MASTRAF: A DECENTRALIZED MULTI-AGENT SYSTEM FOR NETWORK-WIDE TRAFFIC SIGNAL CONTROL WITH DYNAMIC COORDINATION

BY

JUAN C MEDINA

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor Rahim F. Benekohal, Chair
Associate Professor Yanfeng Ouyang
Assistant Professor Daniel B. Work
Professor Gul Agha
ABSTRACT

Continuous increases in traffic volume and limited available capacity in the roadway system have created a need for improved traffic control. From traditional pre-timed isolated signals to actuated and coordinated corridors, traffic control for urban networks has evolved into more complex adaptive signal control systems. However, unexpected traffic fluctuations, rapid changes in traffic demands, oversaturation, the occurrence of incidents, and adverse weather conditions, among others, significantly impact the traffic network operation in ways that current control systems cannot always cope with.

On the other hand, strategies for traffic control based on developments from the field of machine learning can provide promising alternative solutions, particularly those that make use of unsupervised learning such as reinforcement learning (RL) - also referred as approximate dynamic programming (ADP) in some research communities. For the traffic control problem, examples of convenient RL algorithms are the off-policy Q-learning and the ADP using a post decision state variable, since they address processes with sequential decision making, do not need to compute transition probabilities, and are well suited for high dimensional spaces.

A series of benefits are expected from these algorithms in the traffic control domain: 1) no need of prediction models to transition traffic over time and estimate the best actions; 2) availability of cost-to-go estimates at any time (appropriate for real-time applications); 3) self-evolving policies; and 4) flexibility to make use of new sources of information part of emergent Intelligent Transportation Systems (ITS) such as mobile vehicle detectors (Bluetooth and GPS vehicle locators).

Given the potential benefits of these strategies, this research proposes MASTraf: a decentralized Multi-Agent System for network-wide Traffic signal control with dynamic coordination. MASTraf is designed to capture the behavior of the environment and take decisions based on situations directly observed by RL agents. Also, agents can communicate with each other, exploring the effects of temporary coalitions or subgroups of intersections as a mechanism for coordination.
Separate MASTraf implementations with similar state and reward functions using Q-learning and ADP were tested using a microscopic traffic simulator (VISSIM) and real-time manipulation of the traffic signals through the software’s COM interface. Testing was conducted to determine the performance of the agents in scenarios with increasing complexity, from a single intersection, to arterials and networks, both in undersaturated and oversaturated conditions.

Results show that the multi-agent system provided by MASTraf improves its performance as the agents accumulate experience, and the system was able to efficiently manage the traffic signals of simple and complex scenarios. Exploration of the policies generated by MASTraf showed that the agents followed expected behavior by providing green to greater vehicle demands and accounting for the effects of blockages and lost time. The performance of MASTraf was on par with current state of practice tools for finding signal control settings, but MASTraf can also adapt to changes in demands and driver behavior by adjusting the signal timings in real-time, thus improving coordination and preventing queue spillbacks and green starvation.

A strategy for signal coordination was also tested in one of the MASTraf implementations, showing increased throughput and reduced number of stops, as expected. The coordination employed a version of the max-plus algorithm embedded in the reward structure, acting as a bias towards improved coordination. The response of the system using imprecise detector data, in the form of coarse aggregation, showed that the system was able to handle oversaturation under such conditions. Even when the data had only 25% of the resolution of the original implementation, the system throughput was only reduced by 5% and the number of stops per vehicle was increased by 8%.

The state and reward formulations allowed for a simple function approximation method in order to reduce the memory requirements for storing the state space, and also to create a form of generalization for states that have not been visited or that have not been experienced enough. Given the discontinuities in the reward function generated by penalties for blockages and lost times, the value approximation was conducted through a series of functions for each action and each of the conditions before and after a discontinuity.

The policies generated using MASTraf with a function approximation were analyzed for different intersections in the network, showing agent behavior that reflected the principles
formulated in the original problem using lookup tables, including right of way assignment based on expected rewards with consideration of penalties such as lost time. In terms of system performance, MASTraf with function approximation resulted in average reductions of 1% in the total system throughput and 3.6% increases in the number of stops per vehicle, when compared to the implementation using lookup tables on a congested network of 20 intersections.
ACKNOWLEDGEMENTS

I would like to specially thank my advisor Dr. Rahim F. Benekohal for his continuous support and guidance, not only for the completion of this work, but throughout my graduate studies. I would also like to thank Dr. Benekohal for the education received in the transportation program, and for the practical, real-world experience acquired from a wide variety of projects I had the opportunity to be part of.

I have met a great number of people over the last years. To them, I owe all the small and big things that made my stay a truly great life experience; I am and I will always be truly grateful for that. I finish the program with the best friends and peers, and hoping to keep in contact with them for years to come.

Lastly, I would like to thank my parents for their unconditional support and constant motivation. I am sure they appreciate this achievement as much as I do, and this it to them.
TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION ... 1
 1.1. MASTraf .. 4
CHAPTER 2 – LITERATURE REVIEW ... 8
 2.1. Evolution of Traffic Control and Current Systems ... 8
 2.2. Reinforcement Learning and Approximate Dynamic Programming over Time 13
 2.3. Traffic Control Using Learning Agents ... 15
CHAPTER 3 – REVIEW OF REINFORCEMENT LEARNING AND APPROXIMATE DYNAMIC PROGRAMMING ... 21
 3.1. Fundamentals .. 21
 3.2. Q-learning ... 24
 3.3. The ADP with Post-decision State Variable ... 26
 3.4. Eligibility Traces – a Bridge between Single-step Updates and Monte-Carlo 29
CHAPTER 4 – PROPOSED MULTI-AGENT SYSTEM ... 31
 4.1. Operational Description .. 31
 4.2. Implementation .. 33
 4.3. System Components .. 34
CHAPTER 5 – EVALUATION OF MASTRAF IN TRAFFIC SIGNAL SYSTEMS 41
 5.1. Single Intersection - Oversaturated Conditions ... 41
 5.2. Four-intersection Arterial, Undersaturated Conditions ... 55
 5.3. Five-intersection Arterial – Q-learning, Variable Demands .. 70
 5.4. 3x2 and 3x3 Networks – Q-learning ... 77
 5.5. 3x3 Network – ADP .. 81
 5.6. 5x2 Network, Undersaturated Conditions ... 89
 5.7. 5x2 Network, Oversaturated Conditions ... 95
 5.8. 4x5 Network – Q-learning and ADP ... 98
CHAPTER 6 – IMPLEMENTATION OF A STRATEGY FOR SIGNAL COORDINATION 105
 6.1. The Max-Plus Algorithm ... 107
 6.2. Implementation ... 110
 6.3. Simulation Results ... 111
6.4. Summary of Findings ... 119

CHAPTER 7 – IMPLEMENTATION OF A VALUE FUNCTION APPROXIMATION....... 120

7.1. Implementation .. 122
7.2. Performance .. 125
7.3. Policies .. 127
7.4. Summary of Findings .. 134

CHAPTER 8 – STRENGTHS, LIMITATIONS, FUTURE EXTENSIONS, AND POTENTIAL FOR FIELD IMPLEMENTATIONS ... 135

8.1. Strengths .. 135
8.2. Limitations ... 136
8.3. Future Extensions .. 137
8.4. Potential for Field Implementation .. 138

CONCLUSIONS .. 140

REFERENCES .. 144
CHAPTER 1 - INTRODUCTION

Continuous increases in traffic volume and limited available capacity in the roadway system have created a need for improved traffic control. From traditional pre-timed isolated signals to actuated and coordinated corridors, traffic control for urban networks has recently evolved into more complex adaptive signal control systems. These systems strive to provide improved performance in terms of indicators such as throughput and delay, but they have a number of limitations or are in experimental stages. Managing traffic signals in an urban network using real-time information is today, without doubt, a problem subject of active research.

Traffic engineers typically forecast and take preventive measures for recurrent congestion, thus reactive and adaptive control systems are tuned to adjust (to some degree) the signal timing settings for such conditions. However, unexpected traffic fluctuations, rapid changes in traffic demands, oversaturation, the occurrence of incidents, and adverse weather conditions, among others, significantly impact the traffic network operation. All these factors make of the traffic operation a complex process that is difficult to model and manage, to the point that current control systems cannot always cope with.

Very broadly, today’s advanced traffic signal systems could be grouped as traffic responsive and traffic adaptive systems, following a classification proposed in the Traffic Control Systems Handbook (Gordon et al, 2005). Traffic responsive systems make use of vehicle detectors to determine the best gradual changes in cycles, splits, and offsets, for intersections within a predetermined sub-area of a network. Well known examples in this category are the SCOOT and SCATS systems. On the other hand, adaptive systems have more flexibility in the signal parameters and they do not make use of predetermined signal timing settings for their operation. In addition to sensor information, they also use prediction models to estimate traffic arrivals at intersections and adjust the signal settings to optimize an objective function, such as delay. Examples of adaptive systems are RHODES and OPAC, which optimize an objective function for a specified rolling horizon (using traffic prediction models) and have pre-defined sub-areas (limited flexibility) in which the signals can be coordinated.
One of the main disadvantages of actuated and adaptive traffic control is that the operation is constrained by maximum and minimum values for cycles, splits, and offsets. In addition, some of today’s most sophisticated traffic control systems use hierarchies that either partially or completely centralize the decisions, making the systems more vulnerable upon failures in one of the master controllers. In such events, the whole area of influence of said master, which may include several intersections, will be compromised by a single failure. Hierarchies also make systems more difficult to scale up, as centralized computers will need to interconnect all intersections within pre-defined subareas, creating limitations and requirements as the network is expanded.

Additional disadvantages of current advanced systems are related to the uncertainty of the prediction models for future demand and arrival times, particularly when the demand is close to capacity and when operation is oversaturated. Issues are more common when conditions in the network transition from undersaturated to oversaturated and vice versa because a series of predictors, coefficients, and parameter relations in the models may not appropriately describe the movement of traffic at all times. Moreover, these systems incorporate self-correcting mechanisms only for some of the model parameters, indicating no complete adaptation or evolution. For example, RHODES requires a multitude of parameters for queue discharge speeds and the like that must be calibrated to field conditions (FHWA, 2010).

Therefore, improvements to traffic control strategies could be made if the control system is able to not only respond to the actual conditions found in the field, but also to learn about them and truly adapt its actions. Cycle-free strategies could also offer a new perspective that is less restrictive to accommodate changes in traffic. In addition, increased flexibility for system modifications, expansions, and lower vulnerability could also be achieved if the control system were decentralized. These are precisely some of the ideas considered in this proposal, and the main reasons to consider learning methods to approach the traffic control problem.

Alternative methods for real-time traffic signal control may be devised based on new developments from the field of machine learning that make use of unsupervised learning. In such methods the decisions are made given the state of the system, policies are learned based on past experience, and the system evolves over time to improve performance. This is the case of reinforcement learning (RL) strategies, which are also referred as approximate dynamic programming (ADP) in some research communities (Gosavi, 2009).
These strategies can solve stochastic optimization problems that are difficult to model (the expectation of the transition function is difficult to be computed), require sequential decision making, and have high dimensional decision and solution spaces. The network-wide traffic signal control problem can very well be defined in such terms given that the system evolves over time based on a complex stochastic process itself. The system behavior depends on a wide variety of combination of driver and vehicle types that produces a series of stochastic trajectories for identical initial conditions. Driver characteristics such as reaction times, acceleration and deceleration rates, desired speeds, and lane changing behavior are examples of stochastic variables that directly affect the evolution of the system state over time. Some of these stochastic variations are also incorporated in current traffic models by means of statistical distributions that approximate the real-world behavior. As an example, for the Wiedemann car-following model (used in the microscopic simulation VISSIM) these factors are the response time and desired spacing of drivers, coupled with the desired speed of a leader and a set of lane-changing behavior parameters.

Thus, if the traffic state can be modeled as a stochastic process, and more precisely as a stochastic process that follows the Markov property, the control of the traffic signals can be described as a Markov Decision Process (MDP) and there is potential for finding optimal or near-optimal solutions using RL strategies. For our control problem, perhaps some of the best examples of RL algorithms are the off-policy Q-learning and the approximate dynamic programming using a post decision state variable, since they are very convenient to address processes with sequential decision making, do not need to compute the transition probabilities, and are well suited for high dimensional spaces (Powell, 2010).

A series of benefits can be anticipated with the use of these algorithms for the traffic control problem: 1) there is no need of closed-form expressions (or prediction models) to transition the traffic over time and estimate the best actions, since the algorithms make use of real-time inputs (from field or a simulation environment) to learn the system behavior; 2) the algorithms continuously update estimates of cost-to-go functions (discounted state values), therefore they always have an estimate available and are appropriate for real-time applications, i.e. they are “anytime” algorithms; 3) self-evolving policies can ensure true adaptation to approach optimal performance with respect to the desired measure of performance; 4) results from the algorithms may lead to new strategies to manage traffic since the emergent agent
behavior (action selection) to optimize a series of indicators is not known in advance; 5) given the flexibility of the multi-agent structure and the model-free strategy, RL agents could be easily adapted to make use of new sources of information part of emergent Intelligent Transportation System (ITS) trends such as mobile vehicle detectors (Bluetooth and GPS vehicle locators), through local Dedicated Short Range Communication (DSRC) devices.

Some studies have considered the use of RL algorithms for traffic control, but they are very limited in terms of network complexity and traffic loadings, so that realistic scenarios, oversaturated conditions, and transitions from undersaturation to oversaturation (and vice versa) have not been fully explored. Many questions remain open on the adequate management of RL agents when the traffic demands are not balanced (in terms of volume, number of lanes, and link length), when the demand changes over time, and when the volumes exceed the capacity of the network so that the signal control should prevent queue overflows. In addition, there are a series of challenges that need to be solved in order to express a traffic control system as an effective multi-agent RL system, including: 1) what parameters should be used to best describe the system state, 2) how to determine the goodness of the agents’ actions, or the reward and penalty structures, 3) how often the decisions should be made, 4) how to interconnect intersections and create conditions for cooperative behavior that translate into good signal progression, and 5) how to incorporate traffic-domain knowledge in the reinforcement learning algorithms.

1.1. MASTraf

Based on recent advances in reinforcement learning (RL) and given the limitations of current traffic signal control systems, this research develops a fully decentralized Multi-Agent System for network-wide Traffic Signal Control with Dynamic Coordination (called MASTraf), capable of providing efficient operation of traffic signals using real-time inputs.

Knowledge from the transportation engineering domain has been combined with the use of RL techniques in order to develop MASTraf. In addition, the microscopic traffic simulator VISSIM provided an ideal platform for testing MASTraf in different networks and traffic conditions.

Two separate MASTraf systems were created independent from each other and tested under similar conditions: one using Q-learning, and one using an ADP algorithm with a post-
decision state variable. Even though the two algorithms use a different learning process, they shared similar definitions for the state and reward functions.

MASTraf, as a multi-agent system, is designed to capture the behavior of the environment based on situations directly observed by the agent. In contrast, current adaptive approaches rely on predictions from traffic models that need to be calibrated for specific sites and geometries. Learning agents can identify changes in traffic and react appropriately based on what they “know” about the system (as they have experienced it before), thus there is no need for calibration of traffic-related characteristics (which can vary over time, requiring recalibration). Agents act and then observe the performance of the actions to create knowledge, thus the process is not a predictive one, but a learning one based on the past behavior of the system.

MASTraf can accommodate changes in the system size, should it increase or decrease, or simply have geometric modifications (e.g. changes in number of lanes or lane configuration). This is the case because of the decentralized nature of the control strategy and because agents have a limited view of their surroundings and may couple with their neighbors only temporarily for improved network-wide performance. Learning can be continuous and, as it converges to a policy, it is possible to re-learn a policy in the background and compare it to the current policy to adapt to changes in the medium or long term. The MASTraf network connectivity is very sparse, with permanent communication links only between immediate neighbors, thus system scaling with changes in the network size is adequate and only a limited number of agents are affected by adding, removing, or modifying an intersection.

Due to these characteristics MASTraf can be effective in managing a wide range of network sizes (from only a few, to several dozen intersections) with symmetric and asymmetric geometries and traffic demands, which can be very challenging for network-wide control, particularly for large networks.

Communication is granted between neighboring agents, and in this research is assumed to exist in order to determine coordinated actions that may result in favorable traffic progression and a better utilization of the network capacity. This feature may bring significant benefits when the conditions are undersaturated, and it will be even more important for oversaturated conditions by allowing vehicles to be processed only when there is available capacity downstream, helping prevent blockages and gridlocks.
A method to form temporary coalitions or subgroups of intersections to coordinate actions based on current traffic demand is anticipated is also incorporated to MASTraf. Dynamic groups of coordinated intersections are created by means of the max-plus algorithm (Kok and Vlassis, 2006; Kuyer et al., 2008). This feature may be very important to further enhance the reliability of the system, as recommended directions for coordination is also taken into account. In contrast to dynamic formation of groups for coordination in MASTraf, current traffic control systems have very limited capabilities to coordinate different corridors given the state of the system (currently the most flexible system in terms of dynamic group formation is SCATS, which uses a marriage/divorce strategy between pre-established subgroups in the network).

Thus, MASTraf is a multi-agent system suitable to control the traffic signals of small, medium, and large traffic networks under both undersaturated and saturated conditions using real-time information from stationary vehicle detectors. Agents are capable of learning the value of their actions over time and of adapting to changes in traffic in order to make decisions on the right of way assignment and its duration.

MASTraf is, therefore, the main end product of this research, which in turn can be an active element part of the ITS framework. MASTraf operates the signals of a traffic network based on experience gathered directly from the specific network, without the calibration of traffic parameters such as saturation flow, startup lost times, etc.

Some of the key developments of MASTraf compared to current traffic signal control systems are briefly described below:

1. A state perceived by an agent including “look-ahead” and “look-down-the-road” features to manage queue in oversaturated links and to implicitly promote signal coordination.

2. Reward and penalty structures for traffic agents suitable for undersaturated and oversaturated conditions, including measurements typically used to determine system performance such as queue length, number of processed vehicles, queue overflows and de-facto red (vehicles that cannot be processed due to downstream queues), and green starvation (when demand is not enough to process vehicles at saturation flow).
3. The incorporation of an algorithm to dynamically group intersections and promote signal coordination considering current traffic demands.

4. Specific knowledge related to management of oversaturated networks can be derived from solutions found by MASTraf. Even though solutions may be cycle-free and dynamic, they can be applicable (at least partially) to policies for current control systems requiring cycle lengths, splits and offsets. Solutions from scenarios analyzed by MASTraf could lead to new policies or directions to adopt strategies such as variable cycle lengths, skip left-turn phases every other cycle, temporary coordination of one arterial before the coordination is switched to a conflicting arterial, etc. A great number of “what if” scenarios could be analyzed so that current practices may be revised for alternative approaches suggested by MASTraf.
CHAPTER 2 – LITERATURE REVIEW

2.1. Evolution of Traffic Control and Current Systems

The first traffic control device for automobiles dates back to the second half of the 19th century with the introduction of a gas-lantern traffic light in London, and it was not until 1912 that the first electric traffic light appeared, in Salt Lake City (Sessions, G.M., 1971). After the end of World War I, a significant increase in car ownership created greater needs in terms of traffic control (Traffic Control Handbook - Gordon and Tighe, 2005), and research in the area of traffic control for automobiles resulted in traffic lights evolving from concepts originally developed for the railroad industry. Then, traffic lights were quickly grouped to form interconnected systems, which appeared as early as in 1917 in Salt Lake City, and the first system using a central control was already in place in 1922 in Houston, Texas.

Actuated systems appeared next, following up on the need to react to varying traffic demands. The first vehicle detectors at a signalized intersection were installed in 1928 in Baltimore (FHWA, 2006). Some detectors were based on the horn sound of vehicles waiting for the green light, whereas some others were pressure-sensitive and activated as soon as a vehicle was driven on top of them. Pressure-sensitive sensors became more popular and continued to be used for over 30 years, but were later replaced by inductive loop detectors in the early 1960s.

In the 1950s traffic systems saw the coming of the computer era, which was also the time when signals began setting their timings more closely to the actual demands. Digital computers were then used for traffic applications in Toronto in 1960, leading to an implementation that comprised 885 intersections by the year 1973. Centralized traffic control was spread in the 1960s to a handful of cities in the U.S., with systems including in the order of 50 or more intersections operating based on fixed timing plans.

The most basic form of responsive systems started with the use of automated selection of previously stored timing plans based on detector information. The Urban Traffic Control System (UTCS) Project by the Federal Highway Administration (FHWA) followed up in this direction
by the second half of the 1960s. This project used detector information to make decisions on appropriate signal timing settings: cycle, splits, and offsets. As explained in the NCHRP Report 340 (NCHRP, 1991), the first generation of UTCS had features such as plan selection based on recent volume and occupancy data, and showed benefits over typical strategies such as time-of-day plans. This prompted UTCS generation 1.5, which partially automated not only the selection of a plan, but also the off-line creation of new ones based on historical data. However, Generation 2 did not show improvements using predictions and signal plans computations (it used predicted demands for the next 5 to 15 minutes), arguably due to frequent plan changing, inadequate prediction, slow response, and poor decisions. A third generation of UTCS was implemented in Washington D.C. using two algorithms: one for undersaturated conditions without fixed cycle times, and one for oversaturated conditions to control queues. This version predicted demands over much shorter time periods (in the order of one cycle), but field results in the D.C. area showed higher delays compared to a three-dial system (pre-timed signals with options for three cycles and sets of timing settings).

On the other hand, developments at the beginning of 1970s in Australia resulted in SCATS (Sydney Coordinated Adaptive Traffic System), which has a partially decentralized architecture and relies on detectors at the stop bar locations of all approaches. This detector configuration allowed for downstream arrival predictions using vehicle departures and a platoon dispersion factor. SCATS determines signal timing settings for background plans based on current demands at intersections that are selected as critical, and these set the base for coordination with intersections belonging to a predefined subsystem around it. However, the offsets are not optimized online and they should be provided for SCATS to use them at later times. It uses a feature known as marriage/divorce to dynamically group adjacent subsystems of intersections for coordination, each subsystem varying in size from one to ten intersections (NCHRP Report 340, 1991). At peak hours, Webster’s method is used to find cycle lengths within each subsystem, and offsets are set for the direction with the highest demand. At off-peak hours, a cycle length is selected to provide better coordination to both directions and the objective is to minimize stops. In undersaturated conditions, the goal of SCATS is to reduce stops and delay, and near saturation it maximizes throughput and controls queues (Traffic Detector Handbook, 2006). Field implementations of SCATS have been completed in more than
70 cities around the world, including very large systems such as the ones in Sydney and Melbourne, with around 2000 intersections each.

Another well-known traffic signal system is SCOOT (Split, Cycle, Offset Optimization Technique), developed by the Transport Research Laboratory (TRL) in the U.K. SCOOT is a centralized traffic-responsive system that minimizes stops and delay by optimizing cycle, splits and offsets. The system uses detectors upstream from the intersections to predict vehicle arrivals downstream at the stop bar, and update its predictions every few seconds. The optimization is performed using heuristics from TRANSYT considering only small changes in the signal settings (given that the solution needs to be obtained in real-time), and also not to disrupt significantly coordination in a single step. However, this limits the changes to gradual modifications over time that may be slower than needed under unusual circumstances (e.g. incidents), and it indicates that the optimization is rather local. SCOOT has been deployed in more than 200 cities worldwide.

On the other hand, traffic adaptive systems can be thought as the next step from traffic responsive systems. Adaptive systems, according to the Traffic Detector Handbook (2006) are not only reactive, but also proactive based on predicted movements. In addition, they are flexible enough that do not require a given cycle length, specific offsets, or a phase sequence. In 1992, the FHWA began a 10-year project to develop Adaptive Control Software (ACS), and based on the proposals received under this initiative the following three systems were selected as viable and have been tested in laboratory conditions and in the field: a) OPAC, b) RHODES, and c) RTACL (Turner-Fairbank Highway Research Center, 2005).

The OPAC (Optimized Policies for Adaptive Control) system minimizes a function based on total intersection delay and stops for time horizons of a pre-defined length. There are multiple versions, out of which OPAC III and OPAC IV have been implemented in the field. In OPAC III, a rolling horizon (typically as long as an average cycle) and a simplified dynamic programming approach are used to optimize the signal timings based on detector data and predictive traffic models, but only the “head” portion of the prediction is implemented. The “head” prediction is based on actual detector information (not on the predicted demand). The system can make decisions every 1 or 2 seconds, and phase sequencing is not free but based on the time of day, skipping phases if there is not demand for such movements. It is noted that the phases that are displayed are also constrained by maximum and minimum green times. The OPAC IV (or RT-TRACS) version is intended to incorporate explicit coordination and
progression in urban networks and it is known as the virtual-fixed-cycle OPAC. The virtual-fixed-cycle restricts the changes in cycle lengths at intersections around a given primary signal, so that they can fluctuate only in small amounts to maintain coordination. There are three control layers in the OPAC architecture: 1) local control (using OPAC III), 2) coordination (offset optimization), and 3) synchronization (network-wide virtual-fixed-cycle). A field implementation of isolated OPAC was completed in 1996 on Route 18 in New Jersey, and a coordinated version was setup in Reston, Virginia in 1998 including 16 intersections along an arterial. A more recent version V also includes dynamic traffic assignment in the optimization of the signal timings.

A second adaptive system from the ACS project is RHODES (Real-time Hierarchical Optimized Distributed Effective System), developed at the University of Arizona starting in 1991 (Lucas et al., 2000). RHODES has three hierarchical levels: 1) intersection control, 2) network flow control, and 3) network loading. It uses real-time input from vehicle detectors in order to optimize a given criteria based on measures of effectiveness such as delay, number of stops, or throughput (Mirchandani, 2001). The system predicts traffic fluctuations in the short and medium terms, and based on the predictions it determines the following phases and their duration. It uses detectors that at the very minimum should be placed at the upstream end of each link, but preferably it should use additional detectors at the stop bar to calibrate the estimates. At the intersection control level, an optimization is carried out with the dynamic programming routine “COP” that uses a traffic flow model (called PREDICT) for a horizon that rolls over time (e.g. 20 to 40 seconds). The solution for the first phase is implemented and the optimization is performed again based on updated information. The network flow control uses a model called REALBAND to optimize the movement of platoons identified and characterized by the system (based on size and speed). It creates a decision tree with all potential platoon conflicts and finds the best solution using results from APRES-NET, which is a simplified model to simulate platoons through a subnet of intersections (similar to PREDICT). The rolling horizon at this level is in the order of 200-300 seconds. Finally, the network loading focuses on the demand on a much longer prediction horizon, say in the order of one hour. Some of the limitations of RHODES arise with oversaturated conditions, under which the queue estimations may not be properly handled by PREDICT. Also, the predictions consider signal timing plans for upstream intersection, which may change at any point in time creating deviations between the estimated
and actual arrival times at the subject intersection. Lastly, there are several parameters used in the queue predictions such as queue discharge speeds that should be calibrated to field conditions, and the fact that an upper layer is used for network coordination demands additional infrastructure.

