly [49]. Continued detection of concentration changes is enabled through a sensory adaptation process, which quickly reverts the system to its prestimulated state.

In uniform chemoeffector concentrations, *E. coli* motion can be described as an (unbiased) isotropic or simple random walk (SRW) with variable step size, whose steps correspond to individual bacterial runs. The durations of runs and are exponentially distributed, with steady means on the order of one second, while tumbles last on the order of tenths of a second [50]. In the presence of a chemoeffector gradient, this SRW becomes directionally biased in favor of migration towards more favorable conditions. Specifically, when cells are swimming up an attractant gradient, the probability of counter-clockwise flagellar rotation is trasiently increased, resulting in the reduction of tumbling frequency (“bias”). (Conversely, when cells are swimming up a repellent gradient, they are more likely to tumble.) The suppression of tumbles extends the average run duration, thus leading to greater displacement in the direction of higher concentration. This overall process is often modeled as a biased random walk (BRW), as depicted in Figure 2.1.
Figure 2.1: The run-and-tumble paradigm of *E. coli* chemotaxis. (i) Counter-clockwise flagellar rotation produces a screw-like bundle that propels the cell forward in a smooth linear run. Clockwise rotation breaks up the bundle, causing the cell to tumble or rotate randomly in place. (ii) Bacterial motion consists of an alternating series of runs and tumbles. This random walk becomes biased in the presence of chemoeffector gradients, through the elongation of runs in the direction of improving conditions.

The chemotaxis pathway of *E. coli* is a modified two-component chemosensory system that has evolved to mediate flagellar rotation through signal transduction (Figure 2.2). The pathway begins at polar clusters of membrane-spanning receptors known as methyl-accepting chemotaxis proteins (MCPs). Each MCP type (e.g. Tar, Tsr, Trg, Tap) binds a different set of chemical ligands on its periplasmic ligand-binding site, while on its cytosolic domain it forms a functional complex with the histidine kinase CheA and the adaptor CheW. In the absence of a gradient, inactive receptors promote CheA autophosphorylation on a conserved histidine residue, which in turn elicits downstream phosphorylation of the response regulator CheY. Phosphorylated CheY (CheY-P) shows a reduced affinity for CheA, which allows it to dissociate and diffuse through the cytoplasm. The binding of CheY-P to the flagellar motor protein FliM (in the basal body) then switches the direction of motor rotation in a highly cooperative manner. In this instance, the increase in CheY-P raises the probability of clockwise flagellar rotation, inducing a tumble.
Figure 2.2: A schematic representation of the chemotactic pathway in *E. coli* (N.B. not drawn to scale). Methyl-accepting protein (MCP) receptors form sensory arrays with CheA and CheW. In the absence of a gradient, the receptors activate CheA which leads to the downstream phosphorylation of CheY. A rise in CheY-P levels promotes clockwise rotation of the flagella leading to tumbling. In the presence of an attractant gradient, reduced autophosphorylation of CheA leads to a decrease in CheY-P, causing counter-clockwise rotation of the flagella. This leads to a smooth chemotactic run. Adaptation of the system is carried out by methylation and demethylation of the receptors, which are facilitated by CheR and CheB-P, respectively. A decrease in CheB-P by CheA leads to increased receptor methylation by cytoplasmic CheR. This allows for increased activation of CheA, thus reverting the system back to its prestimulated state. CheZ dephosphorylates CheY-P to terminate the signal.

In the opposite scenario where an increase in attractant concentration is detected, the autophosphorylation of CheA is attenuated, leading to a corresponding decrease in CheY-P. This in turn causes counter-clockwise rotation of the flagella, resulting in a run. Sensory adaptation is controlled by methylation of the receptors at four specific residues. The MCPs can be methylated by the methyltransferase CheR and demethylated by the methylesterase CheB. In the absence of attractant, both exist in a dynamic equilibrium; however, when attractant concentration is increased, CheA autophosphorylation is transiently reduced. Because activated CheA also phosphorylates CheB, this leads to a decrease in CheB-P, which in turn allows for increased receptor methylation by CheR in the cytoplasm. Since methylation restores receptor activity, this has the effect of resetting the system to its prestimulated state. The key, however, is that this process
is much slower than the initial response, providing the cell with a rudimentary form of "memory" by which to adapt to its environment.

2.2.2 **E. coli as an optimist**

E. coli cannot "choose" their direction of movement - during a tumble, they randomly change their orientation, with only minor correlation between the direction of consecutive runs. Only the transition probabilities between runs and tumbles is controlled in a stimulus-dependent manner. (More specifically, cells regulate the duration of runs, but the duration of tumbles remains primarily unaffected [39].) While motion is not aligned with the gradient, this simple strategy suffices to generate robust cell migration. Technically, the enhancement or reduction of activity with no directional component is classified as a form of "kinesis" [51], while "taxis" implies the ability to spatially detect stimuli and move in a highly directed manner. Thus, bacterial motion is in fact a form of adaptive *klinokinesis*, in which the frequency of turning is a function of the change in local concentration. Orthokinesis is another form of kinesis in which the rate of locomotion is dependent on stimulus intensity.

The earliest quantitative studies of bacterial chemotaxis were performed by Berg *et al.* using the bacterium *Escherichia coli* [39]. These cells were found to suppress the frequency of tumbles (and concomitantly increase the length of runs) when swimming up gradients of attractant, enabling net displacement toward areas of higher concentration. Interestingly, however, Berg also noted that cells swimming down an attractant gradient do not correspondingly truncate their runs; instead, measurements of their tumbling frequency were identical to those taken in uniform environments, suggesting that the cells were responsive only to positive and not negative stimuli. This observation prompted Berg to declare that "*E. coli is an optimist*", though the phenomenon has since been reported in other bacterial species as well, including strains of *Salmonella enterica*. *Bacillus subtilis* and *Rhodobacter sphaeroides*, on the other hand, are apparent pessimists, modulating
their tumbling frequency only when swimming down an attractant gradient [52, 53].

This asymmetric response is intuitively counter-productive in certain situations. For instance, in a monotonic unidirectional attractant gradient, a larger chemotactic bias would be achieved if runs could be further truncated for motion toward lower concentration. Moreover, in the case of a single point source of attractant, cells would accumulate tighter by actively suppressing movement away from the extremum. Nevertheless, this peculiar cell response appears to be evolutionarily conserved in *E. coli* and other enterobacteria. The objective of this work was to determine whether the lower bound on run length actually confers an evolutionary advantage toward cell survival through chemotaxis. Moreover, we wanted to determine how optimism and pessimism influenced chemotactic efficiency in more complex environments, to determine scenarios in which the strategies might be detrimental, rather than beneficial, to cell survival.

2.2.3 Existing agent-based models for *E. coli* chemotaxis

Mathematical models have been invaluable in the study of bacterial chemotaxis, particularly to target specific aspects of the problem within their respective length and time scales. For instance, intracellular methods have sought to provide more robust models to address the adaptation, gain, and sensitivity properties observed in the response of cells [54, 55, 56]. Specific examples include spatial modeling of the signal transduction pathway, membrane receptor clustering and dynamics, flagellar physics, analysis of signal noise, the intracellular phosphorylation cascade, and the modeling of adaptation via frequency domain analysis [57]. Conversely, research at the macroscale has involved single-cell behavioral models, as well as population-scale continuum models, to study motility assays, pattern formation, swarming behavior and the hydrodynamics of bacterial motion [58]. The fundamental challenge on this end has been in demonstrating how large-scale collective behaviors such as synchronization and coordination can emerge from the variation in specific characteristics amongst individual cells.
As previously mentioned, one advantage of single-cell, agent-based models is that they can capture individual nonconformities and asynchronous interactions between multiple cells; one can easily introduce the effects of non-motile behavior such as tumbling into the model as well. Another advantage is that the internal state of individual cells can be independently monitored and compared more accurately to single-cell experimentation. The single biggest drawback to these approaches is the requirement for computer resources - the need to retain the state information of each and every cell in the simulation, as well as to update all of these variables, can quickly become computationally difficult. Fortunately, these issues are becoming increasingly irrelevant with recent advances in both hardware and software. In fact, a number of agent-based models for bacterial chemotaxis have already been attempted [48, 59]. These models allow for attributes of individual cell behavior to be set through a defined set of rules.

Emonet et al. developed a bacterial simulator ("AgentCell") that includes a description of receptor dynamics, the intracellular phosphotransfer network, and the motor and flagellar responses [60]. The model was used to investigate the effect of stochastic variability in the signaling pathway of individual cells on population-level behavior. The signal transduction pathway was modeled using the stochastic molecular dynamics simulator StochSim, developed by Morton-Firth and Bray [61]. AgentCell was used to study both single-cell and population responses to different environmental conditions; the single-cell experiment was intended to simulate the movement of an individually-tethered cell, while the population experiment consisted of approximately 1000 individually-simulated cells in a three-dimensional virtual environment. Both simulations provided results that were comparable to experimental data for measurements such as the diffusion coefficient of the cell population density.

Bray et al. used their simulators (E. solo and E. pluribus) to study bacterial migration in two-dimensional attractant gradients [59]. Their individual cell models included a description of chemoreceptor kinetics; however, the physics of flagellar motion were ignored. The E. solo model simulated individual bacteria in
uniformly linear concentration gradients, with each cell depicting up to four flagella. The program allowed real-time adjustment of attractant concentration and individual measurements of the tumbling frequency, adaptation time, and tumbling turn angles. The *E. pluribus* modeled the movement of bacteria of either wild or mutant types within a fixed attractant gradient. This model was used to examine the effect of adaptation and the sensitivity of the signaling network on bacterial aggregation. Using radially-exponential static gradients, they showed that bacteria only accumulate at the attractant maxima when the activity of CheR and CheB were increased 15-fold. At realistic activity levels of CheR and CheB, no overshoot in the adaptation response was observed, thus suggesting that the form of the adaptive response curve of individual bacteria affects their ability to accumulate at a chemoattractant source.

Vladimirov et al. also developed a multiscale single-cell simulator (RapidCell) to investigate the dependence of bacterial chemotaxis on the shape of an attractant gradient and the rate of adaptation [48]. This hybrid model used Monod-Wyman-Changeux (MWC) signal processing by mixed chemoreceptor clusters, coupled with an ordinary differential equation (ODE) model for the adaptation dynamics and a detailed model of cell tumbling. They found that optimal chemotaxis is observed in a narrow range of CheA activity, where the concentration of CheY-P falls into the operating range of the flagella. This process was further enhanced by CheB phosphorylation. Moreover, they showed that variability in the adaptation times among cells produces subpopulations that are optimally tactic in different gradients. They suggested that this could be evolutionarily favorable to ensure the coexistence of different subpopulations that would be stronger against selection pressures.

These existing agent-based multiscale models have demonstrated both the feasibility and value of computational methods in the study of bacterial motility. In fact, the most recent developments also include generalized frameworks like BSim [62], which include reference implementations of many bacterial traits in a single software package, to facilitate the implementation of new models in complex 3-dimensional environ-
ments. In the final chapter of this thesis, I too present a similar tool to enable large-scale parallelization of existing phenomenological models. The primary objective of this latter effort, however, was to apply it toward investigating the aforementioned "optimistic" response of *E. coli* in attractant gradients, and what this implies for cell survival in different chemoattractant environments. Before we discuss these cellular dynamics simulations, however, we begin by reviewing existing theory about cell motion in the most simplified one-dimensional case.

2.3 Theoretical review

2.3.1 Extending the one-dimensional RTBL model

Following his work on the K-S continuum model, Segel noted that a much better model fit to experimental data could be obtained when the turning probabilities of the bacteria were assumed to be dependent on the temporal rate of change of chemoreceptor occupancy [63]. This observation motivated the work of Rivero *et al.*, whose model (commonly referred to as the Rivero, Tranquillo, Buettner and Lauffenburger model) links a macroscopic description of motion to the individual microscopic variables of cell speed, persistence time and receptor occupation [36]. In the RTBL model, motion is approximated as a telegraph process, as shown in the derivation below. The equations follow almost identically from the one presented by Rivero and colleagues.

Derivation of equilibrium flux

The following cable-type equation can be used to describe chemotaxis in one-dimension:

\[
\frac{\partial n^+}{\partial t} = -\frac{\partial}{\partial x} (vn^+) + p^-n^- - p^+n^+ \quad (2.1)
\]

\[
\frac{\partial n^-}{\partial t} = \frac{\partial}{\partial x} (vn^-) + p^+n^+ - p^-n^- \quad (2.2)
\]
where \(n^+ \) denotes the number of cells moving in the positive (i.e. right) direction and \(n^- \) denotes the number of cells moving in the negative (i.e. left) direction. The parameter \(v \) denotes the velocity of the cells, while the variables \(p^+ \) and \(p^- \) denote the probabilities of a direction change for a cell moving in the positive and negative directions, respectively. Subtracting equation (2.2) from equation (2.1), we obtain

\[
\frac{\partial}{\partial t} (n^+ - n^-) = -\frac{\partial}{\partial x} (v(n^+ + n^-)) + p^- n^- - p^+ n^+ + p^+ n^+ + p^- n^-
\]

(2.3)

We can rearrange the probability terms as follows:

\[
\frac{\partial}{\partial t} (n^+ - n^-) = -\frac{\partial}{\partial x} (v(n^+ + n^-)) + p^- n^- - p^+ n^+ - p^+ n^+ + p^- n^- + \{p^+ n^- - p^+ n^- + p^- n^+ - p^- n^+\}
\]

(2.4)

where the terms in the bracket denote the algebraic manipulation used in the following step - if we collect terms, we can simplify the probability:

\[
\frac{\partial}{\partial t} (n^+ - n^-) = -\frac{\partial}{\partial x} (v(n^+ + n^-)) - (p^+ + p^-)(n^+ - n^-) - (p^+ + p^-)(n^+ + n^-)
\]

(2.5)

The total number of cells \(B \) is equal is the sum of the positively and negatively moving cells \((B = n^+ + n^-) \).

Likewise, the net flux \(J \) is proportional to the difference between the positively and negatively moving cells \((J = v(n^+ - n^-)) \). Substituting these expressions allows us to eliminate the terms for \(n^+ \) and \(n^- \):

\[
\frac{\partial}{\partial t} \left(\frac{J}{v} \right) = -\frac{\partial}{\partial x} (vB) - (p^+ + p^-)\frac{J}{v} - (p^+ - p^-)B
\]

(2.6)
Then, applying the chain rule to the quantity of the partial derivative on the left hand side yields

\[
\frac{1}{v} \frac{\partial J}{\partial t} - \frac{J}{v^2} \frac{\partial v}{\partial t} = -\frac{\partial}{\partial x} (vB) - (p^+ + p^-) \frac{J}{v} - (p^+ - p^-) B
\]

(2.7)

This equation can be further simplified to

\[
\frac{\partial J}{\partial t} - \frac{J}{v} \frac{\partial v}{\partial t} = -v \frac{\partial}{\partial x} (vB) - (p^+ + p^-)J - (p^+ - p^-)vB
\]

(2.8)

Following arguments made by Rivero et al., if the timescale of interest is greater than the persistence time, defined as \((p^+ + p^-)^{-1}\), we can then assume that the local flux is at quasi-steady state with \(\partial J/\partial t = 0\):

\[
J = \left((p^+ + p^-) - \frac{1}{v} \frac{\partial v}{\partial t} \right)^{-1} \left(-v \frac{\partial}{\partial x} (vB) - (p^+ - p^-)vB \right)
\]

(2.9)

Now if we define the persistence time as

\[
T_p = \left((p^+ + p^-) - \frac{1}{v} \frac{\partial v}{\partial t} \right)^{-1}
\]

(2.10)

then we can rewrite the flux as

\[
J = -T_p v \frac{\partial}{\partial x} (vB) + T_p v (p^- - p^+) B
\]

(2.11)

We can then define

\[
\mu = T_p v^2
\]

(2.12)
as the random motility coefficient and

\[V_B = T_p v (p^- - p^+) \] \hspace{1cm} (2.13)

as the chemotaxis velocity. This allows us to rewrite the equilibrium local flux as

\[
J = V_B B - T_p v \frac{\partial}{\partial x} (vB) \\
= V_B B - v^2 T_p \frac{\partial B}{\partial x} - T_p v B \frac{\partial v}{\partial x} \\
= V_B B - \mu \frac{\partial B}{\partial x} - T_p v B \frac{\partial v}{\partial x} \hspace{1cm} (2.14)
\]

Now we find

\[
\frac{\partial \mu}{\partial x} = \frac{T_p v^2}{\partial x} \\
= 2T_p v \frac{\partial v}{\partial x} + v^2 \frac{\partial T_p}{\partial x} \hspace{1cm} (2.15)
\]

Rearranging this equation yields the expression

\[
T_p v B \frac{\partial v}{\partial x} = \frac{1}{2} B \left(\frac{\partial \mu}{\partial x} - v^2 \frac{\partial T_p}{\partial x} \right) \\
= \frac{1}{2} B \left(\frac{\partial \mu}{\partial x} - \frac{v^2 T_p}{T_p} \frac{\partial T_p}{\partial x} \right) \\
= \frac{1}{2} B \left(\frac{\partial \mu}{\partial x} - \mu \frac{\partial T_p}{T_p} \frac{\partial x}{\partial x} \right) \\
= \frac{1}{2} B \left(\frac{\partial \mu}{\partial x} - \partial \log T_p \frac{\partial x}{\partial x} \right) \hspace{1cm} (2.16)
\]

Using this last expression, we obtain the following expression for the equilibrium local flux:

\[
J = V_B B - \mu \frac{\partial B}{\partial x} - \frac{1}{2} \left(\frac{\partial \mu}{\partial x} - \mu \frac{\partial \log T_p}{\partial x} \right) B \hspace{1cm} (2.17)
\]
Here, the first term represents the contribution due to chemotaxis, the second random motility, and the third chemokinesis, or the variation in random motility due to changes within the local environment.

Derivation of Expression for \(V_B \) and \(\mu \)

Berg and Brown proposed the following empirical expression for the run-length distribution as a function of the change in receptor occupancy:

\[
\tau = \tau_0 \exp \left(\sigma \frac{dN}{dt} \right) \quad (2.18)
\]

For a single homogeneous receptor population, we have

\[
N = \frac{N_0 L}{K_D + L} \quad (2.19)
\]

A tumble may not always yield a direction change due to directional persistence. We can therefore relate the probability of a directional change for a cell moving in the positive \((p^+)\) or negative \((p^-)\) direction to the probability of a tumble for the same cell, using the following expression:

\[
p^{+/-} = \frac{p_t}{\tau} \left(1 - \psi \right) / 2 \quad (2.20)
\]

where \(\psi \) denotes the directional persistence. In *E. coli*, the directional persistence \(\psi \) has been measured to be approximately 0.3 [39].

Next, we can relate the tumble probability to the run length by noting that

\[
p^{+/-} = \frac{1}{\tau^{+/-}} \quad (2.21)
\]

where the superscript is used to denote whether the cell is running in a positive or negative direction. Implicit
in this expression is the fact that the run lengths are distributed exponentially. Using this relationship, we
have the following expression for the tumble probabilities

\[p_t^{+/−} = p_0 \exp \left(−\sigma \frac{dN^{+/−}}{dt} \right) \]

(2.22)

where \(p_0 = \tau_0^{-1} \).

Now, because the cell is moving, we need to employ a material derivative to account for the change in
position of the cell

\[\frac{dN^{+/−}}{dT} = \frac{\partial N^{+/−}}{\partial t} ± v \frac{\partial N^{+/−}}{\partial x} \]

(2.23)

As noted by Rivero and colleagues, the use of the material derivative implies that the cells do not distinguish
between temporal and spatial gradients. All evidence supports this conclusion [64]. Evaluating the material
derivative,

\[\frac{dN^{+/−}}{dT} = \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} ± v \frac{\partial L}{\partial x} \right) \]

(2.24)

Substituting this expression in for the tumbling probabilities yields

\[p_t^{+/−} = p_0 \exp \left(−\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} ± v \frac{\partial L}{\partial x} \right) \right) \]

(2.25)

Likewise, we obtain the following expression for the directional change probabilities:

\[\psi^{+/−} = \frac{p_0(1 − \psi)}{2} \exp \left(−\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} ± v \frac{\partial L}{\partial x} \right) \right) \]

(2.26)
We can now determine an expression for \(V_c \), if we assume the velocity \(v \) does not change with time:

\[
V_B = T_p v (p^- - p^+) = \frac{v (p^- - p^+)}{p^- + p^+} = v \tanh \left(\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x} \right)
\]

(2.27)

Similarly, we can derive the following expression for the random motility coefficient \(\mu \):

\[
\mu = v^2 T_p = \frac{v^2}{p^- + p^+} = \frac{v^2}{p_0(1 - \psi)} \exp \left(\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial t} \right) \operatorname{sech} \left(\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x} \right)
\]

(2.28)

N.B. Our derivation for the random motility coefficient does not match that of Rivero and colleagues. They find the prefactor is \(\frac{2v p_0}{p_0(1 - \psi)} \), which may be a typo in their paper.

Derivation of \(V_B \) and \(\mu \) for optimism

For *E. coli*, recall that Brown and Berg found that

\[
p_t = p_0 \exp \left(-\sigma \frac{dN}{dt} \right), \quad \frac{dN}{dt} \geq 0 \quad \text{(2.29)}
\]

\[
p_t = p_0 \quad , \quad \frac{dN}{dt} < 0 \quad \text{(2.30)}
\]

In other words, cells only respond to increasing attractant concentration.
To derive the term for V_B, we begin with the expression:

$$V_B = v \frac{p^- - p^+}{p^- + p^+} \quad (2.31)$$

Therefore, if the concentration gradient is positive, only cells moving in the positive direction will respond.

This means that

$$\frac{dN^+}{dt} > 0 \quad \text{and} \quad \frac{dN^-}{dt} < 0 \quad (2.32)$$

The result is that

$$p^- = \frac{(1 - \psi)p_0}{2} \quad (2.33)$$

The expression for velocity then becomes

$$V_B = v \frac{1 - \exp \left(-\sigma \frac{N^+ K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}{1 + \exp \left(-\sigma \frac{N^+ K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} > 0, \quad \frac{dN^-}{dt} < 0 \right\} \quad (2.34)$$

For the motility coefficient μ, we have

$$\mu = \frac{2v^2}{1 - \psi} \frac{1}{p^- + p^+}$$

$$= \frac{2v^2}{p_0(1 - \psi)} \frac{1}{1 + \exp \left(-\sigma \frac{N^+ K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} > 0, \quad \frac{dN^-}{dt} < 0 \right\} \quad (2.35)$$

Similarly, if the concentration gradient is negative, only cells moving in the negative direction will respond.

This means that

$$\frac{dN^+}{dt} < 0 \quad \text{and} \quad \frac{dN^-}{dt} > 0 \quad (2.36)$$

The result is that

$$p^+ = \frac{(1 - \psi)p_0}{2} \quad (2.37)$$
The expression for velocity then becomes

\[V_B = v \frac{\exp \left(-\sigma \frac{N}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} - v \frac{\partial L}{\partial x} \right) \right) - 1}{1 + \exp \left(-\sigma \frac{N}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} - v \frac{\partial L}{\partial x} \right) \right)} \]

(2.38)

or that

\[V_B = v \frac{1 - \exp \left(-\sigma \frac{N}{(K_D + L)^2} \left(-\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}{1 + \exp \left(-\sigma \frac{N}{(K_D + L)^2} \left(-\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} < 0, \quad \frac{dN^-}{dt} > 0 \right\} \]

(2.39)

Note that for static gradients, the expression is the same both conditions. For the motility coefficient \(\mu \), we have

\[\mu = \frac{2v^2}{p_0(1 - \psi)} \frac{1}{1 + \exp \left(-\sigma \frac{N}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} - v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} < 0, \quad \frac{dN^-}{dt} > 0 \right\} \]

(2.40)

The key difference between the two expressions is that there is a sign change. But for static gradients, we can simplify this to a single expression for both conditions

\[\mu = \frac{2v^2}{p_0(1 - \psi)} \frac{1}{1 + \exp \left(-\sigma v \frac{N}{(K_D + L)^2} \frac{\partial L}{\partial x} \right)}, \quad \{ \text{Both cases} \} \]

(2.41)

Derivation of \(V_B \) and \(\mu \) for pessimism

We can define a "pessimist" bacterium as one where

\[p_t = p_0, \quad \frac{dN}{dt} \geq 0 \]

(2.42)

\[p_t = p_0 \exp \left(-\sigma \frac{dN}{dt} \right), \quad \frac{dN}{dt} < 0 \]

(2.43)
In other words, cells respond only to decreasing attractant concentration. As the opposite response is denoted as optimism, we can call this behavior pessimism.

If the concentration gradient is positive, only cells moving in the negative direction will respond. This means that

\[
\frac{dN^+}{dt} > 0 \text{ and } \frac{dN^-}{dt} < 0
\]

(2.44)

The result is that

\[
p^+ = \frac{(1 - \psi)p_0}{2}
\]

(2.45)

The expression for velocity then becomes

\[
V_B = v \frac{1 - \exp \left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}{1 + \exp \left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} > 0, \frac{dN^-}{dt} < 0 \right\}
\]

(2.46)

For the motility coefficient \(\mu\), we have

\[
\mu = \frac{2v^2}{1 - \psi p^+ + p^-} = \frac{2v^2}{p_0(1 - \psi)} \frac{1}{1 + \exp \left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} > 0, \frac{dN^-}{dt} < 0 \right\}
\]

(2.47)

Similarly, if the concentration gradient is negative,

\[
\frac{dN^+}{dt} < 0 \text{ and } \frac{dN^-}{dt} > 0
\]

(2.48)

and only cells moving in the positive direction will respond. The expression for velocity then becomes

\[
V_B = v \frac{1 - \exp \left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}{1 + \exp \left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \left(\frac{\partial L}{\partial t} + v \frac{\partial L}{\partial x} \right) \right)}, \quad \left\{ \frac{dN^+}{dt} < 0, \frac{dN^-}{dt} > 0 \right\}
\]

(2.49)
and the expression for the random motility coefficient becomes

\[
\mu = \frac{2v^2}{p_0(1-\psi)} \frac{1}{1 + \exp\left(-\sigma \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x} + v \frac{\partial L}{\partial x}\right)}, \quad \begin{cases} dN^+ / dt < 0, & dN^- / dt > 0 \end{cases}
\]

\text{(2.50)}

Note that the expressions are the same as before except that they are switched. If the gradient is static, then we can simplify these two expressions to

\[
V_B = v \frac{1 - \exp\left(-\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x}\right)}{1 + \exp\left(-\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x}\right)} \{\text{Both cases}\}
\]

\text{(2.51)}

and

\[
\mu = \frac{2v^2}{p_0(1-\psi)} \frac{1}{1 + \exp\left(\sigma v \frac{N_T K_D}{(K_D + L)^2} \frac{\partial L}{\partial x}\right)} \{\text{Both cases}\}
\]

\text{(2.52)}

The expression for the drift velocity is the same. The difference in the expression for random motility is simply the sign of the terms within the exponential.

