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ABSTRACT

It is critical that state estimators used in the power grid output accurate

results even in the presence of erroneous measurement data. Traditional bad

data detection is designed to perform well against isolated random errors.

Interacting bad measurements, such as malicious data injection attacks, may

be difficult to detect. In this work, we analyze the sensitivities of specific

power system quantities to attacks. We compare real and reactive flow and

injection measurements as potential indicators of attack. The use of param-

eter estimation as a means of detecting attack is also investigated. For this

the state vector is augmented with known system parameters, allowing both

to be estimated simultaneously. Perturbing the system topology is shown to

enhance detectability through parameter estimation.
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CHAPTER 1

INTRODUCTION

Operators of the power grid rely on large networks of sensors, known as

SCADA (Supervisory Control and Data Acquisition) systems, to monitor

conditions on the grid. To incorporate the many redundant measurements

available into a single coherent picture, the grid state is estimated from the

output of these sensors periodically. The state estimates affect both opera-

tional and economic functions, so it is critical that state estimates accurately

reflect the grid state.

State estimators are classified as DC state estimators, utilizing a linear

system model, or AC state estimators, using a nonlinear model. Under the

DC model, typical measurements consist of real power flows and injections

and states consist of bus angles [1].

Traditional bad data detectors are designed primarily to deal with random

sensor noise or errors. Potential sources for noisy or erroneous measurements

could be non-simultaneity of measurement sampling, incorrect installation of

or damage to sensor, or communication errors. These schemes are designed

to detect isolated, random bad data. Interacting bad data is more difficult to

detect. A subclass of interacting bad data is malicious data injection attacks.

Malicious data injection attacks against state estimators were first written

about in [2]. These attacks consist of coordinated modifications to measure-

ments, such that modifications are coherent with the linearized model and

unmodified measurements. This conceals the presence of attacks from DC

state estimators completely. The effect of linear model attacks on nonlin-

ear estimators was shown to be diminished in [3]; however [4] showed the

potential for DC attacks to succeed on real EMS software using a nonlinear

model.

This paper examines the sensitivity of real and reactive power measure-

ment residuals in a nonlinear state estimator to false data injection attacks

based on a linearized model. The effects of malicious data injection attacks
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are shown to have varying degrees of effect on different measurement types

and that residuals of some measurement types are a much better indicator of

attacks. This paper also presents a detector based on parameter estimation

combined with topology perturbation of estimated parameters.
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CHAPTER 2

BACKGROUND

2.1 State Estimation

State estimation is the use of measurements of a system to estimate un-

known system quantities. This allows a complete description of a system to

be developed from various redundant measurements. Accuracy can be im-

proved, because although the individual measurements are subject to error,

the impact of random errors in measurements is reduced by measurement

redundancy. In addition to potentially improving accuracy, state estimation

allows estimation of quantities that are difficult to measure directly, such as

phase angle.

The simplest form of state estimation for power systems uses a linearized

model to estimate bus voltage angles based on real power flows. This lin-

earized, or DC, approach neglects real series impedances, all shunt impedances,

real losses, and all reactive power. A flat voltage profile is also assumed.

Linearization decreases computation time, and may yield acceptable results.

The linear relationship between measurements z and states x under the DC

model is shown in Equation (2.1). H is a matrix containing the linearized

model information. H resembles the admittance matrix under these model

assumptions. The disadvantage of linearization is a loss of information. The

linearized state estimator will not give any information about the nonlinear

quantities neglected, including any reactive flows and injections, or bus volt-

age magnitudes. A state estimator using a nonlinear system model, or AC

state estimator, is necessary to obtain information about nonlinear quanti-

ties. For the AC case, H is a vector function relating measurements z to

states x as in Equation (2.2).

z = Hx (2.1)
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z = H(x) (2.2)

