TOWARD IMPROVED DRUG DISCOVERY AGAINST FLEXIBLE PROTEIN TARGETS:
AN EXHAUSTIVE STUDY OF GLUTAMATE RACEMASE CONFORMATIONAL
DYNAMICS, LIGAND BINDING, AND CATALYSIS

BY
KATIE L. WHALEN

DISSERTATION
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Biochemistry
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:
Professor Susan A. Martinis, Chair
Assistant Professor M. Ashley Spies, Director of Research, Univ. of Iowa
Professor Robert B. Gennis
Assistant Professor Rutilio A. Fratti
ABSTRACT

It is generally agreed that many proteins are structurally dynamic; sampling many conformations while in solution and also adopting new conformations upon complexation with a ligand. Many of these flexible enzymes are of biological interest, and hindering their function via binding of competitive inhibitors would open up valuable therapeutic avenues. Unfortunately due to the conformation-dependent nature of ligand binding, the act of discovering a new small molecule that will bind these particular proteins is analogous to aiming at a moving target. The following work focuses on one particular enzyme, glutamate racemase. Glutamate racemase is an essential and non-redundant enzyme in all species of bacteria, and inhibition of this enzyme results in cell wall degradation, followed by imminent cell death. Inhibitors of glutamate racemase could act as novel antibiotics against a target to which there are no current antibiotics, and thus no known resistance. My studies focus on three interdependent phenomenon related to enzymes: protein dynamics, ligand binding, and catalysis. Three main thrusts of my research lay at the intersection of these physical phenomenon. First and foremost, the Spies lab is interested in structure-based computer-aided drug discovery, and the discovery of glutamate racemase inhibitors is a project located at the intersection of ligand binding and catalysis, where small molecules inhibit the catalytic process. My second project builds on this by adding a deeper understanding of noncompetitive GR inhibitors and allostery in general. This entails exploring the relationship between protein dynamics and catalysis. Finally, my third project involves more fundamental biochemistry in that we closely examine facets of molecular recognition such as conformational changes induced by ligand binding, and the role of interstitial water. The results of the second two projects then feed back into our in silico methods in order to improve our capacity to predict small molecule binders of glutamate racemase. Much of the knowledge detailed here can be applied to similar proteins of alternate classes, thus improving structure-based computer-aided drug discovery against many flexible proteins.
Project 3. GR Dynamics in Molecular Recognition

Project 2. Allosteric Regulation of GR

Project 1. Drug Discovery against GR
ACKNOWLEDGEMENTS

Previous research advisors: Dr. Paul Hergenrother, Dr. Manfredo Seufferheld, Dr. Stephen Farrand, Dr. Steven Blanke (all of UIUC) and Dr. Ashok Kumar (of USACE ERDC-CERL).

Graduate mentors: Dr. Mirth Hoyt, Dr. Faezeh Koohestani, and Dr. Robert Pugh.

Dr. Maria Spies and members of the M. Spies lab: Dr. Masayoshi Honda, Dr. Colin Wu, Shyamal Subramanyan, Mohamed Ghoneim, and Will Jones.

Members of the A. Spies lab: Wesley Lay, Kenneth Tussey, Nicholas Vance, and Quinn Li.

Previous mentor: Dr. Kevin Hector of the University of Chicago, previously of Downers Grove South High School, an enthusiastic and sincere source of encouragement at an opportune time.

Colleagues and friends: Kyle Powers, Jean Vendiola, Sheena Smith (Justin Smith), Ian Gut, Prashant Jain, and Vandana Chakravarty.

My entire "adopted" science family at the University of Iowa, especially Medicinal Chemistry Division Head, Dr. Robert Kerns, and Biochemistry Department Head, Dr. Charles Brenner.

My PhD research advisor, Dr. Ashley Spies, a wonderful mentor as well as a lifelong friend.

My closest ally and companion, Daniel Wichelecki.
TABLE OF CONTENTS

GENERAL INTRODUCTION ...1

CHAPTER 1: EXPLOITING ENZYME PLASTICITY AND REACTIVITY IN VIRTUAL SCREENING: THE DISCOVERY OF GLUTAMATE RACEMASE INHIBITORS WITH HIGH LIGAND EFFICIENCY VALUES ..17

CHAPTER 2: HYBRID STEERED MOLECULAR DYNAMICS-Docking: An Efficient Solution to the Problem of Ranking Inhibitor Affinities Against a Flexible Drug Target ...32

CHAPTER 3: *IN SILICO* OPTIMIZATION OF A FRAGMENT-BASED HIT YIELDS BIOLOGICALLY ACTIVE, HIGH EFFICIENCY INHIBITORS FOR GLUTAMATE RACEMASE ...67

CHAPTER 4: FLOODING ENZYMES: QUANTIFYING THE CONTRIBUTIONS OF INTERSTITIAL WATER AND CAVITY SHAPE TO LIGAND BINDING USING EXTENDED LINEAR RESPONSE FREE ENERGY CALCULATIONS ..94

CHAPTER 5: THE NATURE OF ALLOSTERIC INHIBITION IN GLUTAMATE RACEMASE: DISCOVERY AND CHARACTERIZATION OF A CRYPTIC INHIBITORY POCKET USING ATOMISTIC MD SIMULATIONS AND PKA CALCULATIONS ..130

GENERAL CONCLUSIONS ..162

APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 1 ..172

APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 2 ..187

APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 3 ..207

APPENDIX D: SUPPORTING INFORMATION FOR CHAPTER 4 ..218

APPENDIX E: SUPPORTING INFORMATION FOR CHAPTER 5 ..227
GENERAL INTRODUCTION

I. Enzyme Dynamics and Ligand Binding

Our capacity to determine high-resolution structures of biological macromolecules (protein, DNA, lipid membranes) has expanded rapidly with the advancement of techniques such as solid-state nuclear magnetic resonance (NMR), x-ray crystallography, neutron crystallography, and electron microscopy. Unfortunately, our ability to analyze the dynamics of these macromolecules is lagging. Early experiments confirmed that all proteins are undergoing a dynamic process referred to as "breathing". Exchange of deuterons with protons on the protein backbone, even within the most buried regions of the protein, provided evidence that conformational flexibility must allow temporary access of solvent to these residues\(^1\). Proteins in solution are all subject to these constant random thermal motions. Breathing motions are challenging to distinguish with current biophysical techniques, but proteins are also flexible on a larger scale. Individual residue side-chains and the carbon back-bone itself are subject to large motions, as evidenced by the techniques described above. These motions cannot be ignored in the functional processes of ligand binding and enzyme catalysis, and should thus be included in any quantitative structural modeling of proteins and ligands.