2.3.2 Case study - static Gaussian gradients

To illustrate the main idea, we first consider the scenario when the concentration of attractant is described by a normal distribution:

\[
L(x) = \frac{L_0}{\sqrt{2\pi}\sigma^2} \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)
\]

\text{(2.53)}

whose gradient is given by the expression

\[
\frac{\partial L}{\partial x} = -\frac{xL_0}{\sqrt{2\pi}\sigma^6} \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)
\]

\text{(2.54)}
We can now calculate the change in receptor occupancy as a function of time:

\[
\frac{dN}{dt} = \frac{\partial N}{\partial t} + v \frac{\partial N}{\partial x}
\]

\[
= v \frac{\partial N}{\partial x}
\]

\[
= v \frac{\partial N}{\partial L} \frac{\partial L}{\partial x}
\]

\[
= v \frac{K_D}{(K_D + L)^2} \frac{\partial L}{\partial x}
\]

\[
= -v \frac{K_D}{(K_D + \frac{xL_0}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-x_0)^2}{2\sigma^2} \right))^2} \frac{xL_0}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-x_0)^2}{2\sigma^2} \right)
\]

(2.55)

To explore the effect of optimism, we need to partition the spatial domain according to the different cases.

When \(x < 0 \), we have that

\[
\frac{dL}{dx} < 0
\]

(2.56)

This means that

\[
\frac{dN^+}{dx} < 0 \quad \text{and} \quad \frac{dN^-}{dx} > 0
\]

(2.57)

Similarly, when \(x < 0 \), we have that

\[
\frac{dL}{dx} > 0
\]

(2.58)

This means that

\[
\frac{dN^+}{dx} > 0 \quad \text{and} \quad \frac{dN^-}{dx} < 0
\]

(2.59)

Thus in each subdomain, we can apply the modified functional forms of \(V_B \) and \(\mu \) to the original 1-D RTBL model to examine the effect of optimism and pessimism. For comparison, we can also include the traditional or "pragmatic" case, in the first derivation provided above.
Recall that the local flux was given by:

\[J = V_B B - \mu \frac{\partial B}{\partial x} - \frac{1}{2} \left(\frac{\partial \mu}{\partial x} - \mu \frac{\partial \log T_p}{\partial x} \right) B \]

(2.60)

where \(J \) represents the local cell flux and \(B \) is the total number of cells. Thus, dividing through by the volume and taking the spatial derivative we obtain the PDE for cell density:

\[\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(V_B c - \mu \frac{\partial c}{\partial x} - \frac{1}{2} \left(\frac{\partial \mu}{\partial x} - \mu \frac{\partial \log T_p}{\partial x} \right) c \right) \]

(2.61)

where given the assumption of constant velocity and motion restricted to 1-D, the final chemokinesis term vanishes (since \(\frac{\partial v}{\partial x} = 0 \)), yielding

\[\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(V_B(x) c \right) - \frac{\partial}{\partial x} \left(\mu(x) \frac{\partial c}{\partial x} \right) \]

(2.62)

Thus we can plug in the new \(V_B \) and \(\mu \) expressions into this simplified form.

2.3.3 Computational analysis

The extended 1-D RTBL model was implemented in the Python programming language (Python 2.7.3) using the finite difference method (FDM). The time-dependent PDE was solved semi-implicitly using the scipy VODE solver with method set to backward differentiation formula (BDF), order set to 15 and steps set to 3000 (equivalent to MATLAB’s ODE15s). The solution domain was between -0.1 and 0.1 mm with periodic boundary conditions. The parameters used in the simulation are given in Table 2.1. Initially, we assumed that the chemoattractant concentration profiles took the form of two static Gaussian functions with a standard deviation \(\sigma = 0.01 \text{mm} \). The initial cell density distribution was also assumed to be Gaussian.
with the same σ, but centered around the left source in the negative half of the domain. The objective of this study was to determine how the optimistic (or pessimistic) behavior of cells affected their ability to seek alternate attractant sources in the presence of a local optimum. We also looked at how variation in the separation and spread of the sources affected migration behavior.

The advection operator in the reaction-diffusion problem shown above was expressed using full upwinding applied to the finite difference discretization of the problem. Thus, the forward and backward components of the flux were split using the forward and backward difference formulas respectively, given by

$$A_f = \frac{1}{dx} \begin{bmatrix} 1 & \cdots & -1 \\ -1 & 1 & \cdots \\ \vdots & \ddots & \ddots \\ -1 & 1 \end{bmatrix}, \quad A_b = \frac{1}{dx} \begin{bmatrix} -1 & 1 \\ -1 & 1 & \ddots \\ \ddots & \ddots & \ddots \\ 1 & -1 \end{bmatrix}$$

and the full chemotactic term was approximated by

$$-A_f \max(V_B c, 0) - A_B \max(-V_B c, 0),$$

where $V_B c$ was an element-wise vector product whose values were evaluated at the nodes of the problem based on the expression for V_B. Similarly, for the random motility term, the nonhomogeneous diffusion operator was approximated using the forward and backward averaging operators

$$A_{i+\frac{1}{2}} = \frac{1}{dx} \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & \ddots \\ \ddots & \ddots & \ddots \\ 0.5 \\ 0.5 \end{bmatrix}, \quad A_{i-\frac{1}{2}} = \frac{1}{dx} \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & \ddots \\ \ddots & \ddots & \ddots \\ 0.5 \\ 0.5 \end{bmatrix}$$
applied to the fluxes,

\[\left(A_{i+1/2} \mu, -A_{i} \mathbf{c} \right) - \left(A_{i-1/2} \mu, -A_{i} \mathbf{c} \right). \]

Finally, \(\frac{\partial c}{\partial t} \) was updated using the contributions from both the chemotactic and random motility terms. Note the use of cyclic matrices, which allowed us to enforce the periodic boundary conditions for conservation of mass.

Figure 2.3 shows the time evolution of the cell density distributions for the pragmatic, optimistic and pessimistic cases, given a fixed source separation. Qualitatively, it is immediately noticeable that the optimistic cells exhibit greater migration to the distant source than both the pragmatic and pessimistic types. This can be attributed to the fact that the denominator of the \(\mu \) term is comparatively smaller for the optimistic case. The effect of this larger random motility is that the cells are more likely to escape the local attractant maximum; however, they also have greater difficulty converging on any optima, as evidenced by the higher density around regions with zero attractant. The pessimistic cells, meanwhile, remain localized around the proximal source - these cells tumble more frequently when moving down a gradient, but do not decrease their tumbling frequency beyond the basal rate. Naturally, the pragmatic cells exhibit the tightest convergence, as they also avoid decreasing concentration but favor increasing concentration as well.
Figure 2.3: Time evolution of the cell density distributions provided by the extended RTBL model. Cells move in response to two gaussian static gradients positioned at -0.005 and 0.005 cm. Note that the optimistic cells are able to more effectively redistribute around the distant source. Snapshots taken at t = 0, 5, 60 s.

We next looked at how the degree of source separation could affect migration behavior. Figures 2.4, 2.5 and 2.6 show the steady state cell density distributions for the pragmatic, pessimistic and optimistic cells, respectively. Figure 2.7 shows the corresponding heat map in which the source separation was varied continuously. Note that the pragmatic and pessimistic cells behave similarly, though the pragmatic cells exhibit slightly tighter convergence around the proximal source. When the separation between the sources exceeds a particular threshold, only the optimistic cells are able to successfully migrate to the distant source.

Figure 2.4: Steady-state cell density distributions for pragmatic cells given varying separation of the two gaussian attractant sources.
Figure 2.5: Steady-state cell density distributions for pessimistic cells given varying separation of the two gaussian attractant sources.

Figure 2.6: Steady-state cell density distributions for optimistic cells given varying separation of the two gaussian attractant sources.

Figure 2.7: Steady-state cell density distributions for the pragmatic, pessimistic and optimistic cells, respectively, as a function of the separation between the two gaussian attractant sources. Cell densities are given in 10^6 cells/mm.
We also examined how the width of the Gaussian attractant sources affected migration. Figures 2.8, 2.9, 2.10 show the steady state cell density distributions for the pragmatic, pessimistic and optimistic cells, respectively. Figure 2.11 shows the corresponding heat map in which the source standard deviation is varied continuously. Here, we again note that the pragmatic and pessimistic cells behave similarly in that both populations remain localized around the proximal source for smaller source widths. When the tightness of the sources is relaxed to \(> 0.025 \) mm, we begin to see positive values for the cell density around the distant source. Meanwhile, the optimistic cells show relatively higher cell density around the distant source even for sharp attractant sources. We again note, however, that the cell density in regions of no attractant are higher throughout. If periodic boundary conditions had not been applied, this would have led to a loss of mass (cell density) from the system, enabling cells to encounter even more distant sources or to drift into emptiness.

Figure 2.8: Steady-state cell density distributions for pragmatic cells given varying width of the two gaussian attractant sources.
Figure 2.9: Steady-state cell density distributions for pessimistic cells given varying width of the two gaussian attractant sources.

Figure 2.10: Steady-state cell density distributions for optimistic cells given varying width of the two gaussian attractant sources.

Figure 2.11: Steady-state cell density distributions for the pragmatic, pessimistic and optimistic cells, respectively, as a function of the width of the two attractant sources. Cell densities are given in 10^6 cells/mm.
2.3.4 Summary

With the assumption of static gradients, motion restricted to one dimension, and applying parameters derived from the literature, our simulations suggest that optimistic cells can produce a profoundly different steady state distribution compared to pragmatic cells under certain conditions; specifically, the cell density at the distant source was shown to be higher in the case of greater source separation or narrower gaussian attractant sources. This observation can be explained by the comparatively higher tendency of cells to wander away from the proximal source, whereas pragmatic cells actively suppress movement against the local gradient under the same conditions. The tradeoff for this enhanced range in the optimistic cells was that the maximum cell density attainable around a chemoattractant source was noticeably lower, while a greater fraction of the cells ended up spending more time in regions of no chemoattractant. The implications of this behavior may not be immediately obvious.

One observation is that optimistic chemotaxis may not in fact be beneficial unless distant, sparsely-distributed resource patches are abundant in the environment. Otherwise, stray cells may never encounter fresh patches and thus end up having a lower net chance of survival. On the other hand, in the presence of limited resources shared among a population, it is also perceivable that working in a partially cooperative manner, or seeking new resources when a patch is overcrowded, may in some cases benefit the survival of the greater population; this notion is familiar in game theory. Overcrowding may result in rapid depletion of the local resources, such that outcompeted cells may have even greater hardship in competing for yet another distant patch thereafter, whilst all neighboring cells are doing the same. Thus, as theoretical studies in OFT have shown, optimal search patterns may be highly dependent on the whether patches are depletable or whether they can be revisited multiple times without loss of profitability [65].

To study the effect of optimism in the case of depleted resource patches, it was necessary to dismiss the assumption of static gradients. This meant that several aspects of the derivation had to be revisited, particu-
larly in terms of when $\frac{dN^+}{dt}$ and $\frac{dN^-}{dt}$ assumed positive or negative values. The relaxation of this assumption meant that the spatial domain could not be partitioned as easily and expressed by simple forward and backward upwind matrices, as in the static model. The other important consideration that had to be made (with the dynamic chemoattractant field) was the rate of depletion, and more importantly, the diffusivity of the chemoattractant itself. Here, we considered the diffusion coefficients of various nutrients/chemoattractants in semisolid media, or in the typical viscosities of bacterial motility plates (0.2 ~ 0.4% agar). Values reported in the literature are shown in Table 2.2. Interestingly, in all cases it appeared that the amino acids diffused faster than the cells moved outward, although the reported values for the bacteria were not direct measurements of the random motilities μ.

Our initial attempts to apply a similar FDM implementation to this dynamic problem led to mixed results. In particular, the choice of relatively higher chemoattractant diffusivities appeared to obfuscate the differences we previously observed between the optimistic and pragmatic steady-state distributions. This is likely attributed to the fact that the breadth of the gaussian chemoattractant sources was growing too rapidly for cells to converge toward the optimum, which also meant that the local gradient was attenuating too quickly for the cells to respond differentially. In addition, we noticed that the inclusion of attractant metabolism would require more accurate models for cell death and proliferation, since it was unclear how long cells could survive in the absence of metabolites following resource depletion - this was a central point to the previous argument. Owing to ambiguity in the diffusion coefficient of the chemoattractant relative to the bacteria, as well as uncertainty in the effectiveness of the 1-D analysis to the dynamic chemoattractant problem, we next decided to shift our focus to a full 3-D cellular dynamics simulation based on a phenomenological model of *E. coli* motion.
Table 2.1: Parameter sets for RTBL model and cellular dynamics simulations. Note that the 1-D swimming speed is one half of the corresponding speed in three-dimensions, as derived by Ford et al. [32].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>0.011 mm/s</td>
</tr>
<tr>
<td>p_0</td>
<td>0.5</td>
</tr>
<tr>
<td>ψ</td>
<td>0.36</td>
</tr>
<tr>
<td>σ</td>
<td>0.17 s$^{-1}$</td>
</tr>
<tr>
<td>N_T</td>
<td>10^4</td>
</tr>
<tr>
<td>k_D</td>
<td>0.08 mM</td>
</tr>
<tr>
<td>v</td>
<td>0.022 mm/s</td>
</tr>
<tr>
<td>α</td>
<td>700 s</td>
</tr>
<tr>
<td>τ_0</td>
<td>0.67 s</td>
</tr>
<tr>
<td>ψ</td>
<td>0.36</td>
</tr>
<tr>
<td>N_T</td>
<td>10^4</td>
</tr>
<tr>
<td>k_D</td>
<td>0.08 mM</td>
</tr>
</tbody>
</table>

Table 2.2: Estimated diffusion coefficients for amino acids in bacterial motility assays.

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>Amino Acid</th>
<th>Diffusivity</th>
<th>Bacterial Motion</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2% agar</td>
<td>succinate</td>
<td>$9.0 \times 10^{-6} \text{cm}^2/\text{s}$</td>
<td>$2.4 \times 10^{-6} \text{cm}^2/\text{s}$</td>
<td>PR Patnik 2008</td>
</tr>
<tr>
<td>0.3% agar</td>
<td>tryptone</td>
<td>$10^{-7} \text{cm}^2/\text{s}$</td>
<td></td>
<td>PR Patnik 2008</td>
</tr>
<tr>
<td>0.2% agar</td>
<td>aspartate</td>
<td>$7.1 \times 10^{-6} \text{cm}^2/\text{s}$</td>
<td>$8.8 \times 10^{-7} \text{cm}^2/\text{s}$</td>
<td>Strauss 1992</td>
</tr>
<tr>
<td>0.3% agar</td>
<td>serine</td>
<td>$1 \times 10^{-5} \text{cm}^2/\text{s}$</td>
<td></td>
<td>Berg 1972</td>
</tr>
<tr>
<td>0.2% agar</td>
<td>aspartate</td>
<td>$8.9 \times 10^{-6} \text{cm}^2/\text{s}$</td>
<td></td>
<td>Berg/Terner 1990</td>
</tr>
<tr>
<td>0.3% agar</td>
<td>aspartate</td>
<td></td>
<td>$2.6 \times 10^{-6} \text{cm}^2/\text{s}$</td>
<td>Berg/Terner 1990</td>
</tr>
<tr>
<td>0.2% agar</td>
<td>aspartate</td>
<td></td>
<td></td>
<td>Wolfe/Berg 1989</td>
</tr>
<tr>
<td>0.3% agar</td>
<td>aspartate</td>
<td></td>
<td></td>
<td>Wolfe/Berg 1989</td>
</tr>
</tbody>
</table>
2.4 Cellular dynamics simulation

2.4.1 Model description

For peritrichous bacteria, cell trajectories are often idealized as biased random walks in three dimensions [66, 39, 67]. The *E. coli* chemotaxis model we present here is a phenomenological model based entirely on macroscale observations and measurements found in the literature [49, 68]. In particular, this single-cell model draws largely on the ideas of Emonet et al. [60] and Vladimirov et al. [48], as well as the seminal work of Howard Berg [39, 69, 50, 70], who proposed a way to quantitatively relate the duration of runs to the change in local attractant concentration. In particular, the model tracks only the position and orientation vector of an individual cell as a function of time, while the underlying signal transduction pathways are not considered. A Monte Carlo algorithm is used to describe the motion of each cell, where stochasticity and noise are simulated using the sampling of (pseudo) random numbers [71]. Other features of this model include rotational diffusion during runs and weak directional correlation between successive run directions as noted in empirical studies.

We first define the position of bacterium *i* using its spatial coordinates $\mathbf{r}_i = \{x_i(t), y_i(t), z_i(t)\}$, where we assume a constant linear cell speed during runs ($v = 22 \mu m/s$). If we assume the cell updates its position roughly according to $d\mathbf{r}_i = v dt$, then for the numerical integration in time we can employ the explicit (first-order accurate) forward Euler approximation:

$$\mathbf{r}_i(t + \Delta t) = \mathbf{r}_i(t) + v s_i \Delta t,$$

where the run duration is assumed to be exponentially distributed [39]. Here, as pointed out by Berg, we say that the number of tumbling events over time approximately follows a Poisson process with rate parameter $\lambda = \frac{1}{\tau}$, the reciprocal of the average run duration. For any given time step, we therefore simulate whether
a cell is tumbling or running by comparing λdt to a random number sampled from a uniform distribution $U[0,1]$. If this random value is less than dt/τ, the cell is assumed to tumble. If the value is greater than dt/τ, the cell is assumed to run. For the choice of dt we employ the typical duration of a tumble (~ 0.1 s) or less. This ensures sufficient temporal resolution since the duration of a run is on the order of ~ 1 s [72, 73].

Given a run, a cell is assumed to progress along its current bearing. Here, the effect of rotational diffusion is included via perturbation of the orientation vector by the amount $d\theta = \sqrt{2D_r dt} N(0,1)$ as seen in other works [74], where $D_r \approx 0.06205$ as measured experimentally [70]. This perturbation is taken with respect to the x, y and z axes in randomly permuted order. In a similar fashion, a tumbling event is modeled by a reorientation of the cell axis around an arbitrary orthogonal vector in 3-space - to prevent non-uniformity in the selection process, this orthogonal vector is obtained by sampling points from a uniform distribution within a unit cube, and culling those points that lie outside of the inscribed unit sphere. Gram-Schmidt is then used for the orthonormalization against the current cell orientation. The turn angle distribution for this rotation is determined according to the probability density function $f(\theta) = 0.5(1 + \cos \theta) \sin \theta$, where $0 < \theta < \pi$, with $\mu(\theta) \approx 68^\circ$ [48], as described in the early work of Berg [39].

All spatial rotations in this model are calculated using quaternions. Quaternion algebra has a number of advantages over orthogonal rotation matrices and the use of Euler angles, including greater numerical stability (no loss of orthogonality), prevention of gimbal lock (non-commutativity), the lack of handedness and lower computational resource requirements due to its compact representation [75]. Moreover, for a given axis and angle, one can easily construct the corresponding quaternion, while conversely, for a given quaternion, one can also easily read off the axis and the angle. A single quaternion rotation can be summarized by the following: Let (w, x, y, z) be the coordinates of a rotation operation by α around the axis u. This allows us
to define a quaternion

\[q = w + xi + yj + zk = w + (x, y, z) = \cos(\alpha/2) + u \sin(\alpha/2) \]

where \(u \) is a unit vector. Now, if we let \(v \) be an ordinary vector in 3-space, i.e. a quaternion with real coordinate \(w \) equal to zero, then the quaternion product

\[v' = qvq^{-1} = \left(\cos \frac{\alpha}{2} + u \sin \frac{\alpha}{2} \right) v \left(\cos \frac{\alpha}{2} - u \sin \frac{\alpha}{2} \right) \]

yields the vector \(v' \) resulting from rotation of the original vector \(v \) by an angle \(\alpha \) around the axis \(u \), where \(q^{-1} \) is the inverse (conjugate) of \(q \). Here, rotation is defined in the clockwise direction assuming the line of sight lies in the direction of \(u \). By chaining several of these operations together, it becomes relatively straightforward to update the orientation vector of each cell during a run or a tumble.

Since bacterial chemotaxis depends highly on the modulation of run duration \((\tau) \), we then define the following parameters to describe how tumbling frequency varies with external conditions:

\[\tau_0 = \text{basal run duration in uniform concentration field} \]

\[\tau = \text{mean run duration} = \tau_0 e^{\alpha f} \]

\[\alpha = \text{gain (change in motor bias as function of receptor occupancy)} \]

\[f = \text{response rate as a function of chemoattractant concentration} \]
The response function f is defined through the following parameters:

\[
\frac{dL}{dt} = \frac{L - L_{\text{old}}}{dt} = \text{rate of change in concentration}
\]

\[
\frac{dP}{dt} = \frac{K_d}{(K_d + L)^2} \frac{dL}{dt} = \text{rate of change in signal}
\]

where L is the local concentration measurement at the current cell position and L_{old} represents the previous measurement taken. We note that the $\frac{dP}{dt}$ term takes into account the receptor saturation kinetics. If we define f using the following rule:

\[
\text{if } \frac{dP}{dt} \geq 0, \quad f = \max \left(\frac{dP}{dt} - \gamma_{\text{up}}, 0 \right)
\]

\[
\text{if } \frac{dP}{dt} \leq 0, \quad f = \min \left(\frac{dP}{dt} + \gamma_{\text{down}}, 0 \right)
\]

then by this definition, the magnitudes of both γ_{up} and γ_{down} now define a threshold for which the cell is insensitive to changes in the signal $\left(\frac{dP}{dt} \right)$. In particular, optimism is achieved when

\[
\gamma_{\text{up}} = 0 \quad \text{and} \quad \gamma_{\text{down}} \to \infty,
\]

while pessimism is achieved when

\[
\gamma_{\text{down}} \to \infty \quad \text{and} \quad \gamma_{\text{up}} = 0.
\]

Note that the shape of f determines how the input signal translates to functional output, as visualized in Figure 2.12.
Figure 2.12: Visual representation of the parameters used in the cellular dynamics models. The horizontal axis represents the signal interpreted by the receptor-kinase complex, while the vertical axis represents the response of the cell. By this model, optimism can be represented by setting $\gamma_{up} = 0$ and $\gamma_{down} \rightarrow \infty$, while pessimism results from setting $\gamma_{up} \rightarrow \infty$ and $\gamma_{down} = 0$. For pragmatism, we set both γ_{up} and γ_{down} to 0. α and β represent the gains in response to positive and negative stimuli, respectively, though we may consider them to be equivalent.

Visually, the effects of modulating γ_{up} and γ_{down} are shown in Figure 2.13, where cell motion was simulated in a linear concentration gradient of chemoattractant. From the functional form of f, we see that larger γ_{up} and γ_{down} produces an effective deadband between the x-intercepts of the positive and negative responses. Thus, in this case, cells are fully desensitized and exhibit a uniform random walk. Meanwhile, if either γ_{up} or γ_{down} are zero (i.e. optimist and pessimist, respectively), we see positive chemotaxis in the direction of the gradient, albeit for different reasons. The optimistic cell elongates its runs in the direction of the gradient, while the pessimistic cell truncates its runs when moving against the gradient. The greatest displacement is observed (at least in a linear gradient) when both γ values are set to 0, equivalent to a "pragmatic" response.
Figure 2.13: The effect of changing γ_{up} and γ_{down} when cells are placed in a linear gradient of attractant. (Concentration is increasing from left to right.) Note that large values for γ_{up} and γ_{down} result in cells that are desensitized. Maximal displacement is observed when both γ values are 0.

To improve the credibility of the analysis, we then set about to devise a more realistic three-dimensional arrangement of the dual point source problem. By simulating an existing bacterial chemotaxis assay known as the capillary assay, the objective was to obtain results that could (theoretically) be reproduced through corresponding experiments in a lab. While this project is beyond the scope of this thesis, the challenge here would be to first identify the molecular mechanism responsible for chemotactic optimism. One would then have to properly set up the assay using two capillaries, perhaps in the configurations simulated here. To our knowledge, such an experiment has never been conducted, and may present additional unforeseen obstacles. The setup and execution of this cellular dynamics simulation was performed using the framework described in Chapter 4, where the implementation details can also be found.
2.4.2 Capillary assays

The quantitative capillary assay is a widely-used chemotaxis assay to characterize the chemotactic response of bacteria [76, 7]. In these experiments, a narrow-bore capillary is initially filled with a particular bacterial chemoattractant in solution, as shown in Figure 2.14. This capillary is inserted into a larger pool containing many bacteria in the buffer. Once the attractant is allowed to diffuse into the pool, the chemotactic response can then be measured by counting the number of bacteria in the capillary at end of the experiment (typically by serial dilution and plate counting). This method is a very attractive tool for quantitative analysis of chemotaxis due to its simplicity, reproducibility and sensitivity. Unlike traditional swarm plate assays for bacteria, the rate of metabolism of the chemoattractant is comparatively negligible due to the lower media density. This enables isolation of the chemotactic response from cell growth, making it an effective tool to characterize chemotactic efficiency under varying conditions (such as mutation in particular pathway components).

Figure 2.14: Schematic showing the setup of a capillary assay. Chemoattractant diffusing from the capillary tube establishes a steep gradient that attracts bacteria to the mouth. The cells enter the capillary and are subsequently documented by colony counts. Note the accumulation of cells around the tip in the micrograph.
Early work with capillary assays sought to characterize the chemotactic response of *E. coli* over a range of chemoattractant concentrations. In particular, the work by Mesibov *et al.* was one of the first to demonstrate the dose response characteristics of *E. coli* to different amino acids and sugars [77]. Mesibov and colleagues measured the response of cells to methyleaspartate and a variety of other sugars. In their plots, the y-axis represented the number of bacteria counted in the capillary, while the x-axis represented the geometric mean molarity, calculated as the square root of the product of the capillary and bulk (pool) concentrations. In all experiments, the initial chemoattractant concentration was fixed at ≈ 3.16 times that of the initial bulk concentration in all cases, such that the ratio of capillary to bulk concentration was conserved. Their plots revealed two key features of the chemotactic response: (i) sensitivity over a fairly wide concentration range; and (ii) biphasic dose response characteristics, in which an optimal sensitivity range can be seen. More specifically, an excessively high or low concentration appeared to have a negative effect on sensitivity.

To validate our *E. coli* chemotaxis model, we first conducted a test simulation involving a traditional, single capillary assay, in order to see if it could reproduce the dose-response characteristics observed by Mesibov *et al.* [77]. We first started with a crude approximation of the problem, in which the geometry was simplified to be a single spherical point source positioned at the origin of the coordinate system with diameter $d = 0.1$ mm, corresponding to the diameter of a typical capillary tube. The source concentration was assumed to be $\sqrt{10} \sim 3.16$ times the bulk concentration, as in the experiments, and the concentration profile in the solution was assumed to be static. Using the steady state solution to the axisymmetric diffusion problem in a semi-infinite domain, the profile was assumed to take the form:

$$ C(R) = \frac{4\pi D r_c c_{source}}{4\pi DR}; \quad \text{where} \quad R = \sqrt{x^2 + y^2 + z^2} > r_c. $$

Here, we note that the concentration is inversely proportional to distance from the source, by this definition. We also assumed no cell-cell interaction (collisions), no metabolism of the attractant, no hydrodynamic...
effects and no finite volume effects such as bacterial crowding around the mouth of the capillary. At the end of the simulation, all cells within the source radius were then assumed to be captured. These captured cells were then counted to provide a measure of chemotactic efficiency. The resulting response curve for this simulation is given in Figure 2.15. Here, we found that the qualitative shape of the curve coincided with experimental results; however, the peak sensitivity seemed to occur at a higher concentration than expected ($k_D = 10^{-4}$ M).

