Characteristics of Residual Insecticides Toxic to the House Fly

WILLIS N. BRUCE
Characteristics of Residual Insecticides Toxic to the House Fly

WILLIS N. BRUCE
NATURAL HISTORY SURVEY DIVISION
Urbana, Illinois

SCIENTIFIC AND TECHNICAL STAFF
Harlow B. Mills, Ph.D., Chief
Bessie B. Henderson, M.S., Assistant to the Chief

Section of Economic Entomology
George C. Decker, Ph.D., Entomologist and Head
J. H. Bigger, M.S., Entomologist
L. L. English, Ph.D., Entomologist
C. J. Weiman, Ph.D., Entomologist
S. C. Chandler, B.S., Associate Entomologist
Willis N. Bruce, M.A., Assistant Entomologist
John M. Wright, M.A., Assistant Entomologist
H. B. Petty, M.A., Associate in Entomology

Section of Faunistic Surveys and Insect Identification
H. H. Ross, Ph.D., Systematic Entomologist and Head
Milton W. Sanderson, Ph.D., Associate Taxonomist
Lewis J. Stannard, Jr., M.S., Assistant Taxonomist
Leonora K. Gloyd, M.S., Laboratory Assistant
Philip W. Smith, B.S., Laboratory Assistant
Dorothy A. Moulton, Technical Assistant

Section of Aquatic Biology
George W. Bennett, Ph.D., Aquatic Biologist and Head
William C. Starrett, Ph.D., Associate Aquatic Biologist
D. F. Hansen, Ph.D., Assistant Aquatic Biologist
R. Weldon Larimore, M.S., Research Assistant
Daniel Avery, Field Assistant

Section of Forestry
Willet N. Wandell, M.F., Forester and Head
Lawson B. Culver, B.S., Associate in Forestry Extension

Section of Applied Botany and Plant Pathology
Leo R. Tehon, Ph.D., Botanist and Head
J. Cedric Carter, Ph.D., Plant Pathologist
J. L. Forsberg, M.S., Associate Plant Pathologist
G. H. Boewe, M.S., Assistant Plant Pathologist
Robert A. Evers, M.S., Assistant Botanist

Section of Game Research and Management
Ralph E. Yeatter, Ph.D., Game Specialist
Frank C. Bellrose, B.S., Associate Game Specialist
Harold C. Hanson, M.S., Assistant Game Specialist
James S. Jordan, M.F., Assistant Game Technician

Section of Publications and Public Relations
James S. Ayars, B.S., Technical Editor and Head
Blanche P. Young, B.A., Assistant Technical Editor
Charles L. Scott, B.S., Assistant Technical Photographer

Technical Library
Marguerite Simmons, M.A., M.S., Technical Librarian

Cooperative Wildlife Research
(Illinois Department of Conservation and U.S. Fish and Wildlife Service, Cooperating)
Paul J. Moore, B.S., Project Leader
George C. Arthur, B.S., Project Leader
Lysle R. Pietsch, M.F., Project Leader
John C. Calhoun, B.S., Assistant Project Leader

Consultant in Herpetology: Hobart M. Smith, Ph.D., Assistant Professor of Zoology, University of Illinois.

This paper is a contribution from the Section of Economic Entomology.
CONTENTS

INSECTICIDES Used. ... 1

Purpose of Study. ... 2

Acknowledgments. .. 2

Testing Procedure. ... 3

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exposure Time for Knockdown and Mortality</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Effect of Deposits on Mortality</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Relationship Between Coverage and Deposit</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Coverage of Surface and Fly Mortality</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Effect of Heterogeneous Deposits Upon Flies</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Wall Coats Containing DDT</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Successive Exposures on Persistence of Toxic Residue</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Fumigation Properties</td>
<td>19</td>
</tr>
<tr>
<td>9 and 10</td>
<td>Testing Periods</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Field Persistence of Residues From Commercial Emulsions</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Field Persistence of Residues From a Standardized Formulation of Emulsions</td>
<td>22</td>
</tr>
<tr>
<td>9 and 10</td>
<td>Discussion</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>Formulation Studies</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Laboratory Persistence of Deposits</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Laboratory Study of DDT Emulsion on Glass and Wood</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>Approximate Residual Toxicity of Several New Insecticides to the House Fly</td>
<td>29</td>
</tr>
</tbody>
</table>

SUMMARY .. 30

LITERATURE CITED. .. 31
Exposure of flies to surfaces treated with insecticides is quickly accomplished with the cages shown here. The cages are inverted and stacked, with a treated panel on each cage; then the sliding metal panel in each cage is withdrawn to allow flies in the cage to have direct contact with the treated panel.
FOR centuries the house fly, Musca domestica Linnaeus, has been an annoying, disease-carrying menace to man and other animals. Spillman & Haushalter (1887) demonstrated the house fly to be a possible vector of Bacillus tuberculosi s. Nuttal (1899) showed that Spirillum cholerae and staphylococci could be transmitted by house flies. Esten & Mason (1908) determined by counts that on an average a house fly carried 1,250,000 pathogenic organisms on its exterior surface. In a publication upon the typhoid or house fly, Felt (1909) estimated the indirect losses to our vital assets incurred by typhoid at 350 million dollars annually. Also, he suggested that house flies can spread plague, trachoma, and septicemic diseases. Howard (1909) wrote that the annual cost of screening against house flies in the United States is over 10 million dollars. Later, Herms (1911) stated that the public pays over 2 million dollars for fly traps, sticky fly paper, poisons, and sprays each year. Pipkin (1942) proved that Musca domestica can carry Endamoeba histolytica on its external surface and in its digestive system long enough to effect transmission. The evidence presented above, along with the list in Metcalf & Flint (1939) of 20 disease pathogens carried by flies, is more than sufficient reason to brand the house fly as potentially the animal most dangerous to human beings within the borders of the United States.

Although the house fly is important as an annoyance and as a vector of disease, it causes no direct injury to man or other animals. It is not equipped to bite or sting or in itself to cause disease by any of its life stages.

Pathogenic organisms may be carried on the surface of the fly's body, adhering to the numerous hairs, sticky pulvilli, wings, and mouthparts, or they may be carried in the alimentary canal to be spread by defecation or regurgitation. The filthy feeding and breeding habits of flies make inevitable the mechanical transmission of disease by these insects.

In Illinois, the house fly usually winters in the pupal or larval stage; a few adults live through the winter in protected places. The female fly deposits 2 to 21 batches of 100 to 150 eggs in manure or any other suitable decomposing organic matter. The whole life cycle through egg, larva, pupa to adult may be completed in 6 to 20 days. In Illinois there are usually 10 to 12 generations of house flies each summer. These facts account for the enormous build-up of flies that usually occurs during August or September in the temperate zone.

INSECTICIDES USED

The five chemicals described below are the principal insecticides used in the study reported here.

DDT (designation derived from the generic name dichloro-diphenyl-trichloro-ethane) was first synthesized by Zeidler (1874). Chemically this material is known as 2,2' bis (para-chlorophenyl) 1, 1, 1-trichloroethylene. The technical grade that was used in the experiments reported here consisted of a mixture of para, para'; para, ortho; and ortho, ortho' isomers. Pure DDT may be described as an odorless, stable, crystalline solid that is soluble in most organic solvents and insoluble in water. The first United States patent on it was granted to Paul Müller in 1943.
for the Geigy Company Inc., of New York, N. Y. Although Wiesmann (1943)
first described its usefulness as a residual insecticide for the control of house flies, Annand (1944) suggests that it was tested by Müller on house flies in 1940.

Rhothane D-3, or 2,2' bis (parachloro-phenyl) 1,1-dichloroethane, a material closely related to DDT, was found by Müller and others to be of less promise as an insecticide than DDT. However, the Rohm & Haas Company was convinced it possessed some valuable insecticidal properties and consequently obtained a patent for its manufacture. **Rhothane D-3** (also known as TDE, DDD, and D3) is soluble in the same solvents as DDT; it has a higher vapor pressure and a lower melting point than DDT.

Chlordan or 1,2,4,5,6,7,8-octachloro-
4,7-methano-3a,4,7,7 a -tetrahydroindane was first synthesized by Dr. Julius Hymans and first discussed as an insecticide by Kearns, Ingle, & Metcalf (1945), who showed that when tested in a Peet-Grady chamber chlordan was three to four times as toxic to flies as DDT. In the highly refined state chlordan is a light yellow, viscous, nearly odorless liquid that is soluble in aliphatic, aromatic, and chlorinated hydrocarbons. It is infinitely soluble in kerosene, debase, and no. 9 oil. Such solubility is not true of DDT, **Rhothane D-3**, or hexachlorocyclohexane, mentioned below. Chlordan has a specific gravity of 1.61 and weighs about 13.5 pounds per gallon.

The chemical 1,2,3,4,5,6-hexachlorocy-
clohexane was described by Slade (1945)
as an insecticide with outstanding properties. According to Slade, Michael Faraday in 1825 first described the synthesis of hexachlorocyclohexane (referred to by Slade as Gammexane or 666) by the reaction of chlorine with benzene in the presence of sunlight. In 1943, Slade found the gamma isomer to be the toxic principle in the crude hexachlorocyclohexane. Usually the technical material has 10 to 12 per cent by weight of the gamma isomer. Pure gamma hexachlorocyclohexane has a faint musty odor, is a colorless crystalline material melting at 112.5 degrees C., and is soluble in most organic solvents.

Toxaphene, a technical chlorinated camphene with an approximate empirical formula C₁₉H₁₉Cl₈, is a soft, waxy, light yellow material that melts at 65 to 90 degrees C. and has a density of 1.6. It is readily soluble in most organic solvents and insoluble in water. **Toxaphene**, formerly known as Hercules Synthetic 3956, is produced by the Hercules Powder Company of Wilmington, Delaware. Stearns (1947) indicates that **Toxaphene** has some promise as a household insecticide.

In addition to the insecticides described above are several on which preliminary studies were made.

PURPOSE OF STUDY

The purpose of this study was to obtain pertinent information about the residual insecticidal value of chlorinated hydrocarbons applied to various surfaces that had been exposed to different field conditions. The investigations conducted in 1943 at Orlando, Florida, by Lindquist et al. (1944) showed DDT to possess a high degree of residual toxicity to the house fly. They also showed a difference in toxicity of DDT when applied to painted and to unpainted wood. The need for the study reported here became apparent to the author when certain of his field applications of residual toxicants failed to effect adequate insect control. The results of this study, it is hoped, may serve as a guide to persons who are seeking to control insects through applications of residual insecticides and who are concerned with residues on plants.

ACKNOWLEDGMENTS

The writer wishes to express his sincere appreciation to Dr. C. W. Kearns, Department of Entomology, University of Illinois, and to Dr. G. C. Decker, Head of the Section of Economic Entomology of the Illinois Natural History Survey, for suggestions and advice as to the course of the investigation, part of which was reported in a thesis presented in partial fulfillment of the requirements for the degree of Master of Arts in Entomology in the Graduate School of the University of Illinois, 1947. He is grateful to Dr. Kearns, Dr. William P. Hayes, Head of the Department of Entomology, University of Illinois, and Dr. C. J. Weinman,
July, 1949 BRUCE: RESIDUAL INSECTICIDES TOXIC TO THE HOUSE FLY

Entomologist of the Illinois Natural History Survey, for constructive criticism of the manuscript.