Two schools of thought have dominated current explanations of the role of conformational flexibility in ligand-binding. First is the idea of a conformational energy landscape, which is at equilibrium in the presence of constant external factors (binding partners, temperature, pH, etc.). This energy landscape is pre-populated with protein conformations of varying energy, where low energy conformations are highly populated and high energy conformations are sparsely
populated. The introduction of a binding partner, such as a small molecule ligand, into the system, shifts this equilibrium by binding with preference to the most compatible protein conformation (aka. the protein conformation that results in the lowest energy complex)\(^2\). The alternate and popular school of thought, referred to as "induced-fit", dictates that a protein exists in solution at its most energetically favorable unliganded conformation, and the presence of a binding partner results in physical interactions, which lead to the subsequent induction of the protein conformation that produces the lowest energy complex\(^3\). The "correct" mechanism, or the possibility that both are equally important, is still hotly debated due to a lack of experimental evidence in ruling out one or the other.

Another important role of protein flexibility is that involved in allostery. Allostery is the phenomenon where a binding partner binds an enzyme at a site distinct from the active site (where chemistry occurs) and results in apparent changes (positive or negative) to either substrate binding or catalysis. Allostery was first well-defined during the investigation of oxygen-binding by hemoglobin in the 1960s by two groups: Monod, Wyman and Changeux\(^2\text{a}\) (Institut Pasteur), and Koshland, Nemethy, and Filmer\(^3\) (Brookhaven National Laboratory). Despite being a phenomenon of great importance and constant scrutiny, the molecular mechanism of most allosteric interactions in enzymes is still not well understood at the atomistic level. In an attempt to mimic the abundance of natural allosteric regulators, drug therapies are increasingly exploiting allostery as an effective route for enzyme inhibition or activation. In order to discover and develop novel allosteric regulators, a greater understanding of the link between protein conformational dynamics and catalysis is required. The studies and results contained within this thesis contribute to the general knowledge regarding the trifecta of protein conformational dynamics, ligand binding, and catalysis, with a focused application toward computer-aided and structure-based drug discovery.
II. State of the Art in Accounting for Protein Flexibility/Solvation in Computer-Aided Drug Discovery

Virtual screening is becoming increasingly more popular in pharmaceutical settings for discovery of small-molecules against a particular protein target. The method is generally faster and substantially more cost-effective than traditional high-throughput screening campaigns. Additionally, one is not limited to the chemical entities contained within a particular physical library. With virtual screening, any compound which can be dreamt up can be modeled and included in the screening. The key modeling component of virtual screening is the docking of a small-molecule into a designated pocket on a protein receptor. The protein receptor structure must be known, either from high-resolution experimental data (often acquired via NMR or x-ray crystallography) or rigorous homology-modeling in the case of no experimental data. The pocket where ligand binding occurs must also be known, generally an easy decision in the case of competitive inhibitors (binding to the active site), but exponentially more difficult a designation in the case of novel allosteric regulators a process (aided by pocket analysis algorithms). Current molecular docking employs search algorithms, which vary from being of genetic, stochastic, or simulation-based, are in fact quite successful at generating a docked-pose that matches experimentally-derived structural data. A study by Warren and coworkers showed that for 90% of the included systems, docking produced a result that matched the crystallographically-determined pose within 2 Å.

Typical docking algorithms allow for flexibility in the small-molecule around rotational bonds and within cyclic moieties. For a fragment library, where the average molecular weight is 150-280 Da, this means simulating flexibility for 10-
20 heavy atoms on average. The incorporation of receptor flexibility into simulation, where a 30 kDa protein is approximately 4,000 atoms, would obviously and quickly become too computationally expensive to screen large compound libraries. To circumvent this limitation, some algorithms have been developed that allow flexibility just in residue side-chains within the binding pocket. While this is, in principle, an improvement, side-chain movements represent only a fraction of the conformational picture for the protein receptor. One particular study within this thesis shows that virtual screening can be made much more efficacious (as quantified by the "hit-rate", number of binding compounds per total compounds tested) if a particular conformation of the receptor is chosen, here the conformation corresponding to that theorized as the "transition-state" or reactive state conformation.

An alternative to docking to a single receptor is ensemble docking, where a small molecule is docked to multiple conformations of the protein receptor. These conformations can be generated from experimental data, eg. multiple co-crystal structures, or they can be generated with molecular dynamics simulations. This leads us to a discussion of current molecular dynamics simulation techniques. Current techniques allow simulation of every atom within the target protein as well as explicit waters and salts. Thus, the same 30 kDa protein above would require ~24,000 atoms in its simulation with a 70x70x70 Å³ simulation cell. With current computational power, simulations of this protein could reach timescales in the 10s of nanoseconds within one week on 32 processors. Microsecond-length simulations are less common, but certainly plausible using super-computing and parallel-computing setups. Long simulations are hampered by the physical realism of physics-based force field. Common force fields can be categorized as being either knowledge- or physics-based, where knowledge-based force fields are based on large datasets derived from multiple systems while physical-based force fields are based on a biophysically-determined set of "rules" for bond lengths, angles, strain, etc. Either type of force field has
strengths and weaknesses and are often employed in a system-dependent, ad hoc manner. Over the course of long simulations, current force fields have a tendency to drift toward the allowance of unnatural phenomenon. These issues are currently being addressed by labs that specialize in force field generation. Regardless, nanosecond-length simulations do provide valuable information regarding the dynamic motions that are considerably larger and more complex than local thermal fluctuations. A unique adaptation of classical MD simulation, referred to as "steered" MD simulation, allows the user to manipulate the system in order to force a physical phenomenon. In one of the studies described here within, a force is applied to a bound substrate along a fixed vector, in order to simulate the unbinding in a matter of picoseconds, instead of waiting indefinitely for the substrate to become unbound in a classical MD simulation. This unbinding process generates unique protein conformations, which are relevant to the catalytic cycle of this particular enzyme. Not surprisingly, the marriage of various types of MD simulations and docking is proving to be extremely fruitful in the discovery and development of inhibitors for flexible proteins.

Lastly, and perhaps most importantly, is the need for computational predictions of accurate and precise binding energy between a theoretical ligand and its protein receptor. This is key to the ranking of docked poses in virtual screening, as well as the optimization of a lead compounds via analysis of subsequent derivative compounds. This area of computer-aided drug discovery is quite immature, compared to ligand placement and MD simulation. Current methods for free energy calculation range from the short and inexpensive (such as a docking program's scoring function\(^4\)) to the long and expensive (such as simulation-based free-energy perturbation [FEP]\(^5\)). The key to a successful free energy calculation in computer-aided drug discovery is the balance of computational expense (ie. time) and accuracy. The accuracy of a free energy calculation should, in principle, be dependent on the ability to appropriately account for every physical component of a protein-ligand interaction: protein
desolvation, ligand desolvation, van der Waals interactions, entropic restriction of the ligand, electrostatic interactions, dipole-dipole interactions, etc. The studies within this thesis will focus on three classes of free energy prediction: scoring functions (London dG6 and Autodock7), end-point free energy calculation (MM-PBSA8 and its sister, MM-BEMSA9) and the Extended Linear Response (ELR10). Proper energy evaluations lead to proper comparisons of multiple ligands for a given receptor, and will form the foundation for expeditious and efficacious hit identification and lead optimization in a computer-aided drug discovery campaign.