2.2 Parameter Estimation

System parameters can be estimated at the same time as system states by

augmenting the state equations. In the case of state augmentation, H be-

comes a vector function relating measurements z to states x and parameters

p as in Equation (2.3). For a linearized model, this augmentation changes

Equation (2.1) to Equation (2.4). The partition Hx in Equation (2.4) is the

original H matrix from Equation (2.1). In both cases, this means that the

number of equations to be solved simultaneously increases by the number of

additional parameters. This approach to parameter estimation through state

augmentation is one of the approaches from [1], and was the approach used

for this research.

z = H(x, p) (2.3)

z =

(
Hx Hp

0 I

)(
x

p

)
(2.4)

2.3 Bad Data Detection

State estimation uses models to produce estimates; essentially fitting data

to a model. Traditional bad data detection generally assumes that measure-

ment errors will be large and isolated, resulting in a poor fit to the model.

Detection of isolated bad data has been addressed in many works. As ex-

amples, a method using normalized residuals is addressed in [5] and another

based on the coherency between measurements with large residuals and the

other measurements in [6].

Detection of multiple bad data using various methods has also been inves-

tigated. Examples include [7], where a linear program was used to detect

multiple bad data sources that did not fit a Gaussian noise model, and [8],

where hypothesis testing was used for multiple and interacting bad data de-
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tection.

2.4 Malicious Data Attacks and Detection

Data injected deliberately by an adversary would not be expected to follow

the same patterns as random bad data. A method of injecting bad data

into linearized state estimation (DC model) without changing measurement

residuals was demonstrated in [2] and [9]. These attacks are not detectable by

traditional bad data detection schemes accompanying linear state estimators

and are dubbed stealth attacks. To construct these attacks, the attacker

needs some knowledge of the system topology.

It was shown in [10] that full knowledge of system topology is not necessary,

and also that the attack based on the linearized model can be effective against

a non-linear estimator. Although [3] shows decreased effectiveness of linear

attacks when used against non-linear estimators, [4] shows that real EMS

software is indeed vulnerable to attack.

A data injection attack detection scheme, based on hardening of sets of

measurements, is shown in [11]. Measurements to be hardened are selected

such that observability is guaranteed for the operator, which is shown to be

necessary and sufficient to prevent stealth attacks. A Bayesian detector for

malicious data injection attacks is formulated in [12]. The efficient use of

encryption to thwart attacks is investigated in [13], where an algorithm to

maximize the utility of encrypted measurement placement is developed.

A financial incentive for attacks on state estimators is described in [14],

where it is shown that the use of malicious data injection by an adversary

can manipulate energy markets such that an attacker can guarantee trading

profits.

2.5 Topology Perturbation

A topology perturbation based detector for detection of malicious data is de-

veloped in [15]. That approach uses known topology perturbations (specif-

ically changes to impedance) applied to a power system as probes. The

expected system response is predicted and compared against the actual mea-
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surements. The topology perturbations are hidden from an attacker, so the

attacker is unable to correct the attack to remain stealthy. If measurement

values do not change as computed beforehand, an attack is assumed. Al-

though effective, this method has the disadvantage that it has to assume no

changes in load and generation between probes or account for such changes

making it difficult. The approach here is to estimate the parameter changes

with measurement data rather than to predict measurement changes. Fur-

thermore instead of probing the system, the estimate of the parameters can

be used for detection by leveraging regularly occurring perturbations.
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CHAPTER 3

SYSTEM LOSS AND PARAMETER BASED
DETECTION

3.1 Attacker Model

The attacker is assumed to have access to baseline topology information

necessary to formulate a DC attack offline, i.e., at least one of the columns

of the sensitivity matrix used for linear state estimation. This information

is assumed to be static, and will not reflect changes such as line outages,

tap changes, or other topology or parameter changes. The attacker is also

assumed to have the ability to change a subset of measurements needed for

an attack. The change could occur by corrupting the measurement device

at the substation, interfering with communication between the substation

and control center, or by installation of malware at the control center. The

attacker is assumed not to have the ability to observe conditions across the

entire system.