TESTING PROCEDURE

A versatile flat exposure cage, fig. 1, was designed by the writer for use in the field, fig. 2, and for laboratory tests described below. The method of exposing cut film that photographers employ suggested its design. Made of a three-fourths inch white pine frame 8 1/2 inches square by 1 3/4 inches deep, the cage is covered on one side by 16-mesh screen wire and fitted on the other side with a sliding panel of manila paper or sheet metal. It has an interior space of about 75 cubic inches. More than 300 cages of this design were required for the tests.

All house flies used in the tests were reared according to the accepted Peet-Grady method (Anonymous 1946). About 120 pupae (2.2-2.4 grams) were placed in each exposure cage via the sliding panel, fig. 1. Flies were supplied with food, a mixture of milk and water, by means of a small shell vial fitted with a piece of cheesecloth. A shell vial was inverted up-on the screen top of each cage, permitting the adult flies to feed by contact, fig. 3. In each test of an insecticide, adult flies were exposed to a treated surface on their second day of oviposition, and on the following day the mortality counts were made.

The exposure process was simple. First the cage was placed on a clean, flat board and then the sliding panel was removed momentarily to allow the empty pupal cases and other debris to fall out. With the panel replaced, the cage was moved and secured to the treated surface. The sliding panel was then removed to allow the flies to have direct contact with the treated surface for the desired exposure period. Obviously because of the house flies' habit of seeking the ceiling as a resting place when illumination is reduced, preliminary tests under average laboratory lighting indicated that best replication was obtained by inverting the cages (screen side down) during the exposure, frontispiece. However, in bright light and at temperatures between 80 and 90 degrees F. there was little difference between results from the upright and the inverted position during exposure.

Fig. 1.—Exposure cage used in the experiments. As shown here, the cage is inverted, and the sliding panel is partly withdrawn.
The treatment of the selected surfaces was simple and yet apparently reliable. In the early tests, the quantity of prepared insecticide, containing 1 per cent of the

residual toxicant by weight, was measured with a pipette and spread evenly over the surface with the aid of a small brush, fig. 4. Additional water or solvent was used to wash the residue from the brush onto the surface.

In later tests the deposits were obtained by means of a 6-foot stainless steel settlement and good replication (less than 1 per cent variation among deposits) were obtained with this apparatus, fig. 4.

The following are some of the common formulations of the concentrates used in making 1 per cent sprays. Formulations other than these are indicated in the discussion of individual tests.
A. Emulsions:
1. 62% chlordane + 5% Atlox 1045-A + 33% no. 9 oil by volume.
2. 25% DDT, Toxaphene, gamma isomer of hexachlorocyclohexane or Rhothane D-3 + 70% PD 544-C (solvent known also as Sovacide 544-C) + 2% emulsifier B-1956 and 3% Triton X-155 by weight.

B. Water-wettable powders: 50% by weight of toxicant + 2% wetting agent (Triton X-100) + 48% by weight of Cherokee clay.

C. Oil solutions: 1.0% by weight of toxicant per volume of no. 9 oil.

After each test the cages were decontaminated in a mild KOH solution, washed thoroughly in soapy water, and allowed to dry in the sun for about 2 days. The manila sliding panels were discarded after being used once. With this procedure no contamination difficulties were met.

Fig. 3.—Method of feeding flies in exposure cage. A shell vial filled with milk and stoppered with one layer of cheesecloth is inverted and placed on the screen top of the exposure cage.
Experiment 1: Exposure Time for Knockdown and Mortality.—In an experiment designed to reveal the exposure times necessary to give comparable mortalities for the five principal materials tested, as well as to indicate the relative initial surface toxicity and speed of knockdown of flies, lots of 100 to 120 flies each were exposed to deposits of 50 mg. per square foot (538 mg. per square meter) of glass for each of three replicates.

Table 1 clearly reveals the correlation between the length of exposure and the percentage of mortality and knockdown resulting from each of the five principal chlorinated hydrocarbons used. The surface toxicity as indicated by the exposure needed to effect mortality made DDT and gamma hexachlorocyclohexane appear to be the most toxic, with chlordane, Rhothane D-3, and Toxaphene following in order.

Monro, Beaulieu, & Delisle (1947) reported no difference in mortality among lots of flies exposed for 10, 20, 30, 40, and 50 minutes to DDT deposits. Their reported results are at variance with data obtained from the experiment described here. Table 1 exhibits clearly the relationship of exposure time to mortality. Perhaps Monro and his co-workers used surfaces on which only a small amount of DDT was available to the flies, and in the first few minutes of exposure the flies rapidly eroded or removed the DDT available. In speed of knockdown, gamma hexachlorocyclohexane was the material ranking first; it was followed in order by DDT, Rhothane D-3, chlordane, and Toxaphene. Fifty per cent knockdown of house flies when exposed to Toxaphene was reported by Block (1948b) to require in some instances only 12 minutes, a period that represents a much faster knockdown rate than the 4 to 6 hours for complete knockdown reported by Beacher & Parker (1948). Data in Table 1 indicate that about 167 minutes of exposure to Toxaphene is needed to give 50 per cent knockdown and 253 minutes for 99 per cent knockdown. It was noticed in the experiment reported here that there was no correlation between time required for knockdown and time required for kill. Rhothane D-3, which possessed much less surface toxicity than chlordane, actually gave quicker knockdown. Surface toxicity depends upon the availability of the insecticide as well as the actual toxicity.

Fig. 4.—Three glass panels similar to those used in experiment. Left, panel with insecticide applied in settling spray tower; center, panel with insecticide being applied by means of brush and pipette; right, panel with insecticide already applied by means of brush and pipette.
Insecticide is introduced by a pipette into the atomizer at top of spray tower. A panel is placed on a sliding shelf in the bottom of tower. At 12.5 psi air pressure, and after 3 minutes are allowed for settling, the dosage per square foot of panel is approximately 32.4 per cent of the quantity placed in the atomizer.
Table 1.—Effect of exposure time on mortality of house flies and time required for various knockdowns of flies by five chlorinated hydrocarbons when applied as suspensions on glass.

<table>
<thead>
<tr>
<th>Water-Wettable Insecticide</th>
<th>Mg. Toxicant per Square Foot</th>
<th>Per Cent Mortality 24 Hours After Exposure Time of</th>
<th>Minutes Required for Knockdown of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5""</td>
<td>15""</td>
<td>30""</td>
</tr>
<tr>
<td>50% DDT</td>
<td>50 mg.</td>
<td>5.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Mean</td>
<td>5.5</td>
<td>8.0</td>
<td>5.9</td>
</tr>
<tr>
<td>50% Chlordane</td>
<td>50 mg.</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Mean</td>
<td>3.7</td>
<td>4.7</td>
<td>5.3</td>
</tr>
<tr>
<td>5.2% Gamma hexachlorocyclohexane</td>
<td>50 mg.</td>
<td>12.6</td>
<td>18.7</td>
</tr>
<tr>
<td>Mean</td>
<td>13.1</td>
<td>19.3</td>
<td>17.6</td>
</tr>
<tr>
<td>25% Toxaphene</td>
<td>50 mg.</td>
<td>9.7</td>
<td>16.6</td>
</tr>
<tr>
<td>Mean</td>
<td>7.9</td>
<td>15.7</td>
<td>31.4</td>
</tr>
<tr>
<td>50% Rhothane D-3</td>
<td>50 mg.</td>
<td>1.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9</td>
<td>4.1</td>
<td>20.8</td>
</tr>
</tbody>
</table>

* = seconds. † = minutes.

In Table 1 are indicated the proper exposure periods to be used in the experiments on residual toxicities, as follows: DDT and gamma isomer of hexachlorocyclohexane, 15 minutes; chlordane, 1 hour; and Rhothane D-3 and Toxaphene, 2 hours. Exposures to deposits of 50 mg. toxicant per square foot for the periods indicated produced nearly 100 per cent mortality for each material.

Experiment 2: Effect of Deposits on Mortality.—With what appears to be the best residual material (DDT) a study was conducted to establish if possible the influence of the amount of deposit on mortality of flies exposed 15 minutes. A series of glass plates were treated with a 50 per cent DDT water-wettable powder in a calculated range of 0.1875 mg. to 200 mg. (equivalent to 2,152 mg. per square

Table 2.—Mortalities of house flies exposed 15 minutes to various DDT suspension deposits on glass.

<table>
<thead>
<tr>
<th>Deposit As M.C. of DDT per Square Foot of Glass</th>
<th>Per Cent Mortality 24 Hours After Treatment</th>
<th>Replicate 1</th>
<th>Replicate 2</th>
<th>Replicate 3</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.0</td>
<td>100.0</td>
<td>99.0</td>
<td>100.0</td>
<td>99.0</td>
<td>100.0</td>
</tr>
<tr>
<td>150.0</td>
<td>100.0</td>
<td>98.1</td>
<td>100.0</td>
<td>98.1</td>
<td>100.0</td>
</tr>
<tr>
<td>50.0</td>
<td>100.0</td>
<td>81.6</td>
<td>100.0</td>
<td>81.6</td>
<td>100.0</td>
</tr>
<tr>
<td>25.0</td>
<td>100.0</td>
<td>89.8</td>
<td>100.0</td>
<td>89.8</td>
<td>100.0</td>
</tr>
<tr>
<td>12.5</td>
<td>100.0</td>
<td>65.5</td>
<td>100.0</td>
<td>65.5</td>
<td>100.0</td>
</tr>
<tr>
<td>6.25</td>
<td>100.0</td>
<td>55.3</td>
<td>100.0</td>
<td>55.3</td>
<td>100.0</td>
</tr>
<tr>
<td>3.15</td>
<td>100.0</td>
<td>46.1</td>
<td>100.0</td>
<td>46.1</td>
<td>100.0</td>
</tr>
<tr>
<td>1.5</td>
<td>100.0</td>
<td>28.1</td>
<td>100.0</td>
<td>28.1</td>
<td>100.0</td>
</tr>
<tr>
<td>0.75</td>
<td>19.0</td>
<td>18.8</td>
<td>12.4</td>
<td>14.2</td>
<td>12.4</td>
</tr>
<tr>
<td>0.375</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: A 50 per cent DDT water-wettable powder was used to secure the DDT deposits.
Table 3.—Mortality of house flies exposed to surfaces sprayed with DDT at different dosages and degrees of coverage.

<table>
<thead>
<tr>
<th>mg. of DDT per square foot</th>
<th>Per Cent of Surfaces Sprayed</th>
<th>3 Seconds</th>
<th>15 Seconds</th>
<th>1 Minute</th>
<th>4 Minutes</th>
<th>16 Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td>24.7</td>
<td>88.5</td>
<td>99.1</td>
<td>99.8</td>
<td>100.0</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>5.5</td>
<td>15.0</td>
<td>75.8</td>
<td>100.0</td>
<td>99.7</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>19.2</td>
<td>86.0</td>
<td>96.5</td>
<td>99.0</td>
<td>100.0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>10.4</td>
<td>25.0</td>
<td>82.5</td>
<td>94.8</td>
<td>99.1</td>
</tr>
</tbody>
</table>

Experiment 3: Relationship Between Coverage and Deposit.—Deneate water-wettable powder mixtures at various dosages were sprayed in a settling ray tower upon glass plates in such a way as to obtain various degrees of coverage, as indicated in table 3. A 25 mg. per square foot deposit over 100 per cent of the surface was much more effective than a 100 mg. per square foot deposit over only 25 per cent of the surface. A deposit of 100 mg. of DDT on 25 per cent of the surface was no more effective than a 10 mg. deposit over the entire surface (about 0.4 as much actual DDT). Results show the greater importance of coverage and the lesser importance of dosage in effecting fly mortality.