III. Glutamate Racemase, an untapped source for future antibiotics

The peptidoglycan cell wall is an organic polymer specific to bacteria. Composed of crosslinked sugars and pentapeptides, the peptidoglycan layer forms a rigid mesh that protects bacterial cells from osmotic stress11. The inclusion of highly conserved D-amino acids into the pentapeptide portion of this mesh is believed to be a mechanism of preventing degradation by common proteases11. D-glutamate is a major constituent of the peptidoglycan cell wall11. Additionally, specific bacteria such as \textit{B. anthracis} also require substantial amounts of D-glutamate for synthesis of the poly-\gamma-D-glutamic-acid (PDGA) capsule, a key component for virulence12. The bacterial enzyme, glutamate racemase (GR), is responsible for the reversible stereoinversion of L-glutamate to D-glutamate. Key to the selection of GR as the target of a drug discovery campaign is its necessity and non-redundancy in bacteria. Several knockout studies have shown that in the absence of GR, bacteria are D-glutamate-auxotrophic13, confirming the singular method of D-glutamate acquisition as being through GR. Also important is that there is no human homologue of GR,
since there is no requirement for this particular D-amino acid in any processes endogenous to humans. Adding to its attractiveness as a drug target is the fact that GR plays a role in phase I of peptidoglycan biosynthesis, while all active drugs that also target the peptidoglycan cell wall act on enzymes categorized as being in phase III (extracellular)11. Where resistance may potentially arise (or already exists) in phase III due to exposure to existing drugs, there is less of a threat of resistance for a completely novel strategy.

Glutamate racemase (GR) belongs to the cofactor-independent family of amino acid racemases. GR acts via a general acid/base mechanism utilizing two active site cysteine residues to abstract the C\(_\alpha\) proton and donate a proton to the opposite face14. This chemistry is quite impressive considering the high pKa (~29)15 of the C\(_\alpha\) proton of glutamate coupled with the lack of pyridoxal-5-phosphate or metal cofactor. The active site is saturated with hydrogen-bond donating and accepting residues. An over-representation of threonine residues in the active site has led to some researchers to refer to it as a “threonine pocket”16. The catalytic cysteine residues are C74 and C185 (\textit{B. subtilis} numbering). These residues were located by predictions based on homology models and confirmed by site-directed mutagenesis17. The reaction forms a planar anionic intermediate as a result of the initial cleavage of the \(\alpha\)-carbon-hydrogen bond14. Kinetic isotope effect measurements show that cleavage and reformation of a carbon-hydrogen bond on the opposite face occur in step-wise manner and are partially rate-determining steps18. Several conserved residues within the active site (Asp10, Asp36, Glu152, and His186) have been implicated as aiding in the reaction by stabilizing the anionic intermediate17b.

The x-ray crystal structure has been determined for glutamate racemases isolated from a variety of bacterial species (see Chapter 4 for a complete list with references/PDB codes). The majority of the co-crystal structures show GR bound to glutamate, glutamate-analogs, or oxygen-rich salts. The protein possesses a
general α/β fold, which composes two domains that enclose a relatively small active site. NMR studies have shown that GR is a highly flexible enzyme capable of sampling many conformations19. It has been proposed that this flexibility allows substrate binding and product release from the buried active site. Work within this thesis will show that GR can bind a wide variety of chemical moieties, another testament to its flexibility. Also, this thesis will explore whether such flexibility also plays a role in the immense catalytic power of GR (Chapter 5).

It is also important to discuss the tertiary and quaternary structure of glutamate racemase, as well as conformational changes that accompany substrate binding. From here on, I will discuss details regarding the enzyme as they apply to RacE, the GR isozyme of \textit{Bacillus subtilis} (the isozyme with which the majority of the following inhibitor studies were conducted). RacE of \textit{B. subtilis} and RacE1/2 of \textit{B. anthracis} have many structural similarities, and the active site is highly conserved over all studied species, thus inhibitors discovered against RacE can be assumed to be candidates for inhibition against the GR isozymes from \textit{B. anthracis}, \textit{F. tularensis}, and \textit{H. pylori} as well. RacE is found at equilibrium in solution between a monomer and homodimer state20. The active site is located at the interface of two domains within each monomer, the amino-terminal domain (domain A) and the carboxy-terminal domain (domain B). Amino acid residues from either domain are involved in the catalytic mechanism. Upon binding of substrate, a hinge movement occurs between domain A and domain B bringing active site residues closer together and forming the “closed” form of the enzyme20. This conformational change is required for catalysis. It is believed that since domain B is more involved in interactions between the two dimers and thus experiences more restricted mobility, domain A is more likely responsible for separation that forms the “open” form, allowing the product to leave and new substrate to bind19b.
The majority of the following studies focus on GR isozymes isolated from *B. subtilis* (non-pathogenic), *H. pylori* (pathogenic), *F. tularensis* (pathogenic), and *B. anthracis* (pathogenic). Unlike the vast majority of bacteria, *B. anthracis* possesses two genes that encode glutamate racemases: racE1 and racE2. Recent studies show that both proteins encoded by these genes (RacE1 and RacE2) are functional and share 67% amino acid sequence homology, although some structural and enzymatic differences exist between the two\(^{16}\). A RacE1 knockout mutant and RacE2 knockout mutant show significant differences in phenotype\(^{13a}\). When RacE1 is knocked out, only a moderate decrease in growth with full recovery after addition of D-glutamate is observed. In contrast, when RacE2 is knocked out, bacterial growth decreases more significantly and addition of D-glutamate only achieves partial recovery\(^{13a}\). These studies show a disparity in the degree of necessity of each RacE isozyme. GR was also knocked out in *Francisella tularensis* and resulted in bacteria displaying complete auxotrophy for D-glutamate\(^{13b}\).