A third example of traffic adaptive systems from the ACS project is RTACL (Real-Time Traffic Adaptive Control Logic), which was derived from OPAC and envisioned specifically for urban networks. This system is based on a macroscopic model to select the next phases. Most of the logic is based on local control at the intersection level, and the predictions are found for the next two cycles (short term), leading to recommendations for the current and the next phase, and long-term estimations for the following phases. These recommended actions (short and long term) generate estimates of demand that are used at the network level by nearby intersections, which can adjust their decisions based on the new predictions (Turner-Fairbank Highway Research Center, 2005). The RTACL was field-tested in Chicago, IL, in 2000.

Other examples of adaptive systems that make decisions very frequently (in the order of a few seconds) are available and include PRODYN and UTOPIA/SPOT, among others. PRODYN (Programmation Dynamique) was developed by the Centre d’Etudes et de Recherches de Toulouse (CERT), France, and employs a rolling horizon for the optimization that predicts vehicle arrivals and queues at each intersection every five seconds and for periods of 140 seconds. At the intersection level, the goal is to minimize delay using forward dynamic programming with constraints for maximum and minimum green times, and at the network level it simulates and propagates the outputs to downstream intersections for future forecasting (Van Katwijk, 2008). It has a centralized (PRODYN-H) and a decentralized version (PRODYN-D). PRODYN-H has shown better performance, but due to its complexity is limited to a very low number of intersections. PRODYN-D comes in two versions: one in which information exchange between intersections (better suitable for networks), and one based on information from the immediate links.

UTOPIA/SPOT (Urban Traffic Optimization by Integrated Automation/Signal Progression Optimization Technology) was developed by Mizar Automazione in Italy. It is comprised of a module for optimization of a given criteria (e.g. delay or stops) at the intersection level (SPOT) and one module for dealing with area-wide coordination between intersections (UTOPIA), with the objective of improving mobility for both public and private transport.
Intersections with SPOT share signal strategy and platoon information with their neighbors for better network operation, but UTOPIA is needed for an increase number of intersections linked together, allowing for area-wide predictions and optimization. The predictions at the network level (and the optimized control) are made for a horizon of 15 minutes, and individual intersections compute their own predictions (for the next two minutes) using local data. Adjustments to the signal strategies can be made every three seconds. Deviations with the network-level predictions are sent to the central controller so that better predictions for other intersections are available (van der Berg et al., 2007). Several cities have implemented SPOT in Europe and in the U.S.

The traffic signal systems described above have the potential to improve system-wide performance and they use real-time data for determining a control policy. Some of them have been proved in field installations with successful results and have been distributed extensively around the world. They are flexible in the sense that they can frequently change cycle times (or they are acyclic) and have the capability to adjust the signal strategy based on predictions every few seconds. However, as it has been pointed out (Shao, 2009), they have some limitations in terms of uncertainty in the predictions for traffic flow and arrival times, and their lack of evolving mechanisms for self-adjusting or learning over time. In addition, some of the current adaptive control systems (OPAC, PRODYN, and RHODES) use recursions based on dynamic programming or enumeration of a reduced version of the available space for a given rolling horizon, but with the shortcoming that the best solutions are based for the most part on predicted traffic, which may not be accurate enough to obtain optimal behavior (it is also recalled that the forward dynamic programming recursions find the optimal values and then move backward in time to estimate the optimal policy, from the end of the horizon, which has the most uncertainty).

2.2. Reinforcement Learning and Approximate Dynamic Programming over Time

In the 1980s, long-acknowledged limitations in the application of exact dynamic programming methods to solve large stochastic optimization problems prompted the search for alternative strategies. Different research communities including those from the field of operations research and artificial intelligence started developing a series of algorithms to solve Bellman’s optimality
equation (at least approximately), finding near-optimal solutions for large scale problems. Among other methods, members of the artificial intelligence community proposed what is known as a reinforcement learning (RL) approach by combining the concepts from classical DP, adaptive function approximations (Werbos, 1987) and learning methods (Barto et al, 1983).

Q-learning is one of such reinforcement learning strategies. After its initial publication (Watkins, 1989, 1992 – Watkins and Dayan, 1992), many studies have followed on the analysis of this and other algorithms based on similar principles. A good example is the analysis of reinforcement learning published by Sutton and Barto (1998) with their book “Reinforcement Learning: An Introduction”, which covers the reinforcement learning problem, a series of methods for solving it (dynamic programming, Monte-Carlo, and temporal difference methods), extensions, and case studies. Similar learning algorithms include Sarsa and Actor-Critic methods, but the focus here will be given to Q-learning, mostly giving its off-policy nature of doing temporal difference control.

Q-learning has been widely used and the research topic of numerous practical applications, leading to enhancements in the algorithm and its learning structure. For example, a combination of Q-learning and principles of temporal difference learning (Sutton, 1988 – Tesauro, 1992) resulted in the Q(λ) algorithm (Watkins, 1989 – Peng and Williams, 1991) for non-deterministic Markov decision processes. In Q(λ) – which implements an eligibility trace, the updates are allowed not only for the last visited state-action pair but also for the preceding predictions. The eligibility is based on a factor that decreases exponentially over time (given that the discount factor for delayed rewards is lower than one and that lambda is greater than zero). Thus, the original version of the Q-learning algorithm is equivalent to a Q(0)-learning, and on the other end the traces can extend the full extent of the episodes when Q(1)-learning is used. In terms of its performance and robustness, the Q(λ) algorithm has shown improvements over the 1-step Q-learning (Pendrith, 1994 – Rummery and Nirajan, 1994 – Peng, 1993), and it is a viable option for the traffic control problem. Also, several other forms of Q-learning approaches have emerged with enhanced capabilities, such as W-learning (Humphrys, 1995, 1997), HQ-learning (Wiering, 1997), Fast Online Q(λ) (Wiering, 1998), and Bayesian Q-learning (Dearden, et al, 1998).

Thus, it could be said that the study and development of reinforcement learning has benefitted from a great number of approaches. The fields of classical dynamic programming,
artificial intelligence (temporal difference), stochastic approximation (simulation), and function approximation have all contributed to reinforcement learning in one or other way (Gosavi, 2009).

On the other hand, approximate dynamic programming (under such name) evolved based on the same principles as reinforcement learning, but mostly from the perspective of the operations research. Also, in some sense, advances shown above for reinforcement learning are also advances in the approximate DP field. As it is pointed by Powell (2007), the initial steps in finding exact solutions for Markov Decision Processes date back to the work by Bellman (1957) and Bellman and Dreyfus (1959), and even back to Robbins and Monro (1951), but it was not until the 1990s that formal convergence of approximate methods was brought to light mainly in the books by Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) (even though this last one is focused from a computer science point of view). These two books are arguably the most popular sources for approximate dynamic programming methods, and quite a few significant works have followed, including the book by Powell (2007) itself, which covers in great detail some of the most common algorithms, and particularly the use of the post-decision state variable (selected for the proposed research).

2.3. Traffic Control Using Learning Agents

Specifically for traffic signal control, the study of reinforcement learning dates back about 15 years ago. One of the first of such studies was completed by Thorpe (1997), using the RL algorithm SARSA to assign signal timings to different traffic control scenarios. Later, Wiering (2000) discussed a state representation based on road occupancy and mapping the individual position of vehicles over time, and Bakker (2005) later extended this representation using an additional bit of information from adjacent intersections. This allowed communication between agents, trying to improve the reward structure and ultimately the overall performance of the system.

Using a different approach, Bingham (1998, 2001) defined fuzzy rules to determine the best allocation of green times based on the number of vehicles that would receive the green and red indication. He presented a neural network to store the membership functions of the fuzzy rules, reducing memory requirements. It is noted that a Cerebellar Model Articulation Controller
(CMAC) has also been used in the past to store the information learned (Abdulhai, 2003). Another application using fuzzy rules for traffic control was presented by Appl and Brauer (2000), where the controller selected one of the available signal plans based on traffic densities measured at the approaching links. Using a single intersection, their fuzzy controller outperformed learning from a controller with a prioritized sweeping strategy.

Choy et al. (2003) also used a multi-agent application for traffic control, but creating a hierarchical structure with three levels: intersection, zones, and regions. The three types of agents (at each level) made decisions based on fuzzy rules, updated their knowledge using a reinforcement learning algorithm, and encoded the stored information through a neural network. Agents selected a policy from a set of finite possible policies, where a policy determined shortening, increasing, or not changing green times. Experiments on a 25-intersection network showed improvements with the agents compared to fixed signal timings, mostly when traffic volumes were higher.

Campoganara and Kraus (2003) presented an application of Q-learning agents in a scenario of two intersections next to each other, showing that when both of those agents implemented the learning algorithm, the systems performed significantly better than when only one of none of them did. The comparison was made with a best-effort policy, where the approach with longer queue received the green indication.

A study on the effects of non-stationary nature of traffic patterns using RL was proposed by De Oliveira et al. (2006), who analyzed the performance of RL algorithms upon significant volume changes. They pointed out that RL may have difficulties to learn new traffic patterns, and that an extension of Q-learning using context detection (RL-CD) could result in improved performance.

Ritcher et al (2007) showed results from agents working independently using a policy-gradient strategy based on a natural actor-critic algorithm. Experiments using information from adjacent intersections resulted in emergent coordination, showing the potential benefits of communication, in this case, in terms of travel time. Xie (2007) and Zhang (2007), explored the use of a neuro-fuzzy actor-critic temporal difference agent for controlling a single intersection, and used a similar agent definition for arterial traffic control where the agents operated independently from each other. The state of the system was defined by fuzzy rules based on queues, and the reward function included a linear combination of number of vehicles in queue,
new vehicles joining queues, and vehicles waiting in red and receiving green. Results showed improved performance with the agents compared to pre-timed and actuated controllers, mostly in conditions with higher volumes and when the phase sequence was not fixed.

Note that most of the previous research using RL has been focused on agents controlling a single intersection, or a very limited number intersections interacting along an arterial or a network. Most of the efforts have been on the performance of the agents using very basic state representations, and no studies focusing on oversaturated conditions and preventing queue overflows have been conducted. Additional research exploring the explicit coordination of agents and group formation in different traffic control settings will be reviewed in the next subsection, and will provide an important basis for the coordination of agents proposed in this research.

Regarding the application of exact dynamic programming (DP), only a few attempts at solving the problem of optimal signal timings in a traffic network are found in the literature. This is not surprising because even though DP is an important tool to solve complex problems by breaking them down into simpler ones - and generating a sequence of optimal decisions by moving backward in time to find exact global solutions – it suffers from what is known as the curses of dimensionality. Solving Bellman’s optimality equation recursively can be computationally intractable, since it requires the computation of nested loops over the whole state space, the action space, and the expectation of a random variable. In addition, DP requires knowing the precise transition function and the dynamics of the system over time, which can also be a major restriction for some applications.

Thus, with these considerations, there is only limited literature for medium or large-sized problems exclusively using DP. The work of Robertson and Bretherton (1974) is cited as an example of using DP for traffic control applications at a single intersection, and the subsequent work of Gartner (1983) for using DP and a rolling horizon, also for the same application.

On the other hand, Approximate Dynamic Programming (ADP) has increased potential for large-scale problems. ADP uses an approximate value function that is updated as the system moves forward in time (as opposed to standard DP), thus ADP is an “any-time” algorithm and this gives it advantages for real-time applications. ADP can also effectively deal with stochastic conditions by using post-decision variables, as it will be explained in more detail in the subsequent Appendix.
Despite the fact that ADP has been used extensively as an optimization technique in a variety of fields, the literature shows only a few studies in traffic signal control using this approach. Nonetheless, the wide application of ADP in other areas has shown that it can be a practical tool for real-world optimization problems, such as signal control in urban traffic networks. An example of an ADP application is a recent work for traffic control at a single intersection by Cai et al. (2009), who used ADP with two different learning techniques: temporal-difference reinforcement learning and perturbation learning. In their experiments, the delay was reduced from 13.95 vehicle-second per second (obtained with TRANSYT) to 8.64 vehicle-second per second (with ADP). In addition, a study by Teodorvic et al. (2006) combined dynamic programming with neural networks for a real-time traffic adaptive signal control, stating that the outcome of their algorithm was nearly equal to the best solution.

A summary of past research using RL for traffic control is shown in Tables 2.1 and 2.2., where the state and the reward representation of the different approaches are described. The implementations presented in this report will be based on modifications and variations of previous work, with the addition of factors that may improve the system performance particularly in oversaturated conditions, including the explicit coordination of agents through the use of the max-plus algorithm.
Table 2.1 Summary of Past Research on RL for Traffic Control – States and Actions

<table>
<thead>
<tr>
<th>Author</th>
<th>Algorithm</th>
<th>State and actions</th>
<th>Communication Between Agents</th>
<th>Application</th>
<th>Loads</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorpe</td>
<td>SARSA with eligibility traces</td>
<td>State: Number of vehicles (vehicle grouped in bins). Actions: undimensional (direction to nearest green)</td>
<td>No</td>
<td>4x4 network different loads</td>
<td>Multiple (undersaturation)</td>
<td>On a single intersection, then same training for network</td>
</tr>
<tr>
<td>Thorpe</td>
<td>SARSA with eligibility traces</td>
<td>State: Link occupation (link divided in equal segments). Actions: undimensional (direction to nearest green)</td>
<td>No</td>
<td>4x4 network different loads</td>
<td>Multiple (undersaturation)</td>
<td>On a single intersection, then same training for network</td>
</tr>
<tr>
<td>Thorpe</td>
<td>SARSA with eligibility traces</td>
<td>State: Link occupation (link divided in uneven segments). Actions: undimensional (direction to nearest green)</td>
<td>No</td>
<td>4x4 network different loads</td>
<td>Multiple (undersaturation)</td>
<td>On a single intersection, then same training for network</td>
</tr>
<tr>
<td>App and Brewer</td>
<td>Q-learning</td>
<td>State: link density distribution for each direction. Actions: plan selection, value of state, possible actions</td>
<td>No</td>
<td>Single intersection</td>
<td>Not described</td>
<td>Not described</td>
</tr>
<tr>
<td>Bingham</td>
<td>Neurofuzzy controller with RL (using GARIC, an approach based on ANN)</td>
<td>State: vehicle in approach with green, and those in approaches with red (these are the inputs to the ANN). Actions: values of green extension times, short, medium, and long. Number of states and actions depend on how many extensions have already been passed.</td>
<td>No</td>
<td>Single intersection</td>
<td>Multiple (undersaturation/likely oversat for 1 case)</td>
<td>Not described</td>
</tr>
<tr>
<td>Gieseler</td>
<td>Q-learning</td>
<td>State: Number of vehicles in each of the approaches and a boolean per direction indicating if neighbors have sent vehicle. "y" seconds earlier, "y" is the length of queue. Actions: one of 8 possible actions at a single intersection</td>
<td>No, boolean variable showing if the signal was green, "y" seconds earlier. Also, stored information of the rewards.</td>
<td>3x4 network</td>
<td>Multiple (undersaturation/likely oversat for 1 case)</td>
<td>Not described</td>
</tr>
<tr>
<td>Nunes, Oliveira</td>
<td>Heterogeneous (some agents use Q-learning, others hill climbing, simulated annealing, or evolutionary algorithms). Then, the learning process is RL + a heuristic.</td>
<td>State: two cases: one is the ratio of vehicles in each link to the total number of vehicles in their intersection (8 dimensions), and the second is equal to the first plus a function showing the distance of the front vehicle in queue - this is the longest time a vehicle has been in the link (additional 6 dimensions). Action: percent of time within the cycle that green will be given to NL direction (the other direction receives the complement).</td>
<td>No, but recommended by sharing info on state and actions from a more global perspective.</td>
<td>Single intersection</td>
<td>Not described but variable over time (likely undersaturation)</td>
<td>Greedy, Boltzman, and annealing (in separate experiments)</td>
</tr>
<tr>
<td>Abdullahi</td>
<td>Q-learning (CMAC to store Q-values)</td>
<td>State: Queue length, each of 4 approaches, and phase allocation. Actions: Two possible phases with bounded cycle length</td>
<td>No, but by using the hierarchies, not between neighbors.</td>
<td>25-intersection network in Paracnsis</td>
<td>Not described but variable over time (likely undersaturation)</td>
<td>Not described</td>
</tr>
<tr>
<td>Chai et al</td>
<td>RL agents using fuzzy sets. Three hierarchies well defined</td>
<td>State: Occupancy and flow of each link, and rate of change of flow in the approaches. These are measured when signal is green. Action: duration of green for a phase, with fixed phasing and cycle length between 60s and 120s, and offsets.</td>
<td>Yes, but by using the hierarchies, not between neighbors.</td>
<td>2-intersection network and 8-intersection network, 10x10 network (not detailed results)</td>
<td>Not described but variable over time (likely undersaturation)</td>
<td>Not described</td>
</tr>
<tr>
<td>Campognanini and Krause</td>
<td>Distributed Q-learning</td>
<td>State: Number of vehicles in each approach. Action: allocation of right of way, 2 phases</td>
<td>Yes, a distributed Q-learning</td>
<td>Two adjacent intersections connected</td>
<td>Not described but fixed and undersaturated</td>
<td>Not described</td>
</tr>
<tr>
<td>Richter et al</td>
<td>Natural actor critics with online stochastic gradient ascent</td>
<td>State: Very comprehensive state phase, phase duration, cycle duration, duration of other phases in cycle, 2 bins showing if there is a car waiting on each approach, saturation level (to possible, and neighbor information (2 bins showing where traffic is expected from). Action: 4 possible phases, with the restriction that all must be called at least once in the last 16 actions.</td>
<td>Yes, 2 bits of info showing where is traffic expected from</td>
<td>2-intersection network and 8-intersection network, 10x10 network (not detailed results)</td>
<td>Not described but variable over time (likely undersaturation)</td>
<td>Not described</td>
</tr>
<tr>
<td>Zhong and He</td>
<td>Neuro-fuzzy actor-critic RL</td>
<td>State: Queue length and signal state. Action: duration of the phase for fixed phase sequence; for variable phase sequence actions included to follow.</td>
<td>No, but recommended for each agent.</td>
<td>4-intersection network in VISSIM</td>
<td>Variable over time based on real data.</td>
<td>Not described</td>
</tr>
<tr>
<td>Kaper et al</td>
<td>Model-based RL (with Q-values) - and coordination graphs</td>
<td>State: Sum of all states of blocks in the network (which represents all vehicles in the links). Action: assigns right of way to a specific direction.</td>
<td>Yes, max plus algorithm but no RL</td>
<td>3-intersection, 4-intersection networks, and a 15-intersection network</td>
<td>Not described, but experiments with different amount of “focal” and “long-rural” percentage, to create improvements when coordination was added</td>
<td>Not described</td>
</tr>
<tr>
<td>Arel et al</td>
<td>Q-learning with function approximation. There are central and outbound agents.</td>
<td>State: For each of the lanes of an intersection, the state is the total delay of vehicles in a lane divided by the total delay of all vehicles in all lanes. The central agent has access to full states of all intersections. Action: any of 8 possible phases (3 actions taken every 20 time units)</td>
<td>No, all intersections share the state with a central agent</td>
<td>5-intersection network with a central intersection that has the learning capabilities</td>
<td>Variable, including oversaturation</td>
<td>10000 time steps before stats were collected. In operational mode the exploration rate was 0.02</td>
</tr>
<tr>
<td>Author</td>
<td>Algorithm</td>
<td>Reward</td>
<td>Communication</td>
<td>Application</td>
<td>MOEs Analyzed</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Thorpe</td>
<td>SARSA with eligibility traces</td>
<td>Negative values for each time step until it processed all vehicles in a time period</td>
<td>No</td>
<td>4x4 network different loads</td>
<td>Number of steps to process demand, average wait time per vehicle, and number of stops</td>
<td></td>
</tr>
<tr>
<td>Thorpe</td>
<td>SARSA with eligibility traces</td>
<td>Negative values for each time step until it processed all vehicles in a time period, positive values for every vehicle crossing the stop bar, and negative values for vehicle arriving at links with red</td>
<td>No</td>
<td>4x4 network different loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appl and Brauer</td>
<td>Q-function approximated by fuzzy prioritized sweeping</td>
<td>Squared sum of average divided by max density of links (the lower and the more homogeneous the better)</td>
<td>No</td>
<td>Single intersection</td>
<td>Total average density per day</td>
<td></td>
</tr>
<tr>
<td>Wiering</td>
<td>Model-based RL (with Q values)</td>
<td>If a car does not move, assigning a value of 1, otherwise assigning 0 (in sum, maximizing car movement or throughput). Yes (shared knowledge or 'tables' in some scenarios). Also, included a look-ahead feature</td>
<td>Yes (shared knowledge or 'tables' in some scenarios). Also, included a look-ahead feature</td>
<td>2x3 network</td>
<td>Throughput</td>
<td></td>
</tr>
<tr>
<td>Bingham</td>
<td>Neurofuzzy controller with RL (using GARIC, an approach based on ANN)</td>
<td>Delay of vehicles + V value at time t - V value at time t-1 (V depends on the approaching vehicles in links with green plus those with red)</td>
<td>Yes, boolean variable showing if the signal was green "q" seconds earlier. Also shared information of the rewards</td>
<td>Single interaction</td>
<td>Average vehicle delay</td>
<td></td>
</tr>
<tr>
<td>Gieseler</td>
<td>Q-learning</td>
<td>A reward resulting from the difference in the activation times of vehicles being processed (headways) - the shorter headways the better. Also, a fraction of the rewards of adjacent intersections was added to the agent's reward</td>
<td>3x3 network</td>
<td>Single intersection</td>
<td>"Quality of service" as 1-sum(average time per link/average time in link of all links)</td>
<td></td>
</tr>
<tr>
<td>Nunes, Oliveira</td>
<td>Heterogeneous (some agents use Q-learning, others hill climbing, simulated annealing, or evolutionary algorithms). Then, the learning process is RL + advice from peers</td>
<td>Not described</td>
<td>Yes (advice exchange); communicate state and the action that was taken by the advisor agent, the present and past score</td>
<td>Single intersection - each agent controls one intersection but they are not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdulhai</td>
<td>Q-learning (CMAC to store Q-values)</td>
<td>Delay between successive actions. Combination of delay and throughput or emissions is recommended for future research.</td>
<td>No, but recommended by sharing info on state and on rewards from a more global computation</td>
<td>Single intersection</td>
<td>Average delay per vehicle</td>
<td></td>
</tr>
<tr>
<td>Choi et al</td>
<td>RL agents using fuzzy sets. Three hierarchies well defined</td>
<td>Based on previous state as follows: (factor*(current-previous))-(current-best). Therefore it is positive if current state is greater than previous and the first parenthesis is greater than the second. A critic in the system also evalutes the performance in terms of delay</td>
<td>Yes, but by using the hierarchies, not between neighbors</td>
<td>25-intersection network in Paramics</td>
<td>Average delay per vehicle and time vehicles were stopped</td>
<td></td>
</tr>
<tr>
<td>Campogana and Kraus</td>
<td>Distributed Q-learning</td>
<td>Not described</td>
<td>Yes, a distributed Q-learning</td>
<td>Two adjacent intersections connected</td>
<td>Average number of waiting vehicles</td>
<td></td>
</tr>
<tr>
<td>Richter et al</td>
<td>Natural actor-critic with online stochastic gradient ascent</td>
<td>Not described, but likely to be related with the number of cars in the links</td>
<td>Yes, 2 bits of info showing where is traffic expected from 2-intersection network and 9-intersection network, 10x10 network (not detailed results)</td>
<td></td>
<td>Normalized discounted throughput (to encourage vehicle discharge as soon as possible)</td>
<td></td>
</tr>
<tr>
<td>Zhang and Xie</td>
<td>Neuro-fuzzy actor-critic RL</td>
<td>Linear combination of vehicles discharged, vehicles in queue, number of new vehicles in queue, vehicles with green, and vehicles with red.</td>
<td>No, but recommended for multi-agent applications</td>
<td>4-intersection arterial in WISSM</td>
<td>Average delay, average stopped delay and average number of stops</td>
<td></td>
</tr>
<tr>
<td>Kuyer et al</td>
<td>Model-based RL (with Q values) and coordination graphs</td>
<td>Sum of changes in network blocks: zero value if state changed, and -1 if state did not change - or vehicles did not move</td>
<td>Yes, max plus algorithm but no RL</td>
<td>3-intersection, 4-intersection networks, and a 15-intersection network</td>
<td>Average waiting time, ratio of stopped vehicles, and total queue length</td>
<td></td>
</tr>
<tr>
<td>Arel et al</td>
<td>Q-learning with function approximation. There are central and outbound agents</td>
<td>Based on the change in delay between the previous time step and the current one, divided by the max of previous or current</td>
<td>Yes, all intersections share the state with a central agent</td>
<td>5-intersection network with a central intersection that has the learning capabilities</td>
<td>Average delay per vehicle and percentage of time there was blocking</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 Summary of Past Research on RL for Traffic Control – Rewards and MOEs
CHAPTER 3 – REVIEW OF REINFORCEMENT LEARNING AND APPROXIMATE DYNAMIC PROGRAMMING

3.1. Fundamentals

In a broad sense, a reinforcement learning (RL) problem is the problem of learning how to take sequential actions to accomplish a goal. To do so, an agent (or a set of agents) will follow a learning process by interacting with the environment and gaining knowledge from experience.

As mentioned above, in this particular research the two learning algorithms of interest are: a) Q-learning and b) approximate dynamic programming with a post-decision state variable. The principles behind these algorithms are similar and are obtained from the basic formulation of the well-known Bellman equation, as described next.

Assuming that the state of a system follows the Markovian memory-less property and that the values of all future states are given (based on discounted rewards), the Bellman equation shows the value of a given state \(s \) as a function of the value of the potential states following the immediate action \(s' \) and the cost to transition from \(s \) to \(s' \) \((C_{ss'}) \), as follows:

\[
V^\pi(s) = \sum_x \pi(s, x) \sum_{s'} P^x_{ss'} \left(C^x_{ss'} + \gamma V^\pi(s') \right)
\]
(3.1)

where \(V^\pi(s) \) is the value of state \(s \) following policy \(\pi \) (also known as the “cost-to-go”), \(x \) is an action drawn from a finite set of possible actions, \(P^x_{ss'} \) is the probability of transitioning to state \(s' \) given that the current state is \(s \) and the action taken is \(x \), and \(\gamma \) is a discount factor for the value of the next state \(V^\pi(s') \) (Sutton and Barto, 1998). Note that in the first summation \(\pi(s, x) \) is simply the probability of taking action \(x \) given that the current state is \(s \), and that the second summation is also commonly expressed as an expectation (instead of the sum of weighted values) for taking action \(x \).
Thus, based on this representation of the state value, it is possible to formulate an optimization problem in order to find optimal state values $(V^*(s))$, which in turn represents the problem of finding an optimal policy:

\[V^*(s) = \max_{\pi} V^\pi(s), \text{for all } s \in S, \text{ or} \]

\[V^*(s) = \max_x \sum_{s'} P_{s's'}^x \left(C_{s's'}^x + \gamma V^*(s') \right) \]

(3.2)

(3.3)

However, since the true discounted values of the states are not known (otherwise finding optimal policies would be trivial) some algorithms have been developed to solve this problem both in an exact and an approximate fashion. The most well known exact strategy is traditional dynamic programming (DP), originally proposed by Richard Bellman, followed by approximate methods that emerged well after (in 1980s), including temporal difference methods (TD).