3.2 Nonlinear Sensitivity Analysis

3.2.1 Overview

The sum of squared residuals of a state estimator’s output quantifies how well

the measurement data fits the model. This is useful for bad data detection,

as bad data would not be expected to fit the model well. Unlike bad data,

malicious data is designed to fit a model, albeit a simplified or partial model,

decreasing the impact on measurement residues. Using knowledge of the DC

model, we can predict what measurements would tend to be impacted most

by an attack. This work focuses on real and reactive power measurements.

Two classes of measurements, flows and injections, are considered here.
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The DC model neglects the effects of losses, uneven voltage profiles, and

reactive power on the power system. When an AC state estimator is attacked

using attacks based on a DC model, the residues increase due to these sim-

plifications. The magnitude of effect on real and reactive flows and injections

varies by measurement type.

For real flows, the DC model tends to underestimate their magnitude due

to neglecting real power losses. The impact of this simplification increases

with the square of current on a line. Reactive flows also have losses that

increase with the square of line current, however the high X/R ratio of power

lines means that reactive power transmission is inherently lossier than real

power transmission. When combined with the DC models neglect of reactive

power, the expected effect is for malicious data injection attacks to affect

reactive flow residues more than real flow residues.

The error from neglecting losses becomes more apparent when generator

power output is monitored. Losses have to be supplied by a generator, so

errors on flows due to neglecting losses will be accumulated at generators.

To verify these intuitions, and to examine the detectability of malicious

data injection attacks, the effect of attacks of various magnitudes on a com-

posite weighted residual, and on residues for real flows, reactive flows, real

generator injections, and reactive generator injections was investigated.

3.2.2 Establishing Baseline

Baseline residual values had to be established for comparison purposes. Mea-

surement residues are expected to vary under normal circumstances due to

noise. To establish the distribution of residuals expected due to this expected

noise, Monte Carlo trials were used. To do this, noise vector n was added to

measurement vector z, resulting in z∗ as seen below in Equation (3.1).

z∗ = z + n (3.1)

State estimation was conducted for many such random noise vectors, and

sums of squared residues of real and reactive flows and generator injections

were recorded separately and together as a weighted composite.

Using the distributions generated in this fashion, a threshold residue value

can be established. For values higher than this, malicious data is assumed.

8



The cutoff is selected based on the acceptable proportion of false alarms.

For example, if 1% false alarms are acceptable, the cutoff chosen would be a

residue value higher than the residue for 99% of trials.

3.2.3 Comparison of Detectability

To determine the detectability of a particular attack vector at a particular

magnitude, the Monte Carlo procedure used in the previous section was

repeated for a system under attack. Noise vector n and attack vector a were

added to measurement vector z, resulting in z∗∗ as seen below in Equation

(3.2).

z∗∗ = z + n + a (3.2)

The detectability of an attack by a residual can be quantified by the pro-

portion of measurements above the baseline cutoff established earlier. For

example, if 80% of the distribution of residuals for the attacked system lies

above the cutoff, that attack would be considered 80% detectable. This allows

comparison of the effectiveness of residuals of specific measurement types for

detecting bad data, as well as comparing the detectability of different attacks.

The total detectability is the non-overlapping proportion of attacks de-

tected by any of the metrics. This may be larger than detectability based on

any single residual type.

3.3 Parameter Estimation

3.3.1 Overview

The use of parameter estimation to detect maliciously injected data was

also investigated. The state estimator was modified for this purpose. State

vector x augmented with parameters p to form x̃ as in Equation (3.3). The

equation used to relate system measurements and states becomes a function

of parameters as well, as shown in Equation (3.4).
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x̃ =

(
x

p

)
(3.3)

z̃ = h(x̃) (3.4)

And where z̃ is the measurement vector z augmented with parameter es-

timates p̄ as in Equation (3.5).

z̃ =

(
z

p̄

)
(3.5)

The sensitivity matrix H, which is the function h(.) as evaluated at each

iteration is also modified as shown in Equation (3.6).