Antibiotics against each of the highlighted pathogenic bacteria are in high demand. *Bacillus anthracis* is the causative agent of inhalational anthrax, and has been categorized as a Class A bioterrorism agent by the US government\(^{21}\). Additionally, *Francisella tularensis* causes tularemia, an illness that causes widespread death in small mammals such as rodents, rabbits, and beavers; and also has the capacity to infect humans with flu-like symptoms, which are potentially lethal if left untreated. The US government has also added *F. tularensis* to the list of Class A bioterrorism agents\(^{21}\). *Helicobacter pylori* was proven to be linked to both ulceritis and gastric carcinoma in the 1990s\(^{22}\), thus potential antibiotics could serve as a novel anti-cancer therapeutic. Finally, *Bacillus subtilis* is a non-pathogenic soil microbe. The GR isozyme isolated from this bacteria has been well characterized functionally and structurally. It was the first liganded crystal structure, providing the first model for computation, and has thus served as a quality model system in many of the following studies.
Current methods of treatment for *B. anthracis* infections include vaccination and heavy doses of oral antibiotics. Vaccination is only effective when given well in advance of exposure. Today, the two most commonly used antibiotics against anthrax are ciprofloxacin and doxycycline, which are two types of fluoroquinolones. Ciprofloxacin acts by binding DNA gyrase and preventing the unwinding of chromosomal DNA, thus interfering with bacterial DNA replication. Doxycycline works by binding ribosomes and preventing the binding of amino-acyl tRNAs, thus inhibiting protein translation. In the case of tularemia, the current first-line treatment is a combination of streptomycin (an aminoglycoside) and tetracycline (a polyketide antibiotic). Both of these antibiotics work by inhibiting protein biosynthesis, and given in combination, are believed to reduce the occurrence of bacterial resistance. Similarly, *H. pylori* infections are currently treated with a combination of antibiotics (clarithromycin and amoxicillin) as well as a proton pump inhibitor to alter the stomach pH and reduce the favorability of growth conditions. Clarithromycin is a macrolide that interferes with protein biosynthesis, while amoxicillin is a beta-lactam antibiotic that inhibits bacterial cell wall production at the cross-linking step (Phase III). None of the current first-line treatments for the mentioned bacterial species have mechanisms of action that target enzymes in Phase I of peptidoglycan biosynthesis, and only one treatment targets peptidoglycan at all. Thus, this combination of enzyme target and bacterial species is an unsaturated area of research, where any discoveries made herein would contribute greatly to the universal arsenal of antibacterial therapies.

Studies have been conducted to investigate potential inhibitors of glutamate racemase in a variety of species. The first potent glutamate racemase inhibitors with strong antibacterial capacities were developed in 2002 by researchers at Eli Lilly and Co. These competitive inhibitors are highly-substituted D-glutamate analogues that exhibit maximal inhibition concentrations (MICs) as low as 10 ng/mL. Unfortunately, their activity is currently limited to
Streptococcus pneumoniae. In 2007, a group from AstraZeneca Global Structural Chemistry discovered a potent glutamate racemase inhibitor (Compound A) of Helicobacter pylori that acts through a novel uncompetitive mechanism19b. This particular compound takes advantage of the hinge-like conformational change that accompanies substrate binding. By binding to an allosteric site and displacing a key tryptophan residue, Compound A locks the enzyme in the “closed” conformation, thus preventing the release of substrate and lowering the V_{max} considerably. In *H. pylori*, Compound A has an IC\textsubscript{50} value of 1.4 μM and an MIC of 4 μg/mL19b. Substituent variation was used to produce a library of Compound A analogs, thus uncovering inhibitors with IC\textsubscript{50} values as low as 16 nM27. Unfortunately and somewhat unsurprising, this series of compounds suffered first from poor solubility and membrane permeability (unsuitable for oral administration), and then a lack of efficacy in the mouse model.

The same group from AstraZeneca went on to discover 9-benzyl purine variants that inhibit glutamate racemase potently in Enterococcus faecium and Enterococcus faecalis28. Using high-throughput screening, the 9-benzyl purine scaffold was selected and again, substituent variation was used to improve potency. Inhibitors with IC\textsubscript{50} values as low as 1.0 μM28 were found. Using the same 9-benzyl purine scaffold, substructure searches within the AstraZeneca corporate collection were performed to “scaffold-hop” to an 8-benzyl pteridine structure which extended inhibitory specificity to include Staphylococcus aureus, as well as *E. faecium* and *E. faecalis*27. This series of inhibitors also suffers from poor physico-chemical properties, specifically solubility. The importance of discovering GR inhibitors with quality lipophilicity scores before optimization of binding potency is highlighted in Chapter 3.

This thesis contains studies that detail the discovery and characterization of 15 novel millimolar inhibitors and 12 novel micromolar inhibitors of glutamate racemase. Of the 27 new inhibitors, 9 were confirmed to inhibit via a competitive
mechanism and 1 was confirmed to inhibit via a noncompetitive mechanism. The potency of the remaining inhibitors was accomplished via determination of their IC$_{50}$, which cannot distinguish between inhibitory mechanisms. The strongest inhibitor has an inhibition constant (K$_i$) of 2.5 micromolar and, unlike previous high-potency GR inhibitors, an impressive lipophilicity profile. Several of the most potent compounds were also assayed for antibacterial activity and demonstrated high micromolar inhibition of bacterial growth for Gram-positive species. Many of these inhibitors represent exciting new scaffolds for future development of antibacterial therapeutics. One particular series of inhibitors (Chapter 3) was composed entirely of novel chemical entities and prompted the successful application for a method patent covering their use in antibacterial formulations, as well as three composition of matter patents (US Provisional Application No. 61/779,727).

IV. Overlying Themes in the Following Thesis

The following five chapters of this thesis are verbatim replications of a publication reproduced with permission from the publishers. Each study herein is a combination of experimental and computational work with an overarching goal of improving our understanding of the biophysical workings that lay at the nexus of protein flexibility, ligand binding, and catalytic power. There are three themes that transcend the entirety of this thesis: (1) improved modeling of receptor flexibility in virtual screening (Chapter 1, Chapter 2) and lead optimization (Chapter 3); (2) inclusion of solvation (Chapter 2) and explicit water molecules (Chapter 4) in binding energy evaluations; (3) investigation into receptor flexibility as a determinant of catalytic rate via pKa perturbation (Chapter 5). The contents of this thesis form a comprehensive depiction of ligand binding and catalysis as
they apply to the antibacterial drug target, glutamate racemase. It is my hope that these case studies may add to the general knowledge of the physical phenomenon that drive protein-ligand complexation as well as the mechanism by which allosteric inhibitors negatively affect catalytic rates. The results of such studies are of paramount importance to computer-aided drug discovery. Improvement in the efficacy and timeliness of the hit identification and lead optimization stages of drug discovery will have positive downstream effects on the overall cost and time required for a drug to move from conception to regulatory approval.

References

17. (a) Dodd, D.; Reese, J. G.; Louer, C. R.; Ballard, J. D.; Spies, M. A.; Blanke, S. R., Functional comparison of the two Bacillus anthracis glutamate...

CHAPTER 1: EXPLOITING ENZYME PLASTICITY AND REACTIVITY IN VIRTUAL SCREENING: THE DISCOVERY OF GLUTAMATE RACEMASE INHIBITORS WITH HIGH LIGAND EFFICIENCY VALUES.

ABSTRACT Glutamate racemase is an attractive anti-microbial drug target. Virtual screening using a transition-state conformation of the enzyme resulted in the discovery of several μM competitive inhibitors, dissimilar from current amino acid-like inhibitors, providing novel scaffolds for drug discovery. The most effective of these competitive inhibitors possesses a very high ligand efficiency value of -0.6 kcal/mol/heavy atom, and is effective against three distinct glutamate racemases representing two species of Bacillus. The benefits of employing the transition-state conformation of the receptor in virtual screening are discussed.