One major flaw in the initial model was the entirely static description of the attractant concentration profile. With typical experiments running over an hour, and the diffusivity of amino acids being on the order of $10^{-5} \text{cm}^2/\text{sec}$ in solution, it was unlikely that the system would have reached steady-state this rapidly, particularly at the mouth of the capillary where the greatest change was expected. Thus, in the second model, the concentration profile was allowed to evolve over time. As shown in Figure 2.15, the domain geometry was also refined to consist of a cylindrical tube of diameter $d = 0.1$ mm (rather than a sphere). This cylindrical subdomain was then conjoined to a semi-infinite cylindrical pool at the coordinate system origin ($r = 0, z = 0$). Here, the boundary conditions were taken into account so that cells had to physically swim into the capillary in order to be counted. Otherwise, cells were considered to be reflected off of the domain boundaries.

The concentration profiles within these two subdomains were approximated using the asymptotic analytical expression previously derived by Futrelle [78]. Specifically, the analytical form of the dynamic profile was given by:

$$c_{\text{pool}}(t) = \frac{(c_{\text{source}} - c_{bg})r_c^2}{2R\sqrt{\pi Dt}} \exp \left(-\frac{R^2}{4Dt} \right) / \left(1 + 3r_cR \frac{4}{4Dt} + c_{bg} \right)$$

$$c_{\text{cap}}(t) = (c_{\text{source}} - c_{bg}) \text{erf} \left(\frac{-z}{2\sqrt{Dt}} \right) + \frac{(c_{\text{source}} - c_{bg})r_c}{\sqrt{\pi Dt}} \exp \left(-\frac{z^2}{4Dt} \right) / \left(1 - \frac{r_c^2z}{4/3Dt} \right) + c_{bg}$$

where the distance from the coordinate system origin was given by $R = \sqrt{x^2 + y^2 + z^2}$ and the domain was
divided into the pool and capillary subdomains. Given this updated simulation, the peak sensitivity in the
dose response curve was shown to be significantly closer to the expected value of $k_D = 10^{-4}$ M, as shown in
Figure 2.15.

The final improvement to the model was to use a full numerical approximation for the concentration
profile. Here, we constructed an unstructured tetrahedral mesh consisting of two conjoined cylindrical do-
 mains, with diameter $d = 0.1$ mm at the capillary end and $d = 6$ mm at the pool end. The height of both
subdomains was set to 10 mm. Mesh generation was performed using Gmsh 2.6.1, developed by Christophe
Geuzaine and Jean-François Remacle at http://geuz.org/gmsh/, applied to a custom .geo file that delineated
the basic system geometry. Initial conditions were defined such that the capillary was filled uniformly with
attractant at $t = 0$ (over a range of concentrations), while the bulk concentration was set to be $1/3.16$ times
that of the capillary concentration as in experiments. The diffusion PDE was solved over the mesh by ap-
plying the finite element method (FEM), with an attractant diffusivity of $D = 10^{-5}$ cm2/sec and Neumann
(no-flux) boundary conditions. Cells were constrained to the domain using the Computational Geometry
Algorithms Library (CGAL) to check at every step whether a cell’s position fell outside the domain bound-
ary. In this event, the step-size was continuously halved until the criteria of being inbounds was met. Figure
2.17 shows the geometry of the mesh used for this simulation, as well as a visualization of cell trajectories for
individuals that successfully migrated into the capillary. Running simulations with 10000 cells, the dose re-
sponse curves were similar to those produced using the analytical approximation for the concentration profile.
Figure 2.15: [A] The sensitivity curve over range of concentrations reveals the biphasic curve we expected. However, the peak occurs two orders of magnitude higher than the k_D used for the problem $k_D = 10^{-4}$ M. [B] Updated sensitivity curve with peak occurring at lower concentration, closer to experimentally observed values.

Figure 2.16: [Left] 2D cross-section of single capillary simulation, in which the concentration profile was evaluated analytically. Note that the axisymmetric domain consists of two cylindrical subdomains (capillary and pool) conjoined at the coordinate system origin. [Right] FEM mesh used in the numerical solution of the concentration profile for the single capillary simulation.
Figure 2.17: Visualization of cell migration into the capillary using the numerical solution for the chemoattractant profile. Only a subset of all simulated cells are shown. Volumetric rendering shows the high chemoattractant concentration around the capillary opening. The trajectories of captured cells are highlighted.

2.4.3 Simulation of a dual capillary assay

After demonstrating some of the model’s predictive abilities, we then applied the method to the dual capillary scenario. For this purpose, we used two different geometric arrangements for the capillaries: a coaxial configuration, in which the cell pool was flanked by capillaries at both ends, and a tandem configuration, in which the two capillaries were aligned side-by-side. In the coaxial model, each capillary was defined to be 5mm in length, while the radius and height of the central pool were set at 3mm. For the tandem model, each capillary tube also measured 5mm, but were attached to the same side of a 7.5x5x2.5mm rectangular pool, with a separation of 2.5mm. In both cases, the capillaries were defined by a radius of 0.1mm, as
Figure 2.18 depicts the two meshes used for the simulations. The initial conditions were defined as follows: in both models the two capillaries were assumed to be uniformly filled with chemoattractant at \(t = 0 \) \((C_0 = 10^{-4} \text{ M})\) and allowed to diffuse freely in the full domain for \(t > 0 \), where the initial pool concentration was \(1/3.16 \) \(C_0 \). In the coaxial model, the cells were initially distributed uniformly in one half of the pool, closer to one of the capillaries \((z > 0)\), while in the tandem case, the cells were also uniformly distributed in the half closer to one end of the cylinder \((x > 0)\).

Figure 2.18: The geometries of the meshes used in the simulated dual capillary assays, including the: [Left] coaxial and [Right] tandem configurations of the capillaries.
Figure 2.19: Snapshots of the coaxial dual capillary simulation taken at $t = 0$, 30 and 60 minutes, respectively. Only a subset of the cells are shown for clarity. The trajectories of cells that successfully migrated into the capillaries are highlighted, indicating their initial position.
Figure 2.20: Snapshots of the tandem dual capillary simulation taken at $t = 0$, 30 and 60 minutes, respectively. Only a subset of the cells are shown for clarity. The trajectories of cells that successfully migrated into the capillaries are highlighted, indicating their initial position.
Both dual capillary assay simulations were run for one hour of simulated time with a total cell count of 500,000, using the Taub parallel computing resource provided by the university’s Computational Science and Engineering (CSE) Program. The calculations were performed on 16 nodes, each housing 4 cores per node, where the message passing interface (MPI) was applied for parallelization. Figures 2.19 and 2.20 show snapshots of the simulations at different points in time. All visualizations were generated using ParaView, an open-source, parallel visualization application found at http://www.paraview.org. The highlighted trajectories indicate the path taken by those cells that migrated into either capillary during the simulation. Again, the measurement of interest was the relative cell count in the distant capillary after one simulated hour, given optimistic vs. pessimistic cell populations. Thus we looked at a range of values for γ_{up} and γ_{down}, varying from 0.00001 to 1.0. Each simulation was repeated 25 times for statistical validation. The results are shown in Figure 2.21.

![Figure 2.21: Plot showing the cell count in the distant capillary for a range of different chemotactic behaviors (varying γ values). Each simulation was run 25 times, and the error bars represent the standard deviation. Note that as the gamma value (*) decreases to the left, the deadband in the response becomes smaller, and hence the cells are increasingly pragmatic, while toward the right of the plot, the cells are increasingly optimistic/pessimistic.](image)

From the plots above we can make a number of observations. First, we note that increasing the deadband
in both the positive and negative direction (i.e. γ_{down} and $\gamma_{\text{up}} > 0$) led to total suppression of chemotaxis, and hence, no migration to the distant capillary as the value of \ast was increased, as shown by the green curve. This is in agreement with our intuition. Next, we see that in both plots, cells that were more ”pragmatic” (i.e. responsive to both decreasing and increasing chemoattractant concentration) tended to accumulate more in the distant capillary, as evidenced by the higher bacterial counts toward the left side of either plot.

This result appears to contradict the conclusion drawn from the 1-D analysis - namely that the steady state cell density at the distant source seemed to be higher for optimistic cells than for pragmatic cells. While on average the optimistic cells seemed to migrate slightly more efficiently than their pessimistic counterparts (up to 8%) in all cases, it is difficult to say given the error that this observation is statistically significant.

2.5 Discussion

In the first half of this chapter, we provided a formal derivation of the effect of optimism and pessimism on the expressions for V_B and μ in an existing framework (the RTBL model). We also showed, using both a simplified 1-D continuum formulation (on the static problem) and a full cellular dynamics simulation (for the dynamic case), that optimism might indeed enhance chemotaxis toward distant chemoattractant sources. However, further characterization of the latter is necessary to provide a stronger result; moreover, despite quantitative results from the model, it remains unclear without empirical evidence whether or not the initial hypothesis was correct. In this regard, the next logical step in this project may be to demonstrate this phenomenon experimentally. A significant obstacle to this goal, however, is our lack of understanding of the mechanistic cause for optimism. Identification alone may also be insufficient without a method to manipulate this property in a controlled fashion, for instance through genetic engineering.

Recently, Shimizu et al. conducted experiments to better characterize the kinetics of receptor adaptation, by directly monitoring CheA activity in cells exposed to time-varying stimuli [79]. They were able to
demonstrate that adaptation feedback is actually rather weak in *E. coli*, indicating that the receptor-kinase complex can faithfully communicate all signals to the cell interior. Moreover, they observed no significant response thresholds to positive or negative concentration ramps [80]. This result seems to exonerate the intermediate pathway components as the mediators for this asymmetric behavior. Thus, one possibility is that optimism is caused entirely by regulation at the flagellar level - perhaps as a result of the sensitivity of FlIM. While additional experiments are required to confirm and refine this hypothesis, for now we can continue with our discussion of the possible implications of this behavior.

One particular subject of interest is how different bacterial species apply chemotaxis to handle the challenges unique to their environment. In particular, understanding the relationship between resource distribution and the evolved search strategy (and its super or subdiffusivity) is an important problem in the study of foraging behavior and its evolution. The soil-dwelling *B. subtilis*, for instance, is known to exhibit pessimistic behavior when swimming in chemotactic gradients. From our analysis, we found that this sort of behavior may be advantageous in environments where resources are localized (patchy), scarce, and highly dispersed, such that the transition time between nutrient sources is too long to warrant emigration once a cell has located a source. Optimism, on the other hand, seems to be beneficial when resources are patchy but also plentiful, with moderate spacing between the patches such that cells can freely migrate among them.

Recently, Celani *et al.* argued that a maximin response outcompetes motile but non-chemotactic bacteria in any concentration profile to ensure the highest minimum uptake of chemoattractants [81]. Maximin strategies are known in game theory as an extremely risk-averse strategy that ensures a gain equivalent to the floor value in zero-sum games with two players; the floor value is the guaranteed gain of player I, even when its strategy is disclosed to its opponent, i.e. in the most hostile conditions for player I. They were able to show that the maximin strategy is well-adapted to the highly variable environments experienced by bacteria, and that such a strategy arises naturally through evolution in a simulated chemostat. In many
ways, the optimistic behavior of *E. coli* can also be thought of as a maximin or partially cooperative strategy, where the optimal utility (probability of success) among competing individuals arises when there is some degree of sacrifice.

Studies have also shown that the concentration of metabolites can have a strong effect on chemotactic activity. In some *E. coli* strains, for example, a higher nutrient concentration (yeast extract) has been shown to suppress cell motility, while in *S. enterica*, a higher nutrient concentration tends to enhance chemotactic activity. One possible explanation for these divergent behaviors is that the intended purpose of motility is profoundly different for the two species despite their phylogenetic similarity. Wild type *E. coli* is normally a symbiotic colonist of the gastrointestinal tract, where chemotaxis likely serves as a survival mechanism for cells to seek more resources when starved. *Salmonella*, on the other hand, may use chemotaxis as a method to enhance pathogenicity, by increasing coverage of the intestinal epithelium and allowing for more opportunities to infect the host. Thus, in addition to environmental pressures, the functional role of chemotaxis in evolutionary selection may also be important to consider.

2.6 Concluding remarks

The challenge of finding the maximum of a spatially-defined function by moving agents is often referred to as source seeking, or extremum seeking, in the control theory literature. Chemotaxis represents a specific application of this problem, where the objective is to find the source of a chemical substance that is produced locally, but which spreads to a greater region over time through molecular diffusion. Here, the agent is assumed to be incapable of sensing its own relative positioning or the position of the chemical sources, but it is capable of sensing the chemical cues to navigate. In general, these optimization methods can be classified into two main categories: probabilistic and deterministic methods. Probabilistic methods rely on probabilistic judgements to determine whether or not a search should depart from the neighborhood of a
local minimum. Deterministic methods, on the other hand, involve the application of heuristics, such as modifying the trajectory (trajectory methods) or adding penalties (penalty methods) to escape from local minima. Our hypothesis was that optimistic chemotaxis in *E. coli* served a similar purpose, whereby cells could stray from a local maximum, but not in the same way as fleeing from a repellent.

In recent work, Nicolau *et al.* showed that in the presence of a linear attractant profile, the directional persistence exhibited by cells (the weak correlation between successive run directions) is beneficial (in sharp gradient environments) or at least neutral (in shallow gradient environments) for run-and-tumble chemotaxis strategies [82], presumably by increasing the drift velocity. They showed that at least for steep gradients, the estimated optimal value for the mean turn angle was $\phi = 63^\circ \pm 9^\circ$, which is remarkably close to the empirical value for *E. coli*. This result was obtained independently both by an *in silico* evolution method and by a direct brute force search through the parameter space using a range of run and tumble times. Chemotactic optimism may be yet another method through which the bacteria can improve their odds for success. However, in their model and ours, it is important to note that several factors may have been overlooked, including energy consumption, bacterial size, and advective flows in the environment.

In addition, the "run-and-tumble" strategy is not the only bacterial chemotactic strategy observed in nature. Other known strategies include the "run-and-stop" and "run-and-reverse" paradigms [83]. This peculiar divergence in strategies is likely a result of different environments placing different pressures on the foraging microorganisms. A challenge for the future may be to investigate the factors that contribute to the efficiency of each foraging strategy in a particular type of environment, by simulating various selection pressures. This could be accomplished, for example, using the computational framework outlined in Chapter 4. In the extent of this work, however, it was ultimately unclear whether our initial hypothesis was correct, as the simulations to study chemotactic optimism were inconclusive for the dynamic environment case. Nevertheless, the infrastructure remains to answer additional questions.
Chapter 3

Neutrophil chemotaxis

3.1 Introduction

During the acute phase of inflammation, immune cells known as neutrophils serve as early cellular effectors of innate immunity by engulfing, killing, and clearing out invading pathogens. Due to their non-specific cytotoxicity, however, these cells can also damage healthy host tissues if their functions are not carefully controlled - aggressive neutrophil responses are commonly implicated in inflammatory disorders such as pulmonary emphysema, rheumatoid arthritis (RA), chronic obstructive pulmonary disease (COPD) and asthma [84, 85, 86, 87, 88]. Recent studies suggest that defects in neutrophil trafficking may also contribute to these and other conditions, as abnormal neutrophil infiltration and accumulation are often reported in studies of affected patients [89, 90, 91]. An improved understanding of neutrophil physiology, particularly the mechanism of cell trafficking during acute and chronic inflammation, could help in the development of better therapeutic strategies against these diseases.

Neutrophil trafficking between the vasculature and target sites is mediated by a variety of different chemoattractants, including end target signals produced in the vicinity of the pathogenic source, and intermediary chemoattractants produced endogenously by host tissues. To successfully navigate such mixed environments, cells must correctly integrate and prioritize these signals. Previous studies have shown that in opposing linear intermediary attractant (interleukin-8 and leukotriene B$_4$) gradients, activated neutrophils preferentially migrate toward the more distant source, while in the presence of two point sources, cells respond to the vectorial sum of the local gradients. In this work, we demonstrate that primary neutrophils...
also exhibit oscillatory motion between the maxima if such experiments are prolonged. By constructing a generalized model of neutrophil motility, we argue that basic sensory adaptation may be insufficient to explain these phenomena. Specifically, we highlight the importance of pseudopod-based feedback in the overall chemotactic process, in which a temporally flexible switch-like response enables continuous migration between sequentially-encountered sources.

While the exact implications of this behavior are unclear, this mechanism may allow cells to avoid stagnation near local chemical maxima while improving their odds of finding pathogenic targets. By migrating in a stepwise fashion among a network of intermediary attractant sources using the gradients for guidance, the search efficiency of this strategy may be improved over the random Lévy walk approach that is often used when resource locations are unknown. This general control/foraging strategy may apply to other chemotactic processes in the body involving multiple chemoattractant sources and/or long-range navigation. Moreover, we confirm that the chemotactic mechanism in neutrophils cannot be captured by one particular model, but rather involve elements of several existing theories including an excitable local-excitation global-inhibition (LEGI)-type model, a compass-based model, and a pseudopod-centric model. Here we explore the strengths and weaknesses of each aspect.

3.2 Background

3.2.1 Neutrophil physiology and chemotaxis

Neutrophils are a class of polymorphonuclear (PMN) leukocytes that form an essential component of the innate immune system in humans. They are the most abundant type of white blood cell in the body, accounting for over half (50~70%) of the total leukocyte count in the blood. These specialized immune cells are particularly important during the acute (early) phase of inflammation, where they play a central role in immune surveillance and nonspecific host defense (Figure 3.1). Other recent evidence suggests that
neutrophil function also extends to the humoral arm of the innate immune response, where they may be involved in the activation and regulation of other immune system components [92]. Indeed, a deficiency in neutrophils (neutropenia) or functional impairment of the cells is associated with increased susceptibility to bacterial and fungal infections (as well as some cancers), thus attesting to their importance for both homeostasis and basal/constitutive immunity.

In the inactive state, neutrophils circulate in the bloodstream, continuously monitoring the body for signs of foreign matter and tissue damage. Upon activation by chemicals emanating from the site of an infection, they adhere (margination) and crawl through the vascular endothelium (extravasation), migrate through interstitial tissues toward the signal source (chemotaxis) and congregate around the target area to eliminate the infectious agents and cellular debris (Figure 3.2). Neutrophils employ a number of tactics to fight pathogens, including phagocytosis (ingestion), the release of soluble anti-microbial proteases through degranulation, the production of reactive oxygen intermediates (ROIs) and the generation of neutrophil extracellular traps (NETs). In addition to directly attacking microbes, these cells can also recruit and activate other cells of the immune system through the expression of their own cytokines, which in turn help to amplify the inflammatory reaction [93].

Neutrophils have an average diameter of 10∼15 µm in peripheral blood smears. To meet normal physiological needs, a healthy adult produces roughly 10^{11} of these cells daily, which are dispatched into the bloodstream following a period of maturation in the bone marrow. Despite their prodigious rate of production, however, neutrophils actually have a shorter lifespan than other phagocytes in the immune system (e.g. macrophages and monocytes). The average circulating half-life of non-activated neutrophils is approximately twelve hours, while activated cells in extravascular tissues survive for only a few days, according to several reports [94] (though recent reports suggest otherwise [95]). Some hypotheses suggest that the short-lived activity of these cells may be an evolutionary mechanism to suppress the propagation of certain
parasitic pathogens, since their extended presence may otherwise provide refuge to certain viruses from other components of the body’s defenses depending on their tropism [96].

Figure 3.1: Neutrophil granulocytes play a key role in the innate immune response. These white blood cells migrate to sites of bacterial ingress or tissue damage through the process of chemotaxis.

In addition to the risk of harboring parasites, the neutrophil response itself can also be a liability more than a benefit - the cytotoxic agents produced by these cells are actually quite harmful to normal host tissues if produced in excess. An overactive neutrophil response is often the primary cause of chronic inflammation and scarring during wound healing, and functional disorders of neutrophils can sometimes lead to persistent or permanent tissue damage in the presence of inflammation. This is observed in a number of medical conditions including pulmonary emphysema, rheumatoid arthritis (RA), gout, psoriasis and inflammatory bowel disease (IBD) [97, 98, 99]. Proteinase activity is significantly elevated in these types of chronic wounds, creating a proteolytic environment that prevents the body’s repair processes. Hence, the relatively short lifespan of neutrophils can also serve to limit the amount of collateral damage that can be caused in cases of severe tissue damage, as conditions progress from acute to chronic symptoms.

Although their effect is short-lived and occasionally even harmful, neutrophils fulfill a pivotal role as the first responders to any inflammatory event in the body. These highly motile cells can be recruited from the blood to the site of an injury within minutes following trauma. This rapid response is made possible by effi-
cient and accurate chemotaxis of the cells to target areas. Chemotaxis in neutrophils consists of the complex coordination of three processes: gradient sensing, polarization and motility. Unlike bacteria, neutrophils can directly detect both temporal and spatial variation in the local chemoattractant concentration, resulting not only in chemokinesis (non-directional increase in activity due to the presence of chemoeffectors), but also true taxis in response to chemoeffector gradients. This ability is particularly well-suited for precise and adaptive tracking of small targets that may be motile or difficult to detect in dynamic and structurally variable environments.

Figure 3.2: Inactive neutrophils circulate in the bloodstream, where upon detection of cellular adhesion molecules (e.g., selectins) expressed by endothelial cells, they adhere and crawl through the blood vessel walls. Following activation by various chemicals, the neutrophils then undergo chemotaxis through interstitial tissues toward the site of infection. There they help to eliminate the infectious agents and cellular debris.

Gradient sensing in neutrophils is mediated by the activation of specific cell surface receptors, primarily heterotrimeric G protein-coupled receptors (GPCRs), which are evenly distributed along the plasma membrane. Chemoattractant binding to these receptors activates a complex network of interacting proteins,
To combat invading pathogens \textit{in vivo}, neutrophils must efficiently migrate from the vasculature to specific sites within infected tissues. Recruited neutrophils are likely to encounter a combination of multiple chemoattractants, including end target signals produced at or proximal to the pathogenic source (e.g. fMLP and C5α), and endogenous chemokines produced by the host immune response (e.g. IL-8 and LTB₄). Successful navigation requires a mechanism for sensing and accurately interpreting this complex chemical environment.

Figure 3.3: The chemotactic signaling pathway in neutrophils culminates in activation of the cytoskeletal machinery that drives cell motion - the cytoplasmic events that take place during polarization dictate the alignment and re-organization of cytoskeletal components (specifically F-actin polymerization and actomyosin contraction) to dynamically alter the cell morphology. It must be noted that neutrophil locomotion is not a process of
swimming as with most bacteria; these amoeboid cells typically translate through the continuous extension of pseudopods, which allows transmission of motile force to solid substrates in the environment (e.g. extracellular matrix fibrils). This in turn allows the cells to crawl on two-dimensional surfaces, or within three-dimensional scaffolds for rapid translocation. The effect of surface topography and composition on cell motion was recently investigated by my collaborator [100].

3.2.2 Chemotaxis in dual chemoattractant gradients

Neutrophils are highly motile cells that can perform chemotaxis toward a number of chemicals including (i) N-formylated peptides generated by microbes; (ii) a glycoprotein fragment, C5a, produced by the complement system; (iii) leukotriene B₄ (LTB₄) secreted by sentinel mast cells; and (iv) chemokines like interleukin-8 (IL-8) and macrophage inflammatory protein 2 (MIP-2). Each chemoattractant binds a unique subset of G protein-coupled receptors (GPCRs) on the cell surface, triggering the localization of key regulators to either the front or back of the cell. This intrinsic gradient dictates the subsequent direction of locomotion via localized cytoskeletal extension and contraction. In the extravascular environment, however, activated neutrophils can encounter multiple superimposed gradients that possess both spatial and temporal variation. Successful navigation requires the appropriate integration and prioritization of these chemotactic cues.

Previous studies have shown that neutrophils selectively migrate toward fMLP and C5a even when opposing gradients of IL-8 or LTB₄ are present [101]. These results suggest that the cells are able to distinguish between different attractant species, and can migrate towards those produced closest to the site of infection. While the mechanism for this signaling hierarchy is not known, current results suggest that the two classes of chemicals might operate along two distinct signal transduction pathways - in particular, chemotaxis to the end target chemoattractants fMLP and C5a is thought to involve the p38 mitogen-activated protein kinase (MAPK) pathway, whereas chemotaxis towards IL-8, LTB₄ and MIP2 could involve the phosphatidylinositol-
3-OH (PI3K)/Akt/phosphatase and tensin homolog (PTEN) pathway [102]. The crosstalk between these pathways is thought to involve PTEN, a known PI3K antagonist, via p38 MAPK-mediated recruitment to the cell circumference [103]. Some results have suggested, however, that chemotaxis toward fMLP is equally abrogated by PI3K inhibitors, implying that PI3K may have a more general role in the stability of the chemotactic response [104].

![Figure 3.4: Proposed mechanism of the intracellular signaling hierarchy. End-target chemoattractants such as C5a and fMLP can induce a chemotactic response through both the PI3K-dependent and p38-MAPK (PI3K-independent) pathways. The crosstalk between these pathways is thought to involve PTEN via p38 MAPK-mediated recruitment to the cell circumference.](image)

The prioritization of end target attractants is consistent with the functional requirement of convergence on immune targets; by contrast, it is much less obvious how different intermediary attractants should jointly affect neutrophil behavior. To study this particular problem, Foxman et al. conducted a number of controlled experiments using primary neutrophils in under-agarose assays [105]. Cells were initially placed in one of two adjacent wells (Figure 3.5), which were filled with either the same intermediary attractant (i.e. both IL-8 or both LTB-4) or different attractants (i.e. one IL-8 and the other LTB4). They then studied how the cells would migrate in response to the resulting dual gradients. The researchers observed that when both
the distant and proximal wells contained the same type of chemoattractant, the net flux was directed toward the proximal well (as predicted given the higher concentration and steeper gradient). Interestingly, however, when the two wells contained different chemokines (i.e. in opposing gradients of IL-8 and LTB₄), cells were observed to migrate consistently toward the distant well, independent of the attractant species.

This peculiar bias toward remote sources was also verified in another set of experiments [106], where cells were initially placed in a separate well located at an offset from two chemical sources, such that the three wells were arranged in an equilateral triangle (Figure 3.5). Here, the cells were observed to exhibit similar behavior; in particular, when two different intermediary attractants were used, most cells were observed to migrate toward the vectorial sum of the combined local gradients (toward the midpoint of the sources).

Collectively, these results suggest that neutrophils are indeed capable of differentiating between different chemoattractant types. Moreover, when multiple intermediary attractants are present, the chemotactic response appears to be combinatorial in nature. Extrapolating from these observations, Foxman and others suggested that provided sufficient time, the cells could migrate back and forth between the two intermediary attractant maxima in an oscillatory manner; however, this experimental result was never confirmed. Attempted models have also been limited by the lack of experimental data characterizing such a response. To this end, it was necessary for us to develop improved protocols and a platform for the generation of stable opposing chemoattractant gradients over an extended period of time.
A number of theories have also been proposed to outline the intracellular mechanisms that govern this apparent signal prioritization. One plausible explanation is that fMLP and C5a trigger cross-phosphorylation and desensitization of intermediary attractant receptors [107], thus suppressing the response to intermediary chemoattractants. Several experiments indicate, however, that chemotaxis is not strongly affected by receptor phosphorylation [108]. Other experiments have shown that receptors for fMLP are upregulated in response to IL-8, which causes downregulation of its own receptors, or that fMLP may cause downregulation of its own receptors in certain situations [101]. Meanwhile, some studies have demonstrated that neutrophils actually undergo fugetaxis, or negative chemotaxis, in response to IL-8 [109]. Foxman et al. proposed that the behavior could be attributed to a form of sensory adaptation, or that the receptor affinities were being...
actively modulated to become less sensitive to the proximal chemoattractant over time and, as a result, more sensitive to the distant one [106]. Several studies have provided evidence of this type of adaptation mechanism in neutrophils [110, 111], which have already been established in many bacterial systems. Quite recently, Oelz et al. also re-examined the phenomenon using a mathematical model. They suggest that the behavior could be the result of a lag in the gradient sensing response - that is, the cells are incapable of rapidly adjusting their sensitivities to new signals, and are thus biased toward other sources in the vicinity [112].