H̃ =

(
Hx Hp

0 I

)
(3.6)

The parameters estimated could be any system parameter, for instance,

transformer tap position or capacitor bank setting. In this work, line series

reactance was considered as a parameter to estimate. Distributed flexible AC

transmission system (D-FACTS) devices were assumed to have been installed

on the system. This allows line impedance to be controlled by the control

center, and might be done for congestion management and loss minimization.

Installation of D-FACTS devices turns line reactances into variable pa-

rameters. If parameter values change, i.e. the D-FACTS setting is altered,

attacks based on pre-change values will perform poorly. If an attack is con-

structed for a system using the wrong parameter values, the interactions

between attacked measurements tends to drive parameter estimates toward

the values used to construct the attack vector. This increases parameter

estimate residues.

The residues on parameter estimates are more meaningful for the purpose

of malicious data detection than measurement residuals because the true

value of the parameter can be known with more precision. The parame-

ter value, unlike measurements, should not be affected by grid state. This

makes comparison of estimated parameters with their known values useful

for malicious data detection.

Detection of malicious data injection attacks is possible whenever the pa-
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rameters are altered for control purposes and the alteration can be concealed

from the attacker at least for a while.

3.3.2 Establishing Baseline

As with measurement residuals in Section 3.2.2, baseline parameter residual

values had to be established for comparison purposes. To do this, noise

vector n was added to measurement vector z̃, resulting in z̃∗ as seen below in

Equation (3.7). Noise was limited to measurement values (not parameters).

z̃∗ = z̃ + n (3.7)

3.3.3 Determining Detectability

The procedure of Section 3.2.3 was repeated to generate distributions of

parameter residuals. To do this, measurement vector z̃ was augmented with

noise vector n, and attack vector a, resulting in z̃∗∗ as seen below in Equation

(3.8).

z̃∗∗ = z̃ + n + a (3.8)

The effects of perturbations on detectability can be determined by com-

paring distributions generated for the same attack vectors under different

system perturbations to each other and to the base case.
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CHAPTER 4

EVALUATION

4.1 Nonlinear Sensitivity Analysis

4.1.1 Setup

Analysis was conducted on the IEEE 14-bus test case. State estimation was

executed using MATPOWER, a MATLAB power system simulation package.

Each noise vector n used for generating distributions in Monte Carlo trials

had entries consisting of a normally distributed random variable with zero

mean and standard deviation of 1% of the measurement value corresponding

to the entry in n. Distributions of measurement residuals for determining

baseline values and attack detectability were generated by executing state

estimation using 500 different noise vectors. The cutoff used to establish the

baseline as described in the previous section was the 99th percentile (i.e. 1%

false alarms).

4.1.2 Establishing Baseline

Data consisting of sums of squared residues of real and reactive flows and

injections were recorded separately and as a weighted composite. Histograms

of the result were generated from this data. An example for real power flows,

is shown below in Figure 4.1. From these histogram bin counts, a cumulative

density function plot was created by normalizing the histogram to have an

area of 1 and computing the cumulative sum of bin counts. The 99% cutoff

was established by finding the sum of squared residue value of the CDF at

the 99th percentile. An example for reactive power flows is shown below in

Figure 4.2.
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Figure 4.1: Histogram of sum of squared residues of reactive power flows for
500 random noise vectors.

4.1.3 Determining Detectability

Distributions of sums of squared residues were constructed for the system

under various attack regimes. In theory any linear combination of columns

of the DC H-matrix can serve as a stealth attack vector. For our experiments

we used individual columns of the DC H-matrix (14 in all) albeit scaled as

attack vectors.

Attack vectors were scaled such that the largest entry in each attack vector

corresponded to a 10MW injection (0.1 p.u. in 100 MVA base). Subsequent

trials increased the scale of attack vectors in 10MW steps up to 100MW,

so that each of the 14 columns of the DC H-matrix was used at each of

10 different power levels (10 to 100MW in 10MW increments). For every

distribution generated, the percentage of measurements falling above the

previously determined residual threshold was calculated.