No critical comparisons can be made between data obtained in this experiment and data on coverage obtained by Turner Woodruff (1948), as in the Turner & Woodruff report comparable specific information is lacking on techniques of application, dosages, exposure times, numbers of flies used, and effect of flies on deposits.

Table 4.—Mortality of house flies exposed to surfaces sprayed for different degrees of coverage with 50 mg. DDT deposits per square foot.

<table>
<thead>
<tr>
<th>Per Cent of Surface Sprayed</th>
<th>Per Cent Mortality 24 Hours After 4-Minute Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>20</td>
<td>64.0</td>
</tr>
<tr>
<td>30</td>
<td>91.1</td>
</tr>
<tr>
<td>40</td>
<td>99.0</td>
</tr>
<tr>
<td>50</td>
<td>99.6</td>
</tr>
<tr>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Experiment 4: Coverage of Surface and Fly Mortality.—As indicated in table 4, six panels were sprayed, with 10, 20, 30, 40, 50, and 100 per cent, respectively, of their surfaces covered with 50 mg. of DDT per square foot in the form of Deneate water-wettable powder.

On panels on which less than 30 per cent of the surface was treated, fly mortality resulting from a 4-minute exposure was low. Probably the fly does not have sufficient time to pick up a lethal dose of DDT in a 4-minute period of contact with a surface less than 30 per cent of which is treated.

Table 4 shows, in the random distribution of flies within a confined space, the desirability of extensive treatment, or as nearly complete a coverage as possible.

Table 3 indicates that a given amount of material is most effective when distributed over the whole surface. Therefore, in practical application, if a certain amount of material is to be used upon premises, it is advisable to cover all surfaces rather than to employ spot treatments, provided, however, that such an entire-coverage treatment does not con-
Table 5.—Mortality of house flies exposed to surfaces sprayed with DDT distributed heterogeneously and also homogeneously.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Mg. DDT per Square Foot</th>
<th>Average Mg. DDT per Square Foot</th>
<th>Surface</th>
<th>Per Cent Mortality 24 Hours After Exposure of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 Seconds</td>
</tr>
<tr>
<td>No. 9 oil solution</td>
<td>20–200</td>
<td>110</td>
<td>Wood</td>
<td>96.0</td>
</tr>
<tr>
<td>No. 9 oil solution</td>
<td>110</td>
<td>110</td>
<td>Wood</td>
<td>93.2</td>
</tr>
<tr>
<td>No. 9 oil solution</td>
<td>50</td>
<td>50</td>
<td>Wood</td>
<td>87.0</td>
</tr>
<tr>
<td>Decane water-wettable DDT</td>
<td>25–75</td>
<td>50</td>
<td>Glass</td>
<td>89.6</td>
</tr>
<tr>
<td>powder in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decane water-wettable DDT</td>
<td>50</td>
<td>50</td>
<td>Glass</td>
<td>88.1</td>
</tr>
<tr>
<td>powder in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

taminate food or otherwise present a health hazard.

Experiment 5: Effect of Heterogeneous Deposits Upon Flies.—The effect upon flies of uneven deposits of insecticides was determined through a series of tests in which materials were sprayed on surfaces in alternating bands of heavy and light deposits. DDT, 3.2 per cent, in no. 9 oil was sprayed in 10 alternating bands of 20 and 200 mg. per square foot upon a wood surface, and the resulting mortality in flies exposed to this surface was compared with resulting mortalities in flies exposed to one 110 mg. and one 50 mg. treatment. There was, of course, a certain amount of run-together of the bands (estimated at about 25 per cent) so that the crystalline deposit appeared wavelike, or as a truly uneven deposit. There was no significant difference in fly mortality resulting from exposure to the 20–200 mg. deposit and the deposits of 110 and 50 mg. No significant differences in fly mortality resulted when Decane water-wettable DDT was applied to glass in four strips of 25 and 75 mg. per square foot and in a uniform deposit of 50 mg., table 5.

The tests described above lead to the

Table 6.—House fly knockdown and mortality resulting from 15-minute exposures to surfaces treated with several formulations at a dosage of 50 mg. DDT per square foot.

<table>
<thead>
<tr>
<th>Per Cent DDT in Water-Wettable Powder</th>
<th>Source of Toxicant</th>
<th>Surface</th>
<th>Minutes Required to Obtain Knockdown of 1%</th>
<th>50%</th>
<th>99%</th>
<th>Mortality 25 Hours After a 15-Minute Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>20</td>
<td>33</td>
<td>57</td>
<td>100.0</td>
</tr>
<tr>
<td>25.0</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>22</td>
<td>36</td>
<td>58</td>
<td>99.2</td>
</tr>
<tr>
<td>10.0</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>29</td>
<td>49</td>
<td>145</td>
<td>89.1</td>
</tr>
<tr>
<td>5.0</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>38</td>
<td>72</td>
<td>290</td>
<td>49.9</td>
</tr>
<tr>
<td>2.0</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>50</td>
<td>140</td>
<td>540</td>
<td>14.0</td>
</tr>
<tr>
<td>0.5</td>
<td>Rohm & Haas 50% water-wettable powder</td>
<td>Glass</td>
<td>360</td>
<td>1,080</td>
<td>2,830</td>
<td>1.3</td>
</tr>
<tr>
<td>5.0</td>
<td>Decane 50% water-wettable powder</td>
<td>Glass</td>
<td>35</td>
<td>58</td>
<td>315</td>
<td>46.2</td>
</tr>
<tr>
<td>5.0</td>
<td>Decane 50% water-wettable powder</td>
<td>Wood</td>
<td>40</td>
<td>60</td>
<td>340</td>
<td>37.4</td>
</tr>
<tr>
<td>5.0</td>
<td>Decane 25% emulsifiable concentrate</td>
<td>Glass</td>
<td>55</td>
<td>215</td>
<td>1,290</td>
<td>10.1</td>
</tr>
<tr>
<td>5.0</td>
<td>Decane 25% emulsifiable concentrate</td>
<td>Wood</td>
<td>25</td>
<td>35</td>
<td>58</td>
<td>95.3</td>
</tr>
</tbody>
</table>
conclusion that perfectly uniform deposits may not be necessary or even advantageous on surfaces on which residual toxicant deposits are excessive. This conclusion confirms results of experiments in which there was no apparent difference in mortality rates resulting from deposits obtained by spraying and those obtained by painting. The painted deposits were obviously not perfectly uniform, fig. 4.

Experiment 6: Wall Coats Containing DDT.—When many so-called wall coats containing DDT appeared upon the market, laboratory tests were progressing upon amounts of DDT in the suspension-type wall coats needed to produce the necessary lethal action. In addition, a means was being sought whereby a good wall coat might be produced. Formulations containing 0.5, 2.0, 5.0, 10.0, and 25.0 per cent DDT were prepared from Rohm & Haas water-treatable DDT powder and sprayed upon glass panels at the rate of 50 mg. actual DDT per square foot. The treated panels were permitted to dry and age 4 weeks before being tested.

The data in table 6 make it evident that mortality and knockdown were not changed until the concentration of DDT was reduced to 10 per cent or less. The writer is doubtful if any wall coat containing as little as 2 to 5 per cent DDT could compete in fly control with 50 per cent DDT water-wettable powder in field operations. In the 50 per cent water-wettable powder, approximately half of the surface particles are actual DDT, whereas in the wall coat probably 2 to 5 of 100 surface particles are actual DDT.

A few experiments with laboratory wall-coat formulations, in which 25 per cent DDT emulsifiable concentrate was reduced to 5 per cent DDT by mixture with Cherokee clay and used in place of the water-wettable powder, proved quite satisfactory. When this formulation was sprayed upon wood or other porous surfaces a highly toxic bloom occurred usually within a week. When applied to glass, the DDT “bloomed-in” and crystallized upon the glass beneath. Used commercially, such a formulation would probably not be sprayed upon glass or other highly polished surfaces and would likely surpass most wall coats being used in controlling flies.

Block (1948a) mentions a number of good references to research on insecticidal surface coatings. Also, he offers valuable information about such coatings, in which the toxicant appears to be retained longer than might ordinarily be expected. Most of Block’s work was with coatings containing 20 per cent DDT, and his data are recorded in number of minutes required to give 50 per cent knockdown.

Experiment 7: Effect of Successive Exposures on Persistence of Toxic Residue.—What wearing effect do numerous flies have upon a deposit of residual insecticide? Ten cages of flies were exposed for successive periods of 15 minutes each to each of the DDT-treated surfaces listed in table 7, and 24-hour mortality data were recorded.

Results of tests, designed to test fly erosion of DDT residues, indicate not only tenacity of deposits but also a stimulating seeding effect of flies when exposed to surfaces that are just beginning to bloom. On such surfaces it is evident that there exists a layer of blobs of supersaturated solvents that respond to various stimuli and bloom out in a dense mat of very fine crystals. These stimulated blooms (crystallization on the surface) are, according to the erosion test, very resistant to wear.

Examining the data by solvents and surfaces reveals some very interesting trends. PD 544-C emulsions, when applied to wood, form not only a good initial bloom but also a very dense secondary seeded mat of crystals, all of which resist wear. On glass the PD 544-C formulation maintains a rather low order of toxicity, with no apparent loss by fly erosion. Microscopic examination of deposits of DDT from the slower-drying solvents shows that the large crystals for the most part lie flat upon the glass surface, figs. 6, 9, and 10. The position of the crystals probably explains their low degree of toxicity and their long wear. A mixture of water-wettable powder that has been sprayed on glass erodes to some degree as evidenced by both biological and visual observations. Erosion of the residue is greatly retarded by the addition of 5 per cent bone glue by weight to the 50 per cent DDT water-wettable powder. The Deneate water-wettable powder appears to erode more
Table 7.—Influence of surfaces, solvents, formulations, method of application, and fly activity upon toxicity and maintenance of residual effectiveness of DDT deposits.