Glutamate racemase (GR) catalyzes stereoinversion at the Cα of glutamate, and is a source of D-glutamate in bacteria. D-glutamate is an essential component of the peptidoglycan layer of bacterial cell walls, and is a target for antibacterial drug development. GR possesses an exquisite substrate specificity, catalyzing stereoinversion of Cα via a 1,1 proton transfer, utilizing a “two-base” mechanism consisting of two cysteine residues that flank the Cα. GR-catalyzed racemization proceeds without the assistance of a cofactor, which has generated intense interest in its mechanism, as well as the related enzymes such as diaminopimelate (DAP) epimerase. GR-ligand co-crystal structures do
not provide a reasonable explanation, *a posteriori*, for how the Cα proton is abstracted by the catalytic cysteine base, without invoking a reorganization of the active site\(^5\). However, recent MD-QM/MM studies on the *B. subtilis* GR have yielded a “reactive” conformation resulting from a repositioning of active site moieties such that the carbanionic transition state is saturated with hydrogen bond donors\(^{5b}\).

The plasticity of GR poses immense challenges for classic structure-based drug design\(^6\). The current study seeks to surmount these obstacles by employing a virtual screening regime, in which the receptor is the “reactive” form of *B. subtilis* GR, as described in Spies *et al*.\(^{5b}\). This methodology is summarized in the flowchart in Figure 1. The reactive conformation of glutamate racemase, characterized in Spies *et al*.\(^{5b}\), was employed in the present study as a receptor for virtual screening of a large lead-like library of compounds. This approach is appealing in the sense that the reactive form of the enzyme is characterized by a compressed active site that exhibits dramatically enhanced protein-ligand interaction energy\(^{5b}\). After virtual screening and scoring approximately one million compounds, the docked enzyme-ligand complexes that yielded the greatest computationally determined pKi values (where Ki is the dissociation constant) or the most negative interaction energies were slated for experimental investigation (Table 1). The various types of outcomes are also listed in Figure 1.
Figure 1. Flowchart for Inhibitor Discovery Using a Conformationally Active Form of Glutamate Racemase (GR).
Table 1. Highest-ranking Hits Emerging from Virtual Screening of a Lead-like Library of ~1 Million Compounds to the Reactive (i.e. Transition State) Form of GR Versus the Outcome of Experimental GR Assays.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Predicted Interaction Energy (kcal/mol) from docked poses</th>
<th>Predicted pKᵢ from docked poses</th>
<th>Experimental Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-21.996</td>
<td>10.1</td>
<td>Colloidal Aggregate</td>
</tr>
<tr>
<td>2</td>
<td>-25.897</td>
<td>10.1</td>
<td>IC₅₀ = 3.0 mM</td>
</tr>
<tr>
<td>3</td>
<td>-13.530</td>
<td>9.9</td>
<td>Kᵢ = 42 ± 10 μM</td>
</tr>
<tr>
<td>4</td>
<td>-20.511</td>
<td>9.5</td>
<td>IC₅₀ > 2.4 mM</td>
</tr>
<tr>
<td>5</td>
<td>-12.156</td>
<td>9.1</td>
<td>Kᵢ = 59 ± 13 μM</td>
</tr>
<tr>
<td>6</td>
<td>-23.950</td>
<td>8.3</td>
<td>Kᵢ = 1.9 mM</td>
</tr>
<tr>
<td>7</td>
<td>25.015</td>
<td>7.2</td>
<td>IC₅₀ = 3.5 mM</td>
</tr>
<tr>
<td>8</td>
<td>-14.367</td>
<td>6.6</td>
<td>IC₅₀ = 4.0 mM</td>
</tr>
</tbody>
</table>
Table 1 Footnote. †The Chemical Computing Group Conformational Database Version 2007, where lead-likeness is based on Oprea’s parameters; see Computational Procedures in S.I.
‡The reactive form of GR, as characterized by Spies et al.⁹
§As determined by the London dG scoring function, implemented within the LigX utility of MOE (v2008.10) ⁸; values above pKᵢ=9.0 were considered for experimental investigation.
*All Kᵢ or IC₅₀ values determined by the circular dichroism assay described in SI, except for 1 and 4.
†1 appeared to display non-competitive inhibition with an apparent Kᵢ = 90 ± 7 μM, but was found to inhibit GR through colloidal aggregation.
⁺Inhibition by 4 was measured using the coupled-enzyme assay and the actual IC₅₀ is expected to be higher due to partial inhibition of the coupled-enzyme, L-GDH (see SI for details).
£Synthesis and derivatization of 3 are described by Fatiadi and Bou et al.⁹
₩6 and 7 were chosen for their high interaction energies, while 8 was a readily available fragment of 2, 4, 5, and 6.

Two lead compounds were identified (where lead compound refers to a bona fide competitive inhibitor with μM-range Kᵢ). Table 1 provides a full account of all of the tested compounds with the greatest predicted pKᵢ values and their experimental Kᵢ values. Compounds 1-5 have dG scores in the top 1% of the originally retained 500 compounds from the virtual screen. All of these compounds were found to be inhibitors (two in the μM range, and two in the mM range), while 1 was a colloidal aggregator (vide infra). Scoring with dG was notably superior to simply using ligand interaction energies, as performed in Spies et al.⁹ which generated only a few mM inhibitors. Furthermore, in the current study, interaction energies for the two best inhibitors, 3 and 5, were very low, underscoring the poor utility of this metric.
Figure 2 shows the initial rate kinetic data for GR-inhibition by 3 and 5 (obtained by a circular dichroism assay5b, described in the Supporting Information section), which was globally fitted to a competitive inhibition model (fitted parameters located in Table 2), respectively. To our knowledge these are the first μM competitive inhibitors for GR that are not amino acids. Importantly, the more effective of these, 3, also inhibits GR isozymes from \textit{B. anthracis} with and without the so-called “valine bridge”, which has been shown to confer species specificity against the only other class of effective competitive inhibitors for GR2b, 10 (Figure A.2), suggesting that 3 may be developed as a broad antimicrobial chemotherapeutic.

Surprisingly, 1 was found to exhibit apparent non-competitive inhibition against GR (Figure 3A). Shoichet and coworkers have thoroughly documented the pitfalls of hits, from virtual (and high throughput) screening, that show apparent non-competitive inhibition11. It is often the case that such inhibitors form colloidal aggregates, which lead to local protein denaturation of the target enzyme, and thus apparent non-competitive inhibition. Colloidal aggregators can easily be identified by performing inhibition assays in the presence of increasing concentrations of mild detergents12. This procedure was performed on 1, which
showed almost total alleviation of inhibition in the presence of detergent, clearly identifying it as a colloidal aggregator, and thus a false positive lead (Figure 3B).

Figure 3. 1 yields apparent non-competitive inhibition using global kinetic analysis (A), but is shown to actually be a colloidal aggregator using the detergent assay of Shoichet and co-workers (B); the presence of 0.01% Triton X-100 in the assay mixture almost fully alleviates the enzyme inhibition (see Supporting Information section for a full description of this method).