3.3 Microfluidic experiments

3.3.1 Background

With the advent of microfluidic technologies, quantitative studies of cell behavior have become easier to perform. Microfluidic platforms allow for stable, reproducible, rapidly-forming concentration gradients with linear or other complex profiles. This precise control over the chemical distribution within microchannels or chambers makes them particularly well suited for chemotaxis assays. For instance, Jeon et al. demonstrated neutrophil chemotaxis in a microfluidic device by generating IL-8 gradients with different shapes [113]. Using a "christmas tree" device, they characterized neutrophil responses to linear, "hill-type", and "cliff-type" gradients of IL-8, as well as the effect of gradient steepness versus mean attractant concentration [114]. In another study, Herzmark et al. developed a platform to generate exponential attractant gradients, or gradients with fixed $\Delta C/C$, as a way to characterize neutrophil responses against varying ambient concentration [115]. This allowed them to confirm that cells exhibit optimal sensitivity at ambient concentrations close to the K_D of the receptors. Meanwhile, Lin et al. used their microfluidic device to show that high concentrations of IL-8 can also cause fugetaxis in activated cells [109], further attesting to the non-trivial nature of their chemotactic response.
Other microfluidic studies of neutrophils have involved the use of "open chamber" devices to study neutrophil desensitization [116], devices that constrain cell migration with bifurcating or constricted channels to characterize cell sensitivity [117, 118], an arrayed device used to diagnose patients and study intracellular processes [119, 120], and more complex devices to analyze how neutrophils respond to dynamic gradients [121, 122]. While neutrophil migration in opposing IL-8 and LTB₄ gradients have also been studied using microfluidic devices in the past [101, 123, 124], these efforts have focused particularly on the prioritization between these chemicals, such as whether LTB₄ can influence chemotaxis towards IL-8 [123]. In this work, we performed a detailed study of neutrophil migration toward distant intermediary attractant sources, and asked what would happen if the duration of these experiments was prolonged. For this purpose, we employed a "Y-shaped channel" design in our device, which enables the rapid generation of stable linear gradients - this "Y type" design has also been used to study chemotaxis in T cells [125] and signaling pathways in differentiated HL60 cells, which are widely known to resemble neutrophils [126].

To complement the experimental results, we also present a phenomenological model that is capable of reproducing the migration behavior of cells in various gradient conditions. In particular, this model is shown to successfully yield oscillatory cell trajectories in opposing linear gradients, in a manner that is robust to variations in the initial cell position. The preferential migration of cells toward distant sources, specifically the switch-like migrational bias toward sequentially encountered intermediary attractant sources, corroborates the prediction that neutrophils randomly migrate from one chemoattractant source to the next while searching for their end targets, as hypothesized by Foxman et al. [106].
3.3.2 Materials and methods

Microfluidic device fabrication

The microfluidic device was comprised of a molded poly(dimethylsiloxane) (PDMS, General Electric RTV 650 Part A/B) slab bonded to a glass substrate. High resolution printing (5080 dpi) was used to print the mask with the design pattern on a transparency film. The mask was used to fabricate 50 µm high SU-8 2050 photoresist (Microchem) features on a silicon wafer via photolithography. PDMS molds with embossed channels were fabricated using soft lithography by curing the pre-polymer on the silicon master for 2 hours at 70°C. The PDMS replica was then peeled off the silicon master. Inlets and outlets for the fluids and cells were created in PDMS using a steel punch. The surface of the PDMS replica and a clean glass coverslip (Fisher Scientific) were treated with air plasma for 90 seconds (Model PDC-001, Harrick Scientific) and irreversibly bonded to complete the device assembly. The device inlets were then connected to 1 mL syringes (BD Biosciences) with 23 G 3/4 size needles (BD Biosciences) via PTFE tubing (Cole-Parmer). All syringes were calibrated and pushed by a constant pressure syringe pump (Harvard Apparatus). Prior to each experiment, the device was also loaded with fibronectin (25µg/mL, Invitrogen) and kept at room temperature for 30 minutes to promote optimal cell adhesion.
Figure 3.6: A microfluidic device with Y-shaped channel was designed and constructed using poly(dimethylsiloxane) (PDMS) and the inlets were attached to syringes using PTFE tubing.

Gradient confirmation

The concentration gradients across the microchannel were verified by infusing fluorescently-labeled solution (Fluorescein, Sigma Aldrich) from one inlet and an unlabeled solution from the other inlet of the device. Diffusive mixing across the interface of the laminar streams led to formation of the gradient. Fluorescent images were acquired at different locations along the channel using a FITC filter on the Zeiss Axiovert 200M microscope. ImageJ was then used to analyze the fluorescence intensity profiles. The plotted profiles confirm the formation of a well-defined, linear and stable concentration gradient as also reported in similar works [125].
Figure 3.7: Cross-sectional concentration profile for single gradient. Gradient formation was verified by feeding a fluorescein-labeled solution into one inlet and an unlabeled solution into the other inlet of the device. The resulting fluorescence intensity profile confirms the formation of a well-defined, stable, linear concentration gradient. Flow from right to left. The normalized FITC concentration across the channel cross-section is shown.

Figure 3.8: Cross-sectional concentration profile for hill-type gradient. Gradient formation was verified by feeding a fluorescein-labeled solution into the center inlet and an unlabeled solution into the two outer inlets of the device. The resulting fluorescence intensity profile confirms the formation of a hill-type gradient.
Primary neutrophil isolation

Sodium Heparin (Fisher Scientific) anti-coagulated human blood was obtained from healthy volunteers according to approved Institutional Review Board (IRB) protocol 12030. Neutrophils were isolated by density gradient centrifugation of a centrifuge tube containing 4 mL of whole blood layered over 4 mL of Cell Isolation Medium (Cedar Lane Labs). The isolated neutrophils were washed twice and resuspended to 10^7 cells/mL in Hanks Balanced Salt Solution with 2% Human Serum Albumin and incubated at 37°C following a previously reported protocol [127].

Experimental procedure

Cells were washed and suspended in modified Hank’s Balanced Salt Solution (mHBSS) containing 1% Human Serum Albumin (HSA) and injected in the microfluidic device. The device was incubated for 20 minutes to allow cells to adhere to the substrate. Chemoattractant solutions of varying concentrations (IL-8 and fMLP Sigma Aldrich, LTB$_4$ Fisher Scientific) were infused into the device from separate inlets at a flow rate of 0.02 mL/hr to establish the desired concentration gradients.

Time-lapse microscopy and analysis

Differential interference contrast (DIC) images were captured with a Zeiss 10X NA 1.30 DIC objective on a Zeiss Axiovert 200M microscope every 10 seconds. All images were captured with a cooled charge-coupled device camera (AxioCam MR3, Zeiss). Cells were then randomly selected from the image stack and manually tracked using ImageJ (NIH) using the Manual Tracking plugin by Fabrice Cordelieres (Institut Curie, France). The plugin provided a way to tabulate the XY coordinates of each cell centroid in the temporal stack, as well as to obtain velocity and displacement measurements between successive frames. The resulting excel spreadsheets were then analyzed using custom Python scripts to yield cell trajectories, chemotactic indices, cell speeds and mean square displacements. We define the chemotactic index (CI) as displacement
along the gradient direction (x) over the total migration distance (d), or CI = x/d, while the mean square displacement is defined as: MSD = ⟨|r(t) − r(0)|^2⟩.

Figure 3.9: Microfluidic device with opposing linear gradients of IL-8 and LTB₄ chemoattractants. Cells were randomly selected and tracked manually using ImageJ.

3.3.3 Response to isotropic chemoattractant environments

Activated neutrophils exhibit motion resembling that of a persistent random walk in isotropic chemoattractant environments, with directional correlation on the order of minutes [128]. Figure 1 shows the upward migration of cells tracked in isotropic conditions of 25 nM fMLP, 25 nM IL-8 and 50nM LTB₄ (based on the optimal sensitivities established from the single gradient experiments) against the buffer-only control. Note that the mean migration index was approximately zero in all cases. However, activated cells exhibited significantly greater variance than the control as would be expected. The plot of mean square displacements (MSD) also suggest random walk-like behavior, as the slopes of each curve measured approximately one in a log-log plot of MSD against time. Activated cells were also shown to exhibit greater linear velocities than the control, indicating that activation is a requirement for motility. Finally, the per-
sistence times were estimated by fitting the MSD to the solution of the 2D Telegrapher’s equation, or

\[\langle \delta(t)^2 \rangle = 2 \tau_p v^2 (t - \tau_p (1 - \exp(-t/\tau_p))), \]

as described by Othmer and Alt \cite{othmer1978}. This was performed using a nonlinear least squares approximation. Fitting the curves to the data, we then obtained the following estimates: \(\tau_{p,MLP} \sim 2.3 \pm 1.3 \) mins, \(\tau_{p,IL-8} \sim 4.5 \pm 2.1 \) mins, \(\tau_{p,LTB} \sim 1.25 \pm 0.7 \) mins.
Figure 3.10: [A] Migration in isotropic attractant conditions. Uniform chemoattractant environments were established by flowing the same solution into both channel inlets. Cells were tracked for 20 minutes in fMLP, IL-8 and LTB₄, and the upward migration indices of 30 cells are shown here for comparison against the control (MHBSS buffer only). The selected concentrations are based on the estimated optimal sensitivities from prior experiments. Note the mean migration index is approximately zero in all cases, while the stimulated cells yield a significantly greater variance than the control. [B] Random motility in isotropic attractant conditions. The mean square displacements (MSD) of the cells from the previous figure as a function of time. Cells were exposed to uniform concentrations of fMLP, IL-8 and LTB₄. Note the slopes for the stimulated cells are approximately 1 in the log-log plot, indicating a random walk-like trajectory. The displacements for the control are significantly lower, suggesting that activation is a requirement for motility. [C] Linear velocities in isotropic attractant conditions. The average linear velocities of the cells from the previous figure. Again, cells were exposed to uniform concentrations of fMLP, IL-8 and LTB₄. The observed average velocities of roughly 12 to 18 μm/minute for activated cells are consistent with the literature. Note the cells appear to be slightly less responsive to LTB₄. [D] Sample trajectories from the previous isotropic experiments. [top left] MHBSS buffer only; [top right] 25nM fMLP; [bottom left] 25nM IL-8; [bottom right] 50nM LTB₄.
3.3.4 Response to single chemoattractant gradients

The chemotactic responses of cells toward single gradients of fMLP, IL-8, and LTB₄ were analyzed by measuring the chemotactic index and average linear velocities of a subset of cells. In each case, chemoattractant gradients of 0-10 nM, 0-25 nM and 0-50 nM were applied across the 350 µm channel, with no gradient as the control. As evidenced by the positive mean chemotactic indices in Figure 3.11, most cells exhibited net migration up each attractant gradient. However, in each case the mean response appeared to vary according to the gradient condition. While the chemotactic index correlated weakly with the slope of the gradient [118], the cells were most response to fMLP in the 0-10 or 0-25 nM range. For IL-8, cells responded optimally to the 0-25 nM gradient. Finally, for LTB₄, cells were most responsive to the 0-50nM gradient.

The linear velocities of these cells, shown in Figure 7, follow trends similar to the chemotactic index. The slope of the gradient does not directly correlate to the linear velocity. Additionally, the velocity of the cells was comparable at the different gradient conditions. Overall, the chemotactic responses toward the single chemoattractant gradients were similar to previous reports [101, 105, 106, 114, 109, 123, 124, 129]. Moreover, we can conclude that the "Y-type" device appears to perform comparably well.
Figure 3.11: [A] Chemotactic index in single attractant gradients. Neutrophils migrated toward higher concentration in all single linear attractant gradients, as indicated by the positive chemotactic indices. In each experiment, 30 cells were tracked for 20 minutes. Note that the cells were most responsive to fMLP in the 0-10 or 0-25nM range, while for IL-8, cells responded optimally to the 0-25nM gradient. For LTB$_4$, the cells exhibited the greatest response to the 0-50nM gradient. [B] Linear velocities in single attractant gradients. Average linear velocities of the cells from the single attractant gradient experiments. For each chemoattractant species, note that the magnitude of the gradient does not significantly affect cell speed. Moreover, the speeds are fairly consistent with those from the uniform concentration experiments. This suggests that the steepness of the gradient primarily affects the chemotactic bias, or accuracy of orientation, but does not influence the physical speed of activated cells.
3.3.5 Response to single gradients superimposed over an alternate isotropic attractant field

To study the effect of crosstalk in the chemosensory pathways, a single gradient was established over an isotropic background field. This was performed by adding the background chemoattractant equally to both inlets and creating the single gradient as done above. In the first case, an fMLP gradient was applied over isotropic fields of IL-8 and LTB₄ respectively. As shown in Figure 3.12, we find that increasing the background intermediary attractant concentrations did not inhibit chemotaxis up the fMLP gradient in either case. This is in agreement with previous findings, where cells have been shown to migrate up end-target attractant (fMLP) gradients over other intermediary attractant fields [101]. In the second case, single gradients of the intermediary chemoattractants LTB₄ and IL-8 were established over a uniform background of fMLP. We note that increasing the concentration of fMLP inhibited chemotaxis up either intermediary chemoattractant gradient. Together with the previous result, this observation corroborates the existence of a signaling hierarchy between the two classes of chemoattractants, in which fMLP takes precedence over both IL-8 and LTB₄ as previously described.

In the last set of desensitization experiments, a single IL-8 gradient was established over a uniform background of LTB₄, as well as the converse experiment under similar conditions. As visible in Figure 3.13, a negative correlation can be noted between the gradient magnitude and chemotactic index. However, relative to the migration efficiency in single gradients (Figure 3.11), the background intermediary attractant field appears to inhibit migration up the gradient of the alternate intermediary chemoattractant. These results suggest that neither intermediary attractant takes precedence over the other in terms of a strong signaling hierarchy - instead, both intermediary attractant species appear to attenuate the chemotactic efficiency toward the other in a relatively symmetric fashion.
Figure 3.12: [A] Chemotactic index in a 0-25nM fMLP gradient over uniform intermediary chemoattractant concentration. The fMLP gradient was fixed for all conditions, while the concentration of the uniform intermediary attractant background was varied from 0 to 10nM for both IL-8 and LTB4. 30 cells were tracked for 20 minutes for each experiment. Note the positive chemotactic index for both sets of experiments, indicating migration up the fMLP gradient in all cases. The correlation with the intermediary chemoattractant background concentration was weak, however, with Pearson correlations (r. 0.2715; P. 0.0027) and (r. -0.1153; P. 0.2096), respectively. [B] Chemotactic index in a 0-25nM fMLP gradient against an opposing intermediary attractant gradient. The fMLP gradient was fixed for all conditions, while the intermediary attractant gradient was varied from no gradient to 0-100nM for both IL-8 and LTB4. 30 cells were tracked for 20 minutes for each experiment. Note the positive chemotactic index for both sets of experiments, indicating migration up the fMLP gradient in all cases. The correlation with the intermediary chemoattractant background concentration was weak with Pearson correlations (r. -0.1694; P. 0.1331) and (r. -0.1304; P. 0.1785), respectively.
Figure 3.13: [A] Chemotactic index in 0-25nM IL-8 and 0-15nM LTB₄ gradients over uniform fMLP. All conditions in the left figure consisted of a fixed 0-25nM IL-8 gradient over a uniform fMLP field, while all conditions on the right had a fixed 0-15nM LTB₄ gradient over uniform fMLP. 30 cells were tracked for each experiment to determine the inhibitory effect of fMLP on intermediary chemoattractant sensing. Note that for both IL-8 and LTB₄, the chemotactic index decreases toward zero as the fMLP concentration is increased. The Pearson correlations were (r. -0.6412; P. 0.0000) and (r. -0.5687; P. 0.0000), respectively. This result corroborates the hypothesis that a signaling hierarchy exists between end-target and intermediary chemoattractant types. [B] Chemotactic indices for cells in intermediary chemoattractant gradients over uniform background concentration of alternate intermediary chemoattractant. All conditions in the left figure consisted of a fixed 0-15nM IL-8 gradient over a varying uniform LTB₄ background, while all conditions in the right figure consisted of a fixed 0-25nM LTB₄ gradient over a varying uniform IL-8 background. Note the slight negative correlation in the chemotactic index with the increasing background concentration. The Pearson correlations were (r. -0.4069; P. 0.0001) and (r. -0.4414; P. 0.0000), respectively. This result corroborates the hypothesis that neither intermediary chemoattractant takes particular precedence over the other, though both have a similar inhibitory effect at higher concentrations.
3.3.6 Response to dual intermediary attractant gradients

Opposing linear intermediary attractant gradients (IL-8 vs. LTB$_4$) were established within the microchannel. Primary cells introduced into the device were tracked for up to 80 minutes to analyze their individual behavior. The representative trajectories of cells under varying gradient conditions are shown in Figure 3.14. The first thing to note is that in almost all cases, cells initially migrated against the local gradient of the proximal source to display "true" chemotaxis toward the distant agonist. That is, cells initially positioned in the upper half of the channel appeared to move toward the lower half and vice-versa, as previously documented [106]. Over longer times, however, we note that these cells then undergo multiple directional changes, resulting in oscillatory trajectories meandering back and forth between the two intermediary attractant maxima. Again, while it was previously speculated that cells would move in this manner, this is the first experimental confirmation of this hypothesis. It should also be noted that the magnitudes of the applied gradients were varied by two orders of magnitude in each chemokine, allowing for a broad range of conditions. However, the general trend appears similar in all cases, indicating a highly robust and stable response.

To demonstrate that the oscillatory cell trajectories were not the result of random walk-like behavior as observed in isotropic conditions, we plot representative trajectories of the isotropic, single gradient and dual gradient cases side-by-side in Figure 3.15. Unlike the cell trajectories in the uniform IL-8 environment, in which displacement along the channel width fluctuated around the initial starting position, the key thing to note in the dual gradient case is that the oscillations are centered around the channel median. This dissemblance is further shown quantitatively in Figure 3.16, where we counted the number of times the channel median was crossed by each cell. Prior to counting, the data was first pre-processed using state estimation via a standard Kalman filter with process noise variance set to $10^{-4} \mu m^2$. Here we see that the mean number of zero crossings is higher in the dual gradient experiments than in the control, despite the larger variance.
This result suggests statistically that the oscillatory behavior of cells in the opposing gradients is not the result of the default, inherently random motion of foraging cells in isotropic conditions.

Figure 3.14: Sample cell trajectories in dual opposing intermediary attractant gradients. Representative cell trajectories indicating the migration behavior of cells in dual opposing gradients of IL-8 and LTB₄ of gradients ranging two orders of magnitude.
Figure 3.15: Sample cell trajectories under varying intermediary attractant conditions. Representative cell trajectories indicating the migration behavior of cells in (left) isotropic conditions, (middle) single intermediary attractant gradients, and (right) dual opposing gradients of IL-8 and LTB₄.

Figure 3.16: Oscillatory behavior based on zero crossings. The cell trajectories were analyzed to count the number of times the channel centerline was crossed within each 80 minute experiment. Noise was attenuated using state estimation via a standard Kalman filter with process noise variance set to $10^{-4}\mu m^2$. The first two columns on the left represent the single gradient controls for IL-8 and LTB₄ respectively. Note that the means are higher in the dual gradient experiments than in the control, despite the larger variance. Thus, while some cells were not particularly motile, this plot corroborates the visual observation that cells exhibit oscillatory motion in dual intermediary attractant gradients.
3.4 Compass-based model

3.4.1 Model description

My initial work in modeling neutrophil migration was based on the idea that the polarization axis of cells defined an internal cellular compass that dictated the direction of motion. Central to this idea was a distinctive feature of neutrophil motility known as directional persistence. Persistence is defined as the propensity of migrating cells to continue to move forward in the same direction, similar to the correlation of the turn angle distribution in bacteria [35]. The exact cause of this phenomenon is unclear, though it may be due to an inherent latency in the communication between the gradient sensing and polarization mechanisms of the cell, which in turn introduces a lag in the readjustment of the cell compass. This form of directional memory has been documented extensively in the literature, particularly for cells migrating in uniform concentration fields (Figure 3.17). More recently, other experiments using microfluidic platforms have also demonstrated that persistence may play a role in gradients as well [130].

![Figure 3.17](image.png)

Figure 3.17: Migrating neutrophils exhibit directional persistence, in which perceptible changes in direction only take place on the order of minutes. At any instant in time, migration is biased toward the forward direction.

For primary human neutrophils, the time scale of persistence (the time between significant changes in direction) for cells in an isotropic concentration of fMLP is measured to be on the order of 3~5 minutes.
When measured on this time scale, the ratio of net displacement to total linear distance travelled (chemotactic index) is approximately 0.65 \cite{131}, indicating that the motion of the cell is correlated between consecutive time intervals. This confirms that cells maintain persistence of locomotion even in the absence of a chemoattractant gradient. When measured over longer times, however, the chemotactic index decays toward zero, proving that the overall motion is indeed random in uniform environments and no chemotaxis is observed. From experiments, it has also been shown that activated cells migrate with a mean speed of approximately 10 \(\mu \)m per minute, while the orientation angle is independent of both speed and persistence time \cite{132}.

The model proposed here incorporates the effect of directional persistence, as well as the vectorial integration of multiple different intermediary attractants. In addition, the dose response characteristics of cells to varying chemoattractant concentrations is considered. A more detailed explanation of the model and its analysis can be found in my MS thesis \cite{133}. In brief, neutrophil migration is modeled to occur on a two-dimensional surface, where it is idealized as the continuous limit of a biased and correlated (persistent) random walk (BCRW). The model ignores the underlying signal transduction pathways and tracks only the position \((x(t), y(t))\) and the idealized orientation \(\theta(t)\) of an individual cell (which we can interpret to be the location of intracellular gradient sensing markers that define the cell compass or the directional bias in which new pseudopods are generated) as function of time \((t)\). In mathematical form, the position of a neutrophil is given by the following ordinary differential equations:

\[
\begin{align*}
 dx &= v \cos \theta \, dt \\
 dy &= v \sin \theta \, dt,
\end{align*}
\]

where the constant \(v\) represents the linear velocity of the cell and the combination of \(v\) and \(\theta\) form a vector describing the cell trajectory.
The direction of cell migration $\theta(t)$ is given by the phenomenological Langevin equation:

$$d\theta = \tau^{-1} \xi_i(s_i, \nabla s_i) f(\theta_s - \theta) \, dt + \sigma(\tau) \, dW_\theta(t) \tag{3.3}$$

where θ_s represents the cell’s interpreted target direction relative to the combined chemoattractant gradients, the difference $(\theta_s - \theta)$ is taken to be the minimal distance on the periodic domain $\theta \in (-\pi, \pi)$, and the expression $W_\theta(t)$ represents a standard bivariate Browninan process with zero mean and unit variance, multiplied by the noise strength σ. The function ξ specifies the strength of the chemotactic response to the attractants in relation to their concentrations (s_i) and gradients (∇s_i), while f defines the rate of reorientation of the cell as a function of the cell’s current orientation and the target direction. Finally, the parameter τ provides a measure of the persistence time, which serves to dampen the reorientation rate imposed by f.

Note that τ is defined to be independent of cell speed, which is consistent with the assumption that turning behavior is uncoupled from translocation.
Figure 3.18: [Left] The model describes cell motion as a biased correlated random walk (BCRW), where the internal state of the cell, or the orientation of the cell compass, is given by the variable θ. The local chemoattractant environment of the cell determines the perceived gradient toward each chemoattractant source, denoted here by $\theta_{\text{IL-8}}$ and θ_{LTB_4}. The cell then integrates these signals by taking the vectorial sum, denoted by θ_s, and attempts to reorient itself in this direction. [Right top] The persistence time τ modulates the rate of reorientation. In the presence of a single intermediary attractant gradient, a low τ results in a rapid response toward the source, while a higher τ leads to a pronounced lag. [Right bottom] In the presence of two competing intermediary attractant gradients, a low τ value results in cells that are caught between two sources, while a higher τ leads to oscillatory behavior.

Figure 3.19: A simulated neutrophil undergoing a biased correlated random walk as described by the model. The orientation at each step is correlated with that of the previous time step.

To define the functional form of θ_s and ξ, we allow for the existence of multiple superimposed chemoattractant gradients. Let k_i represent the receptor binding affinity for the i^{th} ligand, where $s_i = s_i(x, y)$
represents the ligand concentration field for the ith ligand. By basic receptor-ligand kinetics, we then have that the approximate concentration of bound cell surface receptors for a particular ligand at position (x, y) on the cell surface is

$$C_i(x, y) = \frac{\chi_0 N_T s_i(x, y)}{k_i + s_i(x, y)},$$

where χ_0 represents the chemotactic sensitivity of each individual receptor and N_T is the total number of receptors per cell for the ith ligand. Note that in this equation we assume a Hill coefficient of 1, based on experimental evidence of either non-cooperativity or even slightly negative cooperativity in the receptor binding of some chemoattractants [111]. The perceived gradient of the cell can then be obtained by taking the gradient of these bound receptor distributions over space in two dimensions. This yields the effective signal in both the x and y-directions, which we can denote as a vectorial sensitivity ω_i.

$$\vec{\omega}_i(s_i) = \left(\frac{\partial C_i}{\partial x}, \frac{\partial C_i}{\partial y}\right) = \frac{\chi_0 N_T k_i \nabla s_i}{(k_i + s_i)^2}. \quad (3.4)$$

The vectorial summation of n different intermediary attractant signals is then represented by the following:

$$\vec{\omega} = \sum_{i=1}^{n} \vec{\omega}_i, \quad \theta = \angle(\vec{\omega}), \quad \xi = |\vec{\omega}|, \quad (3.5)$$

By this definition, the cell interprets the target direction as a linear combination of the perceived intermediary attractant gradients in the environment. In addition, we note that the receptor occupancy exhibits biphasic dose response characteristics, where $C_i(x, y)$ has a maximum at approximately k_i, the equilibrium dissociation constant of ligand i. The steepness of each gradient $|\nabla s_i|$ also influences the turning rate through ξ, where stronger gradients result in sharper responses. In particular, the orientation bias increases asymptotically toward perfect directional bias as a function of gradient steepness, as expected. These com-
bined features differentiate our approach from a previous stochastic model by Tranquillo et al. [134], which also captures the phenomenon of persistence but does not explicitly accommodate multiple chemical species.

This compass-based model for neutrophil chemotaxis is based on a few important assumptions. First, we assume that the signaling dynamics are fast relative to the time scale of cell movement, and that the cell has "perfect" knowledge of its environment. Thus, gradient sensing is modeled as an exact and instantaneous process. We also assume that the noise term σ is a function of the persistence time - in the absence of any gradients, the first term in the expression for θ evaluates to zero, but we know that persistence is also observed in isotropic environments, so the second term must necessarily be a function of τ as well. And lastly, the velocity of the cell is assumed to be constant. This approximation is likely inaccurate, as experimental evidence suggests that cell speed may be a function of a number of factors, including intracellular calcium levels [135], surface properties and concentration [136, 137]. Nevertheless, as the exact dependence remains unknown, and for simplicity in analysis, a constant (mean) value is employed here.