<table>
<thead>
<tr>
<th>Panel No.</th>
<th>Solvent or Formulation</th>
<th>Method of Application</th>
<th>Age of Deposit in Days</th>
<th>Crystals</th>
<th>Surface</th>
<th>Per Cent Mortality 24 Hours After Stated Exposure of Flies to the Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>1</td>
<td>PD 54-C</td>
<td>Painted</td>
<td>6</td>
<td>Medium fine</td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>PD 54-C</td>
<td>Painted</td>
<td>6</td>
<td>Medium fine</td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td>PD 54-C</td>
<td>Painted</td>
<td>6</td>
<td>Large</td>
<td>Glass</td>
<td>16.0</td>
</tr>
<tr>
<td>4</td>
<td>PD 54-C</td>
<td>Painted</td>
<td>6</td>
<td>Large</td>
<td>Glass</td>
<td>12.0</td>
</tr>
<tr>
<td>5</td>
<td>PD 54-C</td>
<td>Painted</td>
<td>6</td>
<td>Large</td>
<td>Glass</td>
<td>41.0</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory water-wetttable powder</td>
<td>Painted</td>
<td>6</td>
<td>—</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>Deenate water-wetttable powder</td>
<td>Painted</td>
<td>6</td>
<td>—</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>8</td>
<td>Deenate water-wetttable powder</td>
<td>Sprayed</td>
<td>6</td>
<td>—</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>9</td>
<td>Deenate water-wetttable powder and glue</td>
<td>Sprayed</td>
<td>6</td>
<td>—</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>10</td>
<td>Controls</td>
<td>Sprayed</td>
<td>6</td>
<td>Superfine</td>
<td>Glass</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>Ethyl alcohol</td>
<td>Sprayed</td>
<td>6</td>
<td>Superfine</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>12</td>
<td>Ethyl alcohol</td>
<td>Painted</td>
<td>6</td>
<td>Superfine</td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td>13</td>
<td>HB-10†</td>
<td>Sprayed</td>
<td>6</td>
<td>Oily surface, none</td>
<td>Wood</td>
<td>36.4</td>
</tr>
<tr>
<td>14</td>
<td>HB-10†</td>
<td>Sprayed</td>
<td>11</td>
<td>None</td>
<td>Wood</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>HB-10†</td>
<td>Sprayed</td>
<td>18</td>
<td>Large</td>
<td>Wood</td>
<td>34.2</td>
</tr>
<tr>
<td>16</td>
<td>Xylene†</td>
<td>Sprayed</td>
<td>30</td>
<td>Large</td>
<td>Wood</td>
<td>80.0</td>
</tr>
<tr>
<td>17</td>
<td>Xylene†</td>
<td>Sprayed</td>
<td>6</td>
<td>Medium fine</td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>18</td>
<td>Xylene†</td>
<td>Sprayed</td>
<td>11</td>
<td>Medium fine</td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>19</td>
<td>Xylene†</td>
<td>Sprayed</td>
<td>18</td>
<td>Medium fine</td>
<td>Wood</td>
<td>13.1</td>
</tr>
<tr>
<td>20</td>
<td>Xylene†</td>
<td>Sprayed</td>
<td>30</td>
<td>Medium fine</td>
<td>Wood</td>
<td>7.9</td>
</tr>
<tr>
<td>21</td>
<td>Velsicol AR-60†</td>
<td>Sprayed</td>
<td>6</td>
<td>Oily surface, few medium</td>
<td>Wood</td>
<td>35.3</td>
</tr>
<tr>
<td>22</td>
<td>Velsicol AR-60†</td>
<td>Sprayed</td>
<td>11</td>
<td>Medium</td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>23</td>
<td>Velsicol AR-60†</td>
<td>Sprayed</td>
<td>18</td>
<td>Medium</td>
<td>Wood</td>
<td>25.5</td>
</tr>
<tr>
<td>24</td>
<td>Velsicol AR-60†</td>
<td>Sprayed</td>
<td>30</td>
<td>Medium</td>
<td>Wood</td>
<td>16.0</td>
</tr>
<tr>
<td>25</td>
<td>Xylene + ethylene dichloride†</td>
<td>Sprayed</td>
<td>4</td>
<td>Medium fine</td>
<td>Wood</td>
<td>80.8</td>
</tr>
</tbody>
</table>

*% 81% B-1950 + 3% Triton X-155 emulsifiers.
Panel No.	Solvent or Formulation	Method of Application	Age of Deposit in Days	Crystals	Surface	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th		
15	Xylene + ethylene dichloride†	Sprayed	15	Very fine and matted	Wood	100	99	100	100	100	88	85	38	92	94	99	
16	Xylene + carbon tetrachloride†	Sprayed	4	Medium fine	Wood	100	100	99	12	75	46	27	66	31	44	24	
16	Xylene + carbon tetrachloride†	Sprayed	15	Very fine and matted	Wood	100	100	99	95	95	95	92	100	100	100	100	100
17	Xylene†	Sprayed	2	Medium fine	Wood	100	100	95	95	95	95	95	95	95	95	95	
17	Xylene†	Sprayed	15	Fine and matted	Wood	100	100	95	95	95	95	95	95	95	95	95	
18	Xylene†	Sprayed	3	Medium fine	Wood	100	100	86	63	31	20	20	20	20	20	20	
18	Xylene†	Sprayed	15	Medium fine	Wood	100	100	86	63	31	20	20	20	20	20	20	
19	Xylene†	Sprayed	30	Medium fine	Wood	100	100	86	63	31	20	20	20	20	20	20	
20	PD 544-C*	Sprayed	6	Medium fine	Wood	100	100	86	63	31	20	20	20	20	20	20	
20	PD 544-C*	Sprayed	11	Very fine and matted	Wood	100	100	86	63	31	20	20	20	20	20	20	
21	PD 544-C*	Sprayed	6	Medium fine	Wood	100	100	95	95	95	95	95	95	95	95	95	
21	PD 544-C*	Sprayed	11	Very fine and matted	Wood	100	100	95	95	95	95	95	95	95	95	95	
22	Xylene†	Painted	2	Surface appearing wet; few	Glass	100	100	100	100	100	99	97	97	97	97	97	
22	Xylene†	Painted	15	Fine and very fine	Glass	100	100	100	100	100	99	97	97	97	97	97	

* 2% B-1956 + 3% Triton X-155 emulsifiers.
† 5% Alcoa 1044-4 emulsifier.
‡ 10% Triton X-100 emulsifer.
rapidly than the laboratory water-wettable powder formulation in which Cherokee clay is used as a diluent.

The three formulations in which HB-40, xylene, and Velsicol AR-60 were solvents, and Aitlox 1045-I was used as the emulsifier, had different degrees of bloom and wear. The first test period 6 days after treatment showed considerable degradation of the well-crystallized DDT-xylene deposit; in the other two formulations, little loss of toxicity was noted from the first through the tenth exposure. Examination under a microscope revealed no crystals present where HB-40 had been used and very few where Velsicol AR-60 was employed. Five days later, when these same surfaces were again tested in like manner, the xylene treatment had eroded severely, that containing AR-60 had eroded slightly, and the HB-40 treatment showed no toxicity and no bloom. The HB-40 treatment then appeared dry, whereas in the first series of tests it had a wet appearance. A third test of only five series of exposures on the eighteenth day and examination of deposits proved the appearance of crystals upon the surface of the HB-40 treatment. The xylene treatment indicated a continued slow, inconspicuous bloom, and the AR-60 treatment a more noticeable bloom. By the time of the last test, on the thirtieth day, of but one cage of flies, the results suggested that the rate of bloom is directly proportional to the rate of volatilization of the solvent. Thus, in 30 days HB-40 had only begun to permit the crystallization of DDT; xylene had apparently passed its peak of crystallization by the fifth day, and Velsicol AR-60 by the eleventh day. Probably some of the DDT remains bound in the wood as a supersaturated or saturated solution in any of these solvents for periods much longer than those indicated here.

Further studies with xylene as a solvent, as indicated in table 7, lead to the belief that, if the desirable secondary bloom is to be obtained, the flies, or whatever device is used for seeding the surface, should be on the surface not later than the second day. Thus, the period of seeding a xylene treatment seems somewhat limited. If, however, we add to the xylene emulsion-concentrate about 20 per cent ethylene dichloride or carbon tetrachloride we find that a deposit bearing DDT will react to the stimulus on the fourth day to produce a plainly visible heavy white crystalline mat of extremely small, fine crystals on the wood surface. Of all the seeded blooms, these and the ones produced by the PD 544-C treatments were the heaviest and most resistant to wear at a high level of toxicity. Of all the formulations except those made with water-wettable powder, the 1.62 per cent DDT solution in 95 per cent ethyl alcohol produced the most lethal and tenacious deposits on glass surface when either sprayed or brushed upon the surfaces. It produced the finest crystalline deposits, and its crystallization was the most rapid, fig. 8.

Microscopic study of all solution deposits on glass revealed that rarely was crystallization complete. Usually a few or many minute blobs of supersaturated solution persisted among the DDT crystals, fig. 12. On glass and, less noticeably, on wood the size of the DDT crystals was determined by the speed of crystallization which, in turn, was determined by the physical properties of the solvent, fig. 6–13; rapid crystallization produced crystals of minute size. This phenomenon was especially noticeable where surface treatments were seeded by fly activity at the proper time and crystallization was at one initiated at the innumerable sites of fly contact. Often it was noted that dust, dirt, and scratches stimulated the formation of crystals on glass, fig. 13.

Schmitz & Goette (1948) apparently showed the degree of penetration of DDT solutions into poplar wood. The opinion of the present writer is that the degree of penetration may be influenced by highly variable elements in the environment. For example, under a certain set of conditions it is possible that most of the DDT could be crystallized on the surface of the wood if the solvent is highly supersaturated when the surface is stimulated. Without the stimulation, much of the DDT could remain dissolved and held in the wood by the solvent. Certain components of wood have shown a visible influence upon the bloom; it has been observed that frequent bloom occurs on the soft part of the wood between the hard or resinous annual rings before a crystalline formation occurs on the annual rings. On certain pieces of
Residual Insecticides Toxic to the House Fly

Fig. 6.—DDT crystallization from PD 544-C emulsion. ×40. Crystals of DDT formed in solvents that evaporate slowly tend to be large, lie flat on the glass, and exhibit low fuidity and high resistance to erosion.

Fig. 7.—DDT crystallization from no. 9 oil on glass. ×40. The large crystals are plainly visible to the unaided eye.
Fig. 8.—DDT crystallization from ethyl alcohol solution on glass. × 40. The minute crystals are not visible individually but only as dense hemispherical masses, have high toxicity and are resistant to erosion.

Fig. 9.—DDT in process of crystallizing from an HB-40 solution. × 40. The very large crystals, which lie flat upon the glass, are characteristic of very slow crystallization.
Fig. 10.—DDT crystallization from a *Felsicol* AR-60 emulsion, X40. The crystals lying and forming a network on glass, have low toxicity and are resistant to erosion.

Fig. 11.—DDT crystallized from xylene emulsion on glass. X40. Network of crystals is similar to that from *Felsicol* AR-60, but the individual crystals are smaller.
Fig. 12.—DDT in process of crystallizing from xylene solution on glass. X40. The xylene droplets (center of picture) among the crystals are susceptible to seeding by dust or flies.

Fig. 13.—DDT in process of crystallizing from xylene solution. X40. The solution on glass shown here was seeded by dust, and crystallization started sooner than on glass shown in fig. 12.
Iv, 1949

BRUCE: RESIDUAL INSECTICIDES TOXIC TO THE HOUSE FLY

The top of the jar was sealed with a glass plate smeared with a glycerine-bentonite jell. Exposure times of six groups of flies to the air in the jars were, respectively, 15, 30, 60, 120, 240, and 480 minutes. The results of four replicates are shown in table 8. The losses of weight from the treated surfaces were used to calculate the dosage as milligrams per 1,000 cubic feet or 28.365 cubic meters. One mg. per 1,000 cubic feet is equivalent to 0.0353 mg. per cubic meter. It was difficult to believe that the calculated dosages actually existed as a vapor, but rather existed as condensations or adsorptions over the entire inside surface of each jar. It seemed conceivable that there was a transfer of the toxicant to the lipoid material in the insect's body and consequently that a lethal concentration of the toxicants accumulated. These data indicate the high order of toxicity to house flies of vapors that were given off from chlordane and hexachlorocyclohexane. Chlordane and hexachlorocyclohexane were compared with HCN, one of the most toxic fumigants, and found to be approximately 62 and 206 times as toxic, respectively. Fly fumigation data

Experiment 8: Fumigation Properties.—During the course of the studies, fumigation was encountered with contamination of air in the room containing the fly cage. Investigation of this situation revealed that the only possible source of contamination was chlordane-treated surfaces at the opposite end of the room. Preliminary tests indicated that Toxaphene, otho D-3, and DDT did not act as migrants to any noticeable extent; on the other hand, chlordane and gamma hexachlorocyclohexane seemed very toxic as migrants. A study was made of the fumigation of chlordane and gamma hexachlorocyclohexane. Caged flies were placed in a battery jar (11.6 liters capacity) with 18 square inches of treated surface. The top of the jar was sealed with a glass plate smeared with a glycerine-bentonite jell. Exposure times of six groups of flies to the air in the jars were, respectively, 15, 30, 60, 120, 240, and 480 minutes. The results of four replicates are shown in table 8. The losses of weight from the treated surfaces were used to calculate the dosage as milligrams per 1,000 cubic feet or 28.365 cubic meters. One mg. per 1,000 cubic feet is equivalent to 0.0353 mg. per cubic meter. It was difficult to believe that the calculated dosages actually existed as a vapor, but rather existed as condensations or adsorptions over the entire inside surface of each jar. It seemed conceivable that there was a transfer of the toxicant to the lipoid material in the insect's body and consequently that a lethal concentration of the toxicants accumulated. These data indicate the high order of toxicity to house flies of vapors that were given off from chlordane and hexachlorocyclohexane. Chlordane and hexachlorocyclohexane were compared with HCN, one of the most toxic fumigants, and found to be approximately 62 and 206 times as toxic, respectively. Fly fumigation data

Table 8.—Mortality of house flies 24 hours after exposures of various periods to vapors of chlordane and hexachlorocyclohexane residues.