Traditional DP is a very powerful tool that can be used to solve the Bellman equation and guarantees the optimality of the solution. However, the number of required computations using a standard DP algorithm grows exponentially with a linear increase in the state space, the output space, or the action space, deeming it intractable for most real-sized problems. This is known as the curse of dimensionality of DP, and can be described as the need to perform nested loops over the state and action space as the algorithm finds the state values in a backward recursion.

To illustrate the curse of dimensionality in a centralized signal system, consider the task of finding the optimal signal timings for a period of 15 minutes (assuming the control is evaluated every 10 seconds, which is a very coarse approximation) in a network of 10 intersections, where each of them can display up to four different phases (through and left-turn movements for E-W and N-S directions). Also, assume that the demand for each movement can be categorized in 20 levels, thus if the capacity of the link is 60 vehicles some loss of resolution is allowed. This leaves us with a combination of 20^4 states per intersection (assuming 4 links, thus a combination of $20 \times 20 \times 20 \times 20$) and 20^{40} (20^4 combined for the 10 intersections, thus 20^{4+10}) for the whole system at a single point in time. If the signals are re-evaluated every 10 seconds, a total of 90 decisions points are required. This makes a backward recursion intractable, as looping through the state space at every decision point is unfeasible in practice.
Moreover, DP algorithms need a complete model of the systems dynamics (or transition function) in order to perform a backward recursion and estimate the optimal state values. However, the precision of traffic model predictions decrease as the prediction horizon increases, indicating that if DP is used the solutions will be built backwards starting from the least accurate end of the horizon.

On the other hand, TD methods are particularly well suited for real-time traffic control compared to other methods to solve RL problems (i.e. dynamic programming and Monte-Carlo methods). This is because TD methods have the following characteristics: a) Learning can be performed without knowing the dynamics of the environment (or transition function), b) estimates are based on previous estimates (bootstrapping) so there is a solution for every state at every point in time (i.e. any-time algorithms), and c) they use forward-moving algorithms than can make use of real-time inputs as the system evolves.

Standard TD algorithms are designed to learn optimal policies for a single agent, given the agent's perceived state of the system. However, since in traffic control applications the perceived state is typically confined to the immediate surroundings of the agent (e.g. vehicles in the approaches of the agent’s intersection), changes in the dynamics of neighboring agents could make the learned policies no longer optimal. These characteristics emphasize the importance of a precise state representation to capture the dynamics of the environment, allowing for adequate learning and communication between agents in order to promote signal coordination.

Depending on the coverage of a single agent and its perception limits, several RL traffic control structures can be defined, including three obvious cases: a) a single agent that directly controls all intersections of a traffic network (completed centralized); b) multiple agents, each controlling a group of intersections (partially decentralized); and c) one agent per intersection (completely decentralized). Options a and b may have a prohibitive number of states per agent and high system vulnerability in case of an agent failure. On the other hand, option c seems more appropriate as it may have better scalability properties for large systems, is less vulnerable, and (not surprisingly) it has actually been pursued by most researchers using RL techniques for traffic control.

Out of a handful of TD algorithms, Q-learning and ADP with the post-decision state variable are used in this research to find near optimal signal timings in traffic networks. The
selected algorithms move forward in time to improve the updates of the values of being in each state (or “cost-to-go”), which then are used as a decision-making tool.

A description of Q-learning and ADP with the post-decision state variable is provided next.

3.2. Q-learning

As described above, the RL problem can be thought as the problem of finding the policy that guarantees maximum expected rewards:

\[V^*(s) = \max_{\pi} V^\pi(s), \text{ for all } s \in S \quad (3.4) \]

This maximization problem can also be described in terms of the value of state-action pairs (called Q-values), and therefore the goal will be to find a policy with action-value functions \((Q^\pi(s,a)) \) leading to maximum expected total rewards:

\[Q^*(s,a) = \max_{\pi} Q^\pi(s,a) \quad (3.5) \]

The advantages of having values of state-action pairs, as opposed of only states, are mostly observed in systems where the dynamics are not completely known (the algorithm is model-free) or where the random information received over time is not precisely determined in advance. The reason for such advantage is that there is no need to estimate the full expectation of the transition function to perform an update of the Q estimates (as opposed to the standard Bellman equation). This is, in Q-learning:

\[\bar{q}(s,x) = c_{ss'}^x + \gamma \max_{x'} Q(s',x') \quad (3.6) \]

as opposed to the standard Bellman equation:

\[Q(s,x) = c_{ss'}^x + \gamma \sum_{x'} P_{ss'}^x \max_{x'} Q(s',x') \quad (3.7) \]
Since the learning process is done gradually and based on experiencing sampled information from the system, the estimates can be updated using the following standard rule:

\[Q(s,x) = (1 - \alpha)Q(s,x) + \alpha \hat{q} \] \hspace{1cm} (3.8)

where \(\alpha \) is the learning rate.

The general algorithm for Q-learning can be formulated as shown in Figure 3.1.

1) Initialization:

 \(Q^0(s,x) = y, \) \(y \) is and arbitrary value

2) While \(n \) episodes not finished:

 Find initial state \((s_0^1)\)

 While episode not finished (\(t < T \)):

 Select action \(x \) based on a given policy

 Execute \(x \), observe \(c^x_{s,t} \), \(s' \)

 Update: \(Q^t(s,x) = (1 - \alpha)Q^{t-1}(s,x) + \alpha(c^x_{s,t} + \gamma \max_{x'} Q^{t-1}(s',x')) \)

 Advance to next step: \(s = s' \)

Figure 3.1 Pseudo-code for Q-learning algorithm

Q-learning has shown good performance for a variety of practical problems under stationary conditions, even though the convergence of Q-values has only been proven if the states are visited an infinite number of times (Watkins, 1989, 1992). Arguably, this is because practical decision making does not require full convergence of Q-values as long as they are “sufficiently” different for the agent to commit to the best choice. Unfortunately, precise boundaries of the Q-learning algorithm for decision-making purposes only are not well defined and require further research.
3.3. The ADP with Post-decision State Variable

Unlike standard DP, which finds the best policy from exact values of the states, ADP uses approximate state values that are updated continuously. Estimates of state values are available at any point in time (thus, the algorithm is suitable for real-time control), and bootstrapping is used for closing the gap between approximate estimates and the true value of a state (similar to Q-learning). Also, since ADP does not require a model of the dynamics of the system over time, the system moves forward step by step in time following a transition function provided by a simulation environment or by incoming real-world data.

There are multiple variants to the basic ADP algorithm, but for this research it was decided to adopt an ADP algorithm that uses the “post-decision” state variable, based on the formulation described by Powell (2007). For our traffic control problem, this algorithm provides a series of computational advantages, as it is explained below.

The post-decision state variable formulation uses the concept of the state of the system immediately after an action is taken. This can be described based on the expression that represents the transition function of our problem:

\[S_{t+1} = S^M(S_t, x_t, W_{t+1}) \] \hspace{1cm} (3.9)

where the state changes from \(S_t \) to \(S_{t+1} \) in a transition that starts at time \(t \) and ends at \(t+1 \). \(W_{t+1} \) represents the exogenous (or random) information that influences the transition from state \(S_t \) to \(S_{t+1} \), after executing action \(x_t \). Specifically for our system, the exogenous information is the combination of different driver and vehicle characteristics that ultimately translates in the (stochastic) behavior of vehicles in the traffic stream.

Note that the transition shown above can be also described by the following sequential steps:

1) The system has just arrived at time \(t \) and the state \((S_t) \) has been updated based on the transition from the last time step:

\[S_t = S^M(S_{t-1}, x_{t-1}, W_t) \] \hspace{1cm} (3.10)
2) Also at time t, the state of the system (S_t) is modified immediately after the action x_t is taken (S^x_t), but no exogenous information from time t to $t+1$ has been received (in our traffic control problem, the signal has just changed but vehicles have not reacted to it):

$$S^x_t = S^{M,x}(S_t, x_t) \quad (3.11)$$

3) At time $t+1$, the exogenous information (W_{t+1}) has been received and the transition from S^x_t to S_{t+1} has been completed (this is, after the vehicles have reacted to the signal):

$$S_{t+1} = S^{H,w}(S^x_t, W_{t+1}) \quad (3.12)$$

Similarly, the process to update the value of a state from one time step to the next can be decomposed as follows:

1) The value of state S_{t-1} at time $t-1$ after committing to action x, S^{x}_{t-1}, can be expressed as a function of the expected value of the next state $V_t(S_t)$, following the Markov property:

$$V^{x}_{t-1}(S^{x}_{t-1}) = E\{V_t(S_t) \mid S^{x}_{t-1}\} \quad (3.13)$$

2) In addition, the value of the next state (at time t) can be expressed based on the maximum value of the state after taking the optimal action X_t (this is, $V^x_t(S^x_t)$) and the cost to get there C_t:

$$V^x_t(S_t) = \max_{x'} \{C_t(S_t, x') + \gamma V^x_t(S^x_t)\} \quad (3.14)$$

3) Analogous to the expression in step 1, the sequence repeats for the value of state S_t, but at time t and after committing to a new action x:

$$V^x_t(S^x_t) = E\{V_{t+1}(S_{t+1}) \mid S^x_t\} \quad (3.15)$$
As explained in Powell (2007), the standard optimality equation could be obtained by combining Equations 3.14 and 3.15. However, if Equations 3.13 and 3.14 are combined instead, a new expression using the “post-decision” state variable is obtained as follows:

\[
V_{t-1}^x(S_{t-1}^x) = E \left\{ \max_{x_t} \left[C_t(S_{t-1}^x, x_t) + \gamma V_t^x(S_t^x) \right] \right\} \quad (3.16)
\]

Note that this expression is very different from the traditional optimality equation, mainly because the expectation is outside of the optimization problem.

Similar to Q-learning, this provides an important computational advantage by allowing the algorithm to provide better approximate solutions as the number of iterations increases. In other words, it allows for the use of a forward algorithm so that it is no longer needed to loop though all possible states to improve an estimate. However, eventually the algorithm is required to approximate the expectation of the value function, but as long as the states are visited with “enough” frequency it is possible to have estimates for adequate decision making support.

The value function using the post-decision variable can be updated using a similar equation as in standard temporal difference learning, as follows:

\[
\bar{V}_{t-1}^n(S_{t-1}^n) = (1 - \alpha_{n-1}) \bar{V}_{t-1}^{n-1}(S_{t-1}^n) + \alpha_{n-1} \bar{v}_t^n \quad (3.17)
\]

where \(\bar{V}_{t-1}^n(S_{t-1}^n) \) is the approximate value of the state \(S_{t-1}^n \) at iteration \(n \), and \(\alpha \) is the step size or learning rate. The step size determines the weighted value of the current direction pointed out by \(\bar{v}_t^n \) in relation to the approximation of the state value at the current iteration.

It is pointed out that since it is necessary to have a value of \(\bar{V}_t^n(S_t^n) \) for each state \(S_t^n \), the problems do not reduce their dimensionality when using ADP, but rather the number of computations needed to find an approximate solution.

The general algorithm for the ADP using the post-decision state variable is shown in Figure 3.2.
To achieve convergence, the learning rate should decrease over time. Rules for the algorithms to converge require the same standard rules for stochastic gradient algorithms: 1) the step size should not be negative, 2) the infinite sum of step sizes must be infinite, and 3) the sum of the square of the step sizes must be finite.

3.4. Eligibility Traces – a Bridge between Single-step Updates and Monte-Carlo

Eligibility traces are one of several well known mechanisms of reinforcement learning. The basic idea is to accelerate learning by having deeper updates, as opposed to only updating the value of the state visited in the last time step. Eligibility traces can also be thought as a combination of concepts to bridge Monte Carlo methods (which always perform a full backup) and the standard temporal difference expression - TD(0) (which backs up only one step in time). The algorithms using eligibility traces are typically represented by the Greek letter λ to indicate the extent of the backup, or TD(\(\lambda\)).

The implementation of eligibility traces is relatively straight forward and is based on a series of weights that keep track of how much time ago a state was visited. They are updated every time the system is updated in such way that the most recent states will have greater
weights, and will be affected in greater proportion by new states (compared to those states visited long ago). Thus, eligibility traces require a new look-up table in order to keep track of the current weight of each state \((e(s))\).

There are multiple algorithms to implement eligibility traces (for reinforcement learning), including a Sarsa(\(\lambda\)), standard Q(\(\lambda\)), Watkins’ Q(\(\lambda\)), and Peng’s Q(\(\lambda\)). For illustration purposes, a modification of the approach used in Peng’s Q(\(\lambda\)) algorithm has been adapted for the ADP algorithm with the post-decision state variable and shown in Figure 3.3. The Peng’s version of the eligibility trace was selected because it does not make distinction of the traces applied to greedy and non-greedy actions, unlike Watkins’. In our traffic control problem, non-greedy actions could be the result of a coordination strategy that may seem suboptimal for the agent itself but aims at better system-wide performance.

```
1) Initialization
   a. \(V(s)=0\), for all \(s\)
   b. Previous action = 0
   c. Eligibility list size = L (L=20, implemented for the last 20 states)

2) Loop from \(t=0\) to \(t=T\):
   a. Read current state \(s_t\)
   b. Determine optimal action \(a_t\) based on maximum cost \(C(s_t)\) and expected future state \(V(s_t')\)
   c. Carry out action and find short-term reward \(r_t\)
   d. Update elements of eligibility list \(j'\):
      i. Update eligibilities:
         1. \(e(S_t') = \gamma e(S_t')\)
         2. Update \(a_t\) (step size)
         3. Update \(V(S_t') = V(S_t') + (\alpha e(S_t') \ast (\Delta - V(S_{t+1})))\)
      ii. Update current state:
         1. Update \(V(S_t)\) estimate (using standard rule)
         2. \(e(S_t) = 1\)

Figure 3.3 Pseudo-code for ADP algorithm with eligibility traces
```

Note that a modification in the update of the trace \((e(s))\) was introduced, so that states frequently visited did not have traces greater than 1, potentially distorting the learning process. This modification is known as eligibility trace with replacement, and consists in “replacing” the trace of the visited state with a value of 1 instead of the typical addition of 1 to its current value.
CHAPTER 4 – PROPOSED MULTI-AGENT SYSTEM

4.1. Operational Description

MASTraf is a fully decentralized multi-agent system for traffic signal control, and it is composed of independent agents that may also communicate with immediate neighbors and act together in a cooperative fashion. The general structure of an agent and its interaction with the traffic environment is represented schematically in Figure 4.1. As it is typical of an agent-based system, the only direct input from the environment to the agent is in the form a “perceived” state, which in this particular research comes from static traffic sensors and the state of the traffic signals, in addition to an indirect input of the environment through communication with other agents. Conversely, the only mechanism for the agent to impact the traffic environment is through actions that modify the status of the traffic signals and influence the actions of other agents.

Figure 4.1 Schematic representation of agent and traffic environment
Within each agent, a series of closely interacting elements creates the learning structure, knowledge storage, and decision making process. This structure is standard of an agent using a RL algorithm, with exception of the COM module, and is described using Figure 4.1 as follows.

Information from the environment in the form of sensor inputs and current traffic signal indications is received by the agent and associated with the current ‘perceived’ state of system. The current state is used by the agent to: 1) estimate the reward of the previous action, 2) determine potential actions the given state can transition to, 3) estimate the value of the previous state (or state-action pair), and 4) inform other agents the most recent state that has been perceived.

The estimation of the reward requires comparing the current and previous states to determine the goodness of the last action or series of actions, as well as the evaluation of the desired measures of performance (e.g. delay, carbon emissions). The value of being in a given state (for Q-learning this value is also associated with an action) is estimated from an immediate reward and previous knowledge on the value of the state. The value of a state is also commonly viewed as a “cost-to-go” value, indicating an estimation of the “true” or discounted value of a state (or a state-action pair).

It is noted that the learning process is based on the optimal action an agent can take given its current knowledge. However, not all algorithms would force the agent to commit to the best action, indicating that the learning process could be different from the one driving the agent’s decision making and creating the experienced sample paths. On this regard, the two algorithms selected for this research (Q-learning and the ADP algorithm) are called “off-policy”, since the learning process is optimal even though the policy may continuously change, for example by switching at some point to an exploration strategy instead of always using a greedy criterion.

The commitment to take an action is driven by a set of rules that jointly creates a policy. A policy is typically influenced by the estimated state values and the information exchange with other agents, and it is bounded by a set of valid actions given the current state of the agent. After the agent commits to an action, this decision is relayed to the traffic signals for their execution, affecting the vehicular traffic (and the state of the system) and finishing the events from the current time step. The same sequence of events will start on the following time step, thus the agent continues gaining experience and taking improved actions.
In the current implementation, the information received by a MASTraf agent regarding the state of the system is collected via vehicle detectors placed along the roadway. This allows for calculations of the number of vehicles in the links and number of vehicles processed, which the agents can use to make the control decisions (in addition to information received from other agents).

However, future extensions of the system can also make use of alternative inputs such as the precise location of each vehicle in the approaches, their speed, and intended actions. These extensions are ideal to adapt the proposed MASTraf to new initiatives such as vehicle-infrastructure interactions through dedicated short range communication (DSRC) devices, as well as other various ITS components. MASTraf is particularly well suited for making use of real-time data and translate it into a flexible traffic signal operation given that the learning process can reflect the effect of newly available variables in the reward structure, and that agents are not restricted by pre-specified cycle length, splits, or offsets. Furthermore, restrictions such as maximum or minimum green times, or phase sequence, are not an issue in MASTraf.

4.2. Implementation

The implementation of MASTraf was achieved using a custom dynamic linked library (DLL) created to interact with VISSIM, a widely accepted microscopic traffic simulator by PTV AG. VISSIM is able to generate the necessary traffic conditions to test MASTraf and most importantly, it also allows for the state of the traffic signals to be manipulated in running time based on user-defined rules contained in the DLL.

All elements that make part of an agent for this research were defined in the DLL, as well as the learning algorithms and the topology and relationship rules between agents. The original version of the DLL and related files provided by VISSIM included the definition and implementation of valid functions that can interact internally with the simulation, leaving to the user the development of any structures and their functionality for a given application.

The geometry and signal configuration of a traffic network in VISSIM requires traffic and software training that was acquired and put in practice in order to test MASTraf. This includes link and connector properties, driver behavior, vehicle characteristics, detector configuration, and system outputs. The traffic signal controllers were specified as external to the
simulation, indicating the use of a custom DLL file. Loop detectors at all entry and exit points of the links were created to provide agents with a “perception” of current conditions in all approaches. In addition, performance indicators such as travel time sections and data collection points were also created for analysis of the MASTraf performance.

Using these performance indicators, VISSIM generates extensive amount of data not only at the network level but also at the level of a single intersection and for every single vehicle. Thus, given the amount of data available after a series of simulation runs, it was necessary to create a custom code for data post-processing. This was achieved using the statistical software package SAS, which has very flexible data management properties, ideal for this application.

Each agent in VISSIM sequentially calls the DLL every simulation second, thus all variables accessible to the user can be tracked with the same frequency. The current implementation updates the agents’ actions every two seconds, given that this close to the standard time needed to process a single vehicle through an intersection at saturation flow rate. A 2-second window for evaluating the next action is expected to provide accurate results, also leaving more time available to other MASTraf functions such as communication between agents and conflict resolution for group formation.

Default driver behavior parameters from VISSIM for urban scenarios have been used for the majority of the simulation results presented in this research. This was decided because the main objective in this research was to determine the feasibility and performance of the proposed system in standard and realistic settings, without a precise representation of a network in a given population center. Nonetheless, some work has been done for specific experiments to calibrate VISSIM parameters and compare the results obtained by MASTraf with other methods (such as genetic algorithms and evolutionary strategies) implemented in the simulation package CORSIM.

4.3. System Components

As described in Chapter 2, agent-based traffic control networks in severely congested conditions have not been thoroughly explored in past research. Congestion and traffic operation considerations in such conditions, including queue spillbacks, gridlocks, and signal coordination, are considered in the proposed MASTraf. “Look-ahead” and “look-down-the-road” features have
been defined for the agents to be able to anticipate potential blockages or opportunities for signal coordination.

Communication capabilities are convenient to generate coordination, but communication requirements should be limited to provide good scalability to the system, resulting in increases in the complexity of the agent’s structure of only a single dimension (likely binary) per critical movement. This can be achieved when agents communicate (via information passing), their potential for blockage or green starvation without the need of problem solving or negotiations between agents.

In addition, algorithms for explicit coordination can also be used for real-time decision making as long as they provide anytime estimations on potential solutions. In such cases, the agents can initiate information passing and negotiations to create groups and coalitions for signal coordination without compromising system decentralization and real-time decision making capabilities.

The design of an effective agent requires the definition of its inner structure considering traffic operation concepts in congested networks, with main efforts focusing on three aspects: 1) a state representation, 2) a reward structure, and 3) an action selection strategy. These are described in more detail as follows.

4.3.1. State Representation

The state representation defines how an agent perceives the world. The state typically includes inputs considered to be important for the agent to recognize the occurrence of an event. Thus, a state representation is likely to be a multidimensional vector, where each dimension measures a significant characteristic of the environment. In our traffic signal problem, the state should be able to describe the current traffic condition such that the right of way can be assigned efficiently not only at the intersection level, but also to the benefit of the network as a whole.

Based on the literature, most studies have used variations of the number of vehicles present or queued in the approaching links as the de-facto variable to describe the state perceived by the agent. However, adding components of delay (or a proxy for delay) that are easy to compute for real-time applications, and also components indicating oncoming traffic and potential downstream blockages, may result in improved performance and even in emergent coordinated behavior.
Thus, for a typical intersection with four approaches, a basic state representation could consider the following: a) Components that reflect the number of vehicles and the time they have spent in the link – e.g. one dimension for the east-west direction \((s_{ew}) \) and one for the north-south direction \((s_{ns}) \); b) components intended to promote coordination, describing the occupancy of the links in upstream intersections – e.g. \(b_{ew}^{up} \) for the east-west direction, and \(b_{ns}^{up} \) for the north-south direction; c) components to avoid intersection blockages due to oversaturated conditions, describing the occupancy of the links in downstream intersections – e.g. \(b_{ew}^{down} \) for the east-west direction, and \(b_{ns}^{down} \) for the north-south direction; d) The current state of the signal - \(g \): green indication displayed for east-west or for north-south; and e) the time periods since the last phase change, or phase duration - \(d \). Thus, a general form of the state representation, considering upstream and downstream information can be defined as a multidimensional vector, as shown below:

\[
S = \{s_{ew}, s_{ns}, b_{ew}^{up}, b_{ns}^{up}, b_{ew}^{down}, b_{ns}^{down}, g, d\} \tag{4.1}
\]

This state provides information for the agent to be able to anticipate upstream and downstream congestion. In addition, it has information to determine if requirements such as minimum green times or if special restrictions in the length of the phases are to be defined. Also, the state formulation remains in the memory-less Markovian domain, as it maintains its independence from past history.

The idea behind anticipating blockages or opportunities for coordination is to obtain improved behavior of the system as a whole if the state of an agent is able to partially perceive the state of neighboring agents. As mentioned above, this state representation will not increase exponentially with the number of agents (having good scalability), since the added variables would only represent the state of immediate neighbors. In addition, the communication between agents is limited to “inform” and not to “negotiate” decisions in an orderly fashion.

The state space can also be kept within a manageable size since the components of the state are susceptible to scaling in order to fit a large number of values. For example, in a given implementation, \(s_{ew} \) and \(s_{ns} \) were transformed to a scale from 0 to 10 (11x2 levels), the upstream and downstream indicators ranged from 0 to 2 (3x4 levels), only two phases were considered in
the state of the signal (2 levels), and up to 8 time periods were considered for the length of the current phase (8 levels). This resulted in a state space in the order of 1×10^5, which was feasible to be stored in the memory of a standard computer in the form of a lookup table.

4.3.2. Reward Structure

An agent will perceive if the action taken in the last time step was positive or not based on the goodness of the rewards derived from such action. Therefore, it is essential to build an appropriate reward structure that considers key elements in the process of giving the right of way to vehicles. Since there could be a number of potential objectives in the problem of signal control (e.g. minimize delay, number of stops, or maximize throughput), elements in the reward should be relevant to the selected objective(s).

For the agent to learn a given reward signal and efficiently include it in its knowledge, it is ideal to express the rewards in terms of the state variables. Thus, if a reward signal is closely associated with the perceived state of the system, the agent can have a better estimation of the value of the state the next time it visits it.

For traffic signal operations, the rewards can be expressed in terms of several components that are likely to be explicitly considered in the state. For instance, if one of the objectives of the system is to process as many vehicles as possible, the reward can be a function of the change in the number of vehicles queued, which can be directly found from the state variables.

In addition, traffic operations in closely-spaced intersections and in oversaturated conditions require additional considerations, since blockages, gridlocks, and potentially signal coordination are to be provided for a successful network operation. Thus, rewards (and states) should reflect these elements in order to consider them into the green time allocation, as shown in a simple example. Consider a case where an agent finds a state that is likely to generate blockages due to downstream congestion if green is provided to the E-W direction. If there is no indication of such potential blockages in the reward, the agent has no feedback on the blockages that it may generate even if the state includes the potential blockage in one of its components. Therefore, the agent may provide green to the E-W direction, creating blockages and a situation from which the system may or may not be able to recover. This situation may be recognized by the learning mechanism a several time steps after the wrong decision was taken, making it
difficult for the estimates to back up the negative implications to the action that actually caused the performance drop. A similar case can be argued for an implementation where the reward considers the effect of blockages but this is not reflected in the state. The agent will not be able to recognize situations where a decision may lead to a blockage, and the estimate of the state value will be the result of an average performance between the value of having a blockage and not having it.

With these considerations in mind, the formulation of the reward in this research included variables that were, for the most part, represented in the state. This is expected to lead to more uniform estimates in the value of a state, and therefore, to a smoother learning process.

The selection of variables in the reward considers traffic operation concepts from congested networks. In a congested network, the traffic signals should process as many vehicles as possible without overloading the links that could generate blockages. This basic idea leads to the inclusion of variables such as current link occupancy and information on downstream and upstream links. In addition, it should be considered that with every phase change there is a transition time (and lost time) when vehicles are not processed in any direction, indicating that the fewer transitions, the lower the lost time. Lastly, the quality of service should also be included, with maximum waiting times for a given direction that are considered acceptable in practice, and thus there may be a need to keep track of the phase duration and/or a measure of delay.

These ideas have been implemented and put to practice in different scenarios with single intersections, arterials, and networks, as it is shown in detail in the evaluation of the performance of MASTraf in the following chapter. In general,

4.3.3. Action Selection

A mechanism to select an action given the current estimates of the state (or state-action pairs) is necessary in order have an adequate spread in the number of states experienced and also to visit them frequently enough to generate trusted estimates of their true value. Therefore, the action selection should consider the tradeoffs between exploration and exploitation, where the agent needs to balance the maximization of immediate outcomes with the potential discovery of long-term benefits after suboptimal actions are taken in the short term.
The design of an adequate action selection strategy is even more significant for “off-policy” algorithms, such as those implemented in this research (Q-learning and ADP). This is because off-policy algorithms perform the learning process independent from the action selection process as long as states are eventually visited with “sufficient” frequency.

