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ABSTRACT  

 

 This report documents the development of acoustic and ultrasonic inspection 

methods on wooden glulam beams and utility poles.  All beams and poles examined 

where composed of Douglas-fir.  The report begins with a description of the structure of 

trees, the mechanical behavior of wood subjected to rot, and current utility pole 

inspection methods.  Background regarding inspection methodology on wood structures 

is provided.  Cross-sectional images of the glulam beams and the utility poles used in this 

study were obtained through the use of computerized axial tomography (CAT or CT) 

scans.  Areas of decay were identified using the CT scan images.  Two methods of 

detecting defects within glulam beams are described: ultrasonic through-transmission and 

impact-echo.  The analysis of the wooden utility poles starts with the development of a 

two-dimensional, finite difference time domain (FDTD) simulation to model wave 

propagation through the pole.  The simulation is validated against empirical results. 

 The through-transmission technique used on the glulam beam locates rot through 

the use of the highest magnitude frequency and area under the power spectrum density 

curve.  A 100 kHz signal was sent through the glulam beam.  In areas devoid of decay, 

the received frequency was approximately 100 kHz.  In areas where decay was identified, 

the frequency of highest magnitude shifted lower towards 85 kHz.  Also, the area under 

the power spectrum density curve of the received signal was greatly diminished in areas 

of decay. 

 The impact-echo method used on the glulam beams locates rot through the use of 

the attenuation rate.  An accelerometer was affixed to the surface of the beam.  A ball 

bearing was dropped from 200 mm above the surface next to the accelerometer.  The 

signal was recorded.  A spectrogram of the received signal was developed, and the mean 

rate of attenuation of the frequency range 500 Hz to 20 kHz was calculated.  An 

attenuation rate of 1.17 Nepers per millisecond was found to be the threshold indicative 

of the presence of rot.  Attenuation rates greater than the threshold indicated the presence 

of rot; lower indicated sound wood.  The threshold had an overall error rate of 7.2%. 

 The report then shifts to developing a two-dimensional, finite difference time 

domain simulation that can model wave behavior through a wood pole cross-section.  The 
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model incorporates several features that have not been included in previous analyses.  

These features include: a frequency dispersive model of wave velocity and attenuation, 

cross-sectional density and geometry information collected directly from CT scans of the 

utility poles, a perfectly matched layer used to model the behavior or rot, and a center 

point formulation that allows waves to pass through the center of a cylindrically 

orthotropic medium.  The simulation is validated against the waveform behavior 

predicted by an analytical model and against experimental data collected from impact 

through-transmission testing of three actual utility pole specimens. 

 Defects of various sizes and locations are then simulated in order to identify 

associated changes in wave behavior.  The results of the simulation are used to develop 

metrics to determine the size, depth, and general location of internal defects within a 

wooden utility pole.  The metrics are then applied to data collected from the wooden 

utility poles with known internal defects for validation.  The predicted defect areas are 

accurate to within 2.0% of the total cross-sectional area and have a positional accuracy 

within 17% of the cross-sectional radius. 
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CHAPTER 1. INTRODUCTION  

 

 The two major forms of bio-deterioration of wood and wood products are decay 

and insect attack.  While many wood structures are routinely inspected for insect attack, 

such as termite inspection in real estate transactions, inspection for wood decay is rarely 

performed mainly because of the lack of an effective testing method.  Whereas much has 

been done to preserve wood and wood composites, wood structures such as buildings, 

wood bridges, utility poles, and others continue to decay, because even the best 

preservative techniques available today have not been able to truly preserve these 

materials against the natural process of decay.  The process of decay varies with the rot / 

fungal species, but follows a sequential process of incipient, intermediate, and advanced 

decay.  Incipient decay normally occurs with little visible change to the wood, although 

the dynamic strength properties can be greatly reduced.  The other extreme, i.e., advanced 

decay, is characterized by wood with no intrinsic strength. 