<table>
<thead>
<tr>
<th>TOXICANT</th>
<th>PER CENT MORTALITY 24 HOURS AFTER EXPOSURE OF</th>
<th>15'</th>
<th>30'</th>
<th>60'</th>
<th>120'</th>
<th>240'</th>
<th>480'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane</td>
<td></td>
<td>2.6</td>
<td>30.0</td>
<td>58.0</td>
<td>68.5</td>
<td>82.2</td>
<td>98.1</td>
</tr>
<tr>
<td>Chlordane</td>
<td></td>
<td>1.0</td>
<td>4.9</td>
<td>24.5</td>
<td>91.8</td>
<td>99.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Chlordane</td>
<td>hexachlorocyclohexane.</td>
<td>1.9</td>
<td>20.9</td>
<td>63.7</td>
<td>83.2</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Chlordane</td>
<td>hexachlorocyclohexane.</td>
<td>0.9</td>
<td>6.3</td>
<td>24.1</td>
<td>81.4</td>
<td>97.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Chlordane</td>
<td>hexachlorocyclohexane.</td>
<td>1.6</td>
<td>15.5</td>
<td>42.8</td>
<td>81.2</td>
<td>94.8</td>
<td>99.5</td>
</tr>
<tr>
<td>Average dosage calculated as mg. per 1000 cubic feet</td>
<td>151</td>
<td>3.34</td>
<td>6.07</td>
<td>12.14</td>
<td>24.28</td>
<td>48.56</td>
<td></td>
</tr>
<tr>
<td>HCN isomer of hexachlorocyclohexane.</td>
<td>1.0</td>
<td>14.8</td>
<td>25.6</td>
<td>64.0</td>
<td>99.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Same as above.</td>
<td>1.9</td>
<td>6.1</td>
<td>25.0</td>
<td>71.4</td>
<td>95.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Same as above.</td>
<td>1.0</td>
<td>14.7</td>
<td>42.1</td>
<td>75.0</td>
<td>99.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Same as above.</td>
<td>0.0</td>
<td>4.1</td>
<td>20.0</td>
<td>54.1</td>
<td>88.2</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>Same as above.</td>
<td>1.0</td>
<td>9.9</td>
<td>28.2</td>
<td>66.1</td>
<td>95.4</td>
<td>99.8</td>
<td></td>
</tr>
<tr>
<td>Average dosage calculated as mg. per 1000 cubic feet</td>
<td>0.52</td>
<td>1.06</td>
<td>2.11</td>
<td>4.22</td>
<td>8.44</td>
<td>16.88</td>
<td></td>
</tr>
</tbody>
</table>

= minutes.
by Eddy (1929) were used in the calculations. The use of chlordan or hexachlorocyclohexane as residual fumigants within confined spaces is suggested by results of this experiment.

Experiments 9 and 10: Testing Periods.—To limit the reduction of surface toxicity by fly erosion, the number of test periods in these experiments was held to a minimum.

Table 9.—Mortality of house flies 24 hours after exposure to various treated surfaces subjected to several combinations of environmental elements. Surfaces were tested 2, 22, and 182 days after treatment with commercial emulsions of residual insecticides.

<table>
<thead>
<tr>
<th>Toxicant</th>
<th>Exposure</th>
<th>Surface</th>
<th>Mean Per Cent Mortality in Three Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Days After Treatment</td>
</tr>
<tr>
<td>DDT</td>
<td>South outside</td>
<td>Wood</td>
<td>99.70</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>99.43</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Wood</td>
<td>99.07</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Wood</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>46.23</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>43.23</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Glass</td>
<td>42.83</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Glass</td>
<td>45.33</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Painted wood*</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Painted wood*</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Cellutex</td>
<td>97.80</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Cellutex</td>
<td>96.67</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Brick</td>
<td>74.97</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Brick</td>
<td>71.87</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Concrete</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Concrete</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>57.73</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>38.80</td>
</tr>
<tr>
<td>Chlordan</td>
<td>South outside</td>
<td>Wood</td>
<td>98.37</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>98.17</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Wood</td>
<td>98.93</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Wood</td>
<td>98.77</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>98.97</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>99.10</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Glass</td>
<td>99.43</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Glass</td>
<td>97.33</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Painted wood*</td>
<td>69.13</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Painted wood*</td>
<td>68.30</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Cellutex</td>
<td>85.97</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Cellutex</td>
<td>88.70</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Brick</td>
<td>84.53</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Brick</td>
<td>83.35</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Concrete</td>
<td>64.60</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Concrete</td>
<td>56.50</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>67.07</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>76.23</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>94.67</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>96.50</td>
</tr>
<tr>
<td>Rhothane D-3</td>
<td>South outside</td>
<td>Wood</td>
<td>66.33</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>60.07</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Wood</td>
<td>59.43</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Wood</td>
<td>58.60</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>58.23</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>70.90</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Glass</td>
<td>73.57</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Glass</td>
<td>65.43</td>
</tr>
</tbody>
</table>

* Flat white wall paint containing vegetable oil vehicle.
In experiment 9, only three test periods were used and in experiment 10 four test periods. If, at the end of 22 days in experiment 9, a material had lost its toxicity it was considered to be of little value as a residual insecticide in fly control on farms. If it proved to be toxic at the end of 22 days, it was considered for further testing at the 182-day test period. Any material that showed toxicity at the end of 182 days was regarded as very persistent and possessed of adequate residual kill properties for any practical application.

In experiment 10, 2-, 12-, 32-, and 152-day test periods were employed. Two- and 12-day periods were used to obtain data on panels coated with materials having a short residual life. The 32-day period was used to measure materials with a satisfactory period of toxicity for most structural pest control purposes, and the 152-day period was used to obtain information needed on those materials of truly long residual activity such as those desirable for fly control on farms or those presenting a residue problem on foodstuffs.

Experiment 9: Field Persistence of Residues From Commercial Emulsions.—Five toxicants were applied

<table>
<thead>
<tr>
<th>Toxicant</th>
<th>Exposure</th>
<th>Surface</th>
<th>Mean Per Cent Mortality in Three Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Days After Treatment</td>
</tr>
<tr>
<td>Gamma isomer of hexachlorocyclohexane</td>
<td>South outside</td>
<td>Wood</td>
<td>94.23</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>97.17</td>
</tr>
<tr>
<td></td>
<td>North sheltered inside</td>
<td>Wood</td>
<td>97.53</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>98.33</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>99.13</td>
</tr>
<tr>
<td></td>
<td>North sheltered inside</td>
<td>Glass</td>
<td>97.00</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Painted wood*</td>
<td>98.66</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Painted wood*</td>
<td>97.07</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Cellulose</td>
<td>61.79</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Cellulose</td>
<td>60.37</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Brick</td>
<td>72.63</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Brick</td>
<td>73.77</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Concrete</td>
<td>69.03</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Concrete</td>
<td>90.67</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>50.93</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>43.77</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>89.00</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>86.90</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>99.80</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>99.47</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>South outside</td>
<td>Wood</td>
<td>70.33</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>61.77</td>
</tr>
<tr>
<td></td>
<td>North sheltered inside</td>
<td>Wood</td>
<td>71.60</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>71.13</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>99.37</td>
</tr>
<tr>
<td></td>
<td>North sheltered inside</td>
<td>Glass</td>
<td>98.90</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>98.53</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>98.33</td>
</tr>
<tr>
<td>Control</td>
<td>—</td>
<td>—</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>0.57</td>
</tr>
</tbody>
</table>

* Flat white wall paint containing vegetable oil vehicle.
to eight surfaces—planed fir, glass, painted wood (1 month old), Cellutex (similar to Celotex), brick, concrete, whitewashed wood (1 month old), and galvanized iron—at a rate of 50 mg. per square foot, table 9. Treatments on wood and glass were exposed to various elements of the weather. Three replicates of each treatment on glass and wood were placed in situations on the South Farm of the University of Illinois so that one set was inside; another was outside on the south side of buildings exposed to all the elements; the third was on the north side of buildings; and the fourth was under a shelter that gave protection from sun and rain. The four positions may be described simply as the inside, the south exposure, the north exposure, and the sheltered. Surfaces other than glass and planed fir were placed in two positions—the south outside exposure and the inside. The objective of this experiment was to obtain information on the persistence of the five toxicants on the eight surfaces under various conditions. A study of table 9 will reveal the insecticides that were found to be most persistent under various conditions and also the surfaces on which insecticides were retained the greatest length of time.

Experiment 10: Field Persistence of Residues From a Standardized Formulation of Emulsions.—The plan of this experiment was essentially the same as that of experiment 9. The variable of formulation was eliminated, and better-defined positions of exposure to the climatic elements were set up. Treated panels were exposed by means of suitable supports, fig. 14, on top of a flat-roofed

Fig. 14.—Securing treated panels to pipe rack for determining the effects of weathering upon toxicities of residues.
building. Some panels were secured to a pipe rack in north and south outside positions. Others were placed on racks beneath a shelter designed to keep out rain and sunshine. Still others were kept in the laboratory. The same solvent and emulsifying agent were used in all formulations. The emulsifiable concentrates contained 65 per cent xylene, 10 per cent Triton X-100, and 25 per cent by weight of the toxicant. These were diluted with water to give an emulsion containing 1 per cent of the insecticide. Incorporated with this experiment were tests with DDT water-wettable powder; it was hoped that such a formulation would overcome some of the surface hazards encountered with emulsions.

Experiments 9 and 10: Discussion.
—Results of these tests are shown in tables 9 and 10. DDT was the outstanding residual insecticide. *Rhathane D-3* was the next most persistent material, with *Toxaphene* a good third choice. Gamma hexachlorocyclohexane and chlordane were the least persistent. Probably one of the greatest hazards was dust. Dust particles falling upon treated surfaces introduced a variant, not measureable. Nevertheless, dust presents one of the conditions frequently found under field conditions.