A common approach for the action selection mechanism is the use of an e-greedy policy, where the maximization of the immediate action is performed at all times, except for a random action selection with probability e.

Similarly, a probabilistic action selection using a Boltzman or soft max distribution is common in practice. In this case, exploration will be performed more often in the early stages of the learning process, as indicated by the number of times a state has been visited, and is also dependent on the current estimations of the values of being in a state. The general form of the probability of selecting a given action can be expressed as follows:

$$p_x(a) = \frac{e^{\frac{Q(x,a)}{T}}}{\sum_{b \in A} e^{\frac{Q(x,b)}{T}}}$$

where T is a temperature factor that controls the probability of exploration versus exploitation and is dependent on the number of times a state has been visited. The greater the value of T, the more likely the agent is to have similar probabilities for all actions, and therefore to explore more often. Thus, each action will have a probability to be chosen that is a function of both the estimate and the value of a state and the number of times the state has been visited.

On the other hand, a combination of different action selection mechanisms or a hybrid approach can also be adopted. In such implementations, action selection can be guided based on one strategy at early stages, but then modified when estimated are considered to be more stable. This was precisely the choice selected in this research, as it is described next.

Given that in congested networks there is a need for having a careful balance between processing the most number of vehicles and preventing blockages, signals acting randomly at the beginning of the learning process may result in gridlocks from which recovery may be very difficult. Therefore, in this research a hybrid approach has been adopted, where the following strategies were combined: a) the very first time a state is visited, the action selection is biased
towards the approach with the higher combination of number of vehicles and the amount of time they have been in the link; b) If the agent arrives at a state that has been already visited, but it has not taken one particular action for the first time, the decision is biased to take that action as a means of forced exploration. This is done until all actions have been tried at least once; c) once all actions have been experienced, a proportional rule to choose the best action was implemented using a Boltzman distribution, until the estimates were considered to be more stable; and d) at later stages in the training process, e-greedy selection was used to choose the action with the highest value estimates.

This hybrid approach allowed for extensive exploration at the beginning of the agent training, slowly transitioning to exploitation of higher state values as the estimates became more reliable.
CHAPTER 5 – EVALUATION OF MASTRAF IN TRAFFIC SIGNAL SYSTEMS

A series of experiments were designed to test the performance of MASTraf with different definitions of the state and reward structure. The objective was to determine if the proposed system is suitable for real-time traffic signal control in scenarios ranging from a single intersection, to arterials and networks, both in undersaturated and oversaturated conditions.

Results are presented in an incremental fashion, from simpler to more complex scenarios. The performances of the systems were evaluated in terms of typical measures of performance relevant to traffic operations, including: vehicle throughput, delay, number of stops, signal timings, queues, and average discharge headways.

The experiments and findings described in this section are the result of multiple research projects and also a compilation of work that has been presented by the author in conferences and technical meetings. Therefore, the relevant source will be referenced correspondingly in each of the scenarios below.

5.1. Single Intersection - Oversaturated Conditions

Perhaps the simplest scenario to be analyzed for traffic signal systems is a single intersection with random vehicle arrivals. In this particular case, an intersection was assumed to be isolated with long entry links (2000 ft) and long left-turn lanes (1000 ft), all of which had a single lane. The agent was required to control a traffic signal that could display up to four phases, two for the through movements and two for the left movements. The phase sequence did not have any restrictions. Traffic demands ensured oversaturation, with 1000 vphpl for each of the four entry links and 20% of such demand turning left. A sample image of the single isolated intersection in VISSIM is shown in Figure 5.1.
For each implementation, an agent was trained during 160 replications of 15 minutes each, where the agent accumulated experience and improved its performance based on the feedback received through the reward function. The number of replications was chosen after observing the learning curve of the agent, peaking near the 100th replication. The performance measures were obtained after the training was in its final stages, more specifically, using the last 20 replications.

A total of four variations of the ADP algorithm and four more of the Q-learning algorithms were implemented by incorporating different state and reward functions. Results are presented for the ADP implementation first, followed by those using Q-learning.

5.1.1. ADP implementations

Four variations were tested in this scenario to explore different state and reward representations, and their potential effects on the intersection performance. The following implementations were evaluated:

![Figure 5.1 Schematic representation of single isolated intersection](image-url)
- **ADP 1**: The state was represented by a five-dimensional vector with one dimension for the demand of each phase and an additional dimension for the status of the current phase. The reward for displaying a given phase was also very simple and calculated as the total demand present in the approach served by this phase. A penalty for changing phases was imposed to account for the lost time in the yellow-red transitions and it was a value proportional to the demand being served by the new phase.

- **ADP 2**: This application used a similar state and reward representation to that in ADP 1, but included an additional component in the state that indicated the duration of the current phase being displayed. The rationale behind this additional information was to serve as a proxy for the delay of vehicles in the phases not being served. The reward structure used in ADP 1 was maintained unchanged.

- **ADP 3**: Instead of using the phase duration as a proxy for the delay of competing demands, this implementation used an estimation of the time that vehicles have spent in the link. This value was then combined with the actual number of vehicles to determine the state of each of the demands in the four phases. The time vehicles have been in the link was accumulated using a dynamic table that kept track of vehicles as they entered and left the link, assuming no lane changes. This information can be easily found in the field with the use of entry and exit detectors. The reward structure remained unchanged, thus differences in the performance of ADP 3 will reflect the effects of the changes in the state representation. For this implementation, phase duration was not included as a dimension in the state space.

- **ADP 4**: This implementation is similar to that used in ADP 3, with the exception that the phase duration was added to the state representation. The reward structure was the same as the one used in the implementations above.

5.1.2. Performance

In oversaturated conditions it is common practice to maximize the number of vehicles processed by an intersection, or vehicle throughput. For the case of a single intersection, this may be the case because when demands exceed capacity it is often desired to meet as much of such demand so that the remaining number of vehicles at the end of the analysis period is as low as possible. The learning curve for the agents running the four ADP implementations is shown in Figure 5.2,
where it is observed how the performance of the signal was improved over time as the agents continued accumulating experience. For the two algorithms that had the best performance (ADP 1 and 3), the throughput reached about 700 vehicles in 15 minutes for the four phases combined. This translates to about 1400 vphpl of vehicles processed by a single approach. Note that in addition to the actual throughput for each replication, a 10-point moving average is also displayed in Figure 5.2 for each implementation.

![Figure 5.2 Learning curve for throughput of ADP algorithms in a single intersection](image)

Additional analysis to determine how efficiently was the green time utilized in each phase was conducted. The total green time of the last 20 replications was used for this analysis in order to use the data when the agents had accumulated the most training time, and to take into account the internal variation of the simulation software.

The average duration of each phase and their throughput for the last 20 replications is shown in Table 5.1. This allowed an estimation of the average discharge headways for each phase, which can be easily translated into green time utilization. It is observed that the lowest discharge headways were obtained using ADP 3, which includes the time vehicles have spent in the link as part of the state and excludes the phase duration. It is also noted that the total
throughput found with ADP 3 was also the highest, confirming that this implementation had a favorable performance compared to the others, as it can also be observed in Figure 5.2.

Table 5.1 Signal Timings and Average Discharge Headway for ADP in a Single Intersection

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Indicator</th>
<th>Phase</th>
<th>Green EW Left</th>
<th>Green EW Thru</th>
<th>Green NS Left</th>
<th>Green NS Thru</th>
<th>Total Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP 1</td>
<td>Ave green time (s)</td>
<td>8.23</td>
<td>10.07</td>
<td>8.37</td>
<td>9.8</td>
<td></td>
<td>33451</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>402</td>
<td>1206</td>
<td>429</td>
<td>1220</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>3308</td>
<td>12144</td>
<td>3591</td>
<td>11956</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3284</td>
<td>13476</td>
<td>3410</td>
<td>13281</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.01</td>
<td>1.80</td>
<td>2.11</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP 2</td>
<td>Ave green time (s)</td>
<td>8.19</td>
<td>9.36</td>
<td>8.1</td>
<td>9.24</td>
<td></td>
<td>30037</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>294</td>
<td>1168</td>
<td>759</td>
<td>1181</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>2408</td>
<td>10932</td>
<td>6148</td>
<td>10912</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>2632</td>
<td>12130</td>
<td>3089</td>
<td>12186</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>1.83</td>
<td>1.80</td>
<td>3.98</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP 3</td>
<td>Ave green time (s)</td>
<td>8.18</td>
<td>10.32</td>
<td>8.31</td>
<td>10.08</td>
<td></td>
<td>34174</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>385</td>
<td>1216</td>
<td>385</td>
<td>1216</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>3149</td>
<td>12549</td>
<td>3199</td>
<td>12257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3306</td>
<td>13834</td>
<td>3352</td>
<td>13682</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>1.91</td>
<td>1.81</td>
<td>1.91</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP 4</td>
<td>Ave green time (s)</td>
<td>8.1</td>
<td>9.19</td>
<td>8.01</td>
<td>9.14</td>
<td></td>
<td>31449</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>264</td>
<td>1250</td>
<td>632</td>
<td>1269</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>2138</td>
<td>11488</td>
<td>5062</td>
<td>11599</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>2378</td>
<td>12794</td>
<td>3313</td>
<td>12964</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>1.80</td>
<td>1.80</td>
<td>3.06</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Even though the number of vehicles processed and efficiency in the utilization of green time are important indicators of the signal performance, other indicators such as queue lengths and quality of service for all users should also be considered. For example, it would be useful knowing how the service for a driver turning left compares to the service for a driver continuing straight through the intersection. In this regard, from Table 5.1, it is observed that the frequency with which the left-turn and the through phases were displayed was very different for all implementations, with through phases being around 3 or 4 times more frequent and with higher average duration. Recall that the demands for the left-turn phases were 20% of the total incoming traffic, thus the allocation of green time actually reflected the demand distribution.
Figure 5.3 shows the average vehicle delays for the four ADP implementations. Moving averages for each of the implementations show trends for the four cases. The lowest average delays were obtained using ADP 1 (which had the second highest throughput), followed by those using ADP 3 which had the highest throughput. On the other hand, similar to the results from Figure 5.2 (Throughput), the performance of ADP 2 and ADP 4 (which included the phase duration in the state) was not on par with the other two cases.

To determine the fairness and quality of service for left and through movements, an analysis was performed on the delay of vehicles for each phase. The average and variance of the last 20 replications for left-turning and through drivers is shown in Table 5.2 for the four ADP implementations. Table 5.2 also shows the relative delay of left-turners compared to those continuing through the intersection, which can be interpreted as a measure of fairness of service.

![Figure 5.3 Learning curve for average delay of ADP algorithms in a single intersection](image)
Table 5.2 Delay per Phase for ADP Implementations in a Single Intersection

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Left-turn phases</th>
<th>Through phases</th>
<th>Ratio Left/Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s)</td>
<td>Variance (s)</td>
<td>Mean (s)</td>
</tr>
<tr>
<td>ADP 1</td>
<td>226.3</td>
<td>531.6</td>
<td>242.5</td>
</tr>
<tr>
<td>ADP 2</td>
<td>251.9</td>
<td>17758.6</td>
<td>283.8</td>
</tr>
<tr>
<td>ADP 3</td>
<td>373.5</td>
<td>487.3</td>
<td>208.5</td>
</tr>
<tr>
<td>ADP 4</td>
<td>395.6</td>
<td>89499.7</td>
<td>245.1</td>
</tr>
</tbody>
</table>

The lowest delay per phase was obtained with ADP 3 for the through movements, but the most balanced service was provided using ADP 1, where the mean waiting time for both left and through movements was practically equal. Other implementations (ADP 2 and ADP 4) were highly unstable and provided longer delays for both left and through movements, and significantly higher variances for the left-turn phases.

Thus, a tradeoff is found between providing more balanced service (ADP 1) and favoring the phases with higher demands but achieving higher throughput (ADP 3). It is also noted that even though the differences in the average signal timings between ADP 1 and ADP 3 were very small, this resulted in significant changes in the ratio of delay between drivers in left and through phases and the throughputs.

The average speed of all vehicles in the network is shown for the four ADP implementations in Figure 5.4. ADP 1 had the highest average speeds, which combined with the lowers average delays and the second highest throughput, provides a favorable performance along with ADP 3. Similar to previous figures, Figure 5.4 shows a 10-point average speed to highlight the learning curve as the agents gain and accumulate experience.
5.1.3. Q-learning implementations

Similar to the analysis performed for ADP algorithms, a series of signal controllers were also created for Q-learning algorithms. Four implementations using Q-learning (labeled Q1 through Q4) follow the same state and reward definitions as explained for ADP 1 through ADP 4 in the previous section. The analysis of the performance of these implementations is described below.

5.1.4. Performance

The first indicator to determine the performance of the algorithms was the intersection throughput. The learning curve for the Q-learning implementations is shown in Figure 5.5, where there was a distinctive improvement using Q1 and Q3, compared to those that had the phase duration as part of the state representation (Q2 and Q4). This trend is similar to that observed for the ADP implementations.
A direct comparison between ADP and Q-learning is possible given that the algorithms make use of the same information from the simulation and share the source code for data collection and processing. In addition, the same random seeds were used for the two algorithms, allowing for a paired comparison. Figure 5.6 shows the two most favorable implementations for both ADP and Q-learning (implementations 1 and 3). It is observed that performance of the two algorithms is comparable at the end of the 160 training runs, especially for Q3 and ADP 3, reaching the highest throughput levels for the two series of implementations.

Figure 5.5 Learning curve for throughput of Q-learning algorithms in a single intersection
The signal timings and the throughput per phase were also examined for the Q-learning implementations. From this, the average discharge headway was obtained and used as a measure of the efficiency green time utilization. Results of this analysis are shown in Table 5.3. The highest throughput was found with Q3, showing that for both Q-learning and ADP, an implementation using an estimate for the time vehicles have spent in the link in the state of the system resulted in improved results.

In terms of signal timings, the through phases were displayed more often than the left-turn phases with a ratio of about 2:1, and in the case of Q3 the duration of the through phase was about double the duration of the left-turn phase. This mimics the actual traffic distribution, with about 20% of the green time dedicated to left-turn phases and the remaining time for through movements. In comparison with ADP, Q-learning phases for the through movements were longer and generated fewer phase changes, and therefore reduced the lost time.
Table 5.3 Signal Timings and Average Discharge Headway for Q-learning in a Single Intersection

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Indicator</th>
<th>Phase</th>
<th>Total Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Green EW Left</td>
<td>Green EW Thru</td>
</tr>
<tr>
<td>Q 1</td>
<td>Ave green time (s)</td>
<td>8</td>
<td>13.43</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>488</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>3904</td>
<td>11939</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3267</td>
<td>13058</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.39</td>
<td>1.83</td>
</tr>
<tr>
<td>Q 2</td>
<td>Ave green time (s)</td>
<td>8.01</td>
<td>10.88</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>505</td>
<td>1046</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>4045</td>
<td>11380</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3075</td>
<td>12601</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.63</td>
<td>1.81</td>
</tr>
<tr>
<td>Q 3</td>
<td>Ave green time (s)</td>
<td>8.01</td>
<td>15.19</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>433</td>
<td>844</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>3468</td>
<td>12280</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3347</td>
<td>13844</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.07</td>
<td>1.85</td>
</tr>
<tr>
<td>Q 4</td>
<td>Ave green time (s)</td>
<td>8.01</td>
<td>10.54</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>535</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>4285</td>
<td>10677</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>3229</td>
<td>13454</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.65</td>
<td>1.59</td>
</tr>
</tbody>
</table>

The average delay for all vehicles in the system is shown in Figure 5.7 for the four Q-learning implementations. At the end of the 160 runs the four implementations seem to converge to the same lower delay level, with faster learning rates for the algorithms that made use of the time vehicles have spent in the link as part of the state (Q1 and Q3).
Figure 5.7 Learning curve for average delay of Q-learning algorithms in a single intersection

In comparison with ADP, Figure 5.8 shows the implementations with the lowest delay for both Q-learning and ADP, which in this case were implementations Q3 and ADP 1. The performance of the two implementations is similar in terms of delay and this is also reflected in their similar average discharge headway, however they yielded different throughputs (Tables 5.1 and 5.3).
In a more detailed examination of the delay of Q-learning, the individual phases are observed to obtain the data shown in Table 5.4, analogous to Table 5.2 for ADP. It is observed that the lowest overall delays were observed for left-turning drivers using Q2, but causing a significant unbalance with delays of through vehicles. The delay of through movements was more predictable, with variances significantly lower than those of left-turn vehicles. Better balance of service for both directions was achieved by Q4 and Q3.

Given that the demand for through movements is 4 times greater than that of left turns, it is not surprising that Q3 had the lower overall delay for the whole intersection together, as seen in Figure 5.7.

Table 5.4 Delay per Phase for Q-learning Implementations in a Single Intersection

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Left-turn phases</th>
<th>Through phases</th>
<th>Ratio Left/Through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s)</td>
<td>Variance (s)</td>
<td>Mean (s)</td>
</tr>
<tr>
<td>Q 1</td>
<td>179.2</td>
<td>248.6</td>
<td>256.3</td>
</tr>
<tr>
<td>Q 2</td>
<td>175.6</td>
<td>77.1</td>
<td>282.7</td>
</tr>
<tr>
<td>Q 3</td>
<td>244.5</td>
<td>856.2</td>
<td>220.3</td>
</tr>
<tr>
<td>Q 4</td>
<td>235.0</td>
<td>1443.0</td>
<td>239.5</td>
</tr>
</tbody>
</table>
Regarding the average speed of vehicles, a summary of the performance of the four Q-learning implementations is shown in Figure 5.9. Similar to the curve for delay, the speed of the four cases approach a similar speed level by the time they reach the last of the 160 replications in the learning stage.

![Figure 5.9 Learning curve for average speed of Q-learning algorithms in a single intersection](image)

5.1.5. Summary of Findings

For a single isolated intersection, the reinforcement learning agents performed favorably by displaying the green indication proportionally to the directional demands and each movement. Q-learning and ADP showed similar performance and improved results as the agent accumulated experience, indicating that a learning process was in fact taking place. Results indicate that a measure of the occupancy or a combination of occupancy and delay for each movement was descriptive enough for the agents to control the signal efficiently, without the need to include
phase duration in the state representation. This simple case shows that a simple demand-based only approach to control the signals could be practical for an isolated intersection.

5.2. Four-intersection Arterial, Undersaturated Conditions

The second case study to evaluate the reinforcement learning algorithms was an arterial with four intersections. Conflicting volumes in the first two intersections create the need to continuously change phases, and open the opportunity to observe if there is any emergent coordinated behavior between them. The remaining two intersections did not have conflicting volumes and the signals should learn not to provide green time to those approaches. Entry volumes on the north and south end of the arterial are 2000 vph for the two lanes combined, and one third of the per-lane volume was input at intersections 1 and 2, for a total of 1000 vph in the three lanes combined. A schematic representation of the arterial is shown in Figure 5.10.

This section presents the results of multiple implementations, in a similar format to that used for the case of a single intersection, above. The ADP implementations will be described next, followed by Q-learning and some contrasts between the two approaches.

5.2.1. ADP Implementations

A total of four implementations were created for this scenario using ADP algorithms. The implementation labels include the letter “a” to create a distinction between this scenario and others.
The first two implementations (ADP1a and ADP2a) are analogous to implementations with best performance from the previous scenario (ADP1 and ADP3). Thus, in ADP1a the state was represented only by the number of vehicles in each link and the current phase, and in ADP2a the state incorporates a measure of the time the vehicles have spent in the link together with the number of vehicles. It is noted that the state space does not change from ADP1a to ADP2a, but only the variables involved in the estimation of the current state.

The remaining two implementations (ADP3a and ADP4a) included the following communication capabilities: 1) it was known to an agent if the receiving links of the neighboring intersections were near capacity (implemented as a dimension in the state), and 2) the agent will receive an incentive for providing green to incoming vehicles from adjacent intersection

Figure 5.10 Schematic representation of arterial, where “x” indicates no traffic in the approaching links
(implemented as a reduction in penalties). In addition to these capabilities, ADP4a used a modified reward function that included potential downstream blockages, so that penalties were created if green time was given to approaches that could result in these situations. More specifically, penalties were gradually increased if the downstream link was occupied between 0 and 40%, between 40 and 60%, or higher than 60%, as a function of the opposing traffic.

The potential for blockage in ADP3a and ADP4a was included as an additional dimension in the state space in the form of up to two levels of potential blockage per direction. The additional information included in ADP4a did not affect the size of the state space, but the calculation of the reward.

This scenario reflected undersaturated conditions, thus the total system throughput was expected to remain similar across all implementations unless their performance is significantly subpar compared to the others. A similar set of the indicators used in the case of a single intersection will be also shown in this case, in combination with other indicators that are appropriate for multiple intersections such as the total number of stops for a vehicle in the system.

5.2.2. Performance

The analysis starts with the average delay of all vehicles in the network, as shown in Figure 5.11. It is observed that the performance of the four implementations varied significantly, including the last stages of the training curve. ADP3a achieved the lowest average delays and ADP1a the highest. Recall that ADP3a included an incentive for incoming vehicles from adjacent intersections, but so did ADP4a using a different reward function.
Differences between the four implementations were, for the most part, the result of not completely eliminating phase changes for the two intersections that did not have conflicting volumes. The signals at these locations were not stable enough using ADP1a and ADP4a and the green phase was randomly assigned to the E-W direction with some frequency. A closer view of the signals in these two intersections showed that ADP1a provided green to the opposite direction for about one fourth of the total green time at intersection 4 and only a negligible portion of the green at intersection 3 (about 1% of the time). On the other hand, using ADP4a about one sixth of the green time was allocated to the E-W direction at intersection 4, and about 5% to the E-W direction at intersection 3. The remaining two implementations did not provide green time to approaches without demand at the end of the training process.

On the other hand, the average delay for each of the phases at the two intersections with conflicting volumes was also inspected, as shown in Table 5.5. Overall, the average delays for the four implementations are similar, indicating limited effects of the additional features for ADP3a and ADP4a. This result does not come as a surprise because blockages were not expected to be significant in undersaturated conditions.
Table 5.5 Delay per Phase for ADP Implementations in an Arterial

<table>
<thead>
<tr>
<th>Implementation</th>
<th>N-S phase</th>
<th>E-W phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (s)</td>
<td>Variance (s)</td>
</tr>
<tr>
<td>ADP1a</td>
<td>15.4</td>
<td>269.6</td>
</tr>
<tr>
<td>ADP2a</td>
<td>18.8</td>
<td>225.8</td>
</tr>
<tr>
<td>ADP3a</td>
<td>16.3</td>
<td>280.3</td>
</tr>
<tr>
<td>ADP4a</td>
<td>16.0</td>
<td>284.7</td>
</tr>
</tbody>
</table>

Additional information regarding the signal timings for each of the two directions of traffic in the intersections with conflicting volumes is shown in Table 5.6. The signal timings from ADP2a and ADP3a provided longer green times for the traffic direction along the arterial compared to the other implementations. Likewise, the average discharge headway was slightly longer for ADP2a and ADP3a.

In addition, the average green times for intersection 1 were longer than for intersection 2 along the arterial. This is explained by the more continuous arrival of vehicles at intersection 1 given that the demand on the northbound is reduced to about 72% of the original entry volume due to right and left turn movements, and the demand southbound to about 95%. This is also an indication that, given the greater demand southbound, coordination should be provided in this direction. The offsets between the beginning of green time at intersections 1 and 2 on the southbound and on the northbound were explored to determine if the coordination occurred as expected.

For the southbound, the offsets of the last 20 replications (at the end of the training period) were found to be shorter than those for northbound and closer to an ideal offset given the distance between intersections. The ideal offset assuming no initial queue was around 10 seconds in free-flow speed, but closer to 15 seconds with the assigned demands. A plot of the cumulative distribution of the offsets using ADP3a showed that 70% of the offsets in the southbound direction were lower than 22 seconds, whereas in the southbound the 70% of the cumulative distribution was located at 34 seconds. This is a clear indication of better coordination in the southbound, as expected. In contrast, an implementation without the coordination features (using
ADP2a) showed that 70% of the offsets were slightly longer in both directions, with the southbound direction at 24 seconds and for the northbound at 38 seconds.

Table 5.6 Signal Timings and Average Discharge Headway for ADP in Arterial

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Indicator</th>
<th>Intersection 1</th>
<th>Intersection 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP 1a</td>
<td>Ave green time (s)</td>
<td>8.07 24.89</td>
<td>8.3 20.77</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>877 876</td>
<td>974 977</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>7082 21810</td>
<td>8092 20294</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9912 34402</td>
<td>9994 33964</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.14 2.54</td>
<td>2.43 2.39</td>
</tr>
<tr>
<td>ADP 2a</td>
<td>Ave green time (s)</td>
<td>8.01 30.42</td>
<td>8.04 21.67</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>769 777</td>
<td>952 956</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>6164 23640</td>
<td>7654 20716</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9919 34375</td>
<td>9939 34010</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>1.86 2.75</td>
<td>2.31 2.44</td>
</tr>
<tr>
<td>ADP 3a</td>
<td>Ave green time (s)</td>
<td>8.07 26.57</td>
<td>8.06 22.71</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>850 849</td>
<td>930 931</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>6860 22558</td>
<td>7496 21143</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>10008 34315</td>
<td>9999 33948</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.06 2.63</td>
<td>2.25 2.49</td>
</tr>
<tr>
<td>ADP 4a</td>
<td>Ave green time (s)</td>
<td>8.11 23.42</td>
<td>8.15 21.52</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>907 908</td>
<td>953 953</td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>7360 21270</td>
<td>7766 20508</td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9907 34392</td>
<td>9956 34033</td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.23 2.47</td>
<td>2.34 2.41</td>
</tr>
</tbody>
</table>

Another measure of the coordination of traffic along the arterial is the average number of stops per vehicles. Even though this indicator does not account for vehicles slowing down, it may show when coordination was significantly different between the implementations. This is shown in Figure 5.12, where ADP2a and ADP3a, following the same trend observed for the delay, and closely linked to the signal operation in intersections 3 and 4.
Agent policies along the arterial were analyzed to determine if the results at the individual intersection level followed expected behavior. Two intersections were analyzed under specific states to observe the value of being at a given state using ADP3a: intersections 1 and 4 from Figure 5.10.

The most straightforward analysis would be at intersection 4, where there were no conflicting volumes in the E-W direction for the N-S arterial. The values of the states along the arterial at intersection 4 were obtained in cases without blockages when the N-S state varied from 0 to 14. Each of these states was visited more than 20 times, thus their values had been updated repeatedly for the analysis. Notice that the E-W state was always zero, and therefore their values were never updated from the initial zero value.

Figure 5.13 shows the increase in the value function as the state increases. Since all values in Figure 5.13 are greater than zero, and increasing with the state, there is more pressure to continue the green phase on the arterial with more vehicles in the link. On the other hand, there is no pressure to change the phase to the minor street since the values of those states remained zero. This policy resulted in the green indication given to the arterial at all times.
A more interesting comparison of the policies can be observed at intersection 1, where conflicting volumes were present. Policies can be observed as the number of vehicles in the arterial changes. Figure 5.14 shows that if the value of the state increases, the pressure to keep providing green time to this direction increases at an almost linear rate. This applies for the whole range of the volumes in the crossing street, but it is more pronounced if the crossing volume is lower. This is expected, since the lower the pressure to change the green indication to the side street, the greater the unit change in the state value with a unit increase in the arterial state.
The exploration of the policies along the arterial helps validating the convergence of the state values after the agents were trained. Recall that Figures 5.13 and 5.14 are based on values of states that have been visited more than 5 times and up to more than 1000 times, thus they have been updated multiple times to help approximating the converged state values.