It is instructive to examine the docked poses of 3 into GR using a more thorough approach than was used in the high throughput docking that was employed in the initial screen. Docking into both the reactive form of GR and the crystal structure (PDB 1ZUW) were performed to compare the benefit of employing the reactive form in the original virtual screening. In these additional docking studies, 3 is minimized for each docked pose, followed by rescoring with the London dG scoring function (the computational details are described in the Supporting Information section). Two salient features emerge from this docking study: 1) the shape of the active site pocket for the reactive form of GR enforces a very tight distribution of possible complex structures with 3 (Figures 4A and C), while the
crystal structure (Figures 4B and D) has a wide range of distributions (the differential in tightness of placement is quantified below) 2) calculated binding affinities between 3 and the reactive form of GR are uniformly stronger than that of 3 and the crystal structure, ($\Delta G = -13.0 \pm 0.80 \text{ kcal/mol}$ for the reactive complex versus $-11.1 \pm 0.80 \text{ kcal/mol}$ for the crystal complex). Free energy values obtained from the dG scoring function are not meant to provide a rigorous estimate of the actual free energy of binding, but rather to provide a metric for ranking the affinity of a ligand for its receptor in an aqueous environment (see Supporting Information for a full discussion of the dG scoring function). The averaged calculated dG value for the transition state complex and the crystal structure complex with 3, together with the ligand maps in Figure 4A and C, indicate a more favorable binding to the transition state receptor.

One may quantify the tightness in the distribution of the docked poses in the reactive complex with 3 versus the crystal structure by calculating the overlap in molecular volume between the docked poses, such that a high degree of overlap (i.e., a perfect overlap in which a compound is always docked to the exact
volume) has a value of 1, while no overlap at all between docked poses yields a value of 0. Calculation of the Tanimoto volume (T_{vol}), which is described in the Supporting Information section, has been shown to be a superior descriptor of similarity between docked complexes versus the more often used root mean square value13. Here we calculated a T_{vol} of 0.79 ± 0.03 for 3 docked into the reactive form of GR, versus a value of 0.64 ± 0.17 for 3 docked into the crystal structure. This disparity is graphically illustrated in the overlap of docked poses for both complexes in Figures 4C and D, respectively.

The reactive form of GR tightly places docked poses of 3 into highly similar positions, as supported by the high T_{vol} value. However, the crystal structure receptor yields a wide range of positions for 3 with consistently lower calculated pK\textsubscript{i} values. Taken together, these volume overlap and calculated binding studies establish that the selection of the reactive form of GR for virtual screening is an attractive alternative approach for finding high affinity lead compounds, as described in the current study.

Although 3 is not, \textit{a priori}, a substrate analog, it is, in many ways, a conformational analog to the cyclic glutamate carbanion, the reactive intermediate described in Spies \textit{et al.}5b, which is evidenced by calculating the T_{vol} of the glutamate carbanion vs. the docked poses of 3 ($T_{vol} = 0.55$), as illustrated in Figure A.3. However, as Figure A.3 indicates, the overlap between the cyclic glutamate carbanion and 3, while reasonable in terms of molecular volume, is not electrostatically optimal, due primarily to the region around the C\textalpha and C\textalpha positions of the glutamate carbanion. One may contrast the binding of 3 versus glutamine, a substrate analog, which has a K\textsubscript{i} of 50 mM. It is interesting to note that glutamine lacks the ionic and hydrogen bonding complementarity for forming intramolecular cyclized species as observed with glutamate. It may be that GR’s
affinity for substrate and transition state is partially derived from these cyclized forms.

The active site configuration of the complex between GR and 3 is structurally reminiscent of proline racemase (a structurally related family of cofactor independent-racemases) with the transition state analog pyrrole-2-carboxylic acid (PYC)14, which exhibits two binding states with $K_{i1} = 4.6 \mu M$ and $K_{i2} = 30 \mu M$. The crystal structure of proline racemase reveals that PYC is compressed between two Cys residues, and the carboxylate is receiving five hydrogen bonds from the active site residues. Transition to the active form of proline racemase involves a conformation change that accommodates the planarity of the proline ring carbanionic intermediate, which is highly analogous to the case of the cyclic glutamate carbanion described in Spies \textit{et al.}9, as well as the nature of the lead compounds identified in the current study. In all of these systems, the plane of the ring is perpendicular to the axis connecting the two flanking Cys sulfur atoms. A superpose of reactive and crystal structure forms of the docked GR-complexes illustrates that this perpendicularity between the plane of the ring and the sulfur atoms is only present in the reactive form, while the docked crystal structure complex is tilted and possesses significant ring strain. A characteristic feature of all of the docked crystal structure complexes with 3 is ring strain, with O-C-C-O carbonyl-carbonyl dihedral angles of approximately $\sim 25^\circ$, versus $\sim 5^\circ$ for complexes with the reactive form as receptor. The differential hydrogen bonding pattern in the docked crystal structure complex, relative to the reactive conformation, is responsible for the sub-optimal ligation with 3. Additionally, there is a significant reduction in the volume of the active site pocket in the reactive form versus the crystal structure (from 188 Å3 in the crystal structure to 159 Å3 in the reactive form).
The most significant property of 3 is its very large ligand efficiency (LE) value of -0.6 kcal/mol/heavy atom. LE values are of paramount importance in fragment-based drug discovery (FBDD), which has been a highly successful and emerging approach for identifying promising drug candidates. The FBDD approach aims to grow small, weak-binding (yet possessing high LE value) inhibitors into nM inhibitors, which retain Lipinski-like rule-of-five compliance throughout the process. LE values of -0.3 kcal/mol/heavy atom or greater are considered to be good, since careful optimization from MW ~ 150 to > 400 should yield a compound in the ~ tens of nM range. However, 3 possesses an LE value far surpassing that of a standard fragment, such that the addition of a modest four heavy atoms places it in the nM range. Thus, 3 is an excellent point from which to begin an optimization campaign, particularly in light of the fact that it is effective against three glutamate racemases, each unique in their oligomeric equilibrium as well as the presence or absence of the valine bridge (Val149 in RacE2; Figure A.2 in the Supporting Information section).
There are two widely accepted models that account for protein flexibility in small molecule binding, which may be of use when considering the preferential docking of lead compounds into the reactive form of an enzyme versus the corresponding crystal structure. The Monod-Wyman-Changeux (MWC) model describes an unliganded form of the enzyme, which may be in equilibrium with numerous conformations17. The ligand may preferentially bind to one of these sampled receptor conformations. Alternatively, the Koshland-Nemethy-Filmer (KNF) model describes an “induced-fit” sequence, in which the ligand promotes a series of conformational changes in the receptor18. The virtual screening methodology presented in the current work is appropriate for systems that exhibit behavior similar to the MWC model, since receptor conformational sampling may be determined \textit{a priori} (i.e. the reactive conformation is simply an additional, albeit rare, form that may be elucidated by any number of methods, such as those described in Spies \textit{et al.}5b). However, systems exhibiting KNF behavior assume conformational states that may be unique for a particular protein-ligand complex, suggesting ambiguity in the receptor target.