The completed model thus describes the motion of a single neutrophil cell in the presence of multiple intermediary attractant gradients. Note that the variables $x(t)$, $y(t)$ and $\theta(t)$ are inherently coupled in this framework, since the orientation of the moving cell affects its trajectory in space, while the change in position modifies the local environment to which the cell reacts. Unlike a typical random walk model, the directional persistence produces a BCRW with a spatially-dependent directional bias and whose direction of motion is inherently correlated over short times. This implies that the location at each step of the random walk is non-Markovian (as it depends on the sequence of previous locations), and the trajectory itself is non-holonomic - at any given time, the state of the system is path-dependent. The usual framework for describing such correlated random walks is a velocity jump process, first described by Othmer, in which the variable following a Markov process is the cell's velocity rather than the position [138]. In one dimension, the solution to this problem is described a hyperbolic governing function known as the telegrapher's equation,
which can be solved for the probability distribution of the position provided the initial distribution is given. Obtaining the solution for higher dimensions, however, is non-trivial since no closed form analytical solution has been found to exist for BCRWs in two or more dimensions [139].

Since an exact solution of this differential equation model is difficult, we instead employ a Monte Carlo realization of this problem; computationally, we can discretize the random walk in both space and time, where the random component in θ can be accounted for through the repeated sampling of computer-generated (pseudo) random numbers. This yields the idealized trajectories of cells as a function of time given a prescribed set of initial conditions and concentration fields, where each instance represents a possible outcome of the system. Over many repetitions, we can then analyze the collection of individual cell paths for their dependence [140] on factors such as different parameter values, or alternate initial conditions. We can also calculate various macroscopic parameters such as the cell migration direction and the mean square displacement of populations of hypothetical cells.

By the definition of θ, the functional form of $f(\theta_s, \theta)$ must exhibit the following symmetry properties: (1) 2π periodicity, or $f(\theta_s, \theta \pm 2n\pi) = f(\theta_s, \theta)$ for any integer n; and (2) polar symmetry, $f(\theta_s, \theta \pm \pi) = -f(\theta_s, \theta)$, since the polarity of the system should flip whenever the gradient direction is reversed. One form of f fulfilling these requirements is:

$$f(\theta_s, \theta) = (\theta_s - \theta) ; \quad -\pi \leq (\theta, \theta_s) < \pi,$$

where again θ_s corresponds to the preferred direction of motion. This functional form for reorientation is based on the assumption that neutrophils migrating 180° away from the target direction exhibit the highest turning rate, since cells should be capable of detecting differences in concentration along their polarization axis. From a biological perspective, this assumption may be sensible since the membrane receptors of a cell are known to be uniformly distributed along its perimeter, and mechanistically, the cells do not appear to have functionally distinct left and right halves.
The Fokker-Planck expansion in θ can then be described as a Hull-White model, a term often used in financial mathematics to describe a dynamic mean-reverting process with an evolving mean. If we also assume that the gradient is linear and remains fixed in time (with $\theta_s = 0$), and the coefficient of the noise term σ is also a positive constant, then the system is in the standard form of an Ornstein-Uhlenbeck (OU) process, whose normalized steady state solution (given the appropriate boundary conditions) is readily shown to be the wrapped normal distribution [66]:

$$f(\theta) = B(\lambda) \exp(-\lambda \theta^2), \quad \lambda = \frac{\xi_i(s_i, \nabla s_i)}{\tau \sigma^2},$$

(3.7)

where $B(\lambda)$ is the normalization function defined by

$$B(\lambda) = \sqrt{\lambda}(\sqrt{\pi} \text{erf}(\pi \sqrt{\lambda}))^{-1}.$$

(3.8)

The first moment of the steady state solution to this OU process is given by $\exp(-\sigma^2/2)$, where σ represents the circular standard deviation. In directional statistics, the Von Mises distribution described earlier is in fact a very close approximation to this wrapped normal distribution. In fact the Von Mises is generally easier to work with analytically, and is thus often the preferred distribution for many applications. In particular, if the first moments of the Von Mises and wrapped normal distributions are equal in magnitude, then we can relate the reciprocal of the variance (κ) of the former to the circular standard deviation of the latter (σ) by the equation

$$\frac{i_1(\kappa)}{\kappa(i(\kappa))} = \exp(-\frac{\sigma^2}{2}).$$
The strength of a BCRW model lies in its ability to describe both the random and directed motility aspects of neutrophil motion, while maintaining an account of directional persistence. To date, there have been a number of documented attempts in the literature to model eukaryotic chemotaxis as a BCRW in two dimensions [141, 66]. The stochastic chemotaxis model by Tranquillo et al. also uses a BCRW to describe cell turning behavior. In our implementation, neutrophil motion is characterized by an omnipresent random component in θ (the noise term represented by a Weiner process) and a directed component that only surfaces in the presence of a gradient (ξ is zero in the absence of a gradient). The noise term adds a degree of randomness in the behavior of individual cells, while the latter term allows us to prescribe a preferred direction of motion through θ.<s>as</s>

The scaling of σ(τ) determines how the persistence time in uniform environments relates to that observed in gradient conditions. To determine the functional form of σ with respect to τ, we consider the case of an isotropic environment, such that the first term of θ is zero; the model then describes an unbiased (normal) correlated random walk. The directional persistence time can then be defined mathematically by:

$$\tau = \lim_{t \to \infty} \frac{2t}{\langle \theta^2_t \rangle}.$$ (3.9)
where t denotes the observation time, and θ_t represents the angle formed by the cell polarity axis at time t relative to the initial direction. But the denominator here is simply equivalent to the circular variance σ, so that σ can be expressed in terms of τ by $\sigma = \sqrt{\frac{2}{\tau}}$. Thus, our completed model can be written as:

$$d\theta = \tau^{-1} \sum_i \xi(s_i, \nabla s_i) f(\theta_s - \theta) \, dt + \sqrt{\frac{2}{\tau}} dW_\theta(t),$$ \hspace{1cm} (3.10)

which can be solved for the individual cell trajectories using Monte Carlo random sampling and conventional approaches to solve systems of time-dependent ODEs.

3.4.2 Chemotaxis in two opposing attractant gradients

The compass-based model was first applied to the case of two intermediary attractant sources separated by an arbitrary distance within the plane. This scenario enabled the vectorial integration of the local gradient information ($\sum \omega$) as described by the model. As shown in Figure 3.21, we found that the model indeed exhibits preferential migration to the distant source, as well as oscillatory migration. However, this model does not assume a temporal processes in which the cells actively modulate their sensitivities. The response is purely a function of the position and orientation of the migrating cells. Interestingly, lower persistence corresponded to a tighter radius of activity between the sources, while higher persistence resulted in larger oscillations. As in the single point source case, the persistence time had the effect of changing the radius of the stable manifold - however, in opposing gradient case, the equilibrium behavior led to a distribution that was elongated between the two chemoattractant sources.
Figure 3.21: [Left] When a cell is initially oriented away from a chemoattractant point source, higher persistence leads to slower convergence. [Right] In the presence of two opposing chemoattractant gradients (e.g. IL-8 and LTB₄), higher persistence enables oscillatory motion with a higher amplitude of oscillation.

In our analysis, we also found that the overall cell behavior can depend on a number of factors, including initial cell position (to a lesser extent), the shape of the concentration profiles, the separation between the sources, and the magnitude of the concentrations. These factors were found to influence not only the character of the steady state trajectories, but also whether or not the system could converge to a stable manifold. The addition of noise helped to alleviate the different phases of responses in the parameter space - however, the sensitivity of the system to these parameter changes indicated that a more robust mechanism was likely necessary to be able to reproduce the observations from the microfluidic experiments. Nevertheless, the key observation here was that a larger persistence time could allow cells to more easily escape the attractive potential of the proximal source, leading to larger oscillations.

3.4.3 Chemotaxis in complex environments

In an additional study, the model was extended to include the ability to sense end target chemoattractants in addition to the intermediary species. A hypothetical end target source was therefore introduced into the domain. The goal was to simulate cell behavior in more realistic environments consisting of arbitrarily many intermediary attractant sources randomly distributed throughout the interstitial space. This required
an implementation of the inhibitory effect of fMLP on LTB₄ and IL-8 sensitivity; sensory inhibition was captured at the receptor-level by modeling the chemical kinetics of competitive inhibition. This was achieved by modifying the apparent dissociation coefficient \(k_m \) within our Hill equation model:

\[
\text{effective } k_m = k_m \left(1 + \frac{[I]}{k_I}\right),
\]

where \(k_I \) represented the inhibitor dissociation constant and \([I]\) denoted the inhibitor concentration. While the maximum rate of reaction was unchanged by this definition, the apparent affinity of the substrate to the binding site \(k_m \) was indirectly decreased. Thus, increasing the substrate concentration (LTB₄ or IL-8) could allow the substrate to outcompete the competitive inhibitor (fMLP) in enzymatic binding. For this model system, the sensitivities to each chemoattractant were defined as:

\[
\begin{align*}
\xi_{IL-8} &= \frac{\chi_0 R_{IL-8} k_{IL-8}}{\left(k_{IL-8} \left(1 + \frac{[fMLP]}{k_{MLP}}\right) + [IL-8]\right)^2} \sqrt{[IL-8]} \\
\xi_{LTB_4} &= \frac{\chi_0 R_{LTB_4} k_{LTB_4}}{\left(k_{LTB_4} \left(1 + \frac{[fMLP]}{k_{MLP}}\right) + [LTB_4]\right)^2} \sqrt{[LTB_4]} \\
\xi_{fMLP} &= \frac{\chi_0 R_{fMLP} k_{fMLP}}{\left(k_{fMLP} + [fMLP]\right)^2} \sqrt{[fMLP]}
\end{align*}
\]

where fMLP served as a distinct competitive inhibitor to the other chemicals. The parameters in this new model were then chosen based on the dissociation constants of the chemoattractants, given in Table 3.1. As shown in Figure 3.22, the updated model was able to capture the preferential migration of cells toward the end target attractant source.
Figure 3.22: Two similar point sources of IL-8 and LTB$_4$ were placed at the top of the domain, while a single distant fMLP source was located toward the bottom. Cells initially located near the intermediary attractants were shown to successfully navigate toward the fMLP source.

Figure 3.23: A single fMLP source was placed within an alternating grid of IL-8 and LTB$_4$ sources. A cell initially located at the periphery was then urged to find its way successfully toward the end target (center). The persistence parameter is incrementally increased to the right, such that the leftmost simulation used the lowest persistence time and the rightmost image used the highest. We observe that higher persistence is again necessary for cells to avoid being trapped near local intermediary attractant maxima. Excessive directional persistence, however, is equally unfavorable, as it makes convergence on the target difficult.

In the next study, a single fMLP source was placed within a regular alternating grid of IL-8 and LTB$_4$ sources to determine how persistence time affected the probability of convergence on the end target, located
Table 3.1: Nominal parameter set for neutrophil model in complex environments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{IL-8}</td>
<td>$3 \times 10^{-9} M$</td>
</tr>
<tr>
<td>k_{LTB}</td>
<td>$3 \times 10^{-9} M$</td>
</tr>
<tr>
<td>k_{fMLP}</td>
<td>$2 \times 10^{-8} M$</td>
</tr>
<tr>
<td>k_l</td>
<td>$2 \times 10^{-11} M$</td>
</tr>
<tr>
<td>χ_0</td>
<td>1×10^{-4} mm/receptor</td>
</tr>
<tr>
<td>R_i</td>
<td>1×10^4 receptors/cell</td>
</tr>
<tr>
<td>τ</td>
<td>4.0 mins</td>
</tr>
</tbody>
</table>

at the center. We found that, as before, higher persistence enables cells to avoid being trapped near local intermediary attractant maxima. An excessively high persistence time, however, was also found to be equally unfavorable, since the cells were unable to retain a small enough stable manifold near the end target. Overall, the compass-based model for neutrophil motion exhibited a number of favorable traits, including an oscillatory response between opposing intermediary attractant gradients that was independent of initial conditions (time-invariant), as well as the ability to describe cell behavior in isotropic conditions (through the inclusion of directional persistence and stochasticity). However, in our analysis, we also found that the model was particularly sensitive to the separation between sources and the magnitude of the persistence term. In particular, an excessively high persistence time had the adverse effect of inhibiting convergence.

3.5 Receptor-level sensory adaptation models

Foxman et al. [106] proposed that the preferential migration of cells toward distant intermediary attractant sources may be explained by sensory adaptation at the receptor level. This was further tested in computational work by Wu et al. [142], who claimed that the inclusion of desensitizable receptors in their model produced trajectories that were in qualitative agreement with observed cell migration patterns. To assess these arguments, we conducted a broader examination of different chemosensing models and compared them to our own phenomenological model designed to explain and characterize our experimental results.
3.5.1 Single ligand, single receptor model

We first start with the most basic scenario - the case of a single ligand type, single receptor, and no receptor desensitization or internalization. Here we assume that the ligand \(L \) and receptor \(R \) form a single complex \(C \), or

\[
R + L \overset{k_{on}}{\underset{k_{off}}{\rightleftharpoons}} C,
\]

where \(k_{on} \) in units \([M^{-1}s^{-1}]\) and \(k_{off} \) in units \([s^{-1}]\) denote the forward and reverse rate constants, respectively, and \(R, L \) and \(C \) are in units \([M]\). We then define the dissociation constant \(k_D = \frac{k_{off}}{k_{on}} \). If we also assume a finite number of receptors \(R_{tot} \), we have

\[
\frac{dC}{dt} = k_{on}L(R_{tot} - C) - k_{off}C
\]

such that at steady state, we obtain

\[
k_{on}L(R_{tot} - C) = k_{off}C
\]

\[
C = \frac{LR_{tot}}{k_D + L}.
\]

We then assume that the sensitivity is based on the total receptor occupancy, which can be approximated by applying the divergence theorem to the integral of bound receptors over the cell surface.

\[
\int_{\partial \Omega} C \, ds = \int_{\Omega} \nabla C \, dV = \langle \nabla C \rangle_{avg} V.
\]

The total receptor occupancy is therefore proportional to the average \(\frac{\partial C}{\partial x} \) calculated at the current position of the cell (by the cell volume \(V \)). We then derive the time evolution of this value, which represents
the dynamics of the cell sensitivity.

\[
\frac{d}{dt} \left(\frac{\partial C}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{dC}{dt} \right) = \frac{\partial}{\partial x} \left(k_{on} L (R_{tot} - C) - k_{off} C \right) = k_{on} (R_{tot} - C) \frac{dL}{dx} - (k_{on} L + k_{off}) \frac{dC}{dx}.
\]

Substituting \(S = \frac{dC}{dx} \) in units of \([M/\text{micron}]\), this can be rewritten as

\[
\frac{dS}{dt} = k_{on} (R_{tot} - C) \frac{dL}{dx} - (k_{on} L + k_{off}) S.
\]

We now extend this analysis to include two different types of attractants and receptors, yielding

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} C_A \\ C_B \end{bmatrix} &= \begin{bmatrix} k_{on,A} L_A (R_{tot} - C_A) - k_{off,A} C_A \\ k_{on,B} L_B (R_{tot} - C_B) - k_{off,B} C_B \end{bmatrix} \\
\frac{d}{dt} \begin{bmatrix} S_A \\ S_B \end{bmatrix} &= \begin{bmatrix} k_{on,A} (R_{tot} - C_A) \frac{dL_A}{dx} - (k_{on,A} L_A + k_{off,A}) S_A \\ k_{on,B} (R_{tot} - C_B) \frac{dL_B}{dx} - (k_{on,B} L_B + k_{off,B}) S_B \end{bmatrix} \\
\frac{dx}{dt} &= v \chi_0 S_A + S_B \approx v \chi_0 (S_A + S_B) \quad \text{(shallow gradients)}
\end{align*}
\]

This system of equations can also be nondimensionalized by substituting

\[
\begin{align*}
\tilde{C} &= \frac{C}{R_{tot}}, \quad L = \frac{L}{k_d}, \quad \tau = k_{off} t, \quad S = \frac{\sigma S}{R_{tot}}, \\
\tilde{x} &= \frac{\chi_0 R_{tot}}{v / k_{off}}, \quad \tilde{x} = \frac{x}{\sigma}, \quad \tilde{v} = \frac{v}{\sigma k_{off}}.
\end{align*}
\]

where \(\sigma \) is the characteristic length, such as the separation between two intermediary attractant sources, \(\chi_0 \) is the characteristic basal sensitivity and \(v \) is the characteristic linear velocity of the cell. We can also
aggregate these characteristic parameters with a new dimensionless variable

\[\alpha = \frac{vR_{tot} \chi_0}{\sigma^2 k_{off}} \]

This yields the dimensionless system of equations:

\[
\begin{align*}
\frac{d}{d\tau} \begin{bmatrix} \bar{C}_A \\ \bar{C}_B \end{bmatrix} &= \begin{bmatrix} L_A(1 - \bar{C}_A) - \bar{C}_A \\ L_B(1 - \bar{C}_B) - \bar{C}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{S}_A \\ \bar{S}_B \end{bmatrix} &= \begin{bmatrix} (1 - \bar{C}_A) \frac{dL_A}{dx} - (1 + L_A)\bar{S}_A \\ (1 - \bar{C}_B) \frac{dL_B}{dx} - (1 + L_B)\bar{S}_B \end{bmatrix} \\
\frac{d\bar{x}}{d\tau} &= \alpha(\bar{S}_A + \bar{S}_B)
\end{align*}
\]

If we then assume that the two chemokines form opposing linear concentration gradients, for instance:

\[
L_A(x) = T_A - \frac{T_A}{x_s} x \\
L_B(x) = \frac{T_B}{x_s} x
\]

we can insert the corresponding expressions into \(\bar{L}_i \) and \(\frac{d\bar{L}_i}{dx} \), and solve this system of equations using an ODE solver.
From the solution, we note that $\alpha > 1$ gives rise to damped oscillation around the stable steady state, while smaller α leads to monotonic convergence. This suggests that the rate of the receptor kinetics, relative to the speed of cell motion, dictates the asymptotic behavior of the cell (i.e. whether it oscillates). The stability around the critical point can also be shown by the Routh-Hurwitz stability criterion, or by examining the eigenvalues of the Jacobian, which in this system evaluate to

$$
\lambda_1 = -T_A \left(1 - \frac{x}{x_s}\right) - 1, \quad \lambda_2 = -T_B \left(\frac{x}{x_s}\right) - 1.
$$

where both have a multiplicity of two. For all reasonable parameter choices ($T_A, T_B > 0$) the real parts of both expressions are negative at all positions $0 < x < x_s$ within the domain, which implies that the system invariably converges toward a stable fixed point.

Overall, we find that this simple single receptor model is unable to produce sustained oscillatory behavior in the form of a stable manifold. Moreover, the frequency of oscillations vary significantly as the parameter α is modified. To avoid the velocity of the cell from becoming physically unreasonable, we can define the
cell position assuming constant velocity:

\[\frac{d\bar{x}}{d\tau} = v(\bar{S}_A + \bar{S}_B > 0) - v(\bar{S}_A + \bar{S}_B < 0). \]

However, since the sensitivity of the cell still decays over time, we find that the cell trajectory remains largely unaffected (damped oscillation) under all conditions, as shown in the following.

![Figure 3.25: The assumption of constant velocity still gives rise to similar behavior.](image)

3.5.2 Receptor internalization

Next we add an additional layer of complexity to the model by introducing an intermediate state that accounts for receptor internalization.

\[\begin{array}{c}
R + L \\
\xrightarrow{k_{on}}
\xrightarrow{k_{off}}
\xrightarrow{k_R} C \\
\xrightarrow{k_I} I
\end{array} \]

where \(k_I \) and \(k_R \) represent the rate of receptor internalization and the recycling rate, respectively.
If we again let $S = \frac{dC}{dx}$, we have

\[
\begin{align*}
\frac{dC}{dt} &= k_{on}L(R_{tot} - C - I) - k_{off}C - k_f C \\
\frac{dI}{dt} &= k_f C - k_R I \\
\frac{dS}{dt} &= k_{on}(R_{tot} - C - I) \frac{dL}{dx} - (k_{on}L + k_{off} + k_f)S
\end{align*}
\]

For dual receptors we have

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} C_A \\ C_B \end{bmatrix} &= \begin{bmatrix} k_{on,A}L_A(R_{tot} - C_A - I_A) - k_{off,A}C_A - k_{f,A}C_A \\
 k_{on,B}L_B(R_{tot} - C_B - I_B) - k_{off,B}C_B - k_{f,B}C_B \end{bmatrix} \\
\frac{d}{dt} \begin{bmatrix} I_A \\ I_B \end{bmatrix} &= \begin{bmatrix} k_{f,A}C_A - k_{R,A}I_A \\
 k_{f,B}C_B - k_{R,B}I_B \end{bmatrix} \\
\frac{d}{dt} \begin{bmatrix} S_A \\ S_B \end{bmatrix} &= \begin{bmatrix} k_{on,A}(R_{tot} - C_A - I_A) \frac{dL_A}{dx} - (k_{on,A}L_A + k_{off,A} + k_{f,A})S_A \\
 k_{on,B}(R_{tot} - C_B - I_B) \frac{dL_B}{dx} - (k_{on,B}L_B + k_{off,B} + k_{f,B})S_B \end{bmatrix} \\
\frac{dx}{dt} &\approx v \chi_0(S_A + S_B) \quad \text{(shallow gradients)}
\end{align*}
\]

As before, if we nondimensionalize the equations using

\[
\begin{align*}
C &= \frac{C}{R_{tot}}, \quad L = \frac{L}{k_f}, \quad \tau = k_{off}t, \quad S = \frac{\sigma S}{R_{tot}}, \quad \tilde{S} = \frac{k_{f}}{k_{off}}, \\
I &= \frac{I}{R_{tot}}, \quad \tilde{\chi} = \frac{\chi_0 R_{tot}}{\nu k_{off}}, \quad \tilde{x} = \frac{x}{\sigma}, \quad \tilde{\nu} = \frac{\nu}{\sigma k_{off}}, \quad \tilde{K}_R = \frac{k_R}{k_{off}}, \\
\alpha &= \frac{v R_{tot} \chi_0}{\sigma^2 k_{off}}
\end{align*}
\]

we obtain the dimensionless equivalent
\[
\begin{align*}
\frac{d}{d\tau} \begin{bmatrix} \bar{C}_A \\ \bar{C}_B \end{bmatrix} &= \begin{bmatrix} L_A(1 - \bar{C}_A - \bar{I}_A) - \bar{C}_A - k_{I,A}\bar{C}_A \\ L_B(1 - \bar{C}_B - \bar{I}_B) - \bar{C}_B - k_{I,B}\bar{C}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{I}_A \\ \bar{I}_B \end{bmatrix} &= \begin{bmatrix} k_{I,A}\bar{C}_A - k_{R,A}\bar{I}_A \\ k_{I,B}\bar{C}_B - k_{R,B}\bar{I}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{S}_A \\ \bar{S}_B \end{bmatrix} &= \begin{bmatrix} (1 - \bar{C}_A - \bar{I}_A) \frac{d\bar{x}}{d\tau} - (1 + \bar{L}_A + k_{I,A})\bar{S}_A \\ (1 - \bar{C}_B - \bar{I}_B) \frac{d\bar{x}}{d\tau} - (1 + \bar{L}_B + k_{I,B})\bar{S}_B \end{bmatrix} \\
\frac{d\bar{x}}{d\tau} &= \alpha(\bar{S}_A + \bar{S}_B)
\end{align*}
\]

Solving this system of equations using an ODE solver, we obtain the following behaviors. Note that due to the introduction of additional variables, we have more degrees of freedom.

Figure 3.26: [Left] Fixed \(k_{I,A}/k_{R,A} = k_{I,B}/k_{R,B} = 1\). [Right] \(\alpha = 10\) is fixed and \(k_{I,A}/k_{R,A} = k_{I,B}/k_{R,B}\) is varied.

In this case, we again note that \(\alpha > 1\) gives rise to dampened oscillations around the stable fixed point, while \(\alpha \leq 1\) leads to monotonic convergence. Increasing \(\alpha\) has the effect of increasing frequency. Meanwhile, a larger \(k_I/k_R\) gives rise to a larger amplitude in the damped oscillator. The eigenvalues of the Jacobian in
this model are

$$\lambda_1 = -k_{R,A}, \quad \lambda_2 = -k_{R,B},$$

$$\lambda_3 = -k_{I,A} - T_A \left(1 - \frac{x}{x_s}\right) - 1, \quad \lambda_4 = -k_{I,B} - T_B \left(\frac{x}{x_s}\right) - 1,$$

where λ_3 and λ_4 are again degenerate. For reasonable parameter choices, all of the eigenvalues are again negative in their real components, implying asymptotic stability around the fixed point under all conditions.

On the other hand, we might also assume that both the internalized (I) and bound (C) states of the receptor can simultaneously contribute to the chemotactic response. In this instance, we need an additional set of variables to denote the internal gradient of I, or $J = \frac{dI}{dx}$ for the two receptor types, resulting in the following:

$$\frac{d}{dt} \begin{bmatrix} C_A \\ C_B \end{bmatrix} = \begin{bmatrix} k_{on,A} L_A (R_{tot} - C_A - I_A) - k_{off,A} C_A - k_{I,A} C_A \\ k_{on,B} L_B (R_{tot} - C_B - I_B) - k_{off,B} C_B - k_{I,B} C_B \end{bmatrix},$$

$$\frac{d}{dt} \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} k_{I,A} C_A - k_{R,A} I_A \\ k_{I,B} C_B - k_{R,B} I_B \end{bmatrix},$$

$$\frac{d}{dt} \begin{bmatrix} S_A \\ S_B \end{bmatrix} = \begin{bmatrix} k_{on,A} (R_{tot} - C_A - I_A) \frac{dL_A}{dx} - (k_{on,A} L_A + k_{off,A} + k_{I,A}) S_A - k_{on,A} L_A J_A \\ k_{on,B} (R_{tot} - C_B - I_B) \frac{dL_B}{dx} - (k_{on,B} L_B + k_{off,B} + k_{I,B}) S_B - k_{on,B} L_B J_B \end{bmatrix},$$

$$\frac{d}{dt} \begin{bmatrix} J_A \\ J_B \end{bmatrix} = \begin{bmatrix} k_{I,A} S_A - k_{R,A} J_A \\ k_{I,B} S_B - k_{R,B} J_B \end{bmatrix},$$

$$\frac{dx}{dt} \approx v \chi_0 (S_A + S_B + J_A + J_B)$$ (shallow gradients)

As before, if we nondimensionalize the equations using

$$C = \frac{C}{R_{tot}}, \quad L = \frac{L}{k_d}, \quad \tau = \frac{k_{off} t}{}, \quad S = \frac{\sigma S}{R_{tot}}, \quad \bar{k}_l = \frac{k_l}{k_{off}},$$

$$I = \frac{I}{R_{tot}}, \quad \bar{\chi} = \frac{\chi_0 R_{tot}}{v/k_{off}}, \quad \bar{x} = \frac{x}{\sigma}, \quad \bar{v} = \frac{v}{\sigma k_{off}}, \quad \bar{k}_R = \frac{k_R}{k_{off}},$$

$$\alpha = \frac{v R_{tot} \chi_0}{\sigma^2 k_{off}}.$$
we obtain the dimensionless equivalent

\[
\begin{align*}
\frac{d}{d\tau} \begin{bmatrix} \bar{C}_A \\ \bar{C}_B \end{bmatrix} &= \begin{bmatrix} L_A(1 - \bar{C}_A - \bar{I}_A) - \bar{C}_A - k_{I,A}\bar{C}_A \\ L_B(1 - \bar{C}_B - \bar{I}_B) - \bar{C}_B - k_{I,B}\bar{C}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{I}_A \\ \bar{I}_B \end{bmatrix} &= \begin{bmatrix} k_{I,A}\bar{C}_A - k_{R,A}\bar{I}_A \\ k_{I,B}\bar{C}_B - k_{R,B}\bar{I}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{S}_A \\ \bar{S}_B \end{bmatrix} &= \begin{bmatrix} (1 - \bar{C}_A - \bar{I}_A)\frac{dx}{d\tau} - (1 + L_A + k_{I,A})\bar{S}_A - L_A\bar{J}_A \\ (1 - \bar{C}_B - \bar{I}_B)\frac{dx}{d\tau} - (1 + L_B + k_{I,B})\bar{S}_B - L_B\bar{J}_B \end{bmatrix} \\
\frac{d}{d\tau} \begin{bmatrix} \bar{J}_A \\ \bar{J}_B \end{bmatrix} &= \begin{bmatrix} k_{I,A}\bar{S}_A - k_{R,A}\bar{J}_A \\ k_{I,B}\bar{S}_B - k_{R,B}\bar{J}_B \end{bmatrix} \\
\frac{dx}{d\tau} &= \alpha(\bar{S}_A + \bar{S}_B + \bar{J}_A + \bar{J}_B)
\end{align*}
\]

Note that this model, however, requires that the internalized receptors retain spatial heterogeneity, which may not be an accurate assumption. Again, we can solve this system using an ODE solver.