5.2.3. Q-learning Implementations

Four implementations similar to those explained above for ADP where used to test the performance of Q-learning in the arterial scenario, labeled Q1a through Q4a. There is correspondence between the labeling used in this subsection and the characteristics of the implementations for ADP, thus for example the implementation for Q1a had the same state and reward definitions of ADP1a.

Unlike the results for ADP all four cases using Q-learning had similar performance at the end of the 80 training runs and reached the same levels of the best ADP cases.
5.2.4. Performance

The first indicator used in this analysis was the average delay per vehicle in the system, as shown in Figure 5.15. The four Q-learning implementations converged to a similar delay value and produced similar variations on the replications. An examination of the delays per intersection showed that in one of the implementations (Q1a) the signals provided momentarily the right of way to the approaches with no demand, delaying vehicles unnecessarily. In Q1a the signals provided on average about 5% of the total green time to the approaches with no demand, which accounts for some of the increased total delay of Q1a compared to the other algorithms in Figure 5.15. Additional reinforcement from adding an estimate of delay in the state, as well as incentive from adjacent intersections had a better effect in preventing switching phases to approaches with no demand in the Q-learning implementations compared to ADP.

![Figure 5.15 Learning curve for average delay of Q-learning algorithms in an arterial](image)

Delay values for the two intersections with opposing demands are shown in Table 5.7. Delays for the N-S direction were in general lower than for the E-W direction, which may be at first counterintuitive given the greater demand on the N-S direction, but it can be mainly
explained by the greater number of vehicles that could be processed without stopping due to increased pressure to hold the green light. The larger variance of the delay for the N-S direction also explains this situation, where some vehicles may have been processed by the intersection without stopping but some others had to wait at least the minimum green time and yellow-red transition of the E-W direction. On the other hand, vehicles in the E-W direction were likely to wait for the duration of the N-S direction (a great portion of a typical cycle) to be processed in the next green light, having a more constant delay. Lastly, a slight decrease in the delay of the intersections on the N-S direction (along the arterial) can be observed when using Q4a (which accounted for incentive upon arrival of platoons) but at the expense of greater delay for the E-W direction.

Similar comments to those mentioned for the ADP implementations apply to these cases with Q-learning in relation to the magnitude of the mean and variance of the delay.

Table 5.7 Delay per Phase for Q-learning Implementations in an Arterial

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Implementation</th>
<th>N-S phase Mean (s)</th>
<th>Variance (s)</th>
<th>E-W phase Mean (s)</th>
<th>Variance (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection 1</td>
<td>Q1a</td>
<td>17.1</td>
<td>267.4</td>
<td>21.4</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Q2a</td>
<td>17.1</td>
<td>208.1</td>
<td>17.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Q3a</td>
<td>17.5</td>
<td>284.6</td>
<td>19.6</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Q4a</td>
<td>16.0</td>
<td>284.7</td>
<td>23.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Intersection 2</td>
<td>Q1a</td>
<td>13.3</td>
<td>156.4</td>
<td>15.5</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Q2a</td>
<td>13.4</td>
<td>150.5</td>
<td>15.2</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Q3a</td>
<td>12.3</td>
<td>136.3</td>
<td>18.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Q4a</td>
<td>11.1</td>
<td>116.9</td>
<td>21.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The characteristics of the signal timings and the average discharge headway for the four implementations are shown in Table 5.8. As expected, given the undersaturated conditions, all four algorithms processed a very similar number of vehicles. Slightly different discharge headways were observed using Q3a and Q4a compared to Q1a and Q2a, favoring the N-S direction (larger headways) and also signal progression.

Different from ADP, the average phase duration for both N-S and E-W directions are more similar between intersections 1 and 2, creating a better probability of coordination in both directions due to common cycle length. If this is true, the offsets in both directions should be
similar to each other. Therefore, an examination of the offsets for the implementation of Q4a was conducted to determine the similarity of the offsets. Results showed a closer agreement between the two distributions, with the 70% of them being 22 seconds or lower for the N-S direction and 26 seconds or lower for the E-W direction. A sample image of the two distributions is shown in Figure 5.16, and indicates that the offsets varied in a very similar way throughout the 20 last replications, favoring coordination in the two directions of traffic.

Table 5.8 Signal Timings and Average Discharge Headway for Q-learning in Arterial

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Indicator</th>
<th>Intersection 1</th>
<th>Intersection 2</th>
<th>Total Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E-W N-S Total</td>
<td>E-W N-S Total</td>
<td></td>
</tr>
<tr>
<td>Q1a</td>
<td>Ave green time (s)</td>
<td>8.14 23.47</td>
<td>8.16 20.73</td>
<td>44304 43952</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>906 904</td>
<td>979 977</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>7375 21217</td>
<td>7989 20253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9957 34347</td>
<td>10013 33939</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.22 2.47</td>
<td>2.39 2.39</td>
<td></td>
</tr>
<tr>
<td>Q2a</td>
<td>Ave green time (s)</td>
<td>8.23 21.17</td>
<td>8.24 19.63</td>
<td>44333 44019</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>962 967</td>
<td>1008 1003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>7917 20471</td>
<td>8506 19689</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9929 34404</td>
<td>10026 33993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.39 2.38</td>
<td>2.49 2.32</td>
<td></td>
</tr>
<tr>
<td>Q3a</td>
<td>Ave green time (s)</td>
<td>8.28 23.05</td>
<td>8.46 22.05</td>
<td>44250 44006</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>912 917</td>
<td>912 935</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>7551 21137</td>
<td>7885 20617</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9922 34328</td>
<td>9980 34026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.28 2.46</td>
<td>2.37 2.42</td>
<td></td>
</tr>
<tr>
<td>Q4a</td>
<td>Ave green time (s)</td>
<td>8.32 26.7</td>
<td>8.48 26.56</td>
<td>44309 43966</td>
</tr>
<tr>
<td></td>
<td>Total phase frequency</td>
<td>841 838</td>
<td>834 833</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total green time (s)</td>
<td>6997 22375</td>
<td>7072 22124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throughput (veh)</td>
<td>9968 34341</td>
<td>9992 33974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ave. discharge headway (s)</td>
<td>2.11 2.61</td>
<td>2.12 2.60</td>
<td></td>
</tr>
</tbody>
</table>
The total number of stops per vehicle was also monitored for the whole system, and it is shown in Figure 5.17. The four implementations converged to a value of about 0.7 stops per vehicle, with an edge for the Q4a implementation. This was also expected given the longer average green time for the N-S direction in Q4a compared to the other implementations and the similar timings for the two intersections with conflicting movements, as shown above.
In comparison with the best ADP, the learning curve of the Q-learning implementation was very similar, with slight benefits in terms of the number of stops for Q-learning. This can be observed in Figure 5.18, showing ADP3s and Q4a.

![Learning Curve Comparison](image)

Figure 5.18 Comparison of learning curves for average number of stops of Q4a and ADP3a

The performance of the best ADP and Q-learning algorithms was also compared to the results of the traffic signal optimization performed by the commercial software package TRANSYT7F, which uses a search in the solution space through a genetic algorithm. The traffic environment for TRANSYT7F was provided by CORSIM, a well-known microscopic simulator.

The arterial was coded in CORSIM with the exact same characteristics as in VISSIM. In addition, calibration had to be performed to ensure that the vehicle characteristics, the discharge headways and speeds were the same in the two simulation environments. The following variables were modified in VISSIM to attain the desired calibration: desired speed, vehicle types were limited to two, with the same dimensions and similar operational characteristics, the additive part of the desired safety distance in the car-following model (to obtain similar discharge headways), and the standstill distance of vehicles (to match the number of vehicles that a link could store). It is noted that the decision to perform this comparison was made before obtaining VISSIM results presented above, therefore all data was obtained after the calibration was performed.
The comparison of ADP and Q-learning with TRANSYT7F was performed in terms of average delay per vehicle, average vehicle speeds, and total system throughput. The last 40 replications of the training for ADP and Q-learning were used in the comparison whereas 40 replications were obtained from CORSIM using the signal timing settings after the optimization process was completed. Results of the comparisons are shown below in Figure 5.19.

Figure 5.19 Comparison performance of Q4a, ADP3a and TRANSYT7F in undersaturated arterial
Figure 5.19 shows similar average values for all three methods for the three indicators. However, higher variation between different replications was obtained in VISSIM compared to CORSIM. It is important to observed that while the same random seeds where used for ADP and Q-learning, this was not possible with CORSIM, as the simulation packages had a different car following model, and therefore different use of random numbers. This variation can be better observed in 19a, where the vehicle throughput is shown for the different replications.

5.2.5. Summary of Findings

Similar to the results for an isolated intersection, Q-learning and ADP agents efficiently controlled the traffic signals along an arterial. The features included in the state and reward functions had significant impact on the performance of the signals. Incentives for arriving upstream platoon of vehicles and penalties to prevent blockages improved the coordination between intersections by reducing the average number of stops through more adequate offsets. These features also added stability on the cases where no conflicting volumes were present. Q-learning seems to have an edge in terms of signal control for the cases without conflicting, as expected given the direct association between states and actions.

Results also indicate that the ADP and Q-learning implementations were as effective as current commercial solutions to find optimal signal timings along an arterial in undersaturated conditions. These findings are also used as building blocks for more complex scenarios described in the following sections.

5.3. Five-intersection Arterial – Q-learning, Variable Demands

In this scenario, three different sets of time-varying demands were tested along a five-intersection arterial to determine how well the agents adjusted to changing conditions. The reactions of agents to variable demands help providing answers to the problem of non-stationary conditions for the traffic control domain. Agents were provided with communication capabilities in order to share limited information regarding their current state, and therefore improve coordination.
A sample image of the arterial and the intersecting streets is given in Figure 5.20, where the vehicle entry points are marked by arrows. No turning movements were allowed, and all of the approaching links had two lanes and were equipped with loop detectors at their entry and exit points.

![Figure 5.20](image.png)

Figure 5.20 Schematic representation of the arterial and minor streets, and example of detector location for intersection No. 2.

5.3.1. Implementation

A Q-learning implementation to similar those described above in the previous two scenarios was used for this case. The state representation included the following components: The number of vehicles and the time they have spent in the link (one component for E-W and one for N-S directions), two components describing the occupancy of the links in upstream intersections (one per direction), two components to avoid intersection blockages due to oversaturated conditions (one per direction), the current state of the signal, and the number of time periods since the last phase change as an indication of phase duration.

The reward structure followed the general definition provided in the description of MASTraf from the previous Chapter, thus including the following components: a) the number of vehicles in approaches receiving green \(x_g\), b) the number of vehicles in approaches given red \(x_r\), c) a penalty for the delay incurred during the yellow-red transition when a phase is terminated \(p_t\), d) a penalty for giving green to approaches with congested receiving
(downstream) links (pd), and e) an incentive to give green to approaches expected to receive several vehicles from upstream links (iu). Each of these factors had a weight in the final reward (R) in the general form of the reward equation shown below, where βi is a factor weight.

\[R = \beta_1 x_g + \beta_2 x_r + \beta_3 p_t + \beta_4 p_d + \beta_5 i_u \]
(5.1)

Based on the objectives of the signal control problem, the weights for the number of vehicles in approaches with the green light (β1) and for coordinating the signals along the main arterial (β5) were positive. On the other hand, the weights for other factors that may contribute to delay and the number of stops (β2, β3, β4) were negative. Specifically, the weights used for the βi factors were:

\[\beta_1 = 1.5, \beta_2 = -1, \beta_3 = -1, \beta_4 = 0, \beta_5 = 1.5 \]
(5.2)

Note that the factor including the penalty for downstream blockage due to congested receiving links (β4) was zero. This was the case, since it was observed that the incentive for coordination (β5) generated a “domino” effect that discharged links getting close to the saturation points, preventing downstream blockages without having to define an explicit penalty for them.

The reward structure in its basic form will generate a behavior that represents basic principles of best effort policies at a given intersection. Thus, longer queues (or higher state) will tend to receive the green indication. The immediate reward should indicate the value of a state given the current conditions on the competing links, in addition to considerations of lost time, downstream congestion, etc. An example of the policy based on immediate rewards at states without blockages, at the shortest possible phase duration and considering lost time, is shown in Figure 5.21 for illustration purposes. Figure 5.21 shows the variation of the immediate reward for an intersection that is currently giving the green indication to the E-W approaches.
Figure 5.21 Immediate rewards for intersection without blockages, short phase duration, and currently displaying green on the EW direction

Scenarios with variable traffic along the arterial were created to test the agents. The five agents (one per intersection) were structured in an identical way, but with separate Q matrices. Particular interest was centered on scenarios with high volume along the arterial, since coordination can potentially pay off in greater proportion in presence of big platoons of vehicles.

Three scenarios with high traffic conditions were designed to determine the capabilities of the agents (see Table 5.9). While all three scenarios show high total volumes, Scenario 1 presents a situation with high volume along the arterial compared to the volume in the minor streets, Scenario 2 presents more balanced volumes, with similar traffic for the arterial and minor streets, and Scenario 3 presents the highest conflicting volumes, close to roadway capacity.

The agents were trained prior to the actual evaluation of their performance in a continuous fashion, not following an episodic training as in the cases from previous sections. The training lasted for 20000 simulation seconds under each of the expected traffic volumes. The simulation software could run at a speed about 30 times faster than real time using a PC with two processors (2.4GHz each) and 4 GB of memory, thus the training was completed in reasonable time.
TABLE 5.9 Volumes for Simulation Runs

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Simulation time (s)</th>
<th>Vol. Main St. (vph)</th>
<th>Vol. all Minor St. (vph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10000</td>
<td>1900</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10000-20000</td>
<td>2300</td>
<td>1100</td>
</tr>
<tr>
<td>20000-30000</td>
<td>1900</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>0-10000</td>
<td>1900</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10000-20000</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>20000-30000</td>
<td>1900</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0-10000</td>
<td>2000</td>
<td>1700</td>
</tr>
</tbody>
</table>

*Volumes refer to the two approaching lanes together

*Volumes on Main St are the same for the two entry points

*Volumes on all minor streets are the same

Results from the agents were compared to the best fixed phasing times, with coordinated phasing and optimal offsets. Under constant traffic, well coordinated pre-timed traffic control may offer very good performance in terms of both delay and the number of stops per vehicle. It is important to mention that at the points where traffic volumes changed in the simulation, the optimal fixed phasing times were also adjusted to maintain optimal settings throughout the whole simulation.

5.3.2. Performance

In scenarios 1 and 2, the performance of the RL agents along the arterial was better than with the coordinated fixed timing in terms of both total delay and average number of stops (see Table 5.10). In scenario 3, with volumes close to saturation, the average delay and number of stops was lower with fixed timing, but more balanced results (lower maximum delay and number of stops) were obtained for both traffic directions with the agents. Note that delay values for Main EB and WB were similar with the agents, mostly in Scenarios 1 and 2, as expected, evidencing equal pressure to provide the green indication from both extremes of the arterial. In addition, the number of stops per vehicle along the arterial shows evidence of coordinated behavior, with less
than 1.5 stops to traverse the 5 intersections. Even in Scenario 3, the number of stops was on average less than 2.5 for both directions.

Regarding the minor streets (see Tables 5.11 and 5.12), for scenarios 1 and 2 the delays and number of stops with the RL agents were also lower than with the fixed timing. It is noted that with the RL agents, the intersection located half way in the arterial (Intersection 3) had the highest delays and number of stops. This is a clear indication of more variability in the arrival of traffic on the arterial since it depended on the green indications of both Minor 1 and 2 for the EB traffic, and on both Minor 4 and 5 for the WB traffic.

TABLE 5.10 Performance of Pretimed and RL Agents for the Arterial

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Strategy</th>
<th>Delay (s)</th>
<th>Stops per Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Main</td>
<td>Main</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main</td>
<td>Main</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>1</td>
<td>Pretimed</td>
<td>22.5</td>
<td>103.6</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>37.6</td>
<td>35.1</td>
</tr>
<tr>
<td>2</td>
<td>Pretimed</td>
<td>22.5</td>
<td>73.9</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>34.1</td>
<td>32.7</td>
</tr>
<tr>
<td>3</td>
<td>Pretimed</td>
<td>21.7</td>
<td>90.3</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>59.2</td>
<td>49.1</td>
</tr>
</tbody>
</table>

TABLE 5.11 Delay - Pretimed and RL Agents for Minor Streets

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Strategy</th>
<th>Delay(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Pretimed</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>17.3</td>
</tr>
<tr>
<td>2</td>
<td>Pretimed</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>17.3</td>
</tr>
<tr>
<td>3</td>
<td>Pretimed</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>40.6</td>
</tr>
</tbody>
</table>
TABLE 5.12 Stops per Vehicle - Pretimed and RL Agents for Minor Streets

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Strategy</th>
<th>Stops per Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minor 1</td>
</tr>
<tr>
<td>1</td>
<td>Pretimed</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>Pretimed</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>Pretimed</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>Agents</td>
<td>2.27</td>
</tr>
</tbody>
</table>

In terms of the signal timings, there was also evidence of signal coordination in the duration of the green times obtained with the RL agents. An example of this situation is shown in Figure 5.22, where the distribution of green times on the arterial road is shown for the five intersections with two different traffic volumes. It is observed that even though the agents are not constrained to any limitation on the green time (except a minimum green of 14 seconds), the distribution of green times are very alike for all 5 intersections in the same time periods.

![Figure 5.22 Green times for the arterial road. Left: first third of simulation in Scenario 2; Right: second third of simulation in Scenario 2](image)

5.3.3. Summary of Findings

In summary, results show that the agents adequately distributed the average vehicle delay and the number of stops per vehicle for the traffic along the arterial. In addition, there was clear evidence of traffic progression given that the average number of vehicle stops to traverse the 5
intersections along the arterial was in the order of 1.5 stops or lower, and also by the similar distribution of green times for all intersections during the same time periods. Even though the performance of the RL agents was superior to the best coordinated fixed timing for high volumes, the agents did not achieve similar results under close-to-saturation conditions. Since a balance between the arterial and the minor streets was pursued by the agents, this created shorter phases and increased the lost time due to yellow-red transitions.

5.4. 3x2 and 3x3 Networks – Q-learning

In these scenarios, testing was conducted for a Q-learning implementation based on the same state and reward structure, as well as the same update rule and action selection policy as in the previous example (along an arterial). The two scenarios included: a) a network of size 2x3; and b) a network of size 3x3. All approaches had two lanes and no turning movements were allowed. The main roadways had two-way traffic and the minor streets had only one-way traffic. A schematic representation of the 2x3 network is shown in Figure 5.23 for illustration purposes.

![Figure 5.23 Schematic representation of 2x3 network](image)

The two scenarios were tested under two different volume conditions: a) high volume, undersaturated conditions, and b) high volume, close-to-saturation conditions. For the
undersaturated conditions, 1700 vph were input at each of the entry points. For the close-to-
saturated conditions, 300 vph were added to the arterials in each direction, so that the total
volume to be processed at a given intersection was the sum of 1700 vph from the minor road,
2000 vph in the EB and 2000 vph in the WB of the arterial.

5.4.1. Implementation

The RL agents were trained during 60000 simulation seconds for the 2x3 and 3x3 networks. Results were compared to the best pre-timed signal timing settings under the specified volumes. The values provided here are based on the last 2 hours of simulation time from a run where the agents used the policies created in the training period. A value was obtained from VISSIM every 5 minutes of simulation time, thus a total of 24 values were obtained from the last 2 hours of simulation.

Given that traffic volumes per hour did not change in the simulation, pre-timed signal operation was expected to provide adequate results. In addition, the pre-timed signals were set such that one direction of traffic was coordinated along the two-way arterials, and also along the one-way roadways (minor streets).

Results from the pre-timed and the reinforcement learning agents were compared in terms of delay. A group of data collection points were defined in the networks to obtain the measures of performance. These points covered roadway sections starting at about 200 ft upstream from the initial signal, and ending about 200 ft after the last signal. For example, in the 2x3 network, the delay along one of the arterials started upstream from the first traffic signal and ended downstream of the third (and last) traffic signal.

5.4.2. Performance

The first scenario (2x3 intersections) is analyzed next. The results in terms of delays are shown in Tables 5.13 and 5.14 for undersaturated and close-to-saturation conditions, respectively. The average, maximum, and minimum delays per vehicle for each of the links in the networks are included. In the pre-timed case, it is obvious that the coordinated traffic in the main corridor was the eastbound (EB) direction.

From Table 5.13, the first observation is that lower average delay was obtained with RL compared to the pre-timed signals. Second, there is more balance between the delays in the EB
and the WB direction when using the agents than in the pre-timed case. This is expected since one direction is typically coordinated with pre-timed signals, increasing the expected delays for the traffic in the other direction. Third, the maximum and minimum delays experienced by a vehicle were lower using the agents compared to the pre-timed signals. Overall, it could be said that for this specific condition, the reinforcement learning agents showed better performance than the pre-timed signals.

Table 5.13 Delay for the 2x3 Network with High Volume and Undersaturated Conditions

<table>
<thead>
<tr>
<th>Link</th>
<th>Direction of Traffic</th>
<th>Pretimed</th>
<th></th>
<th>Reinforcement Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># of vehicles</td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Corridor 1</td>
<td>EB</td>
<td>3216</td>
<td>21.7</td>
<td>36.6</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3329</td>
<td>69.3</td>
<td>85.2</td>
<td>57.4</td>
</tr>
<tr>
<td>Corridor 2</td>
<td>EB</td>
<td>3269</td>
<td>20.1</td>
<td>26.2</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3392</td>
<td>70.0</td>
<td>84.5</td>
<td>56.8</td>
</tr>
<tr>
<td>Minor St. 1</td>
<td></td>
<td>3188</td>
<td>41.2</td>
<td>54.0</td>
<td>35.6</td>
</tr>
<tr>
<td>Minor St. 2</td>
<td></td>
<td>3328</td>
<td>44.2</td>
<td>53.6</td>
<td>38.7</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>19722</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regarding Table 5.14, the operation of the RL agents in the close-to-saturation condition was, in general, superior to pre-timed settings. This is similar to the case described above (undersaturated condition). On average, delays on the two corridors were lower with the agents, with a tendency to prioritize the WB direction, generating higher delays for the EB traffic.

Results from the second scenario (3x3 intersections) are shown in Tables 5.15 and 5.16. The performance of the agents in these two cases was better than the pre-timed signal timings. For the undersaturated conditions, average delays were lower and more balanced with the agents, which also resulted in lower maximum and minimum values.

For the case close to saturation, also lower average, maximum, and minimum values were obtained (see Table 5.16). Similar to the results in the 2x3 network, the agents learned policies that generated improved and more balanced results. In particular, note that the ratio of delay from the EB and the WB for corridor #3 is close to 1 using the agents, but more than 3 for the pre-timed signals. Particular importance is given to corridor #3 because greater coordination effects are expected to be seen as the traffic progresses along the minor streets in the network, from corridor #1 through #3. Note how in Table 5.16 there is a decreasing trend in the delays from corridor #1 to #3.
Table 5.14 Delay for the 2x3 Network with High Volume and Close-to-saturated Conditions

<table>
<thead>
<tr>
<th>Link</th>
<th>Direction of Traffic</th>
<th>Pretimed</th>
<th></th>
<th></th>
<th>Reinforcement Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>Corridor 1</td>
<td>EB</td>
<td>3526</td>
<td>93.4</td>
<td>152.1</td>
<td>61.7</td>
<td>3856</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3971</td>
<td>58.1</td>
<td>75.8</td>
<td>46.5</td>
<td>4091</td>
</tr>
<tr>
<td>Corridor 2</td>
<td>EB</td>
<td>3938</td>
<td>22.8</td>
<td>35.9</td>
<td>14.4</td>
<td>4051</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3916</td>
<td>58.1</td>
<td>75.8</td>
<td>46.5</td>
<td>4091</td>
</tr>
<tr>
<td>Minor St. 1</td>
<td></td>
<td>2376</td>
<td>102.7</td>
<td>155.2</td>
<td>71.3</td>
<td>3703</td>
</tr>
<tr>
<td>Minor St. 2</td>
<td></td>
<td>3305</td>
<td>54.7</td>
<td>74.8</td>
<td>41.3</td>
<td>3962</td>
</tr>
<tr>
<td>Minor St. 3</td>
<td></td>
<td>4093</td>
<td>25.4</td>
<td>39.7</td>
<td>14.7</td>
<td>3983</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>21032</td>
<td>68.3</td>
<td></td>
<td>27556</td>
<td>61.4</td>
</tr>
</tbody>
</table>

Table 5.15 Delay for the 3x3 Network with High Volume and Undersaturated Conditions

<table>
<thead>
<tr>
<th>Link</th>
<th>Direction of Traffic</th>
<th>Pretimed</th>
<th></th>
<th></th>
<th>Reinforcement Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>Corridor 1</td>
<td>EB</td>
<td>3350</td>
<td>55.8</td>
<td>159.7</td>
<td>15.4</td>
<td>3439</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3456</td>
<td>71.7</td>
<td>82.5</td>
<td>62.5</td>
<td>3564</td>
</tr>
<tr>
<td>Corridor 2</td>
<td>EB</td>
<td>3495</td>
<td>24.9</td>
<td>43.6</td>
<td>16.7</td>
<td>3495</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3564</td>
<td>71.7</td>
<td>90.6</td>
<td>56.5</td>
<td>3564</td>
</tr>
<tr>
<td>Corridor 3</td>
<td>EB</td>
<td>3403</td>
<td>18.4</td>
<td>31.4</td>
<td>13.2</td>
<td>3385</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3507</td>
<td>72.1</td>
<td>83.1</td>
<td>65.2</td>
<td>3486</td>
</tr>
<tr>
<td>Minor St. 1</td>
<td></td>
<td>3463</td>
<td>56.8</td>
<td>135.0</td>
<td>18.4</td>
<td>3333</td>
</tr>
<tr>
<td>Minor St. 2</td>
<td></td>
<td>3371</td>
<td>71.4</td>
<td>110.1</td>
<td>61.0</td>
<td>3438</td>
</tr>
<tr>
<td>Minor St. 3</td>
<td></td>
<td>3462</td>
<td>24.1</td>
<td>48.0</td>
<td>15.0</td>
<td>3411</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>27609</td>
<td>44.2</td>
<td></td>
<td>27560</td>
<td>30.1</td>
</tr>
</tbody>
</table>

Table 5.16 Delay for the 3x3 Network with High Volume and Close-to-saturated Conditions

<table>
<thead>
<tr>
<th>Link</th>
<th>Direction of Traffic</th>
<th>Pretimed</th>
<th></th>
<th></th>
<th>Reinforcement Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td># of vehicles</td>
<td>Delay (veh/s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>Corridor 1</td>
<td>EB</td>
<td>3023</td>
<td>141.9</td>
<td>314.1</td>
<td>71.2</td>
<td>3749</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>4072</td>
<td>72.0</td>
<td>90.8</td>
<td>57.9</td>
<td>4130</td>
</tr>
<tr>
<td>Corridor 2</td>
<td>EB</td>
<td>4076</td>
<td>25.3</td>
<td>45.5</td>
<td>15.6</td>
<td>4074</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>4070</td>
<td>64.4</td>
<td>91.6</td>
<td>47.4</td>
<td>4180</td>
</tr>
<tr>
<td>Corridor 3</td>
<td>EB</td>
<td>3953</td>
<td>19.9</td>
<td>36.0</td>
<td>14.3</td>
<td>3996</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>4072</td>
<td>72.0</td>
<td>90.8</td>
<td>57.9</td>
<td>4130</td>
</tr>
<tr>
<td>Minor St. 1</td>
<td></td>
<td>2990</td>
<td>145.3</td>
<td>396.5</td>
<td>70.7</td>
<td>3714</td>
</tr>
<tr>
<td>Minor St. 2</td>
<td></td>
<td>3952</td>
<td>97.4</td>
<td>280.6</td>
<td>62.8</td>
<td>4092</td>
</tr>
<tr>
<td>Minor St. 3</td>
<td></td>
<td>4088</td>
<td>26.5</td>
<td>43.8</td>
<td>16.4</td>
<td>4132</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>30163</td>
<td>66.0</td>
<td></td>
<td>31920</td>
<td>51.9</td>
</tr>
</tbody>
</table>

This trend is more clearly described in Figure 5.24, where the average numbers of stops per vehicle for each link in the 3x3 network are shown. The effect of using information from neighboring intersections works in two ways: 1) as vehicles move toward the center of the
network in the east-west direction, and 2) as vehicles move south in the minor streets (since they have one-way traffic only). The dashed arrow in Figure 5.24 illustrates the trend, which is also supported by the reduction in the number of stops. Similar trends were found using the delay values, as it can be observed from Table 5.16.