It was predicted that generator injections, due to having to supply losses,

would be impacted most by malicious data injection attacks. Reactive flows
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Figure 4.2: CDF of sum of squared residues of reactive power flows for 500
random noise vectors. Horizontal line indicates 99th percentile. Vertical line
indicates value for sum of squared residues corresponding to 99th percentile.

were also expected to be impacted more than real flows. To compare the

relative sensitivities to attack, the residual with the highest proportion of

detectable attacks was recorded for each of the 14 attack columns at each

magnitude (140 in total). Table 4.1 contains counts of the number of attacks

for which a residual type is best, based on having the highest detectability

for that attack.

The grouped bar graph of Figure 4.3 shows the proportion of attacks de-

tected by each of the residual types at the 10MW attack level. The total

detectability is also shown, which indicates the proportion of attacks that

caused any one of the residuals to exceed its cutoff value. This is higher than

any residual type taken singly. As expected both Table 4.1 and Figure 4.3

show that there is significant difference in the residuals based on measure-

ment type and that residuals of real and reactive power injections are better

at indicating the presence of attack data.

Figure 4.4 shows the total detectability sampled at attack levels of 30MW,

14



Table 4.1: Detection by Residual Type

Residual Type Attacks Detected Best

Weighted Composite 2
Real Power Flows 8

Real Power Injections 60
Reactive Power Flows 17

Reactive Power Injections 53

Figure 4.3: Grouped bars indicating the proportion of each attack detected
at the 10MW attack level. Bars in each group from left to right are
residuals of: the weighted composite residual, real power flow, real power
generation, reactive power flow, reactive power generation, and total
detectability.

50MW, 80MW, and 100MW. At 30MW, most of the attacks exceed one of

their residue thresholds and are detectable. Attacks based on columns 7,

10, and 14 in the DC H-matrix have the poorest detectability. And while

attacks based on column 7 begin to have good detectability from 50MW up-

ward, attacks based on columns 10 and 14 were still undetectable even at

attack magnitude of 80MW. As a reference the total injections in the system

are about 275MW. Attack based on column 14 reamind only partially de-

tectable even at attack magnitude of 100MW. Buses 10 and 14 were sparsely

connected, each only connecting to two other buses, and were not connected

to any buses with generation. These attacks required the least amount of

measurement modifications, and their distance from generation minimized

the impact on generator residuals.
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Figure 4.4: Grouped bars indicating the total proportion of each attack
column type detected at 30MW, 50MW, 80MW, and 100MW, attack levels.

4.2 Parameter Estimation

4.2.1 Setup

As was done previously, analysis was conducted on the IEEE 14-bus test case.

State estimation was executed using a modified version of MATPOWER.

The modified program estimates parameters simultaneously with states us-

ing state augmentation as described in Section 3.3.1, and was used in this

case to estimate line series reactances. Each noise vector n used for generat-

ing distributions in Monte Carlo trials had entries consisting of a normally

distributed random variable with zero mean and standard deviation of 1% of

the measurement value corresponding to the entry in n. Distributions of mea-

surement residuals for determining baseline values and attack detectability

were generated by executing state estimation using 500 different noise vec-

tors. The residual threshold used to establish the baseline as described in the

previous section was the 99th percentile (i.e. 1% false alarms). D-FACTS

devices were added to branches 4, 8, and 12, allowing the series reactance

to be modified by 5%. As before, attacks consist of the columns of the DC

H-matrix used in DC state estimation. Attack magnitude was not varied.

Instead, attacks were all normalized at the 100MW level.

4.2.2 Establishing Baseline

To establish expected distributions of parameter estimate residues due to

measurement noise, the state estimation was performed with the addition of

random noise vectors on measurements. The threshold used to establish the
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baseline as described in the previous section was 99%.

Histograms of the sum of squared errors of parameter estimates were gen-

erated from this data. From these histogram bin counts, a cumulative density

function plot was created by normalizing the histogram to have an area of

1 and computing the cumulative sum of bin counts. The 99% cutoff was

established by finding the sum of squared residue value of the CDF at the

99th percentile.