Figure 3.27: [Left] Fixed \(k_{I,A}/k_{R,A} = k_{I,B}/k_{R,B} = 1\). [Right] \(\alpha = 10\) is fixed and \(k_{I,A}/k_{R,A} = k_{I,B}/k_{R,B}\) is varied.

From the plots we note that the behavior is fairly similar to the previous case, though the additional signaling from internalized receptors leads to slightly different dynamics. In particular, we can note a stronger overall response and faster cell movement. Otherwise, increasing \(\alpha\) still has the effect of increasing frequency,
while a larger k_I/k_R still yields greater amplitude. The eigenvalues of the Jacobian in this model are in the fact the same as the previous case, though for this model the multiplicity of λ_1 and λ_2 are now also two.

$$
\lambda_1 = -k_{R,A}, \quad \lambda_2 = -k_{R,B},
$$

$$
\lambda_3 = -k_{I,A} - T_A \left(1 - \frac{x}{x_s} \right) - 1, \quad \lambda_4 = -k_{I,B} - T_B \left(\frac{x}{x_s} \right) - 1,
$$

In both models of receptor internalization, the asymptotic behavior is still convergence to the stable fixed point at the center of the channel. The analysis suggests that internalization alone cannot produce a stable limit cycle in the robust manner we seek.

3.5.3 Receptor desensitization and internalization

For the next example we add an additional desensitized (but not internalized) receptor state to the model to examine how the transient behavior is affected. This network structure was employed Wu et al. to demonstrate preferential migration of cells toward the distant source [142].

By following a derivation similar to the previous cases, we obtain the following system of equations.
\[
\frac{d}{d\tau} \begin{bmatrix} C_A \\ C_B \end{bmatrix} = \begin{bmatrix} L_A (1 - \bar{C}_A - \bar{I}_A - \bar{D}_A) - (1 + k_{des,A}) \bar{C}_A + k_{res,A} \bar{D}_A \\ L_B (1 - \bar{C}_B - \bar{I}_B - \bar{D}_B) - (1 + k_{des,B}) \bar{C}_B + k_{res,B} \bar{D}_B \end{bmatrix}
\]

\[
\frac{d}{d\tau} \begin{bmatrix} \bar{D}_A \\ \bar{D}_B \end{bmatrix} = \begin{bmatrix} k_{des,A} \bar{C}_A - k_{res,A} \bar{D}_A - k_{I,A} \bar{D}_A \\ k_{des,B} \bar{C}_B - k_{res,B} \bar{D}_B - k_{I,B} \bar{D}_B \end{bmatrix}
\]

\[
\frac{d}{d\tau} \begin{bmatrix} \bar{I}_A \\ \bar{I}_B \end{bmatrix} = \begin{bmatrix} k_{I,A} \bar{D}_A - k_{rec,1} \bar{I}_A \\ k_{I,B} \bar{D}_B - k_{rec,2} \bar{I}_B \end{bmatrix}
\]

\[
\frac{d}{d\tau} \begin{bmatrix} \bar{S}_A \\ \bar{S}_B \end{bmatrix} = \begin{bmatrix} (1 - \bar{C}_A - \bar{D}_A - \bar{I}_A) \frac{dL_A}{dx} \bar{L}_A - (1 + \bar{L}_A + k_{des,A}) \bar{S}_A \\ (1 - \bar{C}_B - \bar{D}_B - \bar{I}_B) \frac{dL_B}{dx} \bar{L}_B - (1 + \bar{L}_B + k_{des,B}) \bar{S}_B \end{bmatrix}
\]

\[
\frac{dx}{d\tau} = \alpha (\bar{S}_A + \bar{S}_B)
\]

Note from the results that despite the increase in degrees of freedom, again the asymptotic behavior is that of convergence toward the stable fixed point (at the channel median). The Jacobian in this case also has eigenvalues whose real parts are all negative.

\[
\lambda_1 = -k_{res,A} - k_{I,A}, \quad \lambda_2 = -k_{res,B} - k_{I,B},
\]

\[
\lambda_3 = -k_{rec,A}, \quad \lambda_4 = -k_{rec,B},
\]

\[
\lambda_5 = -k_{des,A} - T_A \left(1 - \frac{x}{x_s}\right) - 1, \quad \lambda_6 = -k_{des,B} - T_B \left(\frac{x}{x_s}\right) - 1,
\]

116
As with the previous models, both the stability analysis and solutions suggest that the asymptotic behavior is that of either monotonic convergence or damped oscillation toward a stable fixed point, in the case of linear gradients. In their paper, Wu et al. used nonlinear gradients defined using a power law. However, while their model predicted preferential migration of cells toward the distant source, it was not evident whether the cells would oscillate back and forth between the two sources as observed in our experiments.

3.5.4 Modified internal memory model

It is well understood that in isotropic chemoattractant environments, neutrophils exhibit directional persistence, in which their migrational steps are directionally-correlated on the order of several minutes [105].
This phenomenon could be attributed to a form of internal memory, in which detected signals are amplified and sustained over the same timeframe, with attenuation of signal decay. The next network model applies this concept by adding an additional internal state variable, which serves to provide short-term memory of the current processed signal within the cell. The goal was to see if this approach could lead to sustained oscillatory motion in the linear gradients. Using the following network model,

\[
\begin{align*}
 \frac{d}{dt} \begin{bmatrix} C_A \\ C_B \end{bmatrix} &= \begin{bmatrix} k_{on,A} L_A (R_{tot} - C_A - I_A) - k_{off,A} C_A - k_{int,A} C_A \\ k_{on,B} L_B (R_{tot} - C_B - I_B) - k_{off,B} C_B - k_{int,B} C_B \end{bmatrix} \\
 \frac{d}{dt} \begin{bmatrix} I_A \\ I_B \end{bmatrix} &= \begin{bmatrix} k_{int,A} C_A - k_{rec,A} I_A \\ k_{int,B} C_B - k_{rec,B} I_B \end{bmatrix} \\
 \frac{d}{dt} \begin{bmatrix} \nabla C_A \\ \nabla C_B \end{bmatrix} &= \begin{bmatrix} k_{on,A} (R_{tot} - C_A - I_A) \frac{dL_A}{dx} - (k_{on,A} L_A + k_{off,A} + k_{int,A}) \nabla C_A \\ k_{on,B} (R_{tot} - C_B - I_B) \frac{dL_B}{dx} - (k_{on,B} L_B + k_{off,B} + k_{int,B}) \nabla C_B \end{bmatrix} \\
 \frac{dS}{dt} &= k_{act} (\nabla C_A + \nabla C_B) - k_{dec} S \\
 \frac{dS}{dx} &\approx \alpha S
\end{align*}
\]

we then constructed the corresponding system of equations, where the internal interpreted gradients \(\nabla C_A \) and \(\nabla C_B \) were used to influence the state variable through a rate \(k_{act} \).
Figure 3.29: [Left] Fixed $\alpha = 1$ and let k_{act}/k_{dec} vary. However, fixing k_{act}/k_{dec} and changing α has a similar effect. In either case, controlling the amplitude of the oscillation also affects the frequency. [Right] The effect of changing the concentration of both chemoattractant maxima with other parameters unchanged.

We can observe from the equations that modifying the parameter α and the ratio k_{act}/k_{dec} are tightly related - increasing either of them appears to enlarge both the frequency and the amplitude of the response. From the simulations, it was also evident that this system was particularly sensitive to parameter changes, and in some cases, where the activation of the signal was significantly faster than the decay rate, the system became unstable. The application of realistic parameter choices from the literature resulted in similarly sensitive results, with minor changes in the source concentration resulting in vastly different behaviors. This high sensitivity appears to be incompatible with a robust oscillatory response over a wide range of conditions.

3.5.5 Oelz-Schmeiser-Soreff (OSS) model

In contrast to the network-based kinetics models, Oelz et al. [112] used a relaxation model to argue their case. They demonstrated that cells can in fact undergo preferential migration to the distant source, under the simple condition that their sensitivities do not adapt immediately to the local concentrations. This was the first model to predict, under certain parameter ranges, that cells might exhibit oscillatory dynamics...
between two opposing intermediary attractant gradients. The basis of their argument was that a Hopf bifurcation around the steady state could lead to a stable limit cycle, and hence show sustained oscillation in the cell trajectory. Their model took the following form (considering only the deterministic dynamics and using slightly different nomenclature):

\[
\begin{align*}
\dot{x} &= (S_A \nabla L_A(x) + S_B \nabla L_B(x)) \\
\dot{S}_A &= \alpha_1(\hat{\chi}_1(L_A(x)) - S_A) \\
\dot{S}_B &= \alpha_2(\hat{\chi}_2(L_B(x)) - S_B)
\end{align*}
\]

where \(\alpha \) was defined as the rate of adaptation of the sensitivity to its target value. \(\hat{\chi} \) was defined as:

\[
\hat{\chi}_i(L) = \chi_{i}^{\min} + \frac{1}{\chi_{i}^{\max} - \chi_{i}^{\min}}.
\]

In their analysis, they then applied the parameters \(A = I, \alpha_i = 1, S_{\min} = 0 \) and \(S_{\max} = \infty \), which simplified the model to

\[
\begin{align*}
\dot{x} &= \frac{1}{\epsilon}(S_A \nabla L_A(x) + S_B \nabla L_B(x)) \\
\dot{S}_A &= \frac{1}{L_A(x)} - S_A \\
\dot{S}_B &= \frac{1}{L_B(x)} - S_B
\end{align*}
\]

Using concentrations in the form of Gaussian point sources centered at \(x_i \) with spread \(T_i \),

\[
L_i(x) = \exp\left(\frac{-|x - x_i|^2}{T_i}\right).
\]
They then showed that the single critical point of the system is given by

\[
\begin{pmatrix}
 x_\infty \\
 y_\infty \\
 S_{1,\infty} \\
 S_{2,\infty}
\end{pmatrix} = \begin{pmatrix}
 \frac{x_1 T_B + x_2 T_A}{T_A + T_B} \\
 0 \\
 1/L_A \\
 1/L_B
\end{pmatrix}.
\]

The eigenvalues of the linearized system around this point are

\[
\begin{align*}
\lambda_1 &= -\frac{2(T_A + T_B)}{\epsilon T_A T_B}, \\
\lambda_2 &= -1, \\
\lambda_3 &= -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \\
\lambda_4 &= -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q},
\end{align*}
\]

where

\[
p = \frac{2(T_A + T_B)}{\epsilon T_A T_B} - \frac{8(x_2 - x_1)^2}{\epsilon (T_A + T_B)^2} + 1 \quad \text{and} \quad q = \frac{2(T_A + T_B)}{\epsilon T_A T_B}.
\]

Since the complex conjugate pair \(\lambda_3\) and \(\lambda_4\) cross the imaginary axis when \(p\) changes sign, a Hopf bifurcation is observed (when \(\epsilon\) satisfies \(p < 0\)). We can also confirm this through simulation.

Figure 3.30: Cell trajectories in Gaussian gradients located at \(x = 0\) and \(x = 4\), with varying initial positions.

The key to this argument, however, is the Gaussian concentration profile used in the analysis. In
particular, our experimental results suggest that cells can exhibit sustained oscillatory motion even in the presence of opposing linear gradients. However, we can show that the choice of linear gradients can lead to different asymptotic behavior.

Let $x_A = 0$ and $x_B = x_s$ be the position of the two intermediary attractant maxima, where we define the opposing linear concentration gradients by

\[
L_A(x) = T_A - \frac{T_A x_s}{x_s} \\
L_B(x) = \frac{T_B x_s}{x_s}
\]

Plugging this new concentration profile into the model (and omitting y due to symmetry), we find that the critical point of the system is now given by

\[
\begin{pmatrix}
 x_\infty \\
 S_{1\infty} \\
 S_{2\infty}
\end{pmatrix} = \begin{pmatrix}
 \frac{x_s}{2} \\
 1/L_A \\
 1/L_B
\end{pmatrix}
\]

regardless of the choice of T_A and T_B. The eigenvalues of the linearized system around this point are then

\[
\lambda_1 = -1, \quad \lambda_2 = -\frac{1}{2} - \frac{\sqrt{\epsilon x_s^4 - 32x_s^2}}{2\sqrt{\epsilon x_s^2}}, \quad \lambda_3 = -\frac{1}{2} + \frac{\sqrt{\epsilon x_s^4 - 32x_s^2}}{2\sqrt{\epsilon x_s^2}}.
\]

Note that in this case, the real parts of all eigenvalues are always negative, implying asymptotic convergence to the stable fixed point. Moreover, λ_2 and λ_3 become complex when $(\epsilon x_s^4 - 32x_s^2) < 0$ or

\[
\frac{1}{\epsilon} < \frac{x_s^2}{32}
\]

which gives us the condition for damped oscillation as opposed to monotonic convergence. This can also be demonstrated via simulation as shown below. One may note that the amplitude of the damped oscillation
is dependent on the distance between the initial position and the stable fixed point, contrary to what was observed experimentally. Our results showed that the neutrophils were strongly robust against variation in the initial conditions, leading to comparable amplitudes in the oscillatory response.

Furthermore, the sustained oscillations observed in the OSS model under opposing gaussian gradients was a result of Hopf bifurcation and a particular selection of parameters. It remains unclear whether this mechanism would be sufficiently robust against the varying chemoattractant conditions to which we exposed our cells experimentally. We also find that in the linear gradient case, the OSS model exhibits asymptotic convergence to a stable fixed point under all parameter choices.

![Figure 3.31: Cell trajectories in dual opposing linear gradients between $x = 0$ and $x = 4$, with varying initial positions. Note the damped oscillatory behavior instead of the stable limit cycle observed under dual Gaussian gradients.](image)

3.6 Pseudopod-based feedback model

3.6.1 Model description

As presented by Van Haastert et al., this model is based on an intrinsic cycle of self-organizing pseudopods [143, 144]. Cell trajectories are modeled as a random walk with discrete time steps of approximately 20 sec-
onds, corresponding to the periodicity of pseudopod generation. In accordance with empirical observations, we also have that new pseudopods are generated primarily through the bifurcation and evolution of existing pseudopods, while occasionally, cells are able to generate *de novo* pseudopods in a random direction. This behavior is captured using a Monte Carlo approach, where random sampling is used to determine the type of pseudopod formed, as well as receptor noise and variability in pseudopod direction. Van Haastert noted in his work that compared to *Dictyostelium*, neutrophils have very low pseudopod activation due to strong uniformly distributed inhibitors, but also possess strong gradient-induced local activators to produce more gradient-induced pseudopodia. This was taken into consideration in our parameter selection [140].

Where this model differs from previous works is that we also incorporate pseudopod memory in the form of autocatalysis through an activator. This type of system is seen in other excitable systems in biology, such as those recently described by Iglesias et al. [145], where once a particular signaling threshold is surpassed, the cells (or their pseudopods) can lock onto targets for extended periods of time. Theoretically, this could allow for robust, sustained oscillatory behavior over a diverse range of conditions. While there are a number of regulatory mechanisms that can give rise to this behavior, including the local-excitation/global-inhibition type models [146, 147], here we construct a basic phenemenological model that is known to exhibit switch-like behavior; using a state variable m, whose amplification we took to be nonlinear (in our case we considered second-order amplification ($n = 2$)), we define the following

$$S_i = \frac{k_{d,i}}{(k_{d,i} + L_i(x))^2}$$

$$f_i = S_i (1 + k_{amp}m^n_i)$$

where S_i corresponds to the sensory input into the system assuming Michaelis-Menten kinetics, and f_i is the expression for nonlinear amplification of the response to each chemoattractant type as illustrated in the following figure.
Next, the total amplified sensitivity \((f)\) is normalized over the contributions from both chemoattractants.

\[
\dot{m}_A = \frac{f_A}{f_A + f_B} - m_A \\
\dot{m}_B = \frac{f_B}{f_A + f_B} - m_B
\]

This normalization has the effect of (globally) inhibiting the alternate signal when one chemoattractant signal dominates. Next the target direction of the cell is determined by using the state variable to scale the response to each chemoattractant gradient. The response vector is established as

\[
\vec{n} = m_A \nabla L_A(x) + m_B \nabla L_B(x)
\]

which allows the cell to estimate the directional bias relative to its current orientation \(\theta\)

\[
\phi = (\theta - \angle \vec{n})_{(-\pi,\pi)}
\]
where the difference is taken to be the minimal distance on the periodic domain $\theta \in (-\pi, \pi)$. This aspect of the model coincides with compass-based theories in which an intracellular compass dictates the subsequent direction of motion.

Figure 3.33: Oscillatory behavior results from the amplification of the response toward the distant intermediary attractant source, while inhibition of the opposite signal results in the switch-like behavior.

The pseudopod-centric nature of this model is now included by stating that there is a probability s in which the new direction is random, or $\theta = \theta_{\text{de novo}} = \text{rand}(-\pi, \pi)$, in which case the cell position is updated by:

\[
\begin{align*}
\dot{x} &= v \cos \theta_{\text{de novo}} \\
\dot{y} &= v \sin \theta_{\text{de novo}}
\end{align*}
\]

However, if a de novo pseudopod is not formed, the cell position is updated instead by $\theta_{\text{split}} = \theta + \sigma \phi$, where σ denotes the extent to which a pseudopod can split in a given step. Thus the new cell position is given by:

\[
\begin{align*}
\dot{x} &= v \cos \theta_{\text{split}} \\
\dot{y} &= v \sin \theta_{\text{split}}
\end{align*}
\]
Finally, following Van Haastert’s model, we can also incorporate stochasticity by allowing variability in the new pseudopod direction. In this model, we can sample the new θ from a Von Mises distribution whose mean is the new target direction, and with a prescribed variance κ.

Figure 3.34: [Left] The pseudopod-based feedback model is able to robustly generate sustained oscillatory behavior. The stochasticity in the model leads to variability in the response. [Right] The initial position of the cells do not affect the amplitude of oscillatory motion.

The advantage of the pseudopod-based feedback model is two-fold - first, the pseudopod-centric aspect of the model, and the inherent stochasticity introduced by de novo pseudopods, allows us to reasonably capture the correlated random walk motion of cells in uniform attractant environments, as well as allowing cells to properly converge on single chemoattractant point sources. This has been a frustrating obstacle for other methods in the past - for instance, pure compass-based models ran into problems in isotropic environments when trying to define an orientation for the cell’s internal compass, due to the apparent absence of a directional stimulus. It has also been difficult to support the abrupt directional changes sometimes observed in the motion of cells within a compass-based framework. Clearly, the strength of these models lie in their ability to explain the persistent motion of cells in an established direction once they are activated. In this regard, the inclusion of de novo pseudopods may accommodate both types of behaviors.
The second key aspect of this approach is the nonlinear positive feedback in the signal response. The inclusion of this behavior is consistent with the accepted understanding that neutrophils internally amplify the gradients they detect. Moreover, this enhanced sensitivity generates a response threshold when multiple chemokines are present, resulting in a dynamic competition between the signals. While the exact mechanism or functional form of this amplification may be different than the one proposed here, our simple model still allows cells to sequentially lock on to targets as they migrate within opposing linear gradients, in a manner that is highly robust against time variation. This is in close agreement with existing models in the literature, which suggest that an excitable system could explain many aspects of cell behavior, including spontaneous polarization, adaptation and the high degree of signal amplification seen in cells [145, 148]. In our particular example with two stimuli, this type of thresholding mechanism gives rise to an ultrasensitive, "winner-take-all" type switch that is robustly bistable (through a supercritical pitchfork bifurcation rather than a Hopf bifurcation), and yields similar amplitude irrespective of initial position, as observed experimentally.
Figure 3.35: Comparison of theoretical and experimental neutrophil responses to varying conditions. Experimental results (top) compared to the predicted results from the mathematical model (bottom) for isotropic (left), single gradient (second from left), hill type gradient (third from left), and dual opposing gradients (right) of LTB₄ and IL-8.

3.7 Discussion

3.7.1 Challenges in modeling neutrophil chemotaxis

A major hurdle to understanding eukaryotic chemotaxis has been the lack of an adequate model for polarization that can capture all aspects of cell behavior, including signal amplification, maintenance of polarity, adaptation and robustness of the cell response. While no model yet provides a comprehensive and well-substantiated explanation, several independent groups have worked toward formulating coherent functional strategies at the whole cell level (allowing spatial variability in component distributions), based on simplified representations of the internal signaling pathways and experimental observations. These models attempt to explain how neutrophils generate amplified and sustained responses to external attractant gradients, in
addition to how they adapt to transient stimuli in uniform environments. For instance, a number of models have also been proposed based on the Turing reaction-diffusion model of morphogenesis.

These activator-inhibitor models include the popular compass-based models and its relatives, such as those based on local excitation and global inhibition (LEGI), as described by Levchenko, Iglesias and Devreotes [149, 147]. In these models, receptor occupancy triggers both a fast, local excitatory signal and a slower, global inhibitory signal, as shown in Figure 3.36. Qualitatively, this mechanism can account for the observed gradient sensing response of most molecules that have been shown to localize to either the front (e.g. Ras, PI3K, PH domains, actin-binding proteins) or rear (e.g. PTEN, myosin) of a cell within a gradient. It also correctly captures the activation of certain proteins on the cell cortex during uniform stimulation of the cell. However, the LEGI model by itself cannot fully explain the switch-like behavior observed in the spatial distribution of PH (pleckstrin homology) domains, in which the rear of the cell does not show a discernible response.

Figure 3.36: In an activator-inhibitor model like the LEGI, polarization is achieved from the interplay between a local activator, which catalyzes its own production, and a global inhibitor. In the presence of a chemoattractant gradient (purple), a membrane-bound activator (red circles) recruits other activator molecules to nearby regions on the membrane via a positive feedback mechanism (blue arrows). Simultaneously, the membrane-bound activator also triggers the release of fast-diffusing inhibitor molecules. The inhibitors act in a long-range fashion to suppress activation on the opposite end of the cell (green lines). This results in the emergence of functional polarity.
An alternate model, known as the balanced inactivation model by Levine et al. [150, 151] shares some of the features of the LEGI mechanism, including the receptor-mediated production of two opposing signals - a local activator and global inhibitor. The main difference is the addition of a third component - a membrane bound inactivator that is mutually antagonistic to both second messengers - that induces a switch-like response to external gradients. The limitation of this model is the absence of a molecular substrate that fits this description; although a number of locally-generated inhibitors that can diffuse throughout the cytosol have been suggested, no such fast-diffusing molecules have yet been identified in neutrophils. Newer models that combine LEGI mechanisms with autocatalytic reactions [152] or positive feedback loops [153] have also demonstrated bistable kinetics and symmetry breaking during polarization in the presence of gradients, but these models unfortunately suffer from the same issue.

Models based on known molecular interactions [154], such as "first hit" mechanisms [151] or "fast and slow positive feedback loops" [155], have also been shown to correctly predict cell polarization in isotropic chemical fields, but these models are not particularly effective at adapting to rapid transient changes in the environment as observed in experiments. A more recent model, known as the adaptive control model [156], allows cells to detect spatial gradients and remain responsive to changes in the direction of the gradient after initial polarization. In this model, localized temporal sensing through pseudopods is linked to whole-cell integration of temporal information, and allows for successful predictions of stochastic responses to the initiation of gradients. Unfortunately, what is not understood is the initial impetus required to break cell symmetry. In particular, studies have shown that even in isotropic environments, neutrophils can undergo spontaneous polarization despite the apparent absence of a gradient [157, 158].

One mechanism proposed by Xu et al. suggested that reciprocal inhibition between actin and actomyosin could allow for the maintenance of polarization in activated cells in a bistable manner [159]. However, like the adaptive-control model, the initial divergence of components remains unaddressed by this model. Rao and
Onsum recently proposed a model for gradient sensing and spontaneous polarization that does not require a global inhibitor [160]. In this model, polarization is achieved by the switch-like activation of a coincidence circuit that requires both Ras (a small GTPase) and phosphatidylinositol-3-kinase (PI3K) to transmit a signal. This phase-separating circuit was able to reproduce experimental observations including the effect of F-actin inhibitors, and demonstrated that the known dynamics of Rho GTPase and PI3K activation are sufficient for both gradient sensing and polarization. While this paper provides an interesting examination of previous models, further experiments may be needed to validate this claim.

Neutrophils are also known to exhibit remarkably high chemotactic sensitivities, capable of detecting extremely shallow gradients with as little as 1~2% differences in chemoattractant concentration between their leading and trailing ends. This observation has led to several proposed models in which amplification is achieved by strong positive feedback loops. Many of these models share some basic features, including a response that is locally controlled by receptor occupancy and a locally-generated diffusing inhibitor. Most importantly, this local response triggers a positive feedback loop in which the signaling readout enhances its own production either through autocatalytic effects, substrate delivery or inhibition of its own degradation. These models all achieve greater amplification than the basic LEGI mechanism, and the shape of the response becomes nearly independent of the original signal magnitude. Nevertheless, these models share the notion of local activation of amplification of the signal.

Many of these models for cell polarization share the concept of an internal cellular "compass", which helps to steer cells in the direction of the gradient. By contrast, local coupling mechanisms are based on the idea that global cell polarization is independent from the chemotaxis mechanism. In these models, cell protrusions are restricted to the leading edge, where the local gradient biases the direction of small discrete turns achieved through the evolution of existing lamellipods [144]. Finally, the so-called pseudopod-centric models propose that pseudopods are made autocatalytically and independent of external cues, while the
gradient modulates the degree of feedback in a particular direction. A distinguishing feature of these models is that the cell motility is not directly coupled to the directional stimulus [161]. This type of mechanism is supported by the observation of self-organizing actin waves that appear to drive and regulate cell motility [162, 163].

While the effectiveness of different models have been discussed at length [164], their shortcomings have also been reflected in their inability to describe cell motion in a variety of different conditions, including cell migration in isotropic environments, chemotaxis in simple and complex single attractant gradients, and finally chemotaxis in multiple chemoattractant conditions. In particular, a number of models have been proposed to explain the migrational bias of cells in favor of distant intermediary chemoattractant sources in dual gradients, as first shown by Foxman et al. in under-agarose assays. Foxmans group proposed a model based on sensory adaptation at the receptor level, in which cells became increasingly less sensitive to the proximal attractant over time, and as a result, more sensitive to the distant one [106]. Such receptor desensitization is common in many signal transduction pathways including those of chemotactic bacteria.