 The economic impact of wood decay is also significant.  There are millions of 

dollars in real estate transactions involving wooden structures daily without them being 

inspected for wood decay.  Wooden utility poles also illustrate the potential economic 

impact of wood decay.  There are over 100 million wooden utility poles in the United 

States [1].  The annual replacement rate due to decay is 0.34% [2].  About a third of the 

poles replaced due to decay still have useful service life [2].  Assuming an average 

replacement cost of approximately $2500, a one percent reduction in pole removals from 

improved inspection techniques saves $8.5 million annually. 

 Several nondestructive testing methods have been attempted to detect and 

evaluate the level of wood deterioration caused by decay.  These methods include 

radiation (X-rays and gamma rays, microwave), electrical (low frequency and DC 

conductance), and acoustic (stress wave methods, sonic and ultrasonic, including acoustic 

emission and acousto-ultrasonics) [3 - 9].  Radiation methods are affected primarily by 

density variations and moisture content in the wood.  Electrical methods depend on 

conductivity and dielectric properties, which are specially affected by moisture content 

below the fiber saturation point.  Acoustic methods are largely dependent on mechanical 

properties (e.g., modulus of elasticity) and density of wood.  While the most promising 
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has been the acousto-ultrasonic approach, all suffer from the inherent variability of wood 

such as grain angle, density, moisture content variations, and presence of features such as 

knots, splits, and resin pockets that can mask the presence of decay.  While all the past 

research has contributed to the current state-of-the-art techniques, there is still a strong 

need to reliably detect and assess decay in wood and wood products. 

 This report documents the development of acoustic and ultrasonic inspection 

methods on glulam beams and wooden utility poles.  First, a description of the structure 

of trees, the mechanical behavior of rot, and current utility pole inspection methods is 

presented.  Background regarding inspection methodology on wood structures is 

provided.  Two methods of detecting defects within glulam beams are described: 

ultrasonic through-transmission and impact-echo. 

 The report then shifts to developing a simulation that can model wave behavior 

through a wood pole cross-section.  The simulation is validated against theoretical and 

experimental values.  Defects of various sizes are then simulated in order to identify 

associated changes in wave behavior.  The results of the simulation are then used to 

develop metrics to determine the size, depth, and general location of internal defects 

within a wooden utility pole.  The metrics are then applied to three actual wooden utility 

poles with known internal defects.  The predicted defect areas are accurate to within 2.0% 

of the total cross-sectional area and have a positional accuracy to within 17% of the 

cross-sectional radius. 

 

1.1. Structure of Trees 

 Wood has been described as an organic composite material produced by trees.  In 

reality, wood is not a single complex material, but a series of complex materials built of 

successively diminutive structures ranging in size from angstroms to meters.  The macro 

characteristics of wood are affected by the individual cells.  Below is a brief description 

of the structure of wood from the cellular level up to macroscopic level. 

 Trees are generally broken into two categories: angiosperms and gymnosperms.  

Angiosperms are also commonly referred to as deciduous, broadleaf, or hardwood trees.  

Gymnosperms are commonly referred to as conifers, evergreens, or softwood trees.  

Hardwood and softwood are the most commonly used terms and are used throughout this 
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report.  Hardwood trees are generally characterized by broad leaves and produce covered 

seeds within some type of fruiting body other than cones.  Hardwood leaves generally 

change color and are lost during cooler months of the year.  Softwood trees are generally 

characterized by green needles and produce seeds contained within cones.  The seeds 

within the cones do not possess a covering layer as the hardwood seeds do.  The needles 

of a softwood tree are largely kept throughout the year [10 - 12]. 

 
Figure 1. Hierarchical structure of wood.  Figure adapted from Bucur [13]. 

 

 It should be noted that the terms hardwood and softwood refer to the structure of 

the tree.  Hardwoods are not necessarily harder or tougher than softwoods.  A list of 

common hardwoods and softwoods and their associated side hardness (the average of the 

radial and tangential hardness) values are given below in Table 1.  Balsa wood may easily 

be broken by hand, but it a hardwood.  The wood examined in this report came from 

Douglas-fir  trees.  For this reason, the description below focuses upon the structure of 

softwoods. 