4.2.3 Determining Detectability

Distributions of residuals were created for parameter residues when the sys-

tem was unperturbed and under attack, and for attacks against a perturbed

system. These distributions were compared to the baseline residuals to de-

termine the effects of attacks on parameter residuals, and to see whether

topology perturbation in combination with parameter estimation enhances

the detectability of malicious data injection attacks.

Figure 4.5 shows a comparison of parameter residue distributions. The

unattacked system has the lowest residues, and is shown at the far left of

the plot. For this attack, the parameter estimates for an unperturbed sys-

tem would be a good indicator, as we see that most of the area under the

CDF for the attacked, unperturbed system (dot-dash) falls above the cutoff

established for normal data. The effect of perturbation in this case is to shift

the CDF even higher, indicating improved detection of attacks. This effect

is also present at lower attack levels, albeit to a lesser extent, as seen for an

attack at the 50MW level in Figure 4.6.
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Figure 4.5: CDF of sum of squared residues of parameter estimates for
unattacked system (solid), attacked system without topology perturbation
(dot-dash), and with perturbation (dotted). Horizontal line (dashed)
indicates 99th percentile under normal conditions. Vertical line (dashed)
indicates value for sum of squared residues corresponding to 99th
percentile. Attacks were at 100MW level.

18



Figure 4.6: CDF of sum of squared residues of parameter estimates for
unattacked system (solid), attacked system without topology perturbation
(dot-dash), and with perturbation (dotted). Horizontal line (dashed)
indicates 99th percentile under normal conditions. Vertical line (dashed)
indicates value for sum of squared residues corresponding to 99th
percentile. Attacks were at 50MW level.
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CHAPTER 5

CONCLUSION

The simplifying assumptions made by an attacker using a linear model to

construct attacks against a non-linear state estimator do not affect all mea-

surement types equally. The DC model was shown to introduce very little

residue on real power flow measurements in comparison to generators. Gen-

erators, which must supply losses, accumulate the effects of attacks. We

established in this work that malicious data injection attacks should be ex-

pected to impact some classes of measurements greater than others and that

such differences can be leveraged to detect maliciously injected data.

Parameter residues were also found to increase with data injection at-

tacks. Perturbation of the system in conjunction with parameter estimation

was shown to cause further increase. This increase enhances detectability of

malicious data injection attacks.

We also found that some attacks are hard to detect even at high energy

levels. We intend to study these types of attacks further in the future for

different bus systems and identify ways to detect them. Future work could

include comparisons of residual distributions to ordinary bad data to distin-

guish between bad and malicious data. Another area for future research is

locating which measurements specifically are being attacked if malicious data

injection occurs.
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APPENDIX A

USING MATPOWER STATE ESTIMATION
FOR RESEARCH

A.1 Overview

MATPOWER is a powerful and flexible tool for power system research. It is

open source, and available free online with documentation [16]. The state es-

timation portion of MATPOWER, located in matpower4.1/extras/se was

used both in stock and modified form for the research in this paper. Some

brief documentation specific to the state estimator is available in [17]. This

appendix will provide some instruction for using MATPOWER for state es-

timation and state estimation augmented with parameter estimation to con-

tnue research in this area.

A.2 Generating New Cases

To conduct research on state estimation, it is necessary to generate cases to

study. This section describes how to do this efficiently.

A.2.1 Systems

MATPOWER comes bundled with files for systems ranging from a few buses

to thousands of buses. There may still be need to import systems for re-

search purposes, particularly if specific features are required for the research

(for instance, TCUL transformers, DFACTS devices, capacitor banks, shunt

reactors, etc.). MATPOWER uses a proprietary system data format, how-

ever it is similar in structure to the IEEE common data format (.cdf exten-

sion) and MATPOWER comes with a function for converting from the IEEE

common data format to MATPOWER format.
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The function cdf2matp.m can output a MATPOWER system case file

given a file in the IEEE common data format. This is convenient, because

it allows importation of sytems from any other program capable of saving to

the IEEE common data format, or the use of freely available test cases in

the IEEE format. Unfortunately, the IEEE common data format standard

is looser than cdf2matp.m expects, which can cause parsing errors. During

the course of research for this paper, several systems were constructed in and

imported from PowerWorld. Initially, some of the cases would not properly

import due to header data being longer than allowed for in cdf2matp.m.