Wu et al. developed a mathematical model based on this Foxmans hypothesis by describing the receptor-ligand kinetics of neutrophils characterized by non-desensitizable vs. desensitizable receptors [142]. They showed that cells with desensitizable receptors could indeed exhibit preferential migration toward distant sources. Meanwhile, Oelz et al. suggested that the migrational bias was due to the cells inability to rapidly adjust their sensitivities [112]. By allowing for dynamic sensitivities, their model was the first to match the favored hypothesis that cells might oscillate back and forth between the two intermediary attractant maxima under certain conditions. A significant problem with these mechanisms, however, is that they are inherently temporal in nature. As such, a disruption in cell signaling or physical obstructions may be problematic in the establishment of a robust and accurate response. Moreover, our experimental results seem to suggest that the oscillatory response of cells is invariant to the phase or initial position of the cell in its trajectory.
Recently, rigorous statistical treatment of pseudopod formation in activated *Dictyostelium* cells has highlighted the versatility and strengths of a pseudopod-centric view of eukaryotic chemotaxis \[144\]. In particular, a model based on pseudopod persistence through positive feedback was shown to provide accurate predictions of pseudopod position and initiation in low and high gradients, as well as cell polarization and persistence in the absence of external stimuli \[140\]. One particularly favorable aspect of this model was the weaker temporal dependence of the cell response on the stimulus. Thus, for our purposes, we adopted a similar model that was extended to enable the sensing of multiple chemoattractant species. In this model, we also incorporated the notion of pseudopod persistence through positive feedback; interestingly, however, the involvement of two competing intermediary attractant signals produced a switch-like response in which the cells could sequentially lock onto distant targets in their environment in a temporally-independent manner. This made the system robust to not only different intermediary attractant concentrations, but also allowed cells to oscillate in similar trajectories regardless of their initial position.

The switch-like behavior predicted by our model does not appear to be a phenomenon exclusive to chemotaxis in dual intermediary attractant gradients. In fact, recent discoveries have shown that in vivo, different chemoattractants may collaborate sequentially in temporal and spatial cascades to choreograph neutrophil recruitment \[165, 166\]. The requirement for particular chemoattractant types at specific steps in this process could involve unique temporal and/or spatial patterns of chemoattractant expression, but the corresponding sensory mechanism in migrating cells could be achieved through this switch-like response, in which multiple signals could be prioritized through internally designated response thresholds. In another recent study, live time-lapse imaging of neutrophil chemotaxis in zebrafish showed that retrograde chemotaxis of cells away from the site of inflammation may also play an important role in inflammatory resolution \[167, 168, 169\]. The ability of cells to lock on and off of target cues may be central to this process, by allowing cells to move between different locations through tight regulation.
3.7.2 Significance of this work

Neutrophil chemotaxis is an important physiological process that occurs during immune defense and wound healing, yet the chemotactic response of these cells to multiple attractant gradients remains poorly understood. In this work we applied a microfluidic device to study, in particular, the behavior of primary cells.
under opposing gradients of the intermediary chemoattractant LTB$_4$ and IL-8. Our findings extend previous reports that activated neutrophils not only seek the distant source in opposing intermediary attractant gradients, but also exhibit oscillatory behavior between the maxima over longer times. In addition, the results corroborate previous reports of neutrophil responses in varying chemoattractant conditions, showing that: (i) the intermediary chemoattractants IL-8 and LTB$_4$ do not inhibit the response toward the end-target chemoattractant fMLP (indicating that the latter takes precedence in an intracellular signaling hierarchy), and that (ii) IL-8 and LTB$_4$ have a weak inhibitory effect on one another, but their effect is mutual (suggesting that no hierarchy is present for these intermediary cues).

The theoretical repurcussions of these findings are of particular interest - the robustness of this sustained oscillatory response strengthens the argument for a feedback-based mechanism in which cells transiently lock onto sensed targets through their pseudopodia. This switch-like mechanism is reminiscent of many processes in biology, particularly those pertaining to the careful spatial and temporal coordination of neutrophil chemotaxis in vivo that have recently come to light. While the exact intracellular network responsible for this feedback is unclear, this work presents a case against purely receptor-level mechanisms in describing the motion of cells in opposing intermediary attractant gradients. The microfluidics results here also corroborate previous reports of neutrophil responses in varying chemoattractant conditions, showing that: (i) the intermediary chemoattractants IL-8 and LTB$_4$ do not inhibit the response toward the end-target chemoattractant fMLP (indicating that the latter takes precedence in an intracellular signaling hierarchy), and that (ii) IL-8 and LTB$_4$ have a weak inhibitory effect on one another, but their effect is mutual (suggesting that no hierarchy is present for these intermediary cues). The pseudopod-based cell motility model was also used to simulate the response of cells in varying chemoattractant gradients. The predicted cell trajectories in each case were qualitatively consistent with experimentally observed migration patterns. Future work may include improvement of the model to refine the mechanism for signal amplification, as well as to accurately
simulate an even broader range of experimental conditions.

In the context of physiological environments, particularly in the extravascular space, the consequences of a switch-like chemotactic response and migration toward distant intermediary attractant sources remain unclear. One sensible hypothesis, in line with that proposed by Foxman et al. [106], is that this response might enable the cells to navigate long distances in a stepwise fashion between a network of intermediary attractant sources, as a way to increase their chances of locating end targets. In effect, this migrational bias toward distant sources can be both an effective mechanism to escape the equivalent of local maxima in a global optimization problem, as well as a more optimal foraging strategy for seeking sparsely and randomly distributed targets. Just as the Lvy flight foraging hypothesis has been shown to optimize search efficiency in the absence of external stimuli, this guided homing mechanism may also work to enhance the search efficiency of neutrophils when multiple stimuli are present, by using the sequential intermediary attractant sources for loose guidance en route to their destinations. The robustness of our model to changes in initial condition also suggest that this all-or-nothing locking mechanism may be time-invariant; such a property may be pivotal in providing tight spatial regulation of neutrophils during the progression of the early inflammatory response. Naturally, a defect in this aspect of the response could lead to ill-favored accumulation of the cells in tissues, as well as poor pathogenic clearance.
3.8 Concluding remarks

The motivation for studying neutrophil chemotaxis stems from both the crucial biological and medical importance of the process in homeostasis, inflammation and pathophysiology. A more rigorous understanding of the chemotactic mechanism in these cells has important implications for identifying potential therapeutic targets to modulate chemotactic efficacy or for designing specific pharmacologic interventions to dampen neutrophil responses in inflammatory conditions. In this chapter we studied a number of phenomenological models based on empirical studies or using a first principles approach to investigate the signaling kinetics.

The compass-based model showed that directional persistence, observed in the motion of neutrophils, may serve to prevent cell stagnation around the mathematical analogue of local maxima - this dual control-type strategy may be framed in the context of a multi-armed bandit problem, in which cells must balance reward maximization against the acquisition of new information in an exploitation/exploration tradeoff. Nevertheless, some assumptions in this model, such as that of a constant forward velocity, appeared to be inaccurate.

The pseudopod-based feedback model, despite being phenomenological, provided a number of attractive
features to describe cell motion, particularly in the context of multiple intermediary attractant gradients. Its random walk-type formulation shared many characteristics with the compass-based model, but the introduction of \textit{de novo} pseudopods enabled a better representation of the stochasticity in cell movement. More importantly, the periodic decoupled nature of pseudopod formation and autocatalysis of the signal (amplification) enabled a response that was robust against time variation. Meanwhile the normalization of the signal (perhaps through a global inhibition mechanism) led to a switch-like locking mechanism that favored distant chemoattractant sources. The implementation of these features may be inaccurate, but these ingredients appear to be necessary to eventually paint a complete picture of neutrophil chemotaxis. We note, however, that the actual mechanism likely features (to varying degrees) elements of all existing models, including compass-like directionality, a local autocatalytic component, adaptation, and switch-like bistability.
Chapter 4

Parallel framework for simulating cell population behavior

4.1 Introduction

The discrepancies in the length and time scales of a multi-part or multiscale process pose significant challenges for many numerical methods; for instance, in solving ODEs, the stiffness of a problem is often an important factor in the choice of algorithm used. Highly stiff problems are characterized by a rapidly changing component within an otherwise quiescent solution, requiring the use of small time steps globally even in regions where it should not be necessary. This situation can arise, for instance, when modeling a problem that involves both transport phenomena (such as advection and diffusion) and chemical kinetics (such as chemoattractant metabolism) - processes that occur on vastly different time scales. Length scales are also an important consideration, as a process that is seemingly homogeneous at the macroscale may be noticeably heterogeneous on the microscale. Making the correct assumptions are critical in outlining the equations (e.g. PDEs) to describe these systems. In addition, simulations that are particularly heavy in computation, such as those described by Kevrekedis et al. [170], should also consider ways to reduce the total workload; one such approach is to use a coarse-grained approximation, where fine details are averaged over a coarser representation.

The parallel framework described here enables full multiscale simulations by allowing every individual particle to define its internal state. For instance, one might model the internal chemical kinetics through a system of ODEs, much like the equations used for neutrophil polarization in Chapter 3. The characteristic time scale for this internal process may be used to integrate the equations forward in time for the duration
of a single coarse time step. The macroscale process can then be advanced one step forward in time, either synchronously or using a leapfrog-type scheme, using Verlet integration for instance to update the particle positions. Depending on the degree of coupling between the scales, the accuracy of this single cell model can also be adapted to suit the needs of the problem. For instance, in this project we applied the latest phenomenological models to describe *E. coli* cell motion, as the macroscale population behavior was the main subject of interest. On the other hand, for studies whose focus is the effect of signal amplification or adaptation, a more detailed internal model may be considered instead. To offset the greater computational requirement, the PDE problem can be simplified, for instance, using a Particle-in-Cell (PIC) approach.

In the PIC method (often used in the context of plasma physics), the aggregate effect of many particles in a Lagrangian frame of reference is interpolated onto Eulerian (stationary) mesh points, where the moments of the continuum distribution (e.g. concentration) are also computed and updated. The typical cycle involves the following: (i) integration of the particle equations of motion; (ii) interpolation of the particle effects (e.g. metabolism) onto the stationary mesh; (iii) computation of the new field values using this information; and (iv) interpolation of the fields from the mesh back to the particle locations. We note here the degree of separation between the two systems. In our early work, we also looked at several similar strategies to approximate chemoattractant metabolism over a coarse discretization of the domain. This idea was first implemented using the finite difference method on a structured 2-D grid, where cells were allowed to move in response to the concentration gradient. A major issue with this method, however, was the lack of sufficient spatial resolution on coarse meshes; when many cells occupied a single subdomain, a low-order description of the attractant profile within the region (e.g. linear) led to unrealistic cell behaviors.

The first approach we took to resolve this issue was to increase the spatial resolution through the use of a finer finite difference mesh. This however, was not an acceptable general solution; given the variability in the metabolism and chemoattractant production rates desired in the framework, it was difficult to ensure a stable
method for all cases. As an alternative approach, we then considered a mixed analytical-numerical method, in which the solution within each subdomain was derived analytically using an eigenfunction expansion. This spectral approach could allow for finer representations of the local concentration profile even with a coarse mesh, while diffusion at the global level could still be captured by a basic finite difference scheme. Unfortunately, the problem with this method was that it was difficult to define the boundary conditions in each subdomain - Neumann boundary conditions led to discontinuities in the global representation of the concentration profile, while Dirichlet boundary conditions produced unrealistic gradients when cells were located near an edge.

The finite element method (FEM) can offer a number of advantages over conventional finite differences in the context of this particular application. First, it enables the use of unstructured meshes to better capture the irregular geometries of various chemotaxis assays. Second, the method offers greater flexibility for refinement of the problem not only through h-refinement (through the application of finer meshes), but also through p-refinement, since the polynomial representation within each subdomain (element) can have arbitrary order. For diffusion-dominated problems, FEM is often a natural choice, although there are additional stability issues to be considered when advection and/or reaction play a more dominant role in the problem. For this specific particle-continuum framework, there were also unique challenges in the parallelization of the (discrete) particle half of the problem when chemical reactions were present. In the following section, we discuss these issues further, and also demonstrate the viability of this framework to simulate real cell migration-related phenomena.
4.2 Background

4.2.1 Review of the finite element method (FEM)

Galerkin methods are a class of methods for converting a continuous operator problem (such as a PDE) into a discrete problem, effectively by applying variation of parameters to a function space through conversion to a weak formulation. Typically, one then applies constraints on the function space to be able to characterize the solution using a finite set of basis functions. The Galerkin method of weighted residuals was originally formulated with global polynomial subspaces; however, the application of piecewise polynomial subspaces \((\hat{V}_h, V_h)\) to this method became the basis for the finite element method (FEM). FEM was first introduced by Courant in 1943, and since the 60s has been used to solve countless problems in real-world applications by mathematicians and engineers. In particular, the family of Galerkin finite element methods (with piecewise polynomial function spaces) are often classified by the approximation methods used, such as the Ritz-Galerkin, Petrov-Galerkin (which uses non-equivalent test and trial spaces) and the Galerkin/least-squares methods.

To review the theory of FEM as well as its application, let us first consider the canonical example of a linear variational problem - the Poisson problem with homogeneous Dirichlet boundary conditions over an open bounded polygonal domain \(\Omega \subset \mathbb{R}^d, \; d = 2, 3\). This elliptic problem takes the form

\[-\Delta u = f \quad \text{in } \Omega,\]

\[u = 0 \quad \text{on } \partial \Omega,\]

where the forcing function \(f : \Omega \to \mathbb{R}\) is known. To simplify the notation, we use the following abbreviations for the \(L^2\)-norm and the corresponding inner product when defined over the computational domain \(\Omega\):

\[\| \cdot \|_\Omega \equiv \| \cdot \| \quad \text{and} \quad \langle \cdot, \cdot \rangle_\Omega = \langle \cdot, \cdot \rangle, \quad \text{respectively.}\]
Figure 4.1: FEM uses piecewise basis functions to approximate the solution over the domain. [Left] A function in H_0^1 with zero values at the endpoints and a piecewise linear approximation. [Right] A linear combination of the local basis functions (piecewise linear) yields the approximate solution that minimizes the norm of the error.

Figure 4.2: The piecewise linear basis functions on a 2-dimensional triangulation of a problem in 2-D.

The first step in defining a finite element method is to rewrite the problem in the so-called weak or variational form. First, let $V = H_0^1(\Omega)$ be the solution space, and consider a function $v \in V$, where H_0^1 is the space defined by

$$H_0^1(\omega) := \{ v \in H^1(\omega) : v = 0 \text{ on } \partial \omega \}.$$

Multiplying the PDE by v (usually called the test function) and integrating over the domain Ω, we get

$$- \int_\Omega \Delta u v dx = \int_\Omega f v dx \text{ in } \Omega.$$

144
Then, applying the divergence theorem to the integral on the left-hand side, and the fact that \(v = 0 \) on \(\partial \Omega \) for all \(v \in V \), we have

\[
\int_\Omega \nabla u \cdot \nabla v dx = \int_\Omega fv dx \quad \text{in } \Omega
\]

for all \(v \in V \). Hence, the Poisson problem with homogeneous Dirichlet boundary conditions can be recast to the following problem in weak form:

Find \(u \in V \) such that \(a(u, v) = \langle f, v \rangle \), for all \(v \in V \),

with the bilinear form \(a(\cdot, \cdot) \) defined by

\[
a(u, v) = \int_\Omega \nabla u \cdot \nabla v dx.
\]

The second step of FEM is to consider a discrete approximation to the problem. To this end, we restrict the infinite-dimensional space \(V \) of eligible solutions to a finite-dimensional subspace \(V_h \subset V \). Here, we consider the discrete approximation to the problem:

Find \(u_h \in V_h \) such that \(a(u_h, v_h) = \langle f, v_h \rangle \), for all \(v_h \in V_h \).

Formally, this process is referred to as the Galerkin projection (or the Ritz projection when \(a(\cdot, \cdot) \) is a symmetric bilinear form, as in this case).

Now if we set \(v = v_h \in V \) and subtract from the above equation, we obtain

\[
a(u - u_h, v_h) = 0 \quad \text{for all } v_h \in V_h.
\]
This key property of the Galerkin approach states that the error is orthogonal to the chosen subspaces. This identity is called the Galerkin orthogonality property. In this case, we note that the bilinear form \(a(\cdot, \cdot) \) satisfies the properties of an inner product on \(H^1_0(\Omega) \). The Galerkin orthogonality property effectively states that \(u_h \) is the best approximation of \(u \) in \(V_h \), with respect to the inner product defined by the bilinear form.

Though \(a(\cdot, \cdot) \) may not satisfy the properties of an inner product if it is not symmetric (e.g. a hyperbolic problem), we note that Galerkin orthogonality still holds by construction, as long as the approximation is conforming (i.e. \(V_h \subset V \)).

The conformity of the approximation space simply requires \(V_h \subset V \), and hence there is great flexibility in the choice of an appropriate approximation space. For instance, we might consider a family of basis functions \(\phi_i \), with \(i = 1, 2, \ldots, N \) for \(N \in \mathbb{N} \) spanning

\[
V_h = \text{span}\{\phi_i : i = 1, 2, \ldots, N\}.
\]

By the linearity of the bilinear form, the approximation problem is equivalent to

Find \(u_h \in V_h \) such that \(a(u_h, \phi_i) = \langle f, \phi_i \rangle \), for all \(i = 1, 2, \ldots, N \).

But since \(u_h \in V_h \), there must exist \(U_j \in \mathbb{R}, j = 1, 2, \ldots, N \), such that \(u_h = \sum_{j=1}^{N} U_j \phi_j \). If we substitute this into the above we obtain the linear system

\[
Au = f,
\]
with \(A = [A_{ij}]_{i,j=1}^N, \ u = (u_1, \ldots, u_N)^T \) and \(f = (f_1, \ldots, f_N)^T \), where

\[
A_{ij} = \int_\Omega \nabla \phi_j \cdot \nabla \phi_i \, dx, \quad \text{and} \quad f_i = \int_\Omega f \phi_i \, dx.
\]

Note that the matrix \(A \) in this case is symmetric. For the approximation \(u_h \) to be well-defined, the linear system should have a unique solution - we should therefore consider a space \(V_h \) such that the matrix \(A \) is positive definite.

The actual implementation of the Galerkin FEM typically places further restrictions in choosing a reasonable subspace \(V_h \). In particular, the supports of the basis functions \(\phi_i \) should be a complete covering of the computational domain \(\Omega \). Moreover, the functions should be relatively simple, so that the entries \(A_{ij} \) can be computed in a computationally efficient fashion. Another consideration is that the linear system can grow to be quite large for complex meshes - thus, it would be advantageous if \(A \) was sparse, in order to reduce the computational cost of the solve. To illustrate the choice of the subspace \(V_h \), let us begin by splitting the domain \(\Omega \) into a covering \(\mathcal{T} \), which will be referred to as the mesh. The discrete function spaces are constructed by piecing together local function spaces on cells \(\{K\}_{K \in \mathcal{T}} \) (typically open triangles if \(d = 2 \) or open tetrahedra if \(d = 3 \)) in the mesh \(\mathcal{T} \) of the domain \(\Omega = \cup_{K \in \mathcal{T}} \subset \mathbb{R}^d \), where each local function space is defined by a finite element.

While there are many possible ways to define a finite element, we use the standard Ciarlet definition, given by the following: A finite element is a triple \((K, \mathcal{P}_K, \mathcal{N}_K) \), where (i) \(K \subset \mathbb{R}^d \) is a bounded closed subset of \(\mathbb{R}^d \) with nonempty interior and piecewise smooth boundary; (ii) \(\mathcal{P}_K \) is a function space on \(K \) of dimension \(n_K < \infty \); and (iii) \(\mathcal{N}_K = \{\nu_1^K, \nu_2^K, \ldots, \nu_{n_K}^K\} \) is a basis for \(\mathcal{P}_K' \), the bounded linear functionals on \(\mathcal{P}_K \). In addition, we can assume that we are given a nodal basis \(\{\phi_i^K\}_{i=1}^{n_K} \) for \(\mathcal{P}_K \), which for each node \(\nu_i^K \in \mathcal{N}_K \)
satisfies $\nu^K_i(\phi_j^k) = \delta_{ij}$ for $j = 1, 2, \ldots, n_K$. Thus, for any $v \in \mathcal{P}_K$, we have

$$v = \sum_{i=1}^{n_K} \nu_i^K(v) \phi_i^K.$$

Figure 4.3: A finite element mesh constructed by a triangulation of the computational domain $\Omega \subset \mathbb{R}^2$. The space V_h would consist of functions that are linear over each triangle.

Typically, the nodes are given by evaluation of function values or directional derivatives at a set of points $\{x^K_i\}_{i=1}^{n_K}$, in other words,

$$v^K_i(v) = v(x^K_i), \quad i = 1, 2, \ldots, n_K.$$

The global construction should satisfy the following: (i) $\Omega = \cup_{K \in \mathcal{T}} \bar{K}$, with $\bar{\cdot}$ denoting the closure of a set in \mathbb{R}^d; and (ii) for $K, S \in \mathcal{T}$, we either have $K = S$ or that $\bar{K} \cap \bar{S}$ is a common $d-$ (k-dimensional) face, with $1 \leq k \leq d$ (i.e. face, edge or vertex).

Once a mesh is defined, the finite element space V^p_h of degree p is then defined as the space of element-wise d-variate polynomials of degree at most p that are continuous across the interelement boundaries,

$$V^p_h := \{ w_h \in C(\Omega) : w_h|_T \in \mathcal{P}_p(K), \quad K \in \mathcal{T} \text{ and } w_h|_{\partial \Omega} = 0 \}$$
where $\mathcal{P}_p(K)$ denotes the space of d-variate polynomials of degree at most p. Note that $V_h^p \subset H^1_0(\Omega) = V$.

The Galerkin method with the choice of $V_h = V_h^p$ is called the classical FEM.

This choice of elementwise polynomial functions over simplices (triangular or tetrahedral domains) enable efficient quadrature calculations for the entries of A, making it a suitable choice for V_h. Moreover, we can choose a basis for V_h^p in such a way that the resulting linear system becomes sparse and positive definite. For instance, we may consider Lagrange finite elements, given by a triple $(K, \mathcal{P}_K, \mathcal{N}_K)$, where the K is a simplex in \mathbb{R}^d, \mathcal{P}_K is the space $\mathcal{P}_q(K)$ of scalar polynomials of degree $\leq q$ on K and each $\nu^K_i \in \mathcal{N}_K$ is given by point evaluation at some point $x^K_i \in K$. By the placement of the points $\{x^K_i\}_{i=1}^{n_K}$ at the vertices and edge midpoints of each cell K, the global function space is the set of continuous piecewise polynomials of degree q. Lagrange elements have small support since elements share an edge or face or vertex with only some of its immediate neighbors. The resulting matrix A is also positive definite, ensuring that the solution is unique.

Figure 4.4: Spontaneous cell polarization due to Turing instability in reaction-diffusion systems. The simulation was performed using continuous FEM over S2, using a cubed-sphere geometry for the mapping.
4.2.2 Discontinuous Galerkin FEM

While FEM has been proven to be extremely useful in applications to self-adjoint elliptic problems or their parabolic counterparts (e.g., the heat equation), hyperbolic problems and other strongly non-self-adjoint PDEs have been a noticeable weakness, often resulting in unsatisfactory solutions. Instead, finite volume methods (FVM) have long been the method of choice for advection-dominated problems. In the early 70s, Reed and Hill proposed a new class of FEM known as the discontinuous Galerkin finite element method (DG-FEM) [171]. In contrast to the classical FEM methods, DG-FEM is locally conservative with respect to the state variable, offering greater flexibility in local approximation, by imposing continuity of the normal derivatives weakly. This method has been shown to exhibit good stability in the vicinity of sharp gradients and/or discontinuities, which are often present in the analytical solution of convection/transport dominated PDEs. Additionally, DG methods offer advantages in the context of automating local mesh and order adaptivity, as well as flexibility in the order of the local approximations.

In classical FEM, the restriction $V_h \subset V$ essentially states that the underlying space consists only of functions of particular smoothness (e.g., if $V = H^1_0(\Omega)$, we might choose $V_h \subset \{ v \in C(\Omega) : v|_{\partial \Omega} = 0 \} \subset H^1_0(\Omega)$). The method is thus well-suited for PDE problems related to a variational setting, but can preclude application to other PDEs where smoothness is not guaranteed. Non-conforming FEM methods, where $V_H \not\subset V$, have been studied as a workaround for these cases. In particular, DG-FEM allows finite element spaces with severe non-conformity, where we can have elementwise discontinuous polynomial spaces, or

$$S_h^p = \{ w_h \in L^2(\Omega) : w_h|_K \in \mathcal{P}_p(K), \quad K \in \mathcal{T} \}.$$

In other words, the trial function space is piecewise discontinuous.
Here, \mathcal{T} denotes a subdivision of Ω into elements K. We then define $\mathcal{E}_h := \cup_{K \in \mathcal{T}} \partial K$ as the mesh skeleton (i.e. the union of all $(d-1)$-dimensional faces) and let $\mathcal{E}_0^h := \mathcal{E}_h \setminus \partial \Omega$ such that $\mathcal{E}_h = \partial \Omega \cup \mathcal{E}_0^h$. We then let K^+, K^- be two interior elements sharing a face $e := K^+ \cap K^-$ with respective outward normal unit vectors n^+ and n^-. For $q : \Omega \to \mathbb{R}$ and $\phi : \Omega \to \mathbb{R}^d$, we then define $q^\pm := q|_{e \cap \partial K^\pm}$ and $\phi^\pm := \phi|_{e \cap \partial K^\pm}$, and set the "average" and "jump" terms:

$$\{q\}_e := \frac{1}{2}(q^+ + q^-), \quad \{\phi\}_e := \frac{1}{2} (\phi^+ + \phi^-),$$

$$[q]_e := q^+ n^+ + q^- n^-, \quad [\phi]_e := \phi^+ \cdot n^+ + \phi^- \cdot n^-.$$

If $e \subset \partial K \cap \partial \Omega$, in other words if it resides on the domain boundary, we set $\{\phi\}_e := \phi^+$ and $[q]_e := q^+ n^+$.

Now we can repeat the derivation of the weak form for the Poisson problem using a DG-FEM approach. Since DG is nonconforming, we require an extended variational formulation, using the space $\mathcal{S} := H_0^1(\Omega) + S_h^p$.

Assuming that u is smooth for now, we first multiply the equation by a test function $v \in \mathcal{S}$, and integrate over Ω:

$$- \sum_{K \in \mathcal{T}} \int_K \Delta u v dx = \sum_{K \in \mathcal{T}} \int_K f v dx.$$
Using the divergence theorem on the integral of every discontinuous element K, we then have

$$\sum_{K \in T} \int_K \nabla u \cdot \nabla v \, dx - \sum_{K \in T} \int_{\partial K} (\nabla u \cdot n)v \, ds = \int_{\Omega} f \, dx = \langle f, v \rangle,$$

where n denotes the outward normal to each element edge. The second term on the left-hand side contains the integrals over the element faces, such that when a face is common to adjacent elements, we have two integrals over every interior face.