\textbf{Acknowledgement.} This work was supported by NIH AI076830 (M.A.S.) and NIH AI057156 (S.R.B.).
Supporting Information Available: Experimental and computational methods, detailed results, controls. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES.

CHAPTER 2: HYBRID STEERED MOLECULAR DYNAMICS-DOCKING: AN EFFICIENT SOLUTION TO THE PROBLEM OF RANKING INHIBITOR AFFINITIES AGAINST A FLEXIBLE DRUG TARGET.

Abstract

Existing techniques which attempt to predict the affinity of protein-ligand interactions have demonstrated a direct relationship between computational cost and prediction accuracy. We present here the first application of a hybrid ensemble docking and steered molecular dynamics scheme (with a minimized computational cost), which achieves a binding affinity rank-ordering of ligands with a Spearman correlation coefficient of 0.79 and an RMS error of 0.7 kcal/mol. The scheme, termed Flexible Enzyme Receptor Method by Steered Molecular Dynamics (FERM-SMD), is applied to an in-house collection of 17 validated ligands of glutamate racemase. The resulting improved accuracy in affinity prediction allows elucidation of the key structural components of a heretofore unreported glutamate racemase inhibitor ($K_i = 9 \mu M$), a promising new lead in the development of antibacterial therapeutics.

Introduction

The grand challenge of computer-aided drug discovery and design is the ability to rank-order the binding affinity of known ligands/inhibitors at a reasonable level of both accuracy and precision. This allows one to predict potential chemical modifications of an inhibitory scaffold class with high confidence, which offers a potentially transformative tool for medicinal chemists. However, current methods have not displayed substantial progress.

Docking and scoring methods used on single crystal structures (or accurate homology models) have been shown to perform well at both ligand

placement and distinguishing binders from non-binders (i.e., enrichment studies). Furthermore, docking and scoring has worked well in the realm of virtual screening (VS), where the goal is to enrich test sets with novel binding scaffolds with approximately micromolar equilibrium dissociation constants\(^1\). However, problems persist here as well, as recently reviewed by Martha Head\(^1\). Nevertheless, all current docking and scoring schemes completely lack the ability to rank-order drug leads at the level of resolution necessary for efficient drug optimization. There are a plethora of docking packages and approaches that account for receptor flexibility\(^2-7\), by employing various versions of ensemble docking, and show improvements in ligand placement versus single crystal structure cross-docking. However, it should be emphasized that none of these approaches has demonstrated any improvements in rank-ordering relative ligand binding affinities. The current consensus is that affinity rank-ordering is beyond the means of any simple scoring function, even when flexibility is taken into account\(^1, 8-10\).

Late-phase drug discovery depends critically on the ability to predict how affinity to a 3D pharmacophore changes with the structure of the lead compound. The particular role that relative free energy calculations play in the drug lead optimization process has been recently reviewed\(^9, 11\). More sophisticated treatments to directly calculate the free energy of binding of a ligand to a target have made noteworthy progress in the last decade, and have recently been reviewed by Shirts et al.\(^9\) On the other hand, direct free energy calculation methods based on molecular dynamics (MD) simulations such as thermodynamic integration (TI)\(^12\) and weighted histogram analysis method (WHAM)\(^13, 14\) are both technically challenging to implement and usually very computationally expensive. Furthermore, there is not yet a wide consensus that such methods meaningfully improve rank-ordering, relative to well designed endpoint methods that utilize implicit solvation models (MD/MM/PBSA/GBSA)\(^9, 15\). Additionally,
even the most inexpensive TI and WHAM-based calculations of binding free energies are certainly not applicable to large numbers of compounds.

Hybrid MD/Docking studies have recently shown progress at improving affinity rank-ordering relative to docking against a single crystal structure[16], but rely on multiple docking simulations for every ligand tested. Here we present a novel hybrid method for accurate and precise affinity rank-ordering of ligands against a challenging enzyme drug target, which employs a combination of steered molecular dynamics (SMD) simulations, ensemble docking and solvation free energy calculations of the enzyme. The method has been termed Flexible Enzyme Receptor Method by Steered Molecular Dynamics (FERM-SMD), and gives outstanding correlations with experimental values at a fraction of the simulation costs of methods that rely on extensive MD-based sampling (\textit{vide infra}). SMD yields information beyond the normal MD timescale (10s to 100s of ns) by applying a harmonic force potential along a defined path. Although the magnitude of the forces and timescales employed may not be compared to the experimental (i.e., \textit{in vitro}) studies, it has been shown that SMD simulations have accurately predicted macromolecular behavior, often with short simulation times. SMD simulations have been used to determine a variety of macromolecular phenomena, including binding/unbinding of small molecule-protein complexes, protein-protein adhesion and stretching of muscle proteins[17-20].

The receptor employed to test this hybrid SMD/Docking approach to ligand affinity rank ordering is the enzyme glutamate racemase (GR), which catalyzes the reversible isomerization of L- to D-glutamate[21], a key step in synthesis of the peptidoglycan cell wall of Gram-positive and -negative bacteria[22], and is accordingly a recognized drug target for development of antibiotics. GR is a member of the pyridoxal phosphate-independent family of racemases and epimerases, which have been the subject of recent mechanistic and structural advances[23-30]. Knockout studies have shown that the absence of an active form of GR is lethal for the target cells[31]. Despite attempts from several academic and
pharmaceutical labs, progress in lead discovery and therapeutic development based on GR inhibition has been limited. Successful leads (IC$_{50}$’s in the low μM- and high nM-range) are limited to a competitive class of 4-substituted glutamate analogs$^{[32]}$, an uncompetitive class of pyrazolopyrimidinediones$^{[33]}$, and two competitive inhibitors located via virtual screening against GR transition state structures$^{[29]}$. GR is a challenging system to study in silico due to its inherent flexibility. This is not an uncommon problem with enzyme targets, and undermines the core assumption of the majority of tools used in CADD (i.e., drug design targeting a unique receptor structure). The ligand set employed here, a total of 17 compounds, is composed entirely of validated, competitive GR inhibitors (with the exception of D-glutamate, the native substrate) discovered in-house from previous virtual screening campaigns against GR as described by Spies and coworkers$^{[26]}$.

Contrary to the technique successfully employed by Spies and coworkers$^{[26]}$ as well as Whalen and coworkers$^{[29]}$, which focuses on targeting an enzyme conformation related to the chemical step of the catalytic cycle (i.e., the catalytic transition state), this study attempts to represent receptor flexibility with conformations sampled in the process of substrate unbinding. In this study, we present the utilization of FERM-SMD in the elucidation of the structure-affinity relationship of a novel competitive GR inhibitor (heretofore unreported), which displays a K_i of 9 μM (the lowest K_i yet reported for a GR inhibitor). Importantly, the rank-ordering results presented here meet or exceed a number of critical accuracy and precision thresholds often cited as performance standards in CADD.