This caused MATLAB give an error related to “dimension” of a string or

matrix; parsed text was longer than allocated string length. Reducing the

number of characters in the header line (manually, with a text editor) fixed

this problem.

A.2.2 Measures

In addition to system information, measurement sets are needed to conduct

state estimation. Measurements could be obtained by running a simulation

in PowerWorld or other power system simulator and manually entering the

data into the case file. This is cumbersome, and prone to errors. Instead, it

is better to use MATPOWER’s built in functions to obtain measurements.

For this work, measurement sets were generated by solving the power flow

problem, and then saved as MATLAB vectors. The function runpf.m runs

a power flow, and can output the data needed for state estimation. This

requires returning results as individual output arguments like this:

[baseMVA, bus, gen, branch, success, et] = runpf(casedata);

The desired measures can be found in bus (voltage measurements), gen

(generator injections), branch (line flows). Indicies can be defined to make

it easier to extract the desired measurement types from here by running the

following code.

[PQ, PV, REF, NONE, BUS I, BUS TYPE, PD, QD, GS, BS, BUS AREA,...

VM, VA, BASE KV, ZONE, VMAX, VMIN, LAM P, LAM Q, MU VMAX,...

MU VMIN] = idx bus;
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[F BUS, T BUS, BR R, BR X, BR B, RATE A, RATE B, RATE C, TAP,...

SHIFT, BR STATUS, PF, QF, PT, QT, MU SF, MU ST] = idx brch;

[GEN BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN STATUS, PMAX,...

PMIN, MU PMAX, MU PMIN, MU QMAX, MU QMIN] = idx gen;

Measurement vectors are then extracted from bus, gen, and branch us-

ing the named indicies. For example, the vector of power flow measure-

ments measured at the “from” end of the line would be saved to the variable

PFvalues like this:

PFvalues = branch(:, PF);

These measures can then be inserted into a state estimation case file. See

test_se.m which comes with the MATPOWER state estimator for an ex-

ample of how the file is formatted. The state estimation case file consists

of five sections. The first section specifies which measurements are to be

used (measurement indicies), this is followed by the values of measurements,

measurement variances, a data integrity check, and a call to run_se.

In addition to measurement indicies, values, and variances, the user must

supply the number of buses (as the variable nbus) and the name of the file

containing the system data (as the variable casename). The state estima-

tion case file is also a good place to augment measures with noise from a

pseudorandom number generator and/or with an attack vector. The “seed”

value for the pseudorandom number generator can be used to control for spe-

cific random noise regimes when comparing different attacks, allowing two

different attacks to be tested against the same noise distributions.

A.2.3 Attacks

The function DCH.m was created to generate attack vectors. An entire DC

H-matrix is generated in the file, and then the specified column is returned.

The entries in the DC H-matrix are generated from sums of line reactances,

but attention must be paid to signs depending on the direction of the line.
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A.3 Parameter Estimation

For this research, modified versions of MATPOWER were created that added

network parameter estimation to state estimation. Initially modified to es-

timate transformer tap positions, code was eventually generated for line re-

actance and resistance as well. These versions of MATPOWER have the

directory names matpower4.1_TAP, matpower4.1_Xs, and matpower4.1_Rs

respectively. The differences between these MATPOWER flavors is merely

the sensitivity functions called in doSE.m. Because the tap position estima-

tor was written first, the other versions may still have variables containing

the word “tap”, even though a different parameter is actually being esti-

mated. It may be desirable to modify MATPOWER in the future to allow

selection of parameter to be estimated by passing an input parameter. (e.g.