Figure 5.24 Number of stops for the 3x3 network with volume close to saturation

5.4.3. Summary of Findings

In summary, results showed that in the simulated networks RL agents could manage stable traffic conditions at high volumes and also for conditions close to the saturation point. For the 2x3 and 3x3 networks, improvements were obtained at all levels compared to pre-timed signals: lower average, lower maximum, and lower minimum delays. More balanced operation was also observed in two-way roadways compared to typical one-way coordination with pre-timed signals.

5.5. 3x3 Network – ADP

Experiments were also conducted using a 3x3 network with symmetric volumes and geometry (Figure 5.25). Intersections were 2000 ft apart from each other, all streets were two way with one
lane per direction and exclusive left-turn pockets 1000 ft in length. A study period of 15 minutes was determined, in which the traffic demand was fixed at a rate of 1000 vehicle per hour per lane at each entry point. This demand was high enough to ensure oversaturation in the network.

Figure 5.25 Schematic representation of the 3x3 network for ADP agents

5.5.1. Implementation

For this ADP implementation, a total of four components were used to describe the state as queues at the intersections (one for each of four queues waiting for the green light), and an extra component that described the current state of the signal. This last component was important in order to distinguish the pre-decision state variable from the post-decision state variable, as the state will change as soon as the signal changes (even if drivers have not reacted to it). During the
transition between phases, while the signals display yellow or all-red indications, the state would show the next phase receiving the green light.

The reward function for a given intersection was defined as a combination of the number of vehicles served by the green light (with positive sign) and the number of vehicles waiting to be served in the remaining approaches (with negative sign). In addition, penalties were defined for giving green to downstream links with potential for blockages, and for the lost time every time the right of way was changed from one movement to another. The penalty for lost time decreased as a function of the duration of the phase, as described in the definition of the basic MASTraf reward structure in Chapter 4.

In addition to the ADP algorithm with the post-decision state variable, eligibility traces were also implemented with the purpose of having deeper updates, as opposed to only updating the value of the state visited in the last time step. The implementation followed the adaptation of the Peng’s Q(\(\lambda\)) algorithm described in Chapter 3.

Results from the ADP strategy were compared to results obtained from genetic algorithms (GA) and evolutionary strategies (ES). In addition, a series of modifications to the original ADP solution were generated by approximating the phase frequencies and durations to fixed-timing settings. The idea behind the modified ADP solutions was to investigate if the real-time signal timings could be transformed to fixed-timings using a simple method and successfully applied to controllers not capable of having cycle-free operations. The modifications of the ADP solutions are described as follows:

1) ADP Modification 1: All phases were forced to be displayed in all cycles. Green times for through movements were based on averages from ADP, and green times for left-turn phases were estimated based on the total time they were displayed by ADP, but diving it by the total number of cycles (not the number of cycles they were actually displayed). This resulted in unrealistic short green times for the left turn phases, as low as 5 seconds. As a results, when the estimated green times for the left turns were below 7 seconds, green times for all phases were adjusted by a factor that increased the minimum phase duration to 7 seconds.

2) ADP Modification 2: Similar to Modification 1, but instead of multiplying all green times by a factor (when needed), they were added the time required to increase the minimum phase duration to 7 seconds.
3) ADP Modification 3: This approximation did not assume that the left-turn phases had to be displayed in every cycle, thus instead it considered the frequency left-turn phases were displayed in the original ADP solution. Green times for through movements were based on averages from ADP.

The following observations are highlighted from the signal timings obtained from the ADP modifications:

1) Cycle lengths and splits for the original ADP results and the three ADP modifications were similar to each other and follow the same symmetry of the traffic inputs. Thus, similar signal timings were found for intersections at the corners (intersections number 1, 3, 7, and 9), and also between intersections with only one entry link (intersections number 2, 4, 6, and 8). The intersection in the center of the network (intersection #5) had shorter cycles and splits.

2) The splits for the two competing demands (E-W and N-S) are similar, reflecting the actual traffic demands.

3) The ratio of splits for the left-turn and the through movements also follows the demand ratios (80/20 for through/left traffic).

5.5.2. Performance

The performance of the different signal control strategies presented in this section is based on 31 replications in order to account for variability in the traffic simulator. For the case of the reinforcement learning agents, the replications were performed after the agents were trained in the subject scenario.

The delay and number of vehicles in the network at the end of the simulation period (as a measure of network congestion), is shown in Figure 5.26. This analysis includes the delay for vehicles that could not enter the network due to long queues in the entry links. This factor was important in comparing solutions from different methods since inner links with less congestion show lower delay but at the cost of not allowing vehicles to enter the network. This consideration also works in favor of fairness to all strategies and adds a more realism to the calculations, accounting for metering effects at the edges of the network. Thus, the standard estimation of delay performed by VISSIM (the difference between the ideal travel time -without traffic and signal control- and the actual travel time experienced by the drivers) was modified to include the delay of vehicles waiting to enter the network.
Results show that the lowest delays were found with the different ADP strategies, as well as the basic GA and ES strategies. The contribution of delay from vehicles outside the network was very low and represented less than 4% of the total delay. This indicates that all strategies managed to keep the back of the entry queues in such way that only a few vehicles were delayed outside of the network. Figure 5.26 also shows that the total delay increased with the number of vehicles in the network at the end of the simulation period, as the bars in the figure follow the same trends as the delay ranges. Thus, as the saturation level of the network increased the total average delay per vehicle also increased, suggesting that there should be an optimal level of network saturation in order to achieve low average delays, high throughputs, and adequate queue management.

![Average Delay and Network Congestion for 3x3 Network](image)

Figure 5.26 Average delay and network congestion for 3x3 network

Figure 5.27 shows the total number of completed trips (or throughput) of the whole network at the end of the analysis period. GA, ES, and ADP with or without eligibility traces and its modifications resulted in similar average network throughput ranging from 2220 to 2320 vehicles. It is noted that the expected demand for the 15-minute analysis period was 3000 vehicles, indicating that all the demand (1000 vph) could not be processed.

A closer look at the number of vehicles inside the network revealed that the network increased its saturation levels over time, since the number of vehicles processed was lower than
the actual demand. This was expected since the arriving volume at the intersections with two competing entry links (the four intersections at the corners) was about 2000 vph, which exceeds the actual capacity of signalized intersections with single lane approaches.

![Figure 5.27 Total throughput for 3x3 network](image)

Efficient green time utilization was an important parameter also analyzed in this experiment. This measure of performance indicates if the green time allocated to the signal phases resulted in the expected number of vehicles processed given the saturation flow rate. In other words, it is an indication of how efficiently the green time was used to process vehicles. If an approach is given green time when there is no queue, this is an indication that the green time was underutilized. For all strategies, this measure was quantified at entry and non-entry links as shown in Figure 5.28.
From Figure 5.28, the ADP strategies with and without eligibility traces showed the most balanced performance and efficient green time utilization. This was expected given the reactive nature of the signal timings, adjusting to different combination of driver behavior from one...
replication to the next, and also highlighting the benefits of cycle-free signal control. Left-turn pockets were particularly better managed by limiting the phase frequency when not enough demand was detected for this movement, resulting in better green utilization when the phase was displayed.

Allowing the ADP agents having a cycle-free operation without phase ordering restrictions also prompts the question of fairness of service. This is because some users may experience extremely long delays in situations where a phase is not given enough green time in order to favor system-wide performance. Therefore, an analysis was conducted to determine the maximum delay per link and the number of vehicles that experienced significant amount of delay, which in this case was set to 300 seconds), as shown in Table 5.17.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Statistic</th>
<th>Max Delay in one link (s)</th>
<th># of Vehicles with delay >300s in one link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Eligibility</td>
<td>Min.</td>
<td>422</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>513</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>664</td>
<td>204</td>
</tr>
<tr>
<td>Eligibility</td>
<td>Min.</td>
<td>451</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>524</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>607</td>
<td>245</td>
</tr>
<tr>
<td>ADP Mod 1</td>
<td>Min.</td>
<td>393</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>491</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>612</td>
<td>166</td>
</tr>
<tr>
<td>Mod 2</td>
<td>Min.</td>
<td>391</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>499</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>670</td>
<td>137</td>
</tr>
<tr>
<td>Mod 3</td>
<td>Min.</td>
<td>372</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>498</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>658</td>
<td>167</td>
</tr>
<tr>
<td>No overloading</td>
<td>Min.</td>
<td>527</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>671</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>832</td>
<td>319</td>
</tr>
<tr>
<td>10% overloading</td>
<td>Min.</td>
<td>786</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>901</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1094</td>
<td>591</td>
</tr>
<tr>
<td>20% overloading</td>
<td>Min.</td>
<td>769</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>890</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1017</td>
<td>591</td>
</tr>
<tr>
<td>No overloading</td>
<td>Min.</td>
<td>531</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>652</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>780</td>
<td>281</td>
</tr>
<tr>
<td>10% overloading</td>
<td>Min.</td>
<td>762</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>898</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1070</td>
<td>606</td>
</tr>
<tr>
<td>20% overloading</td>
<td>Min.</td>
<td>764</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>Ave.</td>
<td>890</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1045</td>
<td>592</td>
</tr>
</tbody>
</table>

Table 5.17 Maximum Delays per Link and Vehicles with Delays Greater than 300 Seconds
Table 5.17 clearly shows benefits of ADP compared to solutions using GA and ES in terms of fairness of service. Average and maximum delays in the system when using ADP strategies were lower, as well as fewer cases of vehicles experiencing significant delay (>5 minutes). Worst-case delays are very important since from the point of view of a traffic control operator, it is always desirable to guarantee a minimum level of service for users in the network, and ADP showed in this experiment that it may deliver better average and worst-case performance than the other strategies.

Additional analysis and details on the performance of the ADP strategy and the GA and ES algorithms are not included in this document, but are publicly available in the NEXTRANS report mentioned at the beginning of this section, and titled “Traffic Signal Coordination and Queue Management in Oversaturated Intersections”.

5.5.3. Summary of Findings

Results from a symmetric 3x3 network in oversaturated conditions showed that the MASTraf formulation using ADP was able to efficiently manage the traffic signals by having high throughput and low delay compared to results from fixed signal timings from GA and ES strategies. In addition, it is shown that green times are better utilized using ADP and the quality of service is improved by having lower worst-case delays including all network users. Eligibility traces in the ADP formulation had little effects in the agent performance and did not show significant operational improvements compared to the implementation without this feature. In addition, the ADO modifications (fixed-time approximations of original ADP solutions) performed favorably and may be an option worth exploring in scenarios with fixed demand. However, fixed signal timings may result in significant delays and underutilization of green time.

5.6. 5x2 Network, Undersaturated Conditions

This section presents the results of Q-learning and ADP implementations in two arterials running parallel to each other with high-volume intersecting streets creating a 5x2 network. This is a step
up in complexity for finding traffic signal timings compared to previous scenarios, because there is interaction between intersections in both directions of traffic along two corridors.

Experiments with undersaturated and oversaturated conditions were analyzed in two separate cases. In this section the undersaturated case is described, followed by the oversaturated case in the following section. Demands for the undersaturated case were 1000 vphpl in the direction with high demand and about one third of this amount (333 vphpl) for the opposing direction. A schematic representation of the network is shown in Figure 5.29.

![Figure 5.29 Schematic representation of 5x2 network](image)

Figure 5.29 Schematic representation of 5x2 network

5.6.1. Implementations

Similar to the previous scenarios, a set of implementations were tested to determine their performance. The following are the descriptions of the implementations:

- **ADP1b**: The definition of the state for this implementation includes a component for each direction of traffic that is estimated using both the number of vehicles and the time they have already spent in the link. This is a similar implementation to that used in previous scenarios, such as ADP3 in the single intersection and ADP2a in the four-intersection arterial.
ADP2b: This implementation included a factor to account for potential blockages due to downstream congestion. The blockage factor was represented in the state as an additional dimension, thus one dimension for each direction was created. This factor also affected the rewards by increasing the relative weight of the link without potential blockage, therefore favoring the green light in that direction. The reward is analogous to that used in ADP4a in the four-intersection arterial.

Q1b: In this case, an application using Q-learning was created not only including the blockage factor from ADP2b, but also some incentives for anticipating vehicles from adjacent intersections. This incentive was in the form of added weight to the direction expecting the vehicles. Even though this feature is expected to produce better results with very low traffic in one of the traffic direction, it was included in this scenario to determine if it had any impact in the network.

Q2b: This implementation had the same state definition as Q1b, but the calculation of the rewards was estimated using the same definition from ADP4a, therefore the blockages and incentives have a significant impact in the rewards for each action.

5.6.2. Performance

The first measure of performance analyzed was the average vehicle delay for all vehicles in the network as the agents trained, as shown in Figure 5.30. An improvement in the average delay of all vehicles in the network is observed as the agents accumulate experience. It is noted, however, that the change in performance between the initial portion of the training and the last of the replications was in the order of 10% or less. This indicates that the reward function captures a significant portion of the desired behavior in the immediate estimation of the reward, and the subsequent discounted rewards only refined the decision making to those estimates.
All implementations showed that a learning process was in effect as the number of replications increased, with similar performance in terms of delay for the two ADP and the two Q-learning cases.

An analysis of the queue lengths in all links in the network, and for all implementations, showed that the only points that eventually had queues near their capacity (>85%) were left-turn lanes and the eastbound link of intersection 4. Therefore the signals prevented queue spillbacks on the through movements, but due to the permitted operation of the left-turns (as opposed to using an exclusive phase) these eventually created queues that reached the through lane. Given that only a few links were likely to be blocked, it is not surprising that the total throughput of the network was similar for all implementations and fluctuated around the expected number of vehicles to be processed in each of the 15-minute replications, which in this scenario was around 2400 vehicles (Figure 5.31).

Signal timings were also examined to determine how green times were utilized at each intersection. The direction of traffic with greatest volume was monitored in detail (E-W) since the main problematic areas were observed along these links. In addition, the discharge of left-turning vehicles was more critical on the E-W links given that there was only one through lane and it could be easily blocked by left-turning vehicles overflowing the turning lane.
The percentage of green time given to the E-W direction for all intersections was between 57% and 74% of the total green time. Based on the total demand per link, and assuming the same number of lanes for all approaches, the proportion of green time given to the E-W direction should have been about 50% for intersections 1 to 6, and about 66% for intersections 7 to 10. However, given that there is a single through lane on the E-W direction (compared to the N-S direction), it is necessary to give additional green time to E-W in order to process the same number of vehicles. Therefore, there is a tradeoff between two objectives in the network: providing equal service rates for the two directions of traffic and processing more vehicles per unit of time.

For the network to be more efficient, it is preferred to provide green time to approaches with greater number of lanes (e.g. the N-S direction), as more vehicles will be processed per unit of time. However, approaches in the E-W can develop long queues and this may result in eventual blockages, even during the green phase in the N-S since there are incoming vehicles to the E-W links from right- and left-turning N-S movements.

From the analysis of the signal timings, it was observed that the lowest and highest ratios of green times for the E-W direction were located at intersections 2 and 4, respectively. This
explains the relatively long queues found in the eastbound direction of intersection 4, as mentioned above. Incoming vehicles in the eastbound direction entered the link using 74% of the green time at intersection 2, but only had 57% of the green at intersection 4 to be processed.

On a different performance measure, the average speed of vehicles in the network improved also in a similar proportion than the delay during the training period (see Figure 5.32). It is noted that the improvements in the system as training progresses should be observed by looking at the throughput, delay, and speed simultaneously. In this case delay decreased and speed increased while maintaining constant throughput (which was equal to the total demand), but in oversaturated conditions delays may increase and speed decrease while the throughput is improved.

![Figure 5.32 Learning curve for average vehicle speed of RL algorithms in 2x5 network](image)

5.6.3. Summary of Findings

MASTraf implementations with Q-learning and ADP in a 2x5 network with high conflicting volumes and in undersaturated conditions showed positive results in terms of queue management and therefore delays and throughput. The demand for this scenario was processed by the agents as it arrived to the network, thus the system did not increase the saturation level over time. In addition, the agents showed improvements in performance as the learning process continued with
an increased number of replications. Implementations included information regarding potential blockages in the state and/or in the reward, but in all cases the performance was similar, given the undersaturated conditions of the system.

5.7. 5x2 Network, Oversaturated Conditions

This section describes the experiments of the 5x2 network from the previous section, but in this case with oversaturated conditions. A demand of 1000 vphpl was set at all entry points, ensuring oversaturation and increasing the complexity of the scenario.

5.7.1. Implementation

A key issue in traffic signal control is to prevent blockages in the inner links of the network due to queue spillbacks. As opposed to single intersections, where oversaturation may create long queues without reducing the rate at which vehicles are processed, the occurrence of queue spillbacks and gridlocks in networks can completely prevent the intersections from discharging vehicles, collapsing the system without recovery. In our reinforcement learning problem, this also translates to terminal states, from which the agents cannot exit and experience improved strategies.

In this experiment, two algorithms were tested in oversaturated conditions to illustrate the need of communication between neighboring intersections. The first implementation used Q-learning without communication between intersections or any other mechanism to identify potential blockages downstream (labeled Q1c). A second implementation allowed communication between neighboring agents and added the potential for blockages to the state and reward representation (labeled Q2c), similar to the implementation described in the above section in undersaturated conditions (Q2b).

5.7.2. Performance

The analysis is focused on the total network throughput and queues rather than speed or number of stops, given the oversaturation. The learning curves for the total network throughput of agents
with and without communication are shown in Figure 5.33, where it is observed that the performance of the agents without communication is significantly lower than with communication. The number of vehicles processed with communication reached an average of 3870 vehicles processed, which is about 74% of the total demand in all entry links. A more realistic measure of the efficiency of the network, however, it is necessary by considering that there are conflicting volumes at entry points and lost time due to yellow-red transitions.

It is estimated that the demand per intersection at entry points is 2000 vphpl. Assuming that about 1600 vphpl can be processed (with an average discharge headway of 2 seconds and subtracting about 10% of lost time), the capacity of an intersection should be about 1600 vphpl, or 80% of the total demand. The total number of vehicles trying to enter the network is 5250, therefore the capacity should be about 5250*0.8=4200. If this is the case, the network is currently operating at over 90% efficiency in terms of throughput using the agents with communication.

Figure 5.33 Learning curve for network throughput of RL algorithms with and without communication in oversaturated 2x5 network

An examination of the performance of both algorithms showed that the main concern in this scenario was downstream blockages and gridlocks, often created by left-turning vehicles.
Without communication, intersections strove to process as many vehicles as possible because the available capacity of the receiving links was not perceived, increasing the potential of gridlocks.

The average delay per vehicle for the same implementations is shown in Figure 5.34. As expected, delays without communication were significantly higher compared with the implementation with communication. Similar to the training results in terms of throughput, delay improved more significantly for agents without communication as the number of replications increased. This indicates that the reward structure with communication captured most of the desired behavior of the agents in the immediate reward, only adjusted by the delayed rewards.

![Figure 5.34 Learning curve for average delay of RL algorithms with and without communication in oversaturated 2x5 network](image)

5.7.3. Summary of Findings

In a scenario of an oversaturated network of 2x5 intersections, with asymmetric number of lanes and a combination of one-way and two-way streets, MASTraf with communication between agents controlled the traffic signals such that gridlocks were prevented and the network was operated efficiently. There was a clear improvement of the system when communication between agents was allowed and this information was added to the state and reward structures. Throughput and delays improved over time as the agents gained experience, and the effect of discounted rewards was more notorious for the agents with less information (without...
communication), as expected. On the other hand, the state and reward structures captured the desired behavior of the agents quite accurately, making the learning process less apparent. This experiment highlights the importance of anticipating blockages in oversaturated conditions, a feature that in undersaturation did not have a significant impact but that becomes essential with higher demands.

5.8. 4x5 Network – Q-learning and ADP

This section describes a more complex scenario in a 4x5 network in oversaturated conditions. The geometry of the network was modeled form a modified version of a portion of downtown Springfield, IL, and includes one-way and two-way streets in a grid-like configuration. It comprises the 2x5 network described in the previous two sections, further increasing the complexity of the signal control task. The network is shown in Figure 5.35.

5.8.1. Implementation

The Q-learning and ADP implementations shared the same state and reward structure and included information on potential downstream blockages. Therefore, the state representation was a multidimensional vector describing the queues at the intersection controlled by a given agent, in addition to indicators of potential downstream blockages, and a dimension for the current state of the signal.

The reward structure was similar to that described in Chapter 4 for the basic definition of MASTraf, as a combination of the number of vehicles being served by the green light (with a positive sign), the number of vehicles waiting to be served in the remaining approaches (with a negative sign), and a series of penalties (for potential downstream blockages and lost time when the current phase was changed).
5.8.2. Performance

Average delay per vehicle, number of trips completed, and network congestion were analyzed during the training period, as it is shown in Figure 5.36. Note that the range of the vertical axis in the subfigures is the same for both methods, allowing for easier visual comparisons between them.

It is observed that there is a wider range of variation in the measures of performance for the ADP algorithm compared to Q-learning (Figures 5.36(a) and 5.36(b)). While this was not completely expected, it could be related to the inherent association of states to actions in Q-learning, which is not present in ADP. Also, in the highly oversaturated conditions tested, undesirable actions taken by chance or for the sake of exploration may have resulted in conditions from which it was very difficult to recover (extended queue spillback and blockages).
Nevertheless, this was precisely the purpose of the training mode: to gather enough information for the agent to be able to correctly assess the level of desirability of states/actions when in the operational mode.

Similar comments also apply to the behavior observed in terms of number of trips completed (Figures 5.36(c) and 5.36(d)) and the number of vehicles at the end of the simulation (Figures 5.36(e) and 5.36(f)), where most of the individual runs from ADP in the training mode yielded less desirable results than Q-learning.

In addition to traffic-related performance measures, the convergence of the Q and V values was also monitored. For illustration purposes, two sample cases of the evolution of Q and V values over time are shown in Figure 5.37. In Figure 5.37(a), the convergence is shown for a state where queues in one direction (E-W) were much higher than for the other (N-S), whereas in Figure 5.37(b) values are shown for a state where competing demands were the same, which could present the agent with a more ambiguous situation. However, in both cases the values either converged or were clearly well ahead in this process, indicating that the algorithms were, in fact, learning a policy.

It is noted that the solution space for a single agent using Q-learning and ADP was in the order of 10^5. However, an analysis of the final Q and V values (after training) showed that only about 1% to 3% of these states were visited during the training period. Note that this was the case because the evaluation was performed under a single set of traffic demands. In cases with variable demand it is expected to visit a significantly higher number of states.

On the other hand, results in the operational mode from Q-learning and ADP were compared to results obtained using optimized signal timings from the state-of-practice software TRANSYT7F, based on 30 simulation runs to account for the internal variability of the simulation software. Then, the same measures of performance described above for the training mode were analyzed using data from the operational mode, as it is shown in Figure 5.38.
Figure 5.36 Aggregate results from training stage for Q-learning and ADP
a) State: Queue EW=7, Queue NS=3, Signal status = green EW

b) State: Queue EW=6, Queue NS=6, Signal status = green EW

Figure 5.37 Convergence of Q and V Values in sample states

Regarding the simulation runs from TRANSYT7F, these were obtained by optimizing the entire network at the same time and not individual intersections. The procedure in this software uses a limited version of a genetic algorithm that performs a search in the solution space (signal timings) with a fix, relatively coarse increment, for example every 10 seconds of cycle length. All three traffic signal parameters were optimized by TRANSYT7F (cycle, splits, and offsets), and the measure of performance for the optimization was throughput, given that it was the measure that more closely related to our reward function.
Figure 5.38 Results from Q-learning, ADP in operational node, and TRANSYT7F

Results from Figure 5.38(a) show that the two algorithms provided a narrower range of delays concentrated at lower levels than those from TRANSYT7F. Moreover, the average delay per vehicle from Q-learning (139 s) and ADP (138 s) were significantly lower than the average delay from TRANSYT7F (159 s) with a 99% confidence level (an improvement of 13%). Further observation of the simulation runs showed that the main reason for this was that Q-learning and ADP agents could adapt the signal timings to the small variations in the traffic...
stream. In some runs, such small variations were able to develop extended queue overflows and blockages that resulted in significant performance degradation.

Similar observations can be made in terms of system throughput (see Figure 5.38(b)), were most of the observations from Q-learning and ADP were confined to a narrower range compared to those from TRANSYT7F. Average number of trips completed for Q-learning (4718) and ADP (4794) were significantly higher than those from TRANSYT7F (4278) with a 99% confidence level (an improvement of 10%).

Lastly, congestion levels inside the network (Figure 5.38(c)) were similar for Q-learning and ADP, as expected, but at a lower level than those for TRANSYT7F. This indicates that the RL algorithms allowed more vehicles inside the network and created longer queues in the inner links.

5.8.3. Summary of Findings

Experiments in an realistic oversaturated 4x5 network using MASTraf implementations with Q-learning and ADP showed comparable and improved results compared to a solution found with TRANSYT7F, reducing average delays by 13% and increasing average throughput by 10% to 12%. The systems accumulated experience as the training period progressed and resulted in policies that prevented long-lasting queue spillbacks and gridlocks.