Results

Discovery of Glutamate Racemase Inhibitors of Varying Scaffolds and Potencies.
All ligands referred to in this study fall into two categories based on their method of selection for use: 1) those identified from a previous \textit{in silico} screening study and 2) glutamate analogs (See SI Data for a full account of the source of active compounds). The group of ligands identified from virtual screening can be further categorized into: 1) hits originally ranked in the virtual screening study and 2) hits derived from ranked compounds but not present in the original library of compounds. Co-crystal structures exist only for compounds 4 (D-glutamate, PDB 1ZUW), 16 (citrate, PDB 2JFV), and 17 (tartrate, PDB 2JFW). Despite being co-crystallized with GR previously, inhibition by compounds 16 and 17 had not been characterized until now. All compounds derived from virtual screening underwent full structural characterization as well as controls for non-specific inhibition, which can be found in the Supplemental Information (Fig. B.6 and B.7).

All compounds were assayed for inhibition against glutamate racemase from \textit{Bacillus subtilis} (RacE, abbreviated in this study as GR) in-house. Compounds 2, 3, and 9 were presented previously as being competitive inhibitors of BsGR by our group\cite{26, 29}. Compounds 1, 5-8, and 10-17 are presented here for the first time as being inhibitors of GR. Compound 4 is the D-enantiomer of the native substrate, glutamate. Inhibitors discovered here range in potency from low-µM (K\textsubscript{i} = 9 µM) to high-mM (IC\textsubscript{50} = 50+ mM), a range of 5 log-units (Fig. B.4). Additionally, this set of 17 ligands is unique in its wide diversity of structures (see Table B.1 for all structures), a testament to the flexibility of GR in that the active site can accommodate inhibitors with solvent accessible volumes ranging from 307 Å3 to 482 Å3. Worth highlighting is a promising new class of GR inhibitors represented by 1 and 6. Compound 1 is particularly impressive in that it possesses a ligand efficiency of 0.53 kcal/mol/heavy atom and is a verified competitive inhibitor (Fig. B.4, as verified by global fitting to varying inhibition models). This high ligand efficiency may facilitate the development of a nM inhibitor that maintains a low molecular weight\cite{34}. The scaffolds of these sulfonate-containing aromatic compounds offer an assortment of possible
modifications that have the potential of increasing the potency into the nM-range. Additionally, this scaffold lies in a similar chemical space as known therapeutics (particularly, the recently reviewed class of sulfa drugs\[35\]), indicating an increased likelihood of bioactivity\[36-40\].

Docking to the GR Crystal Structure Gives Little-to-No Information About Rank Order of the Ligand Set.

Docking of inhibitors to a single crystal structure of glutamate racemase from *B. subtilis* (PDB 1ZUW) results in a poor Spearman correlation coefficient (denoted, R) between predicted and actual binding energy (Fig. 6, R = 0.53). Specifically, this method of docking and scoring more often errs on the side of overestimating the potency of inhibitors (Table B.1 for affinity predictions). A handful of inhibitors displayed inhibition in the low mM range (IC$_{50}$ = 1-10 mM) but were predicted by docking to possess binding constants in the hundreds and in some cases even tens of µM. This trend of overestimation of affinity would indicate that an unfavorable component of complex formation is not being accounted for in this method. An important corollary of the above is that the RMS error (1.2 kcal/mol) from the linear regression is beyond the limit for what is considered “practical accuracy” (1 kcal/mol)$^{[3,41]}$, which reduces the usefulness of this correlation in structure-based drug design.
Figure 6. Correlation of binding energy for 17 inhibitor-GR complexes as predicted by docking to the crystal structure and experimental-derived binding affinities (as Kᵢ or IC₅₀ values), many of which are presented here for the first time. Experimental results were determined using circular dichroism or a pre-established colorimetric coupled-enzyme assay, depending on the optical activity of inhibitor compounds. Docking studies were conducted using a single monomer of GR from the previously solved co-crystallization of GR from *B. subtilis*, RacE, with D-glutamate (1ZUW). Ligands were allowed to explore space limited to the GR active site. Only the predicted binding energy of the top-ranked binding pose for each inhibitor is represented on the graph. Data is fit to a semi-log regression and the Spearman correlation coefficient, R, is noted. The ± 1 kcal/mol threshold is marked (dotted lines).

Classical MD Simulations of GR-Ligand Complexes Show Receptor Heterogeneity at the Equilibrated Active Site.

Half-nanosecond MD simulations were conducted on the top-docked poses of all GR-inhibitor complexes, following simulated annealing energy minimization, in an attempt to better represent the true complex and improve
binding energy predictions. Time series data for all of the MD trajectories of GR-inhibitor complexes are located in Figure B.5 of the SI. We observed that the final equilibrated complexes varied widely in their degree of opening at the active site (i.e., the area of the active site entrance). The area is defined by the γ-carbons of four proline residues that form a plane at the mouth of the active site (residues 41, 44, 146 and 150). The spectrum of areas induced by the presence of inhibitor ranged from 47.4 Å² (for 1) to 63.6 Å² (for 7). This metric for opening is also used in the SMD studies (vide infra). Figure 7 illustrates the opening metric.

Figure 7. Image of GR (white surface area) with 3 (stick, blue/red/green) bound in active site. The γ-carbon atom of four proline residues (red; Pro41, Pro44, Pro146, Pro150) designate the perimeter of the active site entrance. Five distances (yellow) composing two irregular triangles are calculated to approximate the area of the active site entrance of varying inhibitor-GR complexes after energy minimization and 500 psec of molecular dynamics simulation.
It is reasonable that large changes in the degree of opening of the active site, and generally large changes in the structure of GR (which seem to be captured or represented in the distribution of equilibrated GR-ligand complexes) will alter physical parameters that determine the ligand affinity. For instance, one would expect large changes in the protein solvation energy of a very open GR complex versus a closed complex, due to its very polar and H-bond donating interior. This question is best addressed by the use of steered MD simulations (vide infra), since high energy transitions on the ligand binding trajectory can be obtained without prohibitively long simulation time.

Steered MD Unbinding Simulation of the Native Substrate (Glutamate) Shows a Correlated Pattern between Protein Solvation Energy and Area of Active Site Opening.

In order to investigate if there is a relationship between the degree of opening and the protein solvation energy we employ SMD to capture a reasonable ensemble for the entire unbinding process for the substrate, D-glu. By plotting the area of the active site entrance and the protein solvation energy as a function of the distance between glutamate and GR (obtained from our SMD simulations), a pattern between protein conformation and solvation (Fig. 8) becomes apparent. The active site entrance area opens incrementally as glutamate is being pulled out of the active site, suggesting that the active site is closed tightly in the Michaelis-Menten complex and conformational changes must occur to accommodate the passage of glutamate back through the entrance during product release. The entrance area reaches