Calling run_se with the parameter ”t” would execute state estimation with

transformer tap position estimation. The parameter ”x” would cause line

reactances to be estimated, and so on.) This would reduce the amount of

code to maintain.

Although it was not done for this work, it is possible to estimate multiple

types of parameters at once. However, it was not trivial to get a single

parameter type to work properly, and adding more will complicate things.

A.3.1 Algorithm

The algorithm used to perform parameter estimation is based on the state

augmentation, described in [1] on page 289 and also here in Sections 2.2 and

3.3.1.
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Table A.1: Functions in MATPOWER State Estimation

Function Purpose

run_se.m “Main” function, containing calls to the other
functions

checkDataIntegrity.m Checks input data for completeness

isobservable.m Checks for observability

doSE.m Computes state estimates using an iterative
process

outputsesoln.m Prints the resuts of state estimation

A.3.2 Modifications to MATPOWER

MATPOWER state estimation is conducted using the functions discussed

in Table A.1. Of these, the functions modified to augment states with

parameters is in Table A.2. The functions checkDataIntegrity.m and

isobservable.m were not critical and were left unmodified. If problems

are encountered because of this (and the problem is not a genuine one) calls

to these functions can be commented out. The file run_se.m did not need

to be modified, as it only contains calls to other functions. To create the

H-matrix, functions capable of returning sensitivities (partial derivatives) of

measurements with respect to parameters are required. These functions are

similar to the functions dSbr_dV.m and dSbus_dV.m, and are listed in Table

A.3.
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Table A.2: Functions modified for parameter estimation

Function Modification

doSE.m Outside the main loop many variables were
augmented to include parameters. Inside the
main loop matrix H was modified to include
sensitivites of measures to parameters, and
modifications were made to compute new
parameter estimates and update values.

outputsesoln.m Modified to print parameter estimates.

state estimation case files When creating case files, variables for
measurement indicies, values, and variances
must include fields for parameters.

Table A.3: Functions created for parameter estimation

Function Purpose

dSbr_dTAP/Xs/Rs.m Returns sensitivities of real and reactive
flows (PF, PT, QF, QT) w.r.t. TAP/Xs/Rs

dSG_dTAP/Xs/Rs.m Returns sensitivities of real and reactive
injections (PG, QG) w.r.t. TAP/Xs/Rs

dV_dTAP/Xs/Rs.m Returns sensitivities of voltage (Va, Vm) w.r.t.
TAP/Xs/Rs
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A.3.3 Repetitive Trials

The state estimation case file containing measurement values was modified

to add input parameters for simulations requiring repetitive trials. Inputs

added were col (column number from the DC H-matrix corresponding to

an attack), a (attack magnitude scaling factor), n (noise magnitude scaling

factor), and seed (seed value for pseudorandom number generator). The

function rng(seed) was introduced in MATLAB R2011a (described in [18]).

Use of this seeding function makes R2011a or newer required to use this

method.

For running trials, a script can then call the modified function in a loop

allowing the attack space to be explored systematically under many different

attack and noise realizations. For this research, nested loops were used to test

each of the attack vectors possible at varying magnitudes for many different

noise realizations. This requires a loop for the attack column, a loop for the

attack scaling, and a loop for the noise selection.

Function calls to generate the attacks and noise vectors were made in-

side the case file based on parameters passed by the trial script. The actual

generation of noise and attack vectors was performed each time the state

estimation case file was called. This means that many of the same noise vec-

tors were generated multiple times under different attacks. For performance,

it may have been adventageous to pass the actual attack and noise vectors,

rather than parameters specifying them. This would have allowed noise and

attack vectors to be precomputed and stored, saving computation time per

trial. This was not done for the sake of expediting code development.

In MATLAB, printing output to the screen slows performance consider-

ably. To speed up repetitive trials, the output results portion of run_se.m

were suppressed via commenting. Similarly, integrity and observability check-

ing of data were suppressed by comment. While it may be desirable to run

checks on a measurement case file one time, there is no need to check the

integrity of the same case file at each iteration; if the check is passed once,

it will be passed every time.

29