Analysis of these data made it evident that differentiation among elements is difficult. Rain appeared by visual evidence and biological assay to be the prime element in the degradation of the residual deposits. The deposits that were exposed to rain were more persistent on hard impervious surfaces (glass and galvanized iron) than on porous surfaces (brick, fir wood, and *Cellutex*). On painted wood, concrete, and whitewashed wood the initial and residual toxicity of the insecticides to house flies was lower than on other surfaces. The deposit from 50 per cent DDT water-wettable powder gave promising results on all surfaces. At the end of 152 days, the DDT suspension deposits were significantly toxic on all inside surface treatments except whitewashed wood.

The emulsion containing *PD 544-C* and DDT that was used to obtain data in table 9 shows the typical high toxicity of the initial tests on wood; considerable losses were incurred as a result of erosion and degradation by the twenty-second day of the test. Those panels with south exposure (exposed to all the elements) showed the greatest losses; those with north exposure (exposed to all elements except sunshine) showed approximately 20 per cent greater killing power. These losses may be accounted for by one or both of two possibilities: (1) direct sunlight or the heat produced by solar radiation; (2) rain driven onto the panels by a prevailing southwest wind. Wood panels sheltered from rain as well as sun exhibited about 15 per cent greater mortality to flies than the ones with north exposure. Wood panels placed within buildings retained their toxicity beyond the 22nd day and even to the 182nd day. The difference in toxicity between those wood panels held indoors and those in sheds where they were sheltered from external elements (sunshine and rain) might be assigned to one or both of two possibilities: wind erosion and dust accumulation found in the sheds.

The second series of tests (experiment 10) with uniform emulsions reveals no significant differences between those panels retained within the laboratory and those kept in a shelter constructed on top of a building. Both sites were relatively dust-free in contrast to the interior of the sheds used in the first test. In light of available information, it must be assumed that the real cause of degradation of the surfaces in the sheltered positions of the first series of tests (experiment 9) was dust accumulation and not wind erosion.

The glass panels treated with DDT emulsions may at first appear to offer somewhat contradictory evidence of toxicity unless the difference in solvents and emulsifiers used in the first and second series of tests is kept in mind.

In experiment 9, with a commercial *PD 544-C* emulsion of DDT on glass, the deposits and the test clearly showed that the rain, wind, or some other element found in the outside positions caused the DDT residue, a large part of which existed as a supersaturated solution in *PD 544-C* and emulsifier, to bloom or crystallize out. A microscopic comparison of the residues on the panels at the time of testing on the twelfth day revealed the presence of practically no supersaturated blobs.
on the glass panels from the two outside positions in contrast to much supersaturated fluid on those inside, particularly those sheltered from all the elements, including the wind. By the 182nd day, however, the order of residual toxicity was reversed by the wear of the elements.

In tests with uniform emulsions (experiment 10) where xylene was the solvent, seeded crystallization occurred on glass earlier (probably as a result of the initial fly action) than in experiment 9; that is, the xylene had probably slowly evaporated so that by the end of the first test period the blobs produced were easily crystallized when contacted by flies. There are other possible explanations for the high level of toxicity observed in the first two test periods. One is that the Triton X-100 emulsifier containing some dissolved DDT

Table 10.—Mortality of house flies 24 hours after exposure to various treated surfaces subjected to several combinations of environmental elements. Surfaces were tested 2, 12, 32, and 152 days after treatment with standard laboratory emulsions of residual insecticides.

<table>
<thead>
<tr>
<th>Toxicant</th>
<th>Exposure</th>
<th>Surface</th>
<th>MEAN PER CENT MORTALITY IN THREE REPLICATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Days After Treatment</td>
</tr>
<tr>
<td>DDT</td>
<td>South outside</td>
<td>Wood</td>
<td>99.07</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>99.73</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Wood</td>
<td>98.87</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>96.17</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>95.50</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Glass</td>
<td>91.00</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Glass</td>
<td>96.77</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Painted wood*</td>
<td>8.40</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Painted wood*</td>
<td>11.03</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Cellulose</td>
<td>95.90</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Cellulose</td>
<td>93.50</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Brick</td>
<td>97.00</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Brick</td>
<td>98.00</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Concrete</td>
<td>10.17</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Concrete</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>13.33</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>14.53</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>67.33</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>79.70</td>
</tr>
<tr>
<td>Chlordane</td>
<td>South outside</td>
<td>Wood</td>
<td>95.47</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Wood</td>
<td>95.80</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Wood</td>
<td>99.50</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Wood</td>
<td>97.67</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Glass</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>North outside</td>
<td>Glass</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>North sheltered</td>
<td>Glass</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Glass</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Painted wood*</td>
<td>37.43</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Painted wood*</td>
<td>41.43</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Cellulose</td>
<td>73.00</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Cellulose</td>
<td>65.30</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Brick</td>
<td>98.93</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Brick</td>
<td>94.80</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Concrete</td>
<td>55.63</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Concrete</td>
<td>47.07</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Whitewash</td>
<td>66.53</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Whitewash</td>
<td>46.40</td>
</tr>
<tr>
<td></td>
<td>South outside</td>
<td>Galvanized</td>
<td>91.23</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>Galvanized</td>
<td>93.70</td>
</tr>
</tbody>
</table>

* Flat white wall paint containing vegetable oil vehicle.

Note: Emulsions were applied at the rate of 5 ml. of 1% toxicant per square foot. Each emulsifiable concentrate consisted of 25% by weight of toxicant + 10% Triton X-100 + 65% xylene.
Table 10 (continued)

<table>
<thead>
<tr>
<th>TOXICANT</th>
<th>EXPOSURE</th>
<th>SURFACE</th>
<th>2 DAYS AFTER TREATMENT</th>
<th>12 DAYS AFTER TREATMENT</th>
<th>32 DAYS AFTER TREATMENT</th>
<th>152 DAYS AFTER TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean Per Cent Mortality in Three Replicates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma isomer of hexachlorocyclohexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Wood</td>
<td></td>
<td>100.00</td>
<td>12.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Wood</td>
<td></td>
<td>100.00</td>
<td>4.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Wood</td>
<td></td>
<td>99.67</td>
<td>3.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Wood</td>
<td></td>
<td>100.00</td>
<td>27.80</td>
<td>0.77</td>
<td>2.17</td>
</tr>
<tr>
<td>South outside</td>
<td>Glass</td>
<td></td>
<td>98.67</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Glass</td>
<td></td>
<td>100.00</td>
<td>3.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Glass</td>
<td></td>
<td>100.00</td>
<td>11.83</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Glass</td>
<td></td>
<td>99.67</td>
<td>99.70</td>
<td>2.07</td>
<td>1.50</td>
</tr>
<tr>
<td>South outside</td>
<td>Painted wood</td>
<td></td>
<td>68.07</td>
<td>8.60</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Painted wood</td>
<td></td>
<td>65.10</td>
<td>28.60</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Cellulose</td>
<td></td>
<td>92.80</td>
<td>26.17</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Cellulose</td>
<td></td>
<td>87.37</td>
<td>7.37</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Brick</td>
<td></td>
<td>100.00</td>
<td>10.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Brick</td>
<td></td>
<td>99.40</td>
<td>7.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Concrete</td>
<td></td>
<td>67.77</td>
<td>3.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Concrete</td>
<td></td>
<td>65.40</td>
<td>3.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Whitewash</td>
<td></td>
<td>85.43</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Whitewash</td>
<td></td>
<td>74.37</td>
<td>19.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Galvanized</td>
<td></td>
<td>48.80</td>
<td>7.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Galvanized</td>
<td></td>
<td>43.23</td>
<td>3.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhothane D-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Wood</td>
<td></td>
<td>32.60</td>
<td>6.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Wood</td>
<td></td>
<td>37.97</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Wood</td>
<td></td>
<td>34.57</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Wood</td>
<td></td>
<td>36.27</td>
<td>17.47</td>
<td>20.43</td>
<td>13.73</td>
</tr>
<tr>
<td>South outside</td>
<td>Glass</td>
<td></td>
<td>87.67</td>
<td>99.73</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Glass</td>
<td></td>
<td>84.93</td>
<td>99.43</td>
<td>24.47</td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Glass</td>
<td></td>
<td>80.40</td>
<td>94.97</td>
<td>10.57</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Glass</td>
<td></td>
<td>85.97</td>
<td>90.87</td>
<td>29.97</td>
<td>25.00</td>
</tr>
<tr>
<td>toxaphene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Wood</td>
<td></td>
<td>51.30</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Wood</td>
<td></td>
<td>42.40</td>
<td>3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Wood</td>
<td></td>
<td>44.40</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Wood</td>
<td></td>
<td>46.37</td>
<td>7.70</td>
<td>6.13</td>
<td>0.63</td>
</tr>
<tr>
<td>South outside</td>
<td>Glass</td>
<td></td>
<td>100.00</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North outside</td>
<td>Glass</td>
<td></td>
<td>100.00</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North sheltered</td>
<td>Glass</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>74.70</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Glass</td>
<td></td>
<td>99.73</td>
<td>99.77</td>
<td>91.57</td>
<td>82.97</td>
</tr>
<tr>
<td>DDT as from a 50% water-wettable powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South outside</td>
<td>Whitewash</td>
<td></td>
<td>100.00</td>
<td>14.07</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Whitewash</td>
<td></td>
<td>100.00</td>
<td>99.67</td>
<td>55.4</td>
<td>14.90</td>
</tr>
<tr>
<td>South outside</td>
<td>Painted wood</td>
<td></td>
<td>100.00</td>
<td>6.80</td>
<td>6.83</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Painted wood</td>
<td></td>
<td>100.00</td>
<td>7.97</td>
<td>5.83</td>
<td>0.57</td>
</tr>
<tr>
<td>South outside</td>
<td>Galvanized</td>
<td></td>
<td>100.00</td>
<td>95.87</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Galvanized</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>95.80</td>
<td>89.20</td>
</tr>
<tr>
<td>South outside</td>
<td>Wood</td>
<td></td>
<td>94.80</td>
<td>9.33</td>
<td>4.97</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>Wood</td>
<td></td>
<td>95.97</td>
<td>93.03</td>
<td>91.00</td>
<td>58.70</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>1.27</td>
<td>0.80</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.57</td>
<td>0.67</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Mean difference necessary for significance, 0.05 level: 13.10, 6.30, 25.47, 8.82
Mean difference necessary for significance, 0.01 level: 17.29, 8.32, 33.66, 11.80

* Flat white wall paint containing vegetable oil vehicle.

Note: Emulsions were applied at the rate of 5 ml of 1% toxicant per square foot. Each emulsifiable concentrate consisted of 25% by weight of toxicant + 10% Triton X-100 + 65% xylene.
acted as a contact poison. Another is that, previous to the first test, dust in the laboratory stimulated or seeded the drying deposit. The DDT deposits on glass or galvanized iron in all instances were more tenacious than those on porous surfaces such as wood, brick, and Cellutex, where erosion was significantly high. DDT on painted wood did not appear to be toxic either initially or residually. No doubt the DDT was absorbed into the paint and retained. There was no evidence in these tests that the DDT eventually bloomed, as would be expected if the solvent capacity of the oil paint were exceeded. On Cellutex and brick, the DDT residues were similar in longevity and erosion to those on wood. The degradation of DDT deposits was most evident upon white-washed and concrete surfaces. In all probability the alkalinity of these substrates caused a dehydrohalogenation decomposition. DDT emulsions on galvanized iron exhibited high toxicity and longevity.

The residual longevity of the remaining four toxicants listed in tables 9 and 10 was influenced by the same external environmental degradants as was DDT, with a few exceptions that are discussed in the following paragraphs.