These implementations showed that the MASTraf formulation can effectively manage traffic signals in realistic scenarios both using Q-learning and ADP algorithms. The system is expected to scale well for larger networks since the complexity of the agent structure does not increase with the network size.
CHAPTER 6 – IMPLEMENTATION OF A STRATEGY FOR SIGNAL COORDINATION

A shortcoming of a multi-agent system where every agent learns and acts separately is that they will strive to take actions that maximize their local rewards without considering the global payoff of the system. For the problem of controlling the traffic signals of a network, agents will take actions to improve one or a combination of measures of performance such that their own set of indicators is improved over time. These measures may include throughput, delay, number of stops, or any other traffic-related indicators.

Traffic networks with high demands may evolve into states that are not able to process traffic at their capacity due to oversaturation and may create de-facto red and gridlocks. Under these conditions if agents operate solely on the basis of their approaching links, they may take decisions that could degrade the performance of adjacent intersections and ultimately their own. For example, an intersection at the edge of a network may allow vehicles to enter at a rate that is higher than the rate that can be processed downstream due to high conflicting volumes. This situation may eventually create queue overflows inside the network and a gridlock, which will result in a decrease in the throughput at the entry link and for the whole network.

The scenario described above can be encountered when demands are high, and particularly in situations where conflicting volumes are also high. Therefore, if the traffic system is controlled by agents operating individual intersections, it is just logical to create means for the agents to communicate with each other at least to a certain degree.

As mentioned in Chapter 4 when describing the proposed MASTraf, in addition to agents acting independently, they can also receive information from adjacent intersections and incorporate it into their perception and decision-making process. This can be achieved in the form of an extended state representation, changes in the reward structure, experience sharing (Q values), or a combination of these elements. In turn, information sharing can lead to emergent coordinated behavior that may favor signal progression along corridors, thereby improving network performance.

However, information sharing does not explicitly describe a coordination mechanism that the system designer can incorporate into the agents’ learning process. Therefore, additional
complexity can be added to the agent by including explicit coordination between intersections through the formation of groups and coalitions.

There is extensive research in the areas of group and coalition formation for applications other than traffic control, and most of the work has been originated from the artificial intelligent community. More specifically, the focus here is on cooperative agents that share or exchange some information to achieve better system-wide performance, and where the communication is achieved in a completely decentralized way.

Communication between agents, without mediation from agents with higher hierarchies, may allow the formation of (temporary) groups that can improve the overall performance of the system. For the traffic control domain, it is of outmost importance to maintain acceptable operational levels in the whole network, since queue spillbacks and traffic breakdowns may extend to greater areas and ultimately result in system collapse. This research investigates group formation methods for fully cooperative agents, willing to make decisions that at some point in time may result in lower individual benefit but achieving higher payoff for the whole system.

Nunez and Oliveira (2003) devised a feature for heterogeneous agents to request advice from agents with a better performance index, similar to supervised learning. Agents exchanged their state, the best action for such state (as a means of advice), as well as their performance index. The effects of the advice exchange were tested using a series of individual intersections (not along an arterial) in a simple simulator, where each intersection had a different learning algorithm. Results showed that the advice exchange was likely to improve performance and robustness, but ill advice was also said to be a problem hindering the learning process.

De Oliveira et al. (2005) used a relationship graph as a support for the decision-making process. Related agents entered a mediation process to determine the best set of actions. Agents had priorities and the one with highest value was the leader of the mediation. Branch-and-bound was performed to find the best outcome of the sub-problem. The test was conducted on a 5x5 network in a very simple simulation environment provided by a generic tool for multi-agent systems (not a traffic-specific environment). Temporary group formation was achieved and resulted in improved performance in terms of a cost function, compared to pre-timed coordinated signals. The agents regrouped (through a new mediation) when traffic patterns changed, adapting to new conditions.
The max-plus algorithm has been used by Vlassis and Kok (2004, 2005, and 2006) and it emerges as a viable option for controlling the traffic signals in a network. The max-plus algorithm uses a message-passing strategy that is based on the decomposition of the relations in a coordination graph as the sum of local terms between two nodes at the time. This allows the interchange of messages between neighboring intersections, such that in a series of iterations the agents will reach a final decision based on their own local payoff function as well as the global payoff of the network.

Kuyer et al. (2008) used coordination graphs and the max-plus algorithm to connect intersections close to each other. Networks having up to 15 intersections were tested, finding improved results compared to Wiering (1997) and Bakker (2005). Also, De Oliveira et al. (2004) have made significant contributions using approaches based on swarm intelligence, where agents behave like a social insect and the stimuli to select one phase or plan is given by a “pheromone” trail with an intensity related to the number and duration of vehicles in the link.

A different approach by Junges and Bazzan (2007) studied a strategy using a distributed constraint optimization problem for networks of up to 9x9 intersections, but only for the task of changing the offset of the intersections given two different signal plans. A scenario without online capabilities to change the coordinated direction was compared with the coordinated scheme, showing improvements in the performance. However, for frequent action evaluations, and for bigger networks, the methodology may not be practical as the computation time increases exponentially with the number of agents.

In this research, different from previous approaches, the max-plus algorithm is used to provide an indication of good coordinating actions, and these results are incorporated to the reward structure of the agent in the form of an incentive towards the coordinated direction. This addition to the standard definition of a reward is expected to create a tendency to increase the system throughput and reduce the number of stops, as it is explored in the sections below.

6.1. The Max-Plus Algorithm

In this research, the max-plus algorithm has been implemented in the reward structure of a Q-learning agent to determine if it leads to improved performance in an oversaturated network. The
max-plus algorithm propagates the combination of local and global payoffs among the agents that are interconnected in a coordination graph. Locally optimized messages $U_{ij}(a_j)$ are sent by agent i to neighbor j over the edge that connect them and with respect to the action executed by agent j (a_j). For tree structures, the algorithm converges to a fixed point after a finite number of iterations (Pearl, 1988; Wainwright et al., 2004). However, proof of convergence is not available for graphs with cycles, and there is no guarantee on the quality of the solution of max-plus in these cases. Nonetheless, as pointed out in Kok and Vlassis (2006), the algorithm has been successfully applied in practice in graphs with cycles (Murphy et al., 1999; Crick and Pfeffer, 2003; Yedidia et al., 2003).

A description of the max-plus algorithm is provided in Kok and Vlassis (2006), along with some considerations for applications on graphs with cycles. For the traffic signal problem and in particular for grid-like networks, intersections are interrelated by connections in all their approaches creating a series of cycles between them.

To describe the max-plus algorithm, let’s suppose that the traffic network is a graph with $|V|$ vertices (or intersections) and $|E|$ edges (or links). To find the optimal action in the network (a^*), agent i repeatedly sends the following message u_{ij} to its neighbors j:

$$
\begin{align*}
 u_{ij}(a_j) &= \max_{a_i} \left\{ f_i(a_i) + f_{ij}(a_i, a_j) + \sum_{k \in \Gamma(i) \setminus j} u_{ki}(a_i) \right\} + c_{ij}
\end{align*}
$$

(6.1)

Where $\Gamma(i) \setminus j$ are all neighbors of i except j, and c_{ij} is a normalization value. Message u_{ij}, as explained in Kok and Vlassis (2006), is an approximation of the maximum payoff agent i can achieve with every action of j, and it is calculated as the sum of the payoff functions f_i, f_{ij}, and all other incoming messages to agent i, except that from agent j. Messages u_{ij} are exchanged until they converge to a fixed point or until the agents are told to stop the exchange due to an external signal, for example after the time available to make a decision is over. It is noted that the messages only depend on the incoming messages of an agent’s neighbors based on their current actions, thus there is no need to have these messages optimized, nor evaluated over all possible actions.

On the other hand, the normalization value c_{ij} is very useful especially on graphs with cycles since the value of an outgoing message u_{ij} eventually becomes also part of the incoming
message for agent i. Thus, in order to prevent messages from growing extremely large, the average of all values in u_{ik} is subtracted using:

$$c_{ij} = \frac{1}{|A_k|} \sum_k u_{ik}(a_k)$$

(6.2)

In this research, given that the agents are implemented in a microscopic traffic simulator where the states are updates in a synchronous fashion, a centralized version of the max-plus algorithm was implemented. The pseudo code of the algorithm is shown in Figure 6.1, following the implementation described in Kok and Vlassis (2006).

1) Initialize $u_i = u_j = 0, \forall (i, j) \in E, g_i = 0, \forall i \in V, m = \infty$

2) While (fixed_point = false && deadline = false):
 // Start iteration
 Fixed_point = true;
 For all i:
 For all neighbors $j = \Gamma(i)$:
 Send j message $u_i(a_i) = \max_{a_i} \left[f_i(a_i) + f_{ij}(a_i, a_j) + \sum_{k \in \Gamma(i)} u_k(a_i) \right] + c_{ij}$
 If $u_i(a_i) - \text{previous message} > \text{threshold}$:
 Fixed_point = false;
 Determine $g_i(a_i) = f_i(a_i) + \sum_{j \in \Gamma(i)} u_j(a_j) = \arg \max_{a_i} g_i(a_i)$
 If “anytime” extension used, then
 If $u(a'_i) > m$, then
 $(a'_i) = (a_i), m = u(a'_i)$
 Else do
 $(a'_i) = (a_i), m = u(a'_i)$
 Return $u_i(a_i)$

Figure 6.1 Pseudo code of max-plus algorithm, adapted from Kok and Vlassis (2006)
6.2. Implementation

The coordinating strategy provided by the max-plus algorithm was implemented along with the reinforcement learning process in a simulated environment. Therefore, the process to embed max-plus into the agent structure follows the same procedure described in previous chapters though the use of the communications interface in the simulator VISSIM and a custom dynamic linked library (DLL) generated by a C++ code created in this research.

As described earlier, each intersection is operated by a single agent, thus there is a separate set of state values per agent and they keep track of their own knowledge independently. Every agent in VISSIM sequentially calls the DLL every simulation second, thus all variables accessible to the user can be tracked with the same frequency. The current implementation updates the agents every two seconds, given that this is the typical time needed to process a single vehicle through an intersection at saturation flow rate. In addition, a 2-second window for evaluating the next signal response is expected to provide very accurate results, also leaving more time available to other functions that may be needed, such as communication between agents and conflict resolution for group formation.

For the experiments, driver behavior parameters from VISSIM have been calibrated to match the performance of CORSIM with default parameters. This was the case because performance benchmarks from optimized traffic signals using TRANSYT7F were obtained for the oversaturated scenario, and this optimizer uses CORSIM as the simulation environment.

The information agents receive about the state of the system is collected via vehicle detectors placed along the roadway at entry and exit points of all links. This allows for calculations of the number of vehicles in each link, queues, density, and speeds in all approaches, which the agents can use to take the control decisions (in addition to information received from other agents).

Recall that the agents can run the traffic signals with complete flexibility in terms of timing parameters, thus the operation is not restricted by pre-specified cycle length, splits, or offsets. Furthermore, restrictions such as maximum green times or phase sequence were not defined for this implementation, with the exception of a minimum green time of 8 seconds imposed in all experiments.
Implementation of the Q-learning algorithm followed a similar process to that described by Medina et al. (2010, 2011). The estimation of the goodness of a coordination action from the max-plus algorithm (functions f_i and f_{ij}) was based on the state of the links receiving the green indication. For example, the potential goodness of coordinating intersections 1 and 2 (the two intersections are adjacent in the E-W direction) will be the sum of their states in the E-W links. This simple definition will favor coordinated movements based on current states, one pair of intersections at the time, but eventually for the network as a whole using the max-plus algorithm.

6.3. Simulation Results

A realistic network was used to test the Q-learning and max-plus algorithms. The same network used in the experiments described at the end of the previous section was also used for the max-plus evaluation. This is a complex and realistic scenario with 20 intersections in a 4x5 grid-like configuration and geometry based on a portion of downtown Springfield, IL. There is a combination of one-way and two-way streets, as well as different number of lanes. Left turns were allowed from left-turn pockets that had very limited capacity (about 150 feet) and could block through movements given the high demands (20% of total arriving volume). Also, the left-turn movements did not have an exclusive signal phase, thus they were only permitted upon traffic gaps in the oncoming traffic. The network is shown in Figure 5.32 (previous Chapter).

6.3.1. Oversaturation – Heavy traffic in all directions

The algorithms were first tested in a highly oversaturated scenario. Demands ensured severe congestion in all directions of traffic, with 1000 vphpl at all entry points. The implementation used Q-learning and included -in the state and reward structures- features to identify potential blockages and to promote flow of incoming platoons from adjacent intersections. An additional implementation used the same Q-learning approach structure and also included the results from the max-plus algorithm in the reward.

The max-plus algorithm quantified the benefits of selecting the green phase for E-W or N-S direction for each intersection. There are a number of ways to implement these benefits in the reward and/or in the state representation. As described above, previous studies have used the
results of the max-plus algorithm as the major factor to select the phases in a traffic network. However, it has not been combined with RL strategies to produce a single response to take an action.

In this case, it was opted to incorporate the results of the max-plus algorithm as a factor to the immediate reward expected for E-W and N-S actions. The ratio between the max-plus benefits of E-W and N-S was found and applied as a multiplication factor to the cost of taking one of the two actions. For example, for a given intersection if the max-plus benefit of selecting E-W is measured as 10 and the benefit of selecting N-S is 7.5, then the reward value of E-W is increased by a factor of $10/7.5=1.33$, and the value of N-S is not modified.

Using this procedure the max-plus results were incorporated into the RL decision-making process, promoting the actions toward improved coordination.

The performances of the agents with and without max-plus are analyzed along with the performance optimized signal timings from TRANSYT7F.

The total network throughput for the MASTraf implementations and TRANSYT7F is shown in Figure 6.2. It can be observed that the throughput using Q-learning in the first stages of the learning is lower than the one found by TRANSYT7F, but as the learning goes on there was a tendency to produce a greater number of vehicles processed. Also, the learning with max-plus had a steeper incline in the early replications compared to the Q-learning algorithm without the coordinating mechanism.

![Figure 6.2 Network throughput TRANSYT7F and Q-learning, oversaturated conditions](image)
It is noted that even though the RL algorithms and TRANSYT7F make use of methods that are very different, they show similar performance in terms of throughput, with an edge in favor of MASTraf. In addition, recall that the signal control in the Q-learning implementation is done in real time, as vehicles are being detected entering and leaving the links. This provides flexibility in cases where demands fluctuate in comparison to fixed timings provided by TRANSYT7F.

6.3.2. MASTraf Performance with Variable Demand

After the agents were trained based on demands of 1000 vphpl, additional experiments were conducted to determine the network performance when the demands varied between 700 vphpl (v/c ratio ~0.9 at entry points) and up to 1200 vphpl (v/c ratio ~1.5). Fifty replications were conducted for the implementation without max-plus for each of seven scenarios with variable demand over time shown in Table 6.1. Results showed that in all cases the throughput of the whole network only fluctuated 1%, indicating that there is no need to train the agents to every single possible demand to maintain the same performance level in oversaturated conditions.

Table 6.1 MASTraf Performance with Variable Demands

<table>
<thead>
<tr>
<th>Demand for each time period (vphpl)</th>
<th>MASTraf Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Throughput (vehicles)</td>
</tr>
<tr>
<td>0-225 s 226-450 s 451-675 s 676-900 s</td>
<td></td>
</tr>
<tr>
<td>1200 1200 1200 1200</td>
<td>4806 0.72 0.75%</td>
</tr>
<tr>
<td>1200 1200 800 800</td>
<td>4806 0.71 0.75%</td>
</tr>
<tr>
<td>800 800 1200 1200</td>
<td>4826 0.71 0.34%</td>
</tr>
<tr>
<td>1000 1000 1000 1000</td>
<td>4843 0.72 -</td>
</tr>
<tr>
<td>800 1200 1200 800</td>
<td>4796 0.71 0.96%</td>
</tr>
<tr>
<td>800 800 800 800</td>
<td>4793 0.70 1.03%</td>
</tr>
<tr>
<td>700 700 700 700</td>
<td>4855 0.64 -0.24%</td>
</tr>
<tr>
<td>600 1000 1000 600</td>
<td>4885 0.68 -0.88%</td>
</tr>
</tbody>
</table>

In contrast, similar experiments were conducted with the solutions from TRANSYT7F for 1000 vphpl to determine the effect of variable demand on the system using fixed-signal timings. Results are shown in Table 6.2, and indicate larger variations in throughput, particularly when less demand than expected was received.
Table 6.2 TRANSY7F Performance with Variable Demands

<table>
<thead>
<tr>
<th>Demand for each time period (vphpl)</th>
<th>TRANSY7F Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-225 s</td>
<td></td>
</tr>
<tr>
<td>226-450 s</td>
<td></td>
</tr>
<tr>
<td>451-675 s</td>
<td></td>
</tr>
<tr>
<td>676-900 s</td>
<td></td>
</tr>
<tr>
<td>Total Throughput (vehicles)</td>
<td>Delay/Total travel time</td>
</tr>
<tr>
<td>1200</td>
<td>4706</td>
</tr>
<tr>
<td>1200</td>
<td>4704</td>
</tr>
<tr>
<td>800</td>
<td>4728</td>
</tr>
<tr>
<td>1000</td>
<td>4769</td>
</tr>
<tr>
<td>800</td>
<td>4718</td>
</tr>
<tr>
<td>800</td>
<td>4724</td>
</tr>
<tr>
<td>700</td>
<td>4539</td>
</tr>
</tbody>
</table>

6.3.3. MASTraf Performance with Imprecise Detector Data

Additional runs were conducted to determine the system response when the information received from vehicle detectors was imprecise. Scenarios for the oversaturated network of 4x5 intersections with data from detectors aggregated at different levels were compared to the initial implementation where up to 20 states were possible for each phase. Recall that links may store significantly higher number of vehicles than 20, thus with the standard application some resolution was already lost.

Agents were trained with detector data that was more aggregated than in the initial implementation. Data was aggregated by scaling down the number of possible states for a given phase. Coarser aggregation (or reduced resolution) levels created imprecision in the information received by the agents since an increasing number of vehicles were represented by the same state. For example, at 25% resolution, a coarser representation with only 5 possible states for a phase was sent to the agent, instead of having 20 possible states. Imprecision may translate to inaccuracies in green time allocation and prevention of upstream blockages.

The following resolution levels were tested in separate experiments: 90% resolution (up to 18 states), 75% resolution (up to 15 states), 50% resolution (up to 10 states), and 25% resolution (up to 5 states). The effects of coarser detector data were measured in terms of network throughput and average number of stops per vehicle. For each resolution level, the training was conducted over 120 realizations of 15 minutes each, and the analysis was based on 30 repetitions obtained after the training runs were completed.
Results for all resolutions are shown in Figure 6.3. The reduction in detector resolution produced limited effects both in terms of throughput and number of stops, especially with 90% and 75% of the initial resolution. MASTraf managed to continue processing vehicles in oversaturated conditions, although on average the total network throughput and stops per vehicle were affected as shown in Figure 6.3.

Lower resolution levels (50% and 25%) further lowered MASTraf efficiency. At low detector resolution the system performance also becomes less stable and the variation in the measures of performance increase significantly, as seen in the two wider ellipses in Figure 6.3. However, notice that even with very coarse approximations the system prevented the network from collapsing.

![Figure 6.3 Effect of lower detector resolution on network throughput and stops per vehicle](image)

6.3.4. Extending the State Representation for Coordination

The performance of the Q-learning implementation was also examined when the max-plus was added to the reward structure. Two cases were explored: One with an augmented state representation indicating if the coordinated direction was E-W or N-S (using a binary variable),
and one without augmenting the state. Figure 6.4 shows the results for the two applications of the max-plus together with the application without the coordinating algorithm, in terms of number of stops per vehicle and throughput. Oversized symbols in Figure 6.4 show the average values for each of the series.

![Figure 6.4 Q-learning with and without max-plus, oversaturated conditions](image)

From Figure 6.4, the use of the max-plus algorithm without the extended state resulted in increased average throughput and reduced average number of stops. However, adding information on the coordinating direction to the state did not result in significant improvements. This could be case due to the nature of the max-plus implementation itself, where multidirectional coordination may result between neighboring intersections, promoting immediate localized benefits but not necessarily network-wide improvements at the end of the time period.

6.3.5. Light Traffic Conditions – Heavier traffic in one direction

An additional scenario explored the effects of the max-plus algorithm in light traffic conditions with higher demands in the N-S direction. The 4x5 network from previous experiments was also
used in this case. Demands were ¼ of the saturation level volumes in the E-W direction (250 vphpl), and ½ of the saturation levels in the N-S direction (vphpl).

Simulation runs were conducted with and without max-plus to determine if the algorithm affected the traffic operation in undersaturated conditions, either positively or negatively. Results are based on a total of 150 runs for each condition (with and without max-plus), which include the first 120 runs as the agents’ training period and the last 30 runs for estimating final measures of performance.

Results showed that in light traffic conditions, the addition of max-plus did not have any significant effects in the total network throughput. As expected, the total demand was processed by the agents and there was no change in the number of vehicles in the network over time, showing no increase in congestion. Out of the total demand expected in all entry links together during the 15-minute evaluation period (2750 vehicles), the average network throughput without max-plus was 2723 vehicles, and with max-plus it was 2722 vehicles.

Regarding the number of stops per vehicle, results indicate no significant change at the network level due to the addition of the max-plus algorithm. Average number of stops per vehicle using MASTraf and without max-plus were already low at 1.13 stops for the whole network combined. This number did not change to the second decimal place when max-plus was used.

These results indicate that the addition of max-plus to MASTraf did not improve significantly the operation in undersaturated conditions and at the same time did not impact the operation negatively. Moreover, it may be acceptable to operate MASTraf with max-plus in both undersaturated and oversaturated conditions, as the algorithm does not have negative implications in light traffic, but it may improve performance as traffic congestion increases.

6.3.6. Congested Conditions – Heavier traffic in one direction

A third scenario was also examined, where the demands were high, asymmetric and heavier in one direction of traffic in the whole network. The objective of this experiment was to determine if under dominant loads in one direction, the max-plus algorithm could provide improvements in the performance of the RL implementation. Two scenarios: with and without max-plus were
evaluated, and the implementations did not use the extended state - given that results from the previous scenario were not positive.

The demands were reduced in the E-W direction to about one third of their demands in the previous scenario (333 vphpl), thus heavier traffic traveled in the N-S direction and carried very high volumes that had the potential to result in blockages if not managed properly (1000 vphpl).

The network throughput for the two implementations is shown in Figure 6.5, indicating similar performance, with slight improvement when using max-plus. In addition, a comparison of the average number of stops and throughput is shown in Figure 6.6. It is observed that the two implementations yielded results that are comparable, but there is a tendency for the max-plus to reduce the average number of stops per vehicle and at the same time to improve the throughput. Using the last 30 replications as a representative sample for the trained agents, the average reduction in throughput for this particular example was 1% (52 vehicles) and the increase in the number of stops per vehicle was 3.6% (0.2 stops per vehicle).

![Figure 6.5 Network-wide throughput for scenario with heavy directional demand](image-url)
6.4. Summary of Findings

In summary, results presented in this paper shows that RL agents can efficiently control the traffic signals of a realistic network in real time in conditions that are challenging for traditional and more complex traffic control systems, including oversaturation with fixed and variable demand. Oversaturation is especially challenging for independent agents, but results indicated that even in this conditions the traffic signals prevented spillbacks and gridlocks and at a level comparable or better than state-of-practice traffic optimization software.

Communication between agents was not only used to inform neighboring agents of potential downstream blockages, but also to create a coordinating mechanism using the max-plus algorithm. The coordinating mechanism acted as a bias to the reward function, favoring actions with improved coordination. The max-plus algorithm was set to respond to local link demands at each intersection, and yielded improved average results both in terms of total throughput and number of stops per vehicle.
CHAPTER 7 – IMPLEMENTATION OF A VALUE FUNCTION APPROXIMATION

Different forms of reinforcement learning, and specifically the original formulations of Q-learning and the approximate dynamic programming (ADP) algorithms used in this research, make use of lookup tables to store an agent’s past experience and knowledge. While tables have the advantage of recording precise information on experiences from every single state that has been visited, it is expensive in terms of storage requirements and it doesn’t generalize past experiences to similar states.

Alternatives have been proposed to store an agent’s knowledge using structures different from lookup tables. A common approach is the use of other structures or a series of functions to model the change of an agent’s perception of reward in a more compact fashion. These techniques will be referred in this research as function approximation methods.

Before elaborating on the approach adopted in this study to implement a function approximation, it is appropriate to first motivate its use by describing some potential benefits. As expected, the advantages of using function approximation mainly aim at counteracting the limitations of lookup tables mentioned above: storage requirements and generalization. Storage requirements are reduced by having a more compact representation of the agent’s knowledge and the magnitude of these reductions depend on the number of functions and features included in a given implementation. On one end, if all elements perceived by the agents (and included in the state) are incorporated in the same number of functions, a great number of parameters will be required and the reduction in storage requirements may not be as critical as expected. However, if the number of functions is reduced and the elements can be combined efficiently, the storage allocation will be a major benefit achieved with a function approximation.

In addition to lessen storage requirements, function approximation also provides a generalization of the lookup table that is useful to obtain information about states that have not been visited or those from which not enough experience has been gathered. This is because it is often the case that states with similar characteristics will tend to produce similar Q or V values in the lookup tables, with the exception of boundaries or discontinuities.
In particular, for our traffic signal problem, features to be used in a function approximation could be related to current traffic demands, queues, delays or any other feature to which the agent has access in order to estimate the state values (or discounted rewards). Therefore, it may be convenient to include in the functions a set of features with impact on the state and reward definitions, and moreover, those features having a significant role in the estimation of Q or V values if a lookup table were used.

The combination of features to approximate the lookup table may include linear or non-linear regressions methods, decision trees, and often in practice, artificial neural networks to model complex interactions. It is recognized, however, that simple solutions may be preferred over complex ones, and the exploration of linear regressions should precede more elaborated methods.

General approaches to produce a more compact state or action representation through function approximation have recently been summarized for the robot reinforcement learning domain by Kober and Peters (2012) into: neural networks (multi-layer perceptrons, fuzzy neural networks, and explanation-based neural networks), generalization from neighboring cells, local models through regression, and Gaussian model regression.

Earlier work by Mahavedan and Connell (1991) proposed basic but key ideas for generalization of the state space from neighboring cells through the use of the Hamming distance, a measure to determine how different states are based on the number of bits that are different between them. This form of generalization significantly sped up the learning process but it was dependent on the state encoding. Further refinements also by the same authors featured statistical clustering for generalization, which reduced coding limitations of the Hamming distance by grouping states based on the effect that an action will have on them. Generalization with Hamming distance improved learning time of standard Q-learning with lookup tables, and it was further improved by implementing the statistical clustering for the domain of a mobile robot.

Neural network applications opened their way into reinforcement learning with research by Barto and Anandan (1985). Implementations for decisions between multiple actions (not only two possible actions) have been proposed by past research, perhaps being the QCON proposed by Lin (1993) one of the earliest ones, with the drawback of having as many networks as the number of possible actions the agent can take. This is circumvented, as shown by Mahadevan
by modifying the network structure and having one output neuron for each action set, where sets are ‘antagonists’ or play opposed roles for the agent.

Neural networks have been used since in a very wide range of applications, including traffic signal control. A series of approaches have been proposed, from completely centralized to partially and fully decentralized. Research by Bingham (1998, 2001) in traffic signal control using fuzzy rules and a neural network, Abdulhai (2003) using a Cerebellar Model Articulation Controller (CMAC), Choy et al. (2003) with hierarchical agents and a neural network, and Xie (2007) and Zhang (2007), are examples in this domain.