 Individual cells of wood are composed of cellulose, hemicellulose, and lignin.  

Cellulose is a straight chain polymer constructed from glucose; it is a 

homopolysaccharide (multiple units containing the same type of sugar).  Glucose is just 

one of several sugars that are formed during photosynthesis.  Two glucose molecules are 

used to construct one unit of cellulose, called a cellobiose.  Cellulose chains may have 

between 15000 and 30000 units with approximate dimensions of ten µm (10
-6

 m) in 
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length and eight angstroms (Å) (10
-10

 m) in diameter [11, 13].  Structures formed using 

cellulose are ordered and considered crystalline.  Hemicellulose is made of several types 

of sugars in addition to glucose; it is a heteropolysaccharide (multiple units containing 

the different types of sugar).  While cellulose forms long, straight chains composed of 

thousands of units, hemicellulose is a branching molecule composed of hundreds of units.  

Hemicellulose is amorphous.  Lignin is a complex and amorphous molecule that serves as 

a binder between cells and gives rigidity to cell walls [11 - 13].  While polysaccharides 

are hydrophilic, lignin is hydrophobic and aids in the transport of water through cells.  

The percentages of cellulose, hemicellulose, and lignin vary by tree species.  Softwoods 

generally contain between 40 and 44% cellulose, 20 to 32% hemicelluloses, and 25 to 

35% lignin by weight [11, 14]. 

 

Table 1.  Common hardwoods and softwoods and associated side hardness [10] 

Hardwoods Softwoods 

Species Side Hardness (kN) Species Side Hardness (kN) 

Beech 5.8 Larch 3.7 

Oak 5.6 Douglas-fir 2.8 

Birch 5.4 Pine 2.6 

Ash 5.1 Cedar 2.3 

Maple 4.5 Spruce 2.2 

Elm 3.8 Redwood 2.0 

 

 Several chains of cellulose are brought together to form a crystalline structure 

called a fibril.  Several fibrils are then bundled and held together with hemicelluloses.  

The bundles are called microfibrils.  Several microfibrils are then attached to each other 

with lignin.  Layers of microfibrils are used to construct cell walls [11, 12, 14]. 

 The structure of a wood cell is shown in Figure 2.  New cell construction begins 

with a thin membrane layer known as a primary wall.  The primary wall (known as the P 

layer) is unique in that the microfibrils that form its construction are arranged in a 

random manner.  After the primary wall is formed, three secondary walls are formed.  

The secondary walls are known as the S1, S2, and S3 layers.  The microfibrils in the S1 

layer are oriented between 50° and 70° to the longitudinal axis of the cell.  The 

microfibrils in the S2 layer are oriented between 10° and 30°.  The S2 layer is much 
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thicker than the S1 and S3 layers.  While the S1 and S3 layers are four to six layers of 

microfibrils thick, the S2 layer can be between 30 and 150 layers of microfibrils thick.  

The S3 layer is at an orientation of between 60° and 90°.  The S3 is the innermost layer 

and the last to be formed [11, 12, 14]. 

 
Figure 2.  Wood cell wall layering.  Microfibrils in the primary wall (P) are randomly oriented.  Microfibril 

orientation in the S1, S2, and S3 layers of the secondary wall are 50° to 70°, 10° to 30°, and 60° to 

90°, respectively.  Figure is extracted from Haygreen [11]. 

 

 The cells in softwoods are primarily composed of two different types of cells: 

tracheids and parenchyma.  Tracheids are long and slender.  Their lengths are typically 

100 times greater than their diameters.  They serve as mechanical support and fluid 

transport for the tree.  Tracheids compose between 90 and 95% of softwoods by volume.  

Parenchyma cells are similar in shape to tracheids, but are subdivided along their length.  

Their primary purpose is food storage for the tree [11, 12, 14]. 