Chlordan-treated wood panels were little influenced by any external factors since greatest loss of chlordan was through volatilization or absorption. In the field test, where chlordan was formulated with no. 9 oil and emulsified with Atlox 1045-A, no erosion by rain or degradation by other elements was discernible. In experiment 10, with standardized formulations, the toxicity of chlordan on wood had declined to such a low level by the time of the first test after exposure to weathering that no conclusions were possible. In contrast, erosion of chlordan by rain was plainly evident on glass panels. When no. 9 oil (experiment 9) was used as the diluent, the residual toxic life of a chlordan deposit was at least twice as long as when a xylene formulation (experiment 10) was employed. Similarly, when PD 544-G was used as the solvent (experiment 9), the residual toxicity of a hexachlorocyclohexane deposit was longer than when a xylene was employed (experiment 10).

Gamma hexachlorocyclohexane also reacted to its environment in a manner similar to the action of DDT, but hexachlorocyclohexane degraded rapidly off of doors or in strong wind currents. Most of its loss was attributed to its volatility.

Rhothane D-3 was significantly more tenacious on glass than on wood, and responded to its environment in much the same manner as did DDT.

Toxaphene lost its toxicity on wood much more rapidly than on glass panels held in the laboratory. Simple physical absorption of Toxaphene by the wood is suggested as an explanation.

Experiment 11: Formulation Studies.—The data obtained in the laboratory study of the persistence of oil solutions, emulsions, and suspensions are given in table 11. Studies of duration of residual toxicity were conducted to see if any formulation was more persistent on the contaminated surfaces—whitewashed wood, concrete, and painted wood—that caused apparently rapid loss of toxicity. The results show that water-wettable powders were generally superior to the other formulations on all these surfaces.

The initial toxicity of oil solutions and emulsions of DDT, as evidenced by the data in table 11, was very low on white washed wood, painted wood, concrete, and unpainted wood, and very high on glass. The results here are similar to others in this study, which indicate that oil solutions or emulsions of DDT are low in toxicity on porous surfaces and very high on bare smooth surfaces, such as glass, if tested before crystals have started to form.

The second test period 7 days after treatment gave high fly mortalities on wood panels and lower on glass panel. The water-wettable powders of DDT were significantly more toxic on painted wood, whitewashed wood, and concrete than were the oil solutions or emulsions. Even with the wettable powder the alkalinity of the whitewash and concrete may have reached the DDT to cause a decline in the toxicity. This action was probably accomplished through adsorbed water. On painted wood the toxicity decrease without any apparent reason; a possible explanation is that the oils in the underlying paint were capable in some manner of penetrating the wettable powder and dissolving away the DDT. On glass an
Table 11.—Mortality of house flies 24 hours after exposure to various surfaces treated with oil solutions, emulsions, and water-wettable powders of DDT and chlordane. Flies were exposed to surfaces 1, 7, and 45 days after the surfaces had been treated.

<table>
<thead>
<tr>
<th>Residual Insecticide Formulation</th>
<th>Surface</th>
<th>Mean Per Cent Mortality in Three Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Day After Treatment of Surface</td>
</tr>
<tr>
<td>DDT oil solution</td>
<td>Whitewash</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>100.7</td>
</tr>
<tr>
<td>DDT emulsion</td>
<td>Whitewash</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>3.5</td>
</tr>
<tr>
<td>DDT suspension</td>
<td>Whitewash</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>98.3</td>
</tr>
<tr>
<td>chlordane oil solution</td>
<td>Whitewash</td>
<td>95.7</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>99.4</td>
</tr>
<tr>
<td>chlordane emulsion</td>
<td>Whitewash</td>
<td>84.5</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>chlordane suspension</td>
<td>Whitewash</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td>Painted wood*</td>
<td>92.9</td>
</tr>
<tr>
<td></td>
<td>Concrete</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>100.0</td>
</tr>
<tr>
<td>Control</td>
<td>—</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>1.0</td>
</tr>
</tbody>
</table>

— Flat white wall paint containing vegetable oil vehicle.

And panels the toxicity of the wettable powders remained at a high level.

There was no important advantage in using a chlordane water-wettable powder on glass does superior to the DDT emulsion oil solutions. All the oil solutions and emulsions. The reason for the short residual action of the chlordane water-wettable powder on glass may have been associated with the greater surface area of the finely divided powder, responsible for a rapid rate of loss through evaporation. The greater loss of toxicity from the glass panels treated with chlordane oil solutions, in contrast to the emulsions, was perhaps influenced by an increase in surface area produced by a continuous film. The emulsions left a discontinuous film, which was not so subject to evaporation.
In addition, the emulsions had an emulsifier of high vapor pressure, which retards chlordane evaporation.

Experiment 12: Laboratory Persistence of Deposits.—A plan was made to test more fully the residual properties of the three most promising toxic residual materials. At frequent intervals during a 31-day period, house flies were exposed for 15-minute periods to panels treated with DDT and gamma hexachlorocyclohexane and for 60-minute periods to panels treated with chlordane. The results are shown in table 12. The order of persistence on wood or glass was, from the most persistent to the least, DDT, chlordane, and gamma hexachlorocyclohexane. The suspension of hexachlorocyclohexane retained its toxicity at a high level for 10 days; then its toxicity declined rapidly. Chlordane lost its toxicity gradually through the test period, whereas DDT emulsion on wood seemed to increase in effectiveness.

The lower toxicity exhibited by the emulsion of DDT and PD 544-C on glass than on wood from the first day to the last is typical of DDT residues in which a slowly volatilizing solvent is used and crystallization is progressive. In other words, the frequent exposure of flies to these surfaces did not permit sufficient supersaturated fluid to accumulate, which is essential for the production of high toxicity residues composed of minute crystals. Again, a physical law determining crystal size was responsible for the toxicity attained. The number of crystals per unit mass is directly proportional to the rate of crystallization, which is dependent upon the degree of supersaturation. Blooming of DDT on wood occurred between the second and sixth days and produced a residue that remained toxic throughout this experiment.

The thick white residue of the gamma hexachlorocyclohexane water-wettable powder was slightly more toxic and persistent when applied to glass than to wood. The longevity of the chlordane and hexa-

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Deposit of Toxicant in Mg. per Square Foot</th>
<th>Surface</th>
<th>Replicate No.</th>
<th>PERCENT MORTALITY 24 HOURS AFTER EXPOSURE TO SURFACE STATED NUMBER OF DAYS AFTER TREATMENT OF SURFACE</th>
<th>EXPOSED TIME 1 MIN</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>12</th>
<th>24</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDT emulsion</td>
<td>50</td>
<td>Wood</td>
<td>1</td>
<td>37</td>
<td>40</td>
<td>57</td>
<td>93</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Wood</td>
<td>2</td>
<td>49</td>
<td>48</td>
<td>60</td>
<td>96</td>
<td>81</td>
<td>75</td>
<td>85</td>
<td>100</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Wood</td>
<td>3</td>
<td>21</td>
<td>49</td>
<td>97</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>35.7</td>
<td>45.7</td>
<td>71.3</td>
<td>96.3</td>
<td>90.7</td>
<td>91.7</td>
<td>95.0</td>
<td>100.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>1</td>
<td>46</td>
<td>27</td>
<td>18</td>
<td>22</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>2</td>
<td>76</td>
<td>24</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>59.3</td>
<td>27.3</td>
<td>18.7</td>
<td>21.3</td>
<td>21.7</td>
<td>15.3</td>
<td>16.7</td>
<td>13.3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Gamma isomer (5.2 per cent)</td>
<td>50</td>
<td>Wood</td>
<td>1</td>
<td>99</td>
<td>98</td>
<td>54</td>
<td>74</td>
<td>56</td>
<td>38</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>hexachlorocyclohexane in a water-wettable powder</td>
<td>50</td>
<td>Wood</td>
<td>2</td>
<td>100</td>
<td>96</td>
<td>85</td>
<td>86</td>
<td>43</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>97.7</td>
<td>96.0</td>
<td>61.7</td>
<td>79.0</td>
<td>46.3</td>
<td>15.0</td>
<td>7.7</td>
<td>7.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>84</td>
<td>71</td>
<td>21</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>81</td>
<td>81</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>93.1</td>
<td>79.3</td>
<td>15.7</td>
<td>4.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chlordane emulsion</td>
<td>50</td>
<td>Wood</td>
<td>1</td>
<td>96</td>
<td>92</td>
<td>75</td>
<td>69</td>
<td>62</td>
<td>54</td>
<td>19</td>
<td>15</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Wood</td>
<td>2</td>
<td>98</td>
<td>95</td>
<td>80</td>
<td>77</td>
<td>60</td>
<td>33</td>
<td>22</td>
<td>26</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Wood</td>
<td>3</td>
<td>92</td>
<td>88</td>
<td>57</td>
<td>54</td>
<td>50</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>95.3</td>
<td>91.7</td>
<td>70.7</td>
<td>66.7</td>
<td>57.3</td>
<td>35.0</td>
<td>19.3</td>
<td>10.7</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>52</td>
<td>52</td>
<td>34</td>
<td>19</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>52</td>
<td>52</td>
<td>33</td>
<td>25</td>
<td>14</td>
<td>3</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>Glass</td>
<td>3</td>
<td>100</td>
<td>100</td>
<td>74</td>
<td>67</td>
<td>45</td>
<td>17</td>
<td>17</td>
<td>7</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>100</td>
<td>100.0</td>
<td>59.3</td>
<td>58.0</td>
<td>37.3</td>
<td>20.3</td>
<td>13.3</td>
<td>3.3</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
chlorocyclohexane residues was nearly equal. Chlordane seemed slightly more lasting on wood, and hexachlorocyclohexane lasted longer on glass.

In this particular experiment, table 12, chlordane was of about equal effectiveness on wood and on glass, while in most of the previous work the chlordane emulsion residue on glass gave more lasting toxicity than on wood. If an explanation of these results is desired, it might be found in the difference in the composition of the wood panels or the environment in which the panels were held. The cause of the degradation of chlordane on glass was attributed to dust and debris that accumulated upon the oily surface. In the experiment described above, dust and debris left on the surface by the flies may have been more important than that floated in by air currents. Not only will dust and dirt mask the chlordane, but may assist evaporation by increasing the evaporation area just as with water-wettable powder (experiment II). It is not beyond reason to believe that the chlordane-treated glass surface was roughened by the fly contacts of the frequent exposures, resulting in greater surface area for evaporation. Also, the higher initial toxicity of chlordane-treated panels suggests a greater loss incurred by physical contact of the flies.

Experiment 13: Laboratory Study of DDT Emulsion on Glass and Wood.—The results of experiments summarized in table 12 seemed to indicate some peculiar properties of the initial toxicity of DDT emulsions on glass and wood. Another experiment was undertaken to broaden the scope of the investigation. This involved a closer study of the initial toxicity periods. Consequently, data were obtained from deposits of DDT that were less than 1 day old. The results obtained, summarized in table 13, disclose the “blooming out” (crystallization of DDT on the surface) period of DDT on wood and reveal in the treatment on glass the loss of toxicity that occurred as the emulsion dried.

In this experiment, as in previous tests, no toxic bloom of fine powdery crystals occurred on glass, since fly stimulation and seeding of surface were too frequent to permit the accumulation of supersaturated solvents. Consequently, there was a gradual formation of large crystals of low toxicity. The greatest fly mortality from exposures to glass panels occurred before any DDT crystals were found; the opposite was true in the case of DDT emulsions on wood. Besides the seeding action by flies, many environmental components may influence the rate and kind of DDT bloom to appear on a surface. The same solvent may yield large crystals one day, and the next day, when the temperature is higher and air movements greater, it may produce small crystals.