On the other hand, Irodova and Sloan (2005) described examples of earlier research on function approximation for model-free reinforcement learning, such as Q-learning and ADP. They cite the formulations by Stone and Veloso (1999) using a function approximation for a multi-agent system based on action-dependent features to partition the state space into regions, and the seminal book by Russel and Norvig (2003) “Artificial Intelligence, a Modern Approach”. The work conducted by Irodova and Sloan followed a different approach using a linear approximation, and is important to the research presented in this document since this was the approach adopted for a function approximation exercise using MASTraf.

To illustrate the results of implementing a linear function approximation on one of the MASTraf definitions tested in this research, the Q-learning implementation used in the oversaturated 4x5 network described in a previous section will be used as an example, as follows.

7.1. Implementation

A linear function approximation using elements from the state (and also the reward function) was implemented following an approach based on the same learning process used for the Q-values in the lookup tables.

Therefore, a similar update rule was applied to the multipliers accompanying the selected features from the state representation. A previous work from Iodorova and Sloan (2005) has been used as a reference for the formulation of the learning process in the linear function approximation. For a Q-learning agent, element-based actions are identified and a Q function is
created for each of such actions, which in turn include a set of multipliers that will be trained based on the agent’s experience. Thus, a generic Q function for a given action \((a)\) could be expressed as follows:

\[
Q^a(s,a) = \theta_1^a f_1 + ... + \theta_n^a f_n
\]

(7.1)

Where \(f_1, ..., f_n\) are the features or elements representative of the state and cost, and \(\theta_i^a\) are the multipliers. For such \(Q^a\) functions, multipliers \(\theta_i^a\) will be updated following a standard Q-value algorithm but with respect to the particular slope for each \(\theta_i^a\), as follows:

\[
\theta_k^a(s,a) = \left(e_{ss}^a + \gamma \max_{a'} Q(s',a') \right) \frac{dQ^a(s,a)}{d\theta_k^a}
\]

(7.2)

and,

\[
\theta_k^a(s,a) = (1 - \alpha) \theta_k^a(s,a) \frac{dQ^a(s,a)}{d\theta_k^a} + \alpha \theta_k^a(s,a)
\]

(7.3)

Where \(\hat{q}^a(s,a)\) is the current estimation of the value of the state-action pair, which is later weighted along with the past accumulated knowledge \(Q(s,a)\). \(\frac{dQ^a(s,a)}{d\theta_k^a}\) is the partial derivative of the value of the state-action pair with respect to the current multiplier \(\theta_k^a\) for action \(a\).

Similar to the lookup table representation for standard Q-learning, the expression for the function approximation is completely decentralized and does not increase in size as the number of intersections increases.

The selection of the features to be included in the function approximation, and the number of functions to be estimated were determined from the original definition of the reward structure used in previous experiments with successful results in the oversaturated 4x5 network.

Thus, continuous rewards along a range of values from previous implementations were identified, as well as the discontinuities due to penalties. More specifically, the discontinuities were created by the indication of potential blockages in downstream links and the lost time due to the phase change.

In the reward function from the lookup table implementation the potential for blockages \((P_1)\) was penalized using the following expression:
Where \(\beta_{\text{Dir}(a)} \) is a scaling factor for a given direction of traffic that will be selected by an action \(a \), set to 1 in this case; \(S_{\text{Dir}(a)}^2 \) is the square of the value of the state component in the direction potential blockage is expected; and \(b_{\text{Dir}(a)}^{\text{down}} \) is the blockage factor (or blockage intensity) in the immediate downstream intersection in the same direction of traffic, which is also reflected in the state space as a separate dimension.

Penalty \(P_1 \) will only be in effect whenever there is potential for blockage in any of the immediate downstream intersection, and therefore will create a discontinuity in the reward function in such cases. Given that only two directions of traffic are considered in the network, three cases are considered: blockage in the current direction of traffic only, blockage in the two directions of traffic, and no blockages. It is noted that for a given action the case of blockage only in the opposing direction of traffic was not considered since it will affect the reward of the opposing action.

In addition to this penalty, agents incurred in a second penalty (\(P_2 \)) due to lost time when the signal phase is changed. This penalty was not always present in the reward function and therefore it creates a discontinuity for some of the states. The value of the penalty decreased with the phase duration, representing the greater percentage of the cycle time that is lost if phases are changed often. The form of the penalty function is:

\[
P_2(a) = 2 * \frac{t_{\text{Phase}} + 12}{t_{\text{Phase}} + 0.5} * \beta_{\text{Dir}(a)} * S_{\text{Dir}(a)}
\]

Where \(t_{\text{Phase}} \) is the time that has elapsed since the beginning of the current phase (to be finished by action \(a \)), \(\beta_{\text{Dir}(a)} \) is a scaling factor for the direction of traffic currently receiving green (opposed to direction \(a \)), and \(S_{\text{Dir}(a)} \) is the state of such direction.

The combination of these two discontinuities due to penalties resulted in a total of six functions to be approximated: 3 levels of blockages x 2 levels of phase changes (one per action).

Each of these functions had their own set of \(\theta^p \) (for a given action \(a \)), which were calibrated through the updating process described above as the agents trained. The action features selected for the function approximation were the state of the two directions of traffic at a
given time \((S_{EW} \text{ and } S_{NS})\) and the current phase duration \((t_{phase})\). This indicates that a total of three sets of thetas had to be estimated for each of the six functions, for a total of 18 parameters in the function approximation problem for a given action.

7.2. Performance

Experiments were conducted to determine the performance of the agents with and without state-action approximations using the linear approach described above. The scenario selected for these experiments was the 4x5 network used in previous chapters under constant oversaturated conditions, with demands at all entry links of 1000 vphpl.

Agents using the function approximation were trained following the same procedure applied for the runs previously obtained for the oversaturated scenario with agents and lookup tables. The performance of the network for the two implementations in terms of network throughput as the agents trained is shown in Figure 7.1.

![Network throughput for MASTraf with and without function approximation](image)

Figure 7.1 Network throughput for MASTraf with and without function approximation
From Figure 7.1, agents storing their knowledge using a function approximation converged to a given throughput level very rapidly, given the number of parameters to be calibrated (a total of 18 thetas per agent). However, the performance at the end of the training period was lower than that of the agents updating a full lookup table. These results were expected and also agree with results from previous research running simple function approximation methods. The reduction in the average network throughput for the last 50 replications (when agents can were trained) with the function approximation was in the order of 1% of the total, thus this approach may be worth to be considered when training time or samples are limited, and in cases when rapid convergence is desired (e.g. field deployments with limited simulation training).

Regarding the spread of the exploration in the state space, the percentage of states visited out of all possible combination of states was very low and in the order of 1%. However, this could be attributed to combinations that are not practically observable, continuous oversaturation levels (preventing instances with low link occupancy), and the fast convergence of the functions given the low number of parameters. In comparison, it is recalled that only 1% to 3% of all possible states were also visited during training in the lookup table implementations.

Following the same format as in previous sections, the average number of stops versus throughput were plotted for the last 50 replications of the training period. Here the difference in the performance between the two implementations is more evident, but in total the average number of stops per vehicle only increased by 3% with the use of the function approximation.

An examination of the network performance in terms of the total congestion in the inner links at the end of the simulation period showed that agents running the function approximation generated lower delays for those vehicles already in the network, indicating that more vehicles were left outside of the network by having shorter cycle lengths and greater lost times. This also resulted in lower delays for the vehicles inside the network at the expense of those outside of the network boundaries in the implementation running the function approximation.
7.3. Policies

Policies found by the agents with the function approximation were further analyzed to determine if the behavior of the traffic signals at the level of a single intersection was as expected. Policies were found after the parameters of the function approximation had converged through training. The parameters \((\theta^*_n)\) were used to determine the expected value of the state assuming that the agent commits to an action, as shown in Equation 7.1. Then, the state values of the two actions were compared and the highest expected reward determined the agent’s action of choice assuming a greedy behavior.

Given that there are multiple dimensions in the state representation, it is difficult to visualize the change of state values using all variables. Therefore, only cases without blockages and for a given phase duration were analyzed at once.

The planes for each of the two functions that determine the state values (one per action) were overlapped to determine the intersecting line. The intersection indicates the points at which
the agent may change its decision. Once this line was determined, the policies given the E-W and N-S states could be directly observed in terms of the action selection.

An example of the changes in the state values for each action at intersection number 16 in the 4x5 network illustrated in Figure 5.35 is shown below in Figure 7.3. This example assumes that at the moment of the analysis the green indication was displayed on the E-W direction, there were no blockages, and the phase duration was 10 seconds. Intersection 16 has two-way streets with a single lane for the E-W directions and two lanes in the N-S direction.

In Figure 7.3, the state values are provided for different combinations of E-W and N-S states. The current signal status is important because if the agent decides to change the phase, there will be lost time and therefore a reduction in the state value. In a greedy action selection policy the agent will select the action with higher expected value, thus the intersection of these two scatter plots (after the plots were approximated to surfaces) was found and it is shown in Figure 7.4.

A better visualization of the agent policy, instead of the value of the states, can be plotted by indicating the action selection given the state on the E-W and the N-S directions. Essentially, the procedure simply requires subtracting the two surfaces and finding the positive and negative regions, which represent the agent decision on next phase. Thus, if the subtraction is completed as value(E-W) – value (N-S), positive values will indicate that the agent would choose giving green to the E-W direction and negative values would indicate that agent choice is the N-S direction instead.
Figure 7.3 Value of states for Intersection 16

(a) Value of changing the phase to N-S

(b) Value of continuing the phase in E-W
Figure 7.4 Expected state values for competing actions in intersection 16 without blockages

The results of this process for intersection 16 are shown in Figure 7.5, for the case when the green indication is currently on the E-W direction (Figure 7.5(a)), and also for the case when green is currently on the N-S direction (Figure 7.5(b)). Notice that the phase duration is also important since the planes from Figures 7.3 and 7.4, and therefore Figure 7.5, are a function of this variable. The effect of phase duration in the policy will be further described in the next section.

The range of values in Figure 7.5 for the E-W and N-S states only show the combinations that were often experienced by the agent and not the whole set of possible state values (from 0 to 19). This indicates that combinations such as E-W state=15 and N-S state=18 were not observed. The range of values also shows that the N-S approaches stored more vehicles than the E-W. This is expected given the difference in the number of lanes and also because the signal operation was based mainly on queue management, not on actual number of vehicles at the signal. The agent objective is to process vehicles and prevent queue backups and blockages, thus maintaining similar-sized queues could be a valid policy.
From Figure 7.5, it is noted that at intersection 16 there is a tendency to continue displaying the green indication on the approach that currently has the right of way. This is reflected by the greater surface covered by the actions maintaining the current green phase (Figures 7.5(a) and 7.5(b)). This result is also expected given the penalty for lost time.

In general, policies at intersection 16 follow expected behavior because the agent would continue the current phase if the state value remains high, and select the opposite action if the state for the competing demands is high and the current is low. Furthermore, a bias towards selecting the phase currently displayed gives an indication of the effects of the lost time parameter (Equation 7.5) in the reward structure.

In addition to the policies for intersection 16, other intersections in the network were analyzed to determine if similar policies resulted at locations with different number of lanes and traffic patterns. One of the selected locations was intersection 1 (see Figure 5.35), which had two one-way streets, each street with three through lanes.

The policies for intersection 1 are shown in Figure 7.6, and indicate similar trends to those observed for intersection 16. There is preference to continue the green indication in the direction that currently has it, unless the difference in the states is large enough to switch phases and justify the lost time. From the range of values, it is also observed that more vehicles were
queued in the N-S direction compared to the E-W direction. This is because the N-S approach was directly located at an entry points, whereas the E-W approach was next to an exit link. The number of vehicles in the N-S link grows faster and more uniformly than on E-W, but it is possible that the N-S traffic could not always be processed due to possible downstream restrictions. The E-W link, on the other hand, could always go through the intersection since the receiving link was an exit.

The surface on Figure 7.6(a) follows a-priori expectations by not terminating the E-W phase (processing vehicles towards the exit) unless a significant number of vehicles build enough pressure to enter the network.

A third intersection, with different geometry, was also explored to determine the agent policy. At intersection 8 (see Figure 5.35) there were three lanes in the N-S direction at an entry point, and only one crossing lane per direction on the E-W direction. The agent policies are shown in Figure 7.7, where it is noticed that there is more pressure to provide green to N-S than to E-W even in cases where the current signal is in the E-W direction. This also follows expectation given the difference in number of lanes and volumes between competing links.

![Agent policy](image)

(a)Agent policy when green is given to E-W
(b) Agent policy when green is given to N-S

Figure 7.6 Agent policy at intersection 1 when green is given to any of the two approaches
Figure 7.7 Agent policy at intersection 8 when green is given to any of the two approaches

In addition to the policies for fixed phase duration, the change in the decision-making surface was also analyzed for a case when the phase duration varied. This is shown for intersection 8 in Figure 7.8.

As the phase duration increased, the agent’s actions also shifted. The policy behavior shows that opportunities to change the current phase were reduced as the phase duration increased. For example, if the green signal is currently assigned to the N-S direction and the phase duration is increasing, there are a decreasing number of combinations of E-W and N-S states that would result in the agent changing the green phase to E-W. However, the combination of states that could result in a phase change are very likely and include higher accumulating demands in the E-W direction and lower discharging demands in the N-S direction.
7.4. Summary of Findings

A linear function approximation was implemented to generate a more compact representation of the state using a Q-learning algorithm and the structure provided by MASTraf. A complex scenario was selected for this exercise, with a 4x5 realistic network in oversaturated conditions.

Results indicate that a simple linear approximation of the Q values was effective for the fully decentralized system proposed in this research, accounting for discontinuities generated by penalties in the reward structured only experienced by the agents when there was potential for blockage due to downstream congestion and due to lost times when a phase was terminated.

Performance in terms of network throughput and number of stops showed for this exercise that the function approximation resulted in 1% reduction in the total network throughput and about 3% increase in the number of stops. Therefore, simple approximations such as the one performed in this section is suitable for systems where these performance drops are acceptable and also in cases where fast convergence is needed, as the number of iterations to estimate the reduced number of parameters to be calibrated.

Policies generated by the agents using the function approximation indicated that the agent behavior followed expected trends, with phase assignments that were proportional to the state in the two competing traffic directions and the phase duration.
CHAPTER 8 – STRENGTHS, LIMITATIONS, FUTURE EXTENSIONS, AND POTENTIAL FOR FIELD IMPLEMENTATIONS

8.1. Strengths

Experimental results from MASTraf have showed that the proposed system has potential to efficiently manage the signals in undersaturated and oversaturated networks. Moreover, analyses of the agents’ performance indicate that a learning process was in fact taking place during the training period, leading to a policy that improved over time.

The agents’ structure in MASTraf was formulated taking into account traffic engineering concepts as the first priority. Then, the application of the techniques from machine learning and the skills to complete the implementation in the simulation software followed the process to create the agents. Being developed from the traffic engineering point of view is one of the main differences and strengths of MASTraf compared to previous tools for managing traffic signals in networks.

A number of characteristics were considered necessary for MASTraf to be properly designed and tested under different scenarios. These characteristics can be summarized into two categories: 1) the agent and system definition, and 2) the simulation environment for testing. In the first category, agents were provided with elements to recognize conditions to manage queues, generate coordination, and efficiently use green time splits. Communication between agents was recognized to be important mostly in oversaturated conditions, preventing queue spillbacks and gridlocks. On the simulation environment, a widely accepted simulator was chosen for the testing performed on MASTraf in order to assure that well known variations in traffic behavior were taken into account. The use of a commercial simulator also may give more confidence to the testing results in the traffic engineering community, given that the agents experience situations with complexities similar to those in the field.

In comparison to other implementations, MASTraf combines features implemented in a fully decentralized fashion, with capabilities to operate in undersaturated and oversaturated
conditions. Communication between agents is allowed to implement these features, not only by means of information passing, but also for an explicit coordinating strategy, such as the max-plus algorithm used in this research.

Experiments have also shown that current MASTraf formulation responded positively to variations in the expected traffic demands, thus reducing requirements of training under every possible condition that can be experienced in the field. MASTraf reliance on detectors was also tested.

Dynamic group formation is also considered as an important feature of MASTraf and was implemented as a bias in the reward structure. This is different from previous multi-agent systems for traffic signal control where the group formation was the main mechanism for decision making. In terms of signal operation and traffic management, heavily relying on group formation for action selection may not be beneficial in conditions where effective coordination may not be achieved, such as in closely spaced intersections with oversaturated conditions.

8.2. Limitations

The MASTraf implementations presented in this work have been tested in complex traffic control scenarios in realistic conditions simulated in using commercially available software. Perhaps this is both a strength and a limitation of this research in the sense that provided reliable testing results, but also should be interpreted with caution, as simplifications in the simulated networks would also affect MASTraf. Along these simplifications, operational characteristics of actual traffic such as right-turns in red, and entering and exiting midblock traffic, were not modeled in the experiments and could have an impact in the performance of agents if these variables are not considered in the state and reward structures.

So far in the research conducted in this study, perfect information and complete reliability on each and all of the components part of the sensing devices from the network and the agents themselves have been assumed. However, it is recognized that ideal conditions may not be always achievable in practice, thus the effects of sensor failures, communication disruptions, and failures of internal components of the agents is yet to be determined.
The MASTraf implementation has been tested under vehicular traffic without special consideration of *multimodal implications in the traffic mixture*. Specifically, the combination of vehicular traffic with transit systems has not been explicitly considered. This also applies to minimum timing requirements to accommodate pedestrians. However, adaptations to explicitly include transit and pedestrians into the state, reward, and action selection can be included as extensions to current definitions. The learning process is expected to be able to respond to the addition of these new variables as long as they are adequately considered in the agent’s structure. A research project currently in progress, and sponsored by the NEXTRANS University Transportation Center, will expand MASTraf to perform traffic signal optimization for multimodal scenarios.

Along the same idea of accommodating different modes, MASTraf has not included rules for *priority vehicles*. Protocols for entering and exiting into priority modes should be defined in the agent operation, as well as the effects that priority may have on the overall performance of networks, particularly on congested scenarios.

8.3. Future Extensions

Future extensions conceived for MASTraf are expected to target the limitations outlined above, by incorporating the elements necessary to include multimodal demands, priority vehicles, and analysis and provisions for sensor, communication, and agent component failures. State, rewards, and action selection features will be modified and expanded to account for additional requirements to implement these new capabilities.

Multimodal traffic signal control using MASTraf is currently being developed and will enhance the system applicability to real-world scenarios. Challenges are anticipated in terms of the definition of static or variable weights for each of the elements in urban traffic environments, including pedestrians. Weights to determine the relative effect of a given element in the system may be dynamic and dependent on the demand change and the critical mode to be served at a given time, preventing the system from collapsing due to oversaturation.

The use of vehicle priority rules in the multi-agent system may be conceived as a fixed mechanism activated upon a priority call, taking advantage of communication between agents,
but also stopping the execution of actions known to provide better system performance. However, priority calls can also be modeled in the network as an optimization problem of multiple signals along the path of the priority vehicle if this information is known in advance. Then, it is possible to accumulate this knowledge as part of the same structure observed by the agents at all times or simply as a separate operation mode for which a different policy may be in effect for as long as the priority call lasts.

Analysis on optimal sensor location, sensor reliability, and the effects of these failures on the multi-agent system can also be studied to anticipate their consequences in the network operation. Ideal conditions have been considered so far in the experiments presented here, but faulty signals or erroneous information can also be received by agents from field sensors. Agents should be able to recognize the occurrence of such events and react accordingly, either by adjusting their action selection based on own experience or by taking advantage of neighboring agents making use of more reliable information on current events or sharing knowledge on similar past experiences.

Also, the role of MASTraf may be investigated as an active part of emerging ITS elements such as emerging vehicle detection technologies and a variety of new data sources that are expected to be readily available in the near future. These include current ITS trends related to vehicle-to-infrastructure and infrastructure-to-infrastructure communication, which encompass a wide range of information such as individual vehicle speeds, position, acceleration, and other elements part of ITS, such as transit, weather services, and emergency vehicles.

At the same time, control decisions may not be limited to traffic signals, as it is the case today, but could also be expanded to platoon and vehicle level in order to increases the capacity of traffic networks.

8.4. Potential for Field Implementation

To the author’s knowledge, field implementations of systems similar to MASTraf have not been deployed, but multi-agent based traffic signal control using reinforcement learning is an active area of research within the transportation engineering and computer science communities.
Additional testing for system reliability upon failures and multimodal functionality should be provided before the system can become operational in field implementations.

After testing is completed, the system hardware should be built into a prototype using specialized software to interact with existing controllers and sensor inputs.

Communication between intersections should also be provided for closely spaced intersections. Currently communication via Ethernet is expected to be provided for implementations being deployed in the field along arterials retrofitted with adaptive systems, thus this is not a requirement exclusive of MASTraf nor unexpected for upgrades to more flexible, capable network-wide traffic control solutions.

The increased availability of real time data and the development and deployment of vehicle-infrastructure communication technologies, provide unique opportunities for traffic control systems such as MASTraf and future field implementations. A system as flexible as MASTraf will be able to process a perceived state using real-time information from approaching vehicles. Thus, multi-agent learning systems such as MASTraf have the potential to be the next-generation traffic signal control systems, making use of a wide variety of information sources that can be processed together to assign the right of way to oncoming vehicles, not only for a given phase but even giving individual right of way to every single vehicle in the proximity of the signal so that multiple movements are served at simultaneously.
CONCLUSIONS

This research presents a multi-agent system for traffic signal control in urban networks with dynamic coordination (called MASTraf) and its performance on a variety of simulated environments. The system and agent structures were defined based on traffic operation principles and aimed at providing adequate queue management and efficient use of green times for congested networks, enabling the system to process vehicles in oversaturation and preventing queue spillbacks and gridlocks. MASTraf definitions were in part based on an extensive literature review on previous reinforcement learning applications for traffic signal control in networks, as well as on recent responsive and adaptive traffic signal systems.

The state perceived by the agents included a combination of factors that allows fully decentralization and therefore good scalability as the network size increases. Components from approaching links, either using direct number of vehicles in queue or a combination of number of vehicles and a proxy of vehicle delay were specified in the agents’ state, along with components to identify potential downstream blockages, upstream vehicles for coordination, and the current phase being displayed and its duration.

The reward structure captures the effects of the agents’ actions in their own intersection and their immediate surroundings. Components include the number of vehicles receiving the green indication (or its combination with a delay proxy) and those receiving red, together with a “best effort” strategy typical of traffic operations. In addition, incentives were provided to green times favoring coordination of upstream platoons, and penalties were given to lost times caused by phase changes and green times assigned to approaches with potential downstream blockages. Analysis of the learning process revealed that this structure provided good initial response from untrained agents when immediate undiscounted rewards were used for action selection. Also, the structure was suitable to allow improved agents’ response over time as rewards were adjusted and discounted upon repeated visits to a given state.

A mixed action selection scheme was ultimately adopted to provide agents with a balance between exploration and exploitation appropriate for the traffic control domain, particularly in congested networks. Exploitation should be careful controlled to speed up the learning process.
given that the system may not be able to recover if extensive queue spillbacks and blockages generate gridlocks. Based on previous experiences from past research and results from experimentation using MASTraf, an action selection scheme was selected such that: initial actions were based on a best-effort policy based on queues (and a delay proxy); then, forced exploration was applied such that all possible actions were tried at least once and initial estimates of immediate rewards helped extracting outstanding actions; later, a probabilistic approach based on a Boltzman distribution took over previous stages, such that exploitation was more likely for states with fewer visits; and finally, e-greedy action selection dominated the agent behavior for the later training stages and the operational mode.

Learning rates and discount factors were also analyzed and defined to reflect desired traffic characteristics. The discount factor was set such that actions would have significant effects when back-traced for about the typical duration of a phase under congested conditions (about 1 minute). Learning rates followed standard convergence requirements for stochastic gradient algorithms, such that they were positive, the infinite sum of the step sizes was finite, and the sum of the square of the step sizes was finite.

The performance of MASTraf was evaluated in scenarios with incremental complexity, from a single intersection to networks with undersaturation and asymmetric geometry. Results indicate that MASTraf agents improved their performance with training and reached similar service levels compared to state of practice traffic signal control optimization software. However, as opposed to solutions from traffic signal optimization software, signal timings from MASTraf are dynamic and cycle free, changing over time as demands change. Exploration of the policies generated by MASTraf showed that the agents followed expected behavior by providing green to greater vehicle demands and accounting for the effects of blockages and lost time.

Simulation results showed that MASTraf can modify signal timings in real-time to maintain network throughput when demands changed unexpectedly even in oversaturated conditions, resulting in better performance when compared to traffic signal optimization software.

MASTraf implementations with Q-learning and ADP had similar performances, with slightly better results for Q-learning given that it preserves greater amount of information by associating the state values with each possible action. Testing with eligibility traces was limited, but it did not result in significant improvements in the system performance.
A strategy for signal coordination was also tested in one of the MASTraf implementations, showing potential for improvements by increasing throughput and reducing the number of stops. The coordination employed a version of the max-plus algorithm embedded in the reward structure, acting as a bias towards improved coordination. Emphasizing coordination as the main factor in the decision making process was undesirable given that the system is expected to perform in undersaturated and oversaturated conditions. In the latter, objectives such as queue management should be emphasized over coordination in order to prevent network blockages.

Variations to the max-plus implementation should be studied to identify situations where a given coordinating direction should be prioritized without overloading the links. Extended coverage area for the decision making could result in significant benefits since max-plus solutions may account for additional competing directions at nearby intersections. In addition, solving max-plus not only for immediate neighbors but also considering larger areas may result in significant network-wide improvements as coordinated corridors could be explicitly defined.

The response of the system using imprecise detector data, in the form of coarse aggregation, showed that the system was able to handle oversaturation under such conditions. Even when the data had only 25% of the resolution of the original implementation, the system throughput was only reduced by 5% and the number of stops per vehicle was increased by 8%.

The state and reward formulations allowed for a simple function approximation method in order to reduce the memory requirements for storing the state space, and also to create a form of generalization for states that have not been visited or those with limited experience. Given the discontinuities in the reward functions generated by the penalties due to blockages and lost times, the value approximation was conducted through a series of family of functions for each action at for each of the conditions before and after a discontinuity.

The policies generated using MASTraf with a function approximation were analyzed for different intersections in the network, showing agent behavior that reflected the principles formulated in the original problem using lookup tables, including right of way assignment based on expected rewards with consideration of penalties such as lost time. In terms of system performance, MASTraf with function approximation resulted in average reductions of 1% in the total system throughput and 3.6% increases in the number of stops per vehicle, when compared to the implementation using lookup tables on a congested network of 20 intersections.
The development of MASTraf is an ongoing task, and additional features such as the inclusion of multimodal transportation, pedestrians, priority vehicles, and the addition of vehicle information such as precise location, speed, and routes, are part of significant tasks to be addressed in future research. Ongoing projects are already targeting these limitations, further improving the system for more realistic and comprehensive range of applications, and taking MASTraf closer to field implementation.
REFERENCES