 Figure 3 shows a cross-section of a region of cells from a typical softwood.  The 

cross-sectional face is labeled 1.  The radial face is parallel to the region labeled 2.  The 

tangential face is parallel to the region labeled 3.  A single annual ring is labeled as 4 and 

is subdivided into earlywood (cells produced early in the growing season of a year), 

labeled 5, and latewood (cells produced later in the growing season), labeled 6.  The 

difference in cell size and wall thickness between earlywood and latewood tracheids 

produces annual rings in trees.  Annual ring production is described in greater detail 

below.  Food is carried radially from the outer regions of the tree to the inner regions via 
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wood rays, labeled 7.  If a tree is injured, sap is brought to the sight of the injury via resin 

ducts, labeled 9.  Resin ducts are not cells, but are voids within the cell structure.  If a 

radial ray contains a horizontal resin duct, then it is referred to as a fusiform ray, labeled 

as 8.  The horizontal resin duct within the fusiform ray is labeled as 10.  Fluid can move 

between tracheid cells through a bordered pit, labeled 11.  Pits are regions where the cell 

walls of two adjacent cells are thin and connected.  Pits occurring in parenchyma cells are 

simple pits, labeled 12.  If pressure differentials develop between cells, then pits can 

become aspirated and effectively seals the pit.  Pits can become aspirated during the 

process of a cell transitioning from sapwood to heartwood or during drying.  Pit 

aspiration is partially the reason why preservative chemicals can penetrate the living, 

outer cells of Douglas-fir  (the sapwood), but penetration into the inner, dead cells (the 

heartwood) is greatly diminished [11, 12, 14]. 

 
Figure 3.  Wood structure of a softwood.  (1) cross-sectional face, (2) radial face, (3) tangential face, (4) 

annual ring, (5) earlywood, (6) latewood, (7) wood ray, (8) fusiform ray, (9) vertical resin duct, 

(10) horizontal resin duct, (11) bordered pit, (12) simple pit.  Figure extracted from Foulger [14]. 

 

 Annual rings are formed by changes in the size and wall thickness of tracheid 

cells.  Figure 4 shows the tracheid cells of both earlywood and latewood.  The tracheid 

cells that are made during the earlywood period are larger and thin walled.  Early in the 

growing season, new cell construction is fast and cells are large (relative to later in the 
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growing season).  As the growing season progresses, the rate of cell production slows and 

the new cells produced are smaller.  The change in new cell construction rate and size is 

largely affected by changes in available moisture throughout the growing season.  It is 

important to note that the rates at which new cell production and cell development 

decrease are not equal.  As a result, tracheid cells produced later in the growing season 

are smaller in size, and have greater wall thicknesses than cells produced early in the 

growing season.  Latewood is harder, denser, and stronger than early wood.  In some 

woods, like Douglas-fir  and southern pines, the proportion of late wood to early wood is 

used to judge the strength of the wood [10].  Visually this cycle produces the annular 

rings seen in the cross-section of a tree. 

 

Figure 4.  Earlywood to latewood transition in a western larch.  Note the large, thin walled cells produced 

early in the growing season (earlywood), and the smaller, thick walled cells produced late in the 

growing season (latewood).  Figure extracted from Haygreen [11]. 

 

 Figure 5a is a cross-section of red oak.  Red oak is a hardwood, but the regions 

described below are shared by both softwoods and hardwoods.  The cross-section of a 

tree is a composed of a region of bark separated from a region of wood by a thin layer of 

tissue producing cells.  The bark is divided into two regions, the inner bark and the outer 

bark.  The inner bark, marked as region A, is a region of living cells that move sugars 

produced in the leaves through photosynthesis down to the tree.  The inner bark is 

commonly known as phloem.  The outer bark, labeled B, serves as a protective covering 
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for the tree.  The cambium, labeled C, is a layer of cells that produce new tissue.  The 

tissue produced can be either inner bark (phloem) or wood (xylem).  The cambium is the 

thin gray line between the orange-yellow region of inner bark and the pale white-yellow 

region of sapwood.  Wood, also known as xylem, is composed of sapwood, heartwood, 

and pith.  Sapwood, labeled D, is composed of a combination of living and dead cells.  