Experiment 14: Approximate Residual Toxicity of Several New Insecticides to the House Fly.—Several new insecticides that have recently come under study are briefly considered here and compared with DDT and chlordane. Ten per cent solutions of *Marlute* (4,4′-dimethoxy-diphenyl trichloroethane), 14 (diethyl p-nitrophenyl phosphate), *Pyrenone* (actually 10 per cent piperonyl butoxide and 0.5 per cent pyrethrins), 118 (1,2,3,4,10,10-hexachloro-1:4, 5:8-diendomethano-1,4,4a,5,8,8a-hexahydropyranthalene), parathion (diethyl p-nitrophenyl thiophosphate), heptaklor 1 (or 3a), 4,5,6,7,8,8-heptachloro-3a, 4,7,7a-tetrahydro-4,7-methanoindene, and 497 (oxygen

<table>
<thead>
<tr>
<th>Deposit of DDT in Mg. per Square Foot</th>
<th>Surface</th>
<th>Per Cent Mortality 24 Hours After Exposure to Surface Stated Period of Time After Treatment of Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Hours</td>
</tr>
<tr>
<td>50</td>
<td>Wood</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Wood</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>Glass</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Glass</td>
<td>2</td>
</tr>
</tbody>
</table>
analogue of 118) in Velsicol AR-60 (methyIated naphthalenes) were sprayed in triplicate upon glass and wood panels to produce deposits of 50 mg. per square foot. Flies were exposed for 30-minute periods to these panels each week until the toxicants had degraded to a low level. One set of three panels of wood and glass was exposed to direct sunlight and wind but protected from rain; a similar set was kept in the laboratory.

Table 14 was designed to help evaluate the residual activities of the toxicants in periods of weeks needed to degrade a deposit to 50 per cent of its initial toxicity.

Table 14.—Approximate number of weeks required for residual insecticides to degrade to 50 per cent of their initial toxicity to house flies. Flies were exposed 30 minutes to each panel which had been treated with insecticide at the rate of 50 mg. per square foot of treated surface.

<table>
<thead>
<tr>
<th>Material Dissolved in Velsicol AR-60</th>
<th>Outside</th>
<th>Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wood</td>
<td>Glass</td>
</tr>
<tr>
<td>Marbute</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>F4</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Pyrenone</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>DDT</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>118</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Chlordan</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>407</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The residual values of the volatile toxicants in particular were extended by the relatively nonvolatile solvent, Velsicol AR-60. Experiments with Pyrenone in xylene gave a 50 per cent degradation value on glass in only 1.25 weeks; Pyrenone in Velsicol AR-60 required 4.5 weeks for 50 per cent degradation. Similarly, chlordan in xylene had a 50 per cent degradation value on wood in 2 weeks; chlordan in Velsicol AR-60 required 5 weeks in the experiment described above to sink to the same degradation value. The same kind of solvent effect was noted in experiments described earlier in this study. Undoubtedly there are, among the insecticides listed in table 14, toxicants that would serve well as substitutes for DDT when house-fly tolerance for DDT becomes too high to effect practical control.

SUMMARY

DDT, gamma hexachlorocyclohexane, chlordan, Rhothane D-3, and Toxaphene were applied on various surfaces and exposed to different environmental conditions in several experiments to determine their residual toxicities to the house fly, Musca domestica Linnaeus. The toxicities of the residues were determined by exposing the flies in specially constructed exposure cages to the treated surfaces for certain periods of time and holding the flies for a 24-hour mortality count.

The conclusions for the experiments herein reported are as follows:

1. DDT and gamma hexachlorocyclohexane were initially the most toxic compounds. The other three materials were, in order of their diminishing toxicity, chlordan, Rhothane D-3, and Toxaphene.

2. Hexachlorocyclohexane gave the most rapid knockdown, followed by DDT, Rhothane D-3, chlordan, and Toxaphene.

3. Degree of coverage of surface affected mortality more than the dosage variations or uneven distribution of DDT.

4. A wall coat containing 5 per cent DDT (formulated from a 25 per cent DDT emulsifiable concentrate) was nearly as effective on wood as 50 per cent water-wettable DDT powder.

5. When DDT water-wettable powder was applied at different dosages to glass, a dosage mortality relationship was not evident above 12.5 mg. toxicant per square foot; a dosage range of 12.5 to 200.0 mg. resulted in nearly 100 per cent mortality. Below 12.5 mg. a typical sigmoid dosage-mortality curve was obtained.

6. In fly-erosion tests, there was little significant difference in fly mortality among 10 cages exposed successively to the same deposit of 50 mg. DDT per square foot.

7. Fly erosion was noticeable in tests with Deenate water-wettable powder on glass and xylene-DDT, Velsicol AR-60-DDT, and HB-40-DDT emulsions on wood, except when secondary blooming occurred.

8. Secondary or seeded blooms that occurred with certain formulations were very toxic and resisted fly erosion. On wood, those DDT emulsion formulations containing PD 544-C or xylene (with either ethyl-
ene dichloride or carbon tetrachloride) as the solvents produced exceedingly heavy mats of very fine crystals of high toxicity when seeded by fly activity. Bone glue 5 per cent, added to Deenate water-wettable powder improved tenacity. DDT, 1.26 per cent, in 95 per cent ethyl alcohol when applied to glass produced a deposit of extremely fine crystals of high toxicity and tenacity.

9. DDT-xylene emulsion deposits on glass or wood when seeded early (within 2 days after application) produced a fairly effective secondary bloom.

10. High toxicity and tenacity of deposits were associated with the fineness of DDT crystallization upon the surface.

11. No difference in toxicity or tenacity of deposits could be attributed to the method of application (spraying or painting).

12. Vapors from gamma hexachlorocyclohexane were about three times as toxic to flies as those from chlordane; both were extremely toxic as fumigants. The fact that toxic vapors are given off from chlordane and hexachlorocyclohexane deposits accounts for their short-lived residual action on exposed surfaces.

13. Solvents of low volatility increased the residual toxicity of the more volatile insecticides.

14. DDT was the most persistent insecticide tested. The residual toxicity of DDT emulsions was better indoors on porous surfaces, such as wood, brick, and Cellutex, than on glass and galvanized iron. Out of doors, residues were more persistent on the nonporous glass and galvanized iron panels.

15. The order of persistence of the residual treatments was, from the most to the least, DDT, *Rhodone D-3*, *Toxaphene*, chlordane, and hexachlorocyclohexane.

16. The oil solutions and emulsions of the chlorinated hydrocarbons were relatively nontoxic to flies when applied to whitewash, painted wood, and concrete. Water-wettable powders produced effective residual deposits on these same three surfaces.

17. Sunshine, rain, and wind were found to be significant climatic factors in the degradation of the residual surface toxicities of the materials tested. Wind was apparently the least significant of the three.

18. With a few exceptions, when DDT emulsions were applied to wood, the toxicity increased as the DDT “bloomed out”; when the emulsions were applied to glass, the toxicity decreased as the emulsions dried and crystals formed parallel to the glass surface.

19. In a study on newer insecticides, 14 and 497 on wood and glass produced residues of significant longevity with high toxicity. Other materials tested were less persistent.

LITERATURE CITED

Felt, E. P.

Herms, W. B.

Howard, L. O.

Kearns, C. W., Lester Ingle, and R. L. Metcalf

Lindquist, A. W., A. H. Madden, H. G. Wilson, and H. A. Jones

Metcalf, C. L., and W. P. Flint

Monro, H. A. U., A. A. Beaulieu, and R. Delisle

Nuttal, G. H. F.

Pipkin, A. C.

Schmitz, William R., and Mary B. Goette

Slade, R. E.
1945. The gamma isomer of hexachlorocyclohexane— an insecticide with outstanding properties. Chem. and Indus. 64: 314.

Spillman and Haushalter

Stearns, L. A.

Turner, Neely, and Nancy Woodruff

Wiesmann, R.

Zeidler, O.
Recent Publications

A.—ILLINOIS NATURAL HISTORY SURVEY BULLETIN.
Volume 22, Article 1.—The Plant Bugs, or Miridae, of Illinois. By Harry H. Knight. September, 1941. 234 pp., frontis. + 181 figs., bibliog., index. $1.25.
Volume 22, Article 6.—Survey of the Illinois Fur Resource. By Louis G. Brown and Lee E. Yeager. September, 1943. 70 pp., frontis. + 33 figs., bibliog. (Bound with Article 7.)
Volume 22, Article 7.—Illinois Furbearer Distribution and Income. By Carl O. Mohr. September, 1943. 33 pp., frontis. + 24 figs., bibliog. (Bound with Article 6.)
Volume 23, Article 1.—The Caddis Flies, or Trichoptera, of Illinois. By Herbert H. Ross. August, 1944. 326 pp., frontis. + 961 figs., bibliog., index. $1.50.
Volume 23, Article 2.—Duck Populations and Kill. By Frank C. Bellrose, Jr. November, 1944. 46 pp., frontis. + 27 figs., bibliog. 50 cents.
Volume 23, Article 3.—Overfishing in a Small Artificial Lake: Onized Lake near Alton, Illinois. By George W. Bennett. May, 1945. 34 pp., frontis. + 15 figs., bibliog.
Volume 24, Article 1.—The Mosquitoes of Illinois (Diptera, Culicidae). By Herbert H. Ross. August, 1947. 96 pp., frontis. + 184 figs., bibliog. 50 cents.
Volume 24, Article 3.—The Bass-Bluegill Combination in a Small Artificial Lake. By George W. Bennett. December, 1948. 36 pp., frontis. + 10 figs.

B.—ILLINOIS NATURAL HISTORY SURVEY CIRCULAR.
32.—Pleasure With Plants. By L. R. Tehon. February, 1949. (Third printing, with revisions.) 32 pp., frontis. + 9 figs.
34.—Rout the Weeds! Why, When and How. By L. R. Tehon. September, 1946. (Fourth printing, with revisions.) 47 pp., color frontis. + 13 figs.
36.—Planting and Care of Shade Trees. By J. E. Davis. September, 1947. (Third printing, with additions.) 28 pp., frontis. + 20 figs.
38.—Windbreaks for Illinois Farmsteads. By J. E. Davis. February, 1949. (Third printing, with additions by L. B. Culver.) 33 pp., frontis. + 27 figs.

C.—ILLINOIS NATURAL HISTORY SURVEY MANUAL.
3.—Fieldbook of Native Illinois Shrubs. By Leo R. Tehon. December, 1942. 307 pp., 4 color pls. + 72 figs., glossary, index. $1.25.

List of available publications, about 400 titles, mailed on request.

Single copies of ILLINOIS NATURAL HISTORY SURVEY publications for which no price is listed will be furnished free of charge to individuals until the supply becomes low, after which a nominal charge may be made. More than one copy of any free publication may be obtained without cost by educational institutions and official organizations within the State of Illinois; prices to others on quantity orders of these publications will be quoted upon request.

Address orders and correspondence to the Chief
ILLINOIS NATURAL HISTORY SURVEY
Natural Resources Building, Urbana, Illinois

Payment in the form of U.S. Post Office money order made out to State Treasurer of Illinois, Springfield, Illinois, must accompany requests for those publications on which a price is set.