For an elliptic problem like the Poisson problem, $u \in C^1(\Omega')$ for all $\Omega' \subset \Omega$, so ∇u is actually continuous across the interior element faces. This may not always be the case for other PDEs. However, we can substitute ∇u by $\{\nabla u\}$ for all faces on the mesh skeleton \mathcal{E}_h, since this is the definition of $\{\nabla u\}$ on the boundary $\partial \Omega$. Using the same orientation convention for the divergence theorem as above, this sum can be rewritten as

$$\sum_{K \in T} \int_K \nabla u \cdot \nabla v \, dx - \int_{\mathcal{E}_h} \{\nabla u\} \cdot [v] \, ds = \langle f, v \rangle.$$

Solving this problem is a significant challenge, however - we cannot simply define a bilinear form and a linear form from the left and right-hand sides, and solve the resulting variational problem as in the classical FEM. The bilinear form would not yield a positive definite operator in this case over S^0_h. The property that

$$\alpha(v,v) \geq \alpha \|v\|^2$$

for some constant $\alpha > 0$ and all $v \in V$ is known as coercivity, and is a requirement for well-posedness in the context of the Lax-Milgram lemma. To correct this lack of positivity, we first note that $[u] = 0$ on \mathcal{E}_h, due to regularity on \mathcal{E}^0_h and the Dirichlet boundary conditions on $\partial \Omega$. We therefore know that

$$\int_{\mathcal{E}_h} \sigma[u] \cdot [v] \, ds = 0,$$

for any positive function $\sigma : \mathcal{E}_h \to \mathbb{R}$. Clearly, this term is symmetric with respect to the two arguments u and v and can be arbitrarily large if we replace u with a function $v \in \mathcal{S}$. Inserting this into the previous
equation we have

\[\sum_{K \in T} \int_K \nabla u \cdot \nabla vdx - \int_{\xi_h} \left((\{\nabla u\} \cdot [v] - \sigma [u] \cdot [v]) \right) ds = \langle f, v \rangle. \]

We then recall that the first term on the left-hand side from the classical FEM formulation gave rise to a positive-definite term in the bilinear form. This means that there is a range of \(\sigma\) values that can make the full bilinear form of the left-hand side coercive over \(\mathcal{S}\). There are in fact a number of choices for this discontinuity-penalization parameter \(\sigma\) that can satisfy this criteria. We might also note that the left-hand side is still non-symmetric with respect to \(u\) and \(v\). By observing that

\[\int_K \{\nabla v\} \cdot [u] ds = 0, \]

also holds given \(v\) is sufficiently smooth, we can then have

\[\sum_{K \in T} \int_K \nabla u \cdot \nabla vdx - \int_{\xi_h} \left((\{\nabla u\} \cdot [v] + \{\nabla v\} \cdot [u] - \sigma [u] \cdot [v]) \right) ds = \langle f, v \rangle. \]

whose left-hand side is now symmetric. This yields the most common symmetric interior penalty (SIPG) discontinuous Galerkin approach. We can finally outline the following numerical method to solve the Poisson problem:

Find \(u_h \in S_h^p\) such that \(B(u_h, v_h) = \langle f, v \rangle\), for all \(v_h \in S_h^p\),

where the bilinear form \(B : S_h^p \times S_h^p \rightarrow \mathbb{R}\) is defined by

\[B(w, v) := \sum_{K \in T} \int_K \nabla w \cdot \nabla vdx - \int_{\xi_h} \left((\{\nabla w\} \cdot [v] + \{\nabla v\} \cdot [w] - \sigma [w] \cdot [v]) \right) ds. \]

where \(B(\cdot, \cdot)\) is given by the above. As before, the practical challenge of assembling this problem numerically
is omitted, particularly because some software packages are now capable of automating a significant portion of this process, including the FEniCS project (http://fenicsproject.org) [172] - an open source project developed through collaboration between a number of institutes.

DG-FEM applied to the advection-diffusion problem

We consider now the application of the continuous Galerkin (CG) and discontinuous Galerkin (DG) methods to the solution of the advection-diffusion equation. This problem arose initially in the context of solving the time evolution of the population density function for neutrophils in a 2-D domain, based on the compass-based chemotaxis model outlined in Chapter 3. The methods provided here, however, can also be extended to solve the continuum PDE component (the chemoattractant field) of the particle-continuum approach outlined in the next section, when the setting is characterized not only by diffusion but also involves fluid transport (advection). Let us start with the model problem

$$-\epsilon \Delta u + b \cdot \nabla u = f \quad \text{in } \Omega \subset \mathbb{R}^n$$

$$u = 0 \quad \text{on } \partial \Omega$$

with $\epsilon > 0$ the diffusion coefficient, $b \in [L^2(\Omega)]^n$ is the vector field and $f \in L^2(\Omega)$. We take Ω to be bounded and polygonal. By the classical FEM approach, the weak formulation to this problem is

$$a_\epsilon(u, v) = \epsilon (\nabla u, \nabla v) + (b \cdot \nabla u, v) = (f, v) \quad \forall v \in H^1_0(\Omega),$$

where (\cdot, \cdot) is the usual L^2 inner product. Provided that we can show continuity,

$$|a_\epsilon(u, v)| \leq \alpha \|u\|_{H^1} \|v\|_{H^1}$$

154
as well as coercivity,

\[a_\epsilon(u, u) \leq \beta \|u\|_{H^1_0}^2 \]

and that \(f \in V' \), existence and uniqueness follow from the Lax-Milgram theorem. The problem, however, as mentioned before, is that the stability of the method deteriorates as \(\epsilon \to 0 \) (rigorous proof omitted). For better stability properties, we resort to the DG method. In this case, the test space is now discontinuous

\[V_h = \{ v \in L^2(\Omega) : v_K \in \mathcal{P}^k(K) \quad \forall K \in \mathcal{T} \}, \]

and we introduce the notation for averages and jumps across edges

\[\{ v \} = \frac{1}{2}(v^+ + v^-), \quad [v] = v^+ n^+ + v^- n^-, \]

\[\{ v \} = \frac{1}{2}(v^+ + v^-), \quad [v] = v^+ n^+ + v^- n^-, \]

We can then call the boundary of the region \(\partial \Omega = \Gamma \) and take the inflow and outflow boundaries for the advection term \(\Gamma^- \) and \(\Gamma^+ \), using the definition

\[\Gamma^- = \{ x \in \Gamma : b(x) \cdot n(x) \leq 0 \}, \]

\[\Gamma^- = \{ x \in \Gamma : b(x) \cdot n(x) > 0 \}. \]

Recall that for a triangulation \(\mathcal{T} \), the skeleton \(\mathcal{E}_h \) can be decomposed into \(\Gamma \) and \(\mathcal{E}^0_h \) as before, where \(\mathcal{E}_h = \mathcal{E}^0_h \cup \Gamma \). Then for each \(K \in \mathcal{T} \) we can similarly denote the inflow and outflow edges by \(\Gamma^\pm_K \). If we use the symmetric interior penalty (SIPG) method outlined previously for the diffusion component, we then
have the bilinear forms

\[B_d(u, v) = \sum_{K \in T} \int_K \nabla u \cdot \nabla v - \sum_{e \in \mathcal{E}_h} \int_e \{\nabla \cdot n\}[v] + \{\nabla v \cdot n\}[u] \]

\[- \sum_{e \in \Gamma^-} \int_e (\nabla u \cdot n)v + (\nabla v \cdot n)u + \sum_{e \in \mathcal{E}_h} \sigma h_{\Gamma^-}^{-1}[u] \cdot [v] \]

\[B_a(u, v) = \sum_{K \in T} (b \cdot \nabla u)v - \sum_{e \in \mathcal{E}_h} \int_e (b \cdot n)[u]v^+ - \sum_{e \in \Gamma^-} (b \cdot n)u^+ v^+ \]

\[B_\epsilon = \epsilon B_d + B_a \]

using an upwind flux for the advection component.

An alternative, and perhaps more intuitive approach, is to formulate the problem using the local discontinuous Galerkin (LDG) variational setting. Here, the equation is represented at the level of local elements - the key to this method is the careful design of the cell interface numerical fluxes, as we will see in the derivation. Note the slight change in notation.

Let us first consider the general scalar conservation law in three dimensions with no diffusion term:

\[\frac{\partial u(x, t)}{\partial t} + \nabla \cdot f(u(x, t), x, t) = 0, \quad x \in \Omega \in \mathbb{R}^3, \]

\[u(x, t) = g(x, t), \quad x \in \partial \Omega, \]

\[u(x, 0) = g(x). \]

We assume that boundary conditions are available at all inflow boundaries and that \(\Omega \) can be tiled using \(K \) elements:

\[\Omega \simeq \Omega_h = \bigcup_{k=1}^{K} D^k. \]

Note that \(D^k \) is a straight-sided tetrahedron and the mesh is assumed to be geometrically conforming. We
can then approximate \(u(x, t) \) by

\[
\hat{u}_h(x, t) = \sum_{i=1}^{N_p} u_k^i(x_i, t) l^i_k(x),
\]

where \(l^i_k(x) \) is the multidimensional Lagrange polynomial based on the grid points, \(x_i \), defined on element \(D^k \). The residual is orthogonal to all test functions, \(\phi_h \in V_h \), which yields the following local statements as the weak and strong forms of the nodal Discontinuous Galerkin method in multiple dimensions.

\[
\int_{D^k} \left[\frac{\partial u^k_h}{\partial t} l^k_i(x) - \hat{f}^k_i \cdot \nabla l^k_i(x) \right] dx = \oint_{\partial D^k} \hat{n} \cdot \hat{f}^* l^k_i(x) dx
\]

and

\[
\int_{D^k} \left[\frac{\partial u^k_h}{\partial t} + \nabla \cdot f^k_h \right] l^k_i(x) dx = \oint_{\partial D^k} \hat{n} \cdot \left[f^k_i - \hat{f}^* \right] l^k_i(x) dx.
\]

The choice of a suitable numerical flux \(f^* \) is now required, just as in classical finite volume methods (FVM).

For this purpose, we might use the local Lax-Friedrichs flux, defined as:

\[
f^*(a, b) = \frac{f(a) + f(b)}{2} + \frac{C}{2} (a - b),
\]

where \(C \) is the local absolute maximum of the normal flux-Jacobian,

\[
C = \max \left| \hat{n} \cdot \frac{\partial f}{\partial u} \right|.
\]

We now consider the case of the reaction-diffusion equation, where we include the diffusion operator and
\(\mathbf{b} \) is given as a three-dimensional vector with components \(b_x, b_y \) and \(b_z \).

\[
\frac{\partial u(x, t)}{\partial t} = \nabla \cdot \nabla u + \nabla \cdot (\mathbf{b} u), \quad x \in \Omega \in \mathbb{R}^3,
\]

\[
u(x, t) = g(x, t), \quad x \in \partial \Omega,
\]

\[
u(x, 0) = g(x).
\]

Substituting \(q = \nabla u \), we can split the first equation into

\[
\frac{\partial u}{\partial t} = \nabla \cdot q + \nabla \cdot (\mathbf{b} u)
\]

on \(\Omega \)

\[
q = \nabla u
\]

Rewriting this in Galerkin notation over the test functions \(\phi_h \) and \(\psi_h \), and applying the divergence theorem, we obtain:

\[
\int_{D^k} \frac{\partial u_h^k}{\partial t} \phi ds + \int_{D^k} q \cdot \nabla \phi ds + \int_{D^k} (\mathbf{b} u_h^k) \cdot \phi ds = \oint_{\partial K} \mathbf{n} \cdot q \phi ds + \oint_{\partial K} [(\mathbf{b} u_h^k) \cdot \mathbf{n}] \phi ds
\]

\[
\int_{D^k} q \cdot \psi ds + \int_{D^k} u \cdot \nabla \psi ds = \oint_{\partial D^k} u \mathbf{n} \cdot \psi ds
\]

Let \((\mathbf{b} u)_h^k = (\mathbf{b} u)^* \) represent a numerical approximation for the flux. We then obtain the weak and strong Discontinuous Galerkin forms:

\[
\int_{D^k} \frac{\partial u_h^k}{\partial t} \phi ds + \int_{D^k} q \cdot \nabla \phi ds + \int_{D^k} (\mathbf{b} u_h^k) \cdot \phi ds = \oint_{\partial K} \mathbf{n} \cdot q \phi ds + \oint_{\partial K} \mathbf{n} \cdot (\mathbf{b} u)^* \phi ds
\]

\[
\int_{D^k} q \cdot \psi ds + \int_{D^k} u \cdot \nabla \psi ds = \oint_{\partial D^k} u \mathbf{n} \cdot \psi ds
\]
and

\[\int_{D^k} \frac{\partial u^k}{\partial t} \phi ds - \int_{D^k} \nabla \cdot q \phi ds - \int_{D^k} (bu)^k_h \cdot \phi ds = \oint_{\partial K} \hat{n} \cdot (q - q^*) \phi ds + \oint_{\partial D^k} \hat{n} \cdot [(bu)^k_h - (bu)^*] \phi ds \]

\[\int_{D^k} q \cdot \psi ds - \int_{D^k} \nabla u \cdot \psi ds = \oint_{\partial D^k} (u - u^*) \hat{n} \cdot \psi ds \]

Again, we have a choice for the numerical fluxes, \(u^* \), \(q^* \) and \((bu)^* \). We might use the local Lax-Friedrichs flux as before, so that

\[(bu)^* = \frac{(bu)_- + (bu)_+}{2} + C \frac{u_- - u_+}{2}, \]

where \(u_- \) represents the value on the interior of the boundary, \(u_+ \) represents the value on the exterior and \(C \) is evaluated as

\[C = \max |\hat{n} \cdot b| \]

by the previous definition.

Initially, this nodal DG-FEM approach was used to solve the Fokker-Planck expansion from the compass-based neutrophil model (corresponding to the Keller-Segel model):

\[\frac{\partial c}{\partial t} + \frac{\partial}{\partial x} (cv \cos \theta) + \frac{\partial}{\partial y} (cv \sin \theta) + \frac{\partial}{\partial \theta} \left(cr^{-1} \xi_i(s_i, \nabla s_i)(\theta_s - \theta) \right) = D_\theta \frac{\partial^2 c}{\partial \theta^2}, \]

This problem can be seen as a time-dependent advection-diffusion problem, since the terms on the left represent advection of the cell density, with

\[b_x = v \cos \theta \]
\[b_y = v \sin \theta \]
\[b_z = \tau^{-1} \xi_i(s_i, \nabla s_i)(\theta_s - \theta) \]
while the term on the right represents integration of the Brownian noise in the system. An interesting challenge here was that the problem was assumed to be only 2-D in physical space, but the requirement of keeping the orientation state variable θ necessitated an additional third dimension that was 2π-periodic. Thus, the problem was solved over a 3-D mesh, and the final solution at each time step was then projected onto the xy-plane in the θ-direction using Gauss-Lobatto-Legendre (GLL) quadrature with $N = 10$. Implementation of the method was done using the nodal unstructured discontinuous Galerkin software package NUDG++, provided at http://www.caam.rice.edu/timwar/NUDG/Software/NUDG++.html provided under the GNU LGPL license. The snapshots of the simulations are shown in Figure 4.6. Using this approach, we were able to demonstrate that the steady-state cell density distribution for the compass-based model differs in the case of two sources of the same attractant versus the use of two different attractants, as shown in Figure 4.7.

![Figure 4.6: Application of DG-FEM to the Fokker-Planck expansion of the compass-based neutrophil chemotaxis model. Note that the solution was solved over a 3-D domain including the cell orientation θ (shown left), but projected back into a 2-D space representing the position of the cell density distribution.](image)
4.3 Hybrid particle-continuum approach

Although FEM can be used to solve both the cell density and chemoattractant concentration profile in a continuum model like the K-S, the aforementioned disadvantages reinforce the need for an agent-based single-cell resolution approach. Like PIC, our general framework employs a hybrid particle-continuum method, in which the particle phase and continuum field are modeled separately. The interscale coupling between the different submodels is outlined below in Figure 4.8.
Figure 4.8: A key component of this multiscale approach is the communication between the particle and continuum phases.

In this approach, fine granularity is preserved by retaining the state of each particle between timesteps. Meanwhile, the continuum solution as a function of time is given by the following reaction-diffusion PDE:

\[
\frac{\partial u}{\partial t} - D \Delta u + \sum_i \delta(x - x_i) \frac{u}{k_D + u} = f \quad \text{in } \Omega,
\]

\[
\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega,
\]

where \(\delta\) is a Dirac delta function centered on \(x_i\), the cell positions, and \(f \in L^2(\Omega)\). For this investigation, we focused specifically on systems whose bulk fluid phase is dominated by diffusion, though advection can also be included by using methods such as DG-FEM, as outlined previously. We note here, however, that the Dirac delta function lies in the Hilbert space \(H^{-1}\). Thus, the difficulties in treating this problem were avoided by the use of Gaussian shapefunctions.
Figure 4.9: To model the reaction term in the PDE, a Gaussian shapefunction was applied to substitute the use of a delta function.

The justification here was that the physically, any sharpness in the concentration profile would be dissipated by diffusion, and hence the shapefunction could represent the amortized effect of diffusion on the chemoattractant metabolism over the time step dt. Thus the equation was modeled instead as the nonlinear PDE:

$$
\frac{\partial u}{\partial t} - D \Delta u + \sum_i \frac{e(x - x_i)u}{k_D + u} = f \quad \text{in } \Omega,
$$

$$
\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega,
$$

where, c is defined as a standard normal distribution. By maintaining that the function remained in $H^1(\Omega)$, the finite element solution became significantly more tractable.

Both the updating of the particle states and PDE problem were implemented in C++ using OpenMPI 1.4.4 and run on the Taub supercomputing cluster provided by the University of Illinois. The solution of the PDE was obtained through the help of the DOLFIN software package, a C++/Python library providing data structures and algorithms for automated finite element assembly. DOLFIN is open source and freely available at http://fenicsproject.org/. Here, Lagrange finite elements (tetrahedral in 3-D and triangular in 2-D) were used on three and two-dimensional meshes designed using Gmsh, a 3D finite element mesh generator that uses delaunay triangulation for triangular and tetrahedral meshes(which can be found at
http://geuz.org/gmsh/). DOLFIN was then used to convert the output to XML format. The PDE problem was formulated as follows: given \(v \) as the test function and \(du \) as the trial function over the element. The linear form for the equation above can be summed into one form \(F \), where the objective was to drive the residual of this form to zero during the solution process. The directional derivative of \(F \) representing the Jacobian matrix, was then the bilinear form for the problem.

\[
F = vu \, dx - vu_0 \, dx + D \nabla v \cdot \nabla u \, dx \, dt + v \frac{cu}{kd + u} \, dx \, dt + v f \, dx \, dt
\]

\[
J = \text{derivative}(F, u, du)
\]

Here, we note that \(D \) is assumed constant, and \(u_0 \) represents the previous time step, where \(F \) is derived using Crank-Nicolson time-stepping for diffusion and implicit time-stepping for the reaction term. Finally, GMRES was used to iteratively solve the nonlinear PDE above, with a maximum iteration of 30 and relative error tolerance of \(10^{-12} \). In the case of no reaction term, the nonlinearity of the problem was relieved, allowing us to use a direct solver.

Each particle (biological cell) and its behavior were implemented using a single class, whose features were inherited from a parent class called BasicCell. Each BasicCell object was designed to retain basic attributes such as position, orientation, and the number of the partition where the particle could be found on the global mesh. This object-oriented design enables further extension through the addition of new particle classes. Multiplication and/or cell death is also easily supported by the dynamic allocation and removal of objects defined by these classes. Other features of this framework include parameter input through XML files, support for unstructured meshes in XML format, support for an arbitrary number of particle types and chemoattractant species, and parallel output to pVTK files for large-scale visualization using ParaView, a 3D data analysis and visualization application with parallel support (found at http://www.paraview.org). Future plans include optimization of the parallel particle code and simplification of the framework for ap-
lication to a wider set of problems.

Figure 4.10: An early test using the nonlinear reaction-diffusion PDE, in which cells were assumed to metabolize the chemoattractant as they moved.

4.4 Parallel implementation and challenges

The DOLFIN software library natively supports parallelization via PETSc, a suite of data structures, routines and solvers for the parallel solution of PDEs (found at http://www.mcs.anl.gov/petsc/). In particular, the software uses ParMETIS, a parallel library for graph and unstructured mesh partitioning, to carry out the domain decomposition of the PDE problem. Here, the discretized domain of the PDE is decomposed spatially such that each processor in the distributed cluster is assigned one partition of the global mesh (on which to solve a portion of the problem), as demonstrated in Figure 4.11. Meanwhile I implemented the functionality to subdivide the task of updating the particle positions among the compute nodes; unlike the PDE problem, this partitioning was done using functional decomposition - that is, each processor was initially given a random but roughly equal subset of all particles in the domain (independent of the assignments for the PDE problem partitioning).

The justification for this choice was that in most biological problems, the presence of attractants would lead to the convergence of cells to highly localized regions in the full domain. A spatial partitioning scheme
would therefore result in severe load imbalance as a simulation progressed, where some processors would bear much of the load while others would remain idle. In addition, without other workarounds, a spatial scheme would require significant communication (and perhaps transfer of data) each time a cell would migrate between adjacent partitions. Using functional decomposition, cells were initially distributed among processors irrespective of their spatial position. The concentration measurements (and sometimes gradients) at the particle coordinates then needed to be communicated between processors at every time step.

Figure 4.11: The discretized domain of the PDE was decomposed spatially and partitioned among the processors in the *E. coli* cellular dynamics simulation.

While communication patterns are typically tailored to the network topology of the cluster for optimal performance (the Taub supercomputer uses the QDR Infiniband interconnect), here I employed a ring communication scheme on the basis that it would be more cost-efficient than collective operations like All-to-All and AllReduce. Therefore, at every time step, one full cycle of ring communication was performed to communicate the spatial coordinate of each particle, as shown in Figure 4.12. If the particle was found to
lie within the subdomain attributed to a given processor, the concentration (or gradient) was interpolated and returned within an array that was shuttled once around the ring. At the end of the communication cycle, each processor would then retrieve its own array containing the information needed to update its own particles. For all communication, non-blocking operations were used (Isend, Irecv) in order to optimally overlap communication and computation (interpolation of the field data).

Figure 4.12: Figure showing the simplified graph for ring-type point-to-point communication in MPI. Non-blocking communication was used (Isend, Irecv) to transfer concentration and gradient information between processors, rather than using the more expensive all-to-all scatter/gather approach.

In addition to the challenges encountered in parallelization, we observed in early tests that the use of exceedingly sharp Gaussian shapefunctions led to convergence problems in the nonlinear solver for the reaction-diffusion case. In particular, if the width of the shapefunction was less than the order of h, it became difficult to describe using low order polynomials on the elements (e.g. linears). Hence, the effect of metabolism was observed only when cells were located sufficiently close to mesh nodes, resulting in transient spotty behavior with irregular (nonuniform) reduction in the local concentrations, as shown in Figure 4.13. This restriction therefore placed a constraint on the mesh size, where the maximum h had to be estimated based on the relative rate of diffusion and chemoattractant metabolism (which together influence the width of the shapefunction), using the fundamental solution for the 2-D diffusion equation for a transient point.
\begin{equation}
\phi(dt, x, y) = \frac{M}{4\pi D dt} \exp \left(-\frac{x^2 + y^2}{4D dt} \right),
\end{equation}

where \(M = \int_{-\infty}^{\infty} \phi(dt, x, y) \, dx \, dy \), the total volume consumed in time \(dt \). Once the mesh resolution was increased sufficiently, the numerical artifacts were no longer observed.

Figure 4.13: The sharpness of the Gaussian has a significant effect on the accuracy of the FEM approximation. If the size of the mesh element \(h \) is not less than the width of the Gaussian, these transient spots would appear, and sometimes the solver would have difficulty converging to a solution.

4.4.1 Test simulations

In addition to its application in the *E. coli* cellular dynamics studies explained in Chapter 2, the computational framework was also applied to other test scenarios. Initially, we looked at run-and-tumble chemotaxis in dilute solutions where chemoattractant metabolism was neglected (i.e. diffusion only). Figure 4.14 demonstrates *E. coli* migration around a rectangular obstacle on a 2-D domain, where cell motion was described in three dimensions but projected down onto the solution domain. We note that the simulation is capable of handling particle collisions with the domain boundary. For the second test simulation, we then applied
the reaction-diffusion equation to simulate at a bacterial motility plate, in which the cells were assumed to metabolize the chemoattractant as they moved outward. Figure 4.15 shows how the cells formed a growing ring pattern on the plate in response to the self-generated gradient.

In our final test simulation, we looked at spiral pattern formation in bacterial colonies of *Proteus mirabilis*, which was previously studied by Xue *et al.* [173]. By applying a slight rotational bias (caused by drag between the cell and plate surface) to the phenomenological *E. coli* chemotaxis model in Chapter 2, we were able to reproduce the spiral pattern behavior observed in their paper. Moreover, the formation of a spiral stream is a clear indication that the chemoattractant production is being modeled successfully by the Gaussian shapefunctions, even at the level of an individual cell; the aggregate effect of these reaction terms leads to the initial coalescence of cell subpopulations into larger streams (due to the initial nonuniformities in the bacterial distribution). These streams were then observed to spiral in toward the center of the plate. The initial condition applied here was a cone shaped concentration profile with the maximum at the plate center, as used by Xue *et al.*
Figure 4.14: Simulation of *E. coli* chemotaxis in a linear gradient around an obstacle. Note the use of an unstructured domain.
Figure 4.15: Simulation of a bacterial motility plate. Here, the metabolism of the chemoattractant by the cells results in the generation of an outward-facing gradient at the center of the plate. The cells subsequently respond to this gradient and migrate outward.
Figure 4.16: Simulation of stream formation in *Proteus mirabilis* colonies. The spiral arms are a result of chemoattractant secretion by the cells - the initial non-uniformity in the cell distribution leads to the localized aggregation of subpopulations. Meanwhile the spiral streams are caused by a rotational bias simulating the drag force induced between the cell and plate surface.
4.5 Concluding remarks

Many biological and industrial processes require a detailed understanding of particles in suspension and their collective dynamics, including heterogeneous catalysis, multiphase flows, emulsions and microfluidic systems (e.g. particle focusing and sorting). The generalized computational framework here decomposes the problem into a hybrid particle-continuum system, where the particles dynamics are described using a microscale description (or its own set of ODEs). Meanwhile, the continuum field, such as the concentration or velocity, can be updated using a different time step, by solving the corresponding PDE problem. Specifically, this framework utilizes the DOLFIN package (as part of the FEniCSproject suite) through its C++ API to solve the FEM formulation of the PDE, which could either be defined using a nonlinear reaction-diffusion equation or a simple diffusion equation. The capabilities of the software library are extended to output the cell position data, as well as to couple the problem with the PDE through the reaction term if required.

A unique advantage of the discrete particle representation, for instance when applying it to chemotactic cells, is that it avoids numerical issues such as finite time blowup and singularities around point sources; these problems were encountered in continuum models like the Keller-Segel. However, due to the inherent properties of chemotaxis problems (e.g. aggregation of cells around chemoattractant maxima), a number of challenges had to be addressed for efficient parallelization and optimal load balancing. Moreover, we found that the minimum resolution of the mesh (or h) required is dictated by the relative rate of chemoattractant metabolism versus diffusion, if the reaction term is to be represented using a Gaussian shapefunction. Finally, we were able to demonstrate successful application of the framework to simulate various phenomena involving bacterial migration.
References

[126] Y He, A Kapoor, S Cook, S Liu, Y Xiang, and Rao CV. The non-receptor tyrosine kinase lyn controls neutrophil adhesion by recruiting the crkl-c3g complex and activating rap1 at the leading edge. 124(13):2153–2164, 2011.

[128] RB Allan and Wilkinson PC. A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes, use of a new chemotaxis assay with candida albicans as gradient source.