The outermost sapwood cells are responsible for moving water and nutrients from the soil 

up to the leaves.  The innermost sapwood cells are responsible for food storage.  

Heartwood, labeled E, is generally composed of dead cells that serve as mechanical 

support of the tree.  The heartwood in Figure 5a is much darker than the sapwood.  This 

darkening is caused by extractives.  Extractives will be explained in greater detail below.  

The center of the tree has a small region of pith, labeled F, which are cells produced 

during height growth of the tree.  Figure 5b is a cross-section of red pine.  Wood rays are 

labeled as G.  Latewood is labeled as H; earlywood is labeled as I.  A single annual ring 

is composed of earlywood and latewood [10]. 

 

 
 

Figure 5.  Tree cross-sections of a. red oak and b. red pine.  Labels are (A) inner bark (living tissue, 

phloem), (B) outer bark (dry dead tissue), (C) cambium, (D) sapwood, (E) heartwood, (F) pith, (G) 

wood rays, (H) latewood, (I) earlywood.  Pictures supplied by Dr. Henri D. Grissino-Mayer, 

University of Tennessee.  Figure adapted from Forest Product Laboratory Wood Handbook [10]. 

 

 Extractives are chemical compounds that form during the transition of wood cells 

from sapwood to heartwood.  Red pine heartwood is clearly lighter than that of red oak.  
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The difference in shade is caused by the differences in concentrations and / or chemical 

composition of extractives.  Concentrations can range from two to five percent in 

extractive free species like spruce to as high as 30% by mass in resinous Scots pine [15].  

The properties of extractives affect wood qualities and commercial uses, but do not 

directly affect its mechanical properties.  Extractives influence the durability, color, odor, 

and taste of wood.  The extractives of red cedar are the source of the color and odor so 

coveted by furniture and paneling manufacturers.  Bourbon is aged in white oak barrels to 

impart desirable taste characteristics.  Many cookies are flavored with vanillin obtained 

from wood pulp rather than vanilla beans.  Some of these extracts serve as deterrents to 

sources of decay.  The heartwood of redwood, cypress, and cedar are resistant to termites.  

Research has recently been performed associating extractives with brown rot resistance in 

larches and Scots pines [16, 17].  Any decay resistance enjoyed by the heartwood does 

not extend to the surrounding sapwood.  Sapwood of all species are susceptible to decay 

[11]. 

 

1.2. Brown Rot in Softwoods 

 Wood rotting fungi are generally put into two different categories: brown rot and 

white rot.  Brown rot is a cellulose attacking rot that predominantly attacks softwoods.  

Brown rot causes infected wood to become browner in color and shrink.  White rot is a 

cellulose and lignin attacking rot that predominately attacks hardwoods.  White rot causes 

infected wood to become lighter in color but generally retain its original dimensions until 

advanced stages of decay.  Brown rot and white rot do not exclusively infect specific 

types of wood.  Both brown rot and white rot can infect softwood and hardwood [10, 18 - 

20].  The rot model used in this report was based upon the work of McGovern [21] 

involving the effects of brown rot species Gloeophyllum trabeum (G. trabeum) on yellow 

southern pine.  As a result, this report focuses on the effects of brown rot; white rot is not 

discussed. 

 The description below focuses on the characteristics, growth, and mechanical 

effects brown rot has upon the host wood.  The chemical mechanisms through which the 

mechanical effects are brought about are not described here.  Also, the biology of brown 

rot is discussed only to the point necessary to describe how it brings about the mechanical 
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changes in the host wood.  No description is given of brown rot asexual reproduction 

processes or microbiology.  An in depth discussion of the chemistry of brown rot can be 

found in [18 - 20, 22 - 26].  A description of the life cycle of brown rot can be found in 

[18]. 

 There are over 106 varieties of brown rot [18].  The description provided here 

describes features generally true of many varieties of brown rot.  Brown rot behavior is 

diverse and it is likely there exist varieties that exhibit behaviors other than those 

described here [19].  At a minimum, the description below is accurate for G. trabeum 

[18].  In nature, brown rot is most often associated with decay of softwood species and 

structures.  As a result, it is frequently stated that brown rot has a greater capacity to 

decay softwood than hardwood.  Laboratory tests have shown that brown rot is equally 

capable of decaying both softwood and hardwood species [19].  Brown rot is an internal 

form of decay that is generally reddish in color.  Wood infected by brown rot becomes 

browner in color, as shown in Figure 6a.  It often occurs in large structural timbers.  

Large infected areas are not necessarily uniform.  Infected wood shrinks and cracks 

during the rotting process.  Cracks can be either radial or tangential.  Severely rotted 

wood cracks to such an extent that it takes on a cubical appearance, as shown in Figure 

6b.  At that point, the wood is fragile and can be crumbled into dust when handled as 

shown in Figure 6c [18, 20]. 

 

   
Figure 6.  Examples of brown rot, a. brown rot in a timber cross-section, b. a log showing radial and 

tangential cracking, c. ñcubesò of brown rotted wood. 

 

 Brown rot spreads when conditions are favorable for growth.  Dry wood with a 

moisture content below 20% is usually safe from fungal attack [3, 18].  Most fungal 

decay occurs when the moisture content is above 30% [10].  It is also possible for the 

a. b. c. 
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wood to be too wet for fungal growth.  Water soaked wood may have too little air on the 

interior to support fungal growth.  Generally, the wood must have a moisture content 

above the fiber saturation point (~30% moisture content), but the cell lumen cannot be 

saturated.  Temperatures of growth range by species, but are generally between 10°C and 

35°C.  Fungal decay ceases at temperatures below 2°C and above 38°C [10, 20]. 

 The transmission and infection mechanism of brown rot is shown in Figure 7. 

Brown rot produces fruiting bodies on the surface of the infested wood.  Spores from the 

fruiting body are distributed by the wind or insects.  If a spore contacts wood susceptible 

to fungal attack and favorable growth conditions exist, then the spore will germinate and 

a new fungal body is produced [10]. 

 

  

 

a. b. c. d. 

Figure 7.  Transmission and infection of wood by brown rot: a. section of a post showing decay b. spores 

carried by the wind or insects, c. spores germinating, d. infected wood cells.  Figures adapted from 

Forest Products Laboratory [10]. 
 

 When a spore germinates, it produces a hypha.  A hypha is a filament tube that 

grows apically.  The hyphae are the means by which fungi spread during growth.  The 

mass of hyphae that makes up the fungal body is called the mycelium, shown in Figure 

8a.  Brown rot grows in cell lumen and moves between cells using two different avenues: 

through pre-existing pits or through the creation of bore holes [18, 20, 22].  Hyphae 

easily penetrate the thin pits of cell walls.  After penetration, the access point, either pit or 

bore hole, is widened to allow easier access.  Wilcox noted in 1969 that brown rot hyphae 

almost exclusively used pits rather than bore holes [22].  Eaton indicated brown rot used 

both methods to spread between cells [18], and Goodell indicated that some brown rot 
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species prefer pit penetration over bore holes [20].  Hyphae spreading between wood 

cells via bore holes is shown in Figure 8b. 

 

 

a. b. 
Figure 8.  Spreading fungus, a. Microscopic view of fungus.  Individual strands are known as hypha (plural 

hyphae).  The mass of hyphae is called mycelium [27], b. hyphae moving between wood cells 

using bore holes (arrowed).  The bar at the bottom right of 8b represents 100 µm.  Figure extracted 

from Eaton [18]. 

 

  

a. b. 
Figure 9.  Wood cell walls, a. sound wood, and b. decayed wood.  Note the loss of mass in the decayed 

wall structure; however, the shapes of the original cells are largely maintained by a remaining 

lignin skeleton.  Extracted from Filley [28]. 

 

 Brown rot hyphae initially move into ray cells and axial parenchyma.  

Carbohydrates stored in the parenchyma cells provide a readily available energy source 


























































































































































































































































































































































































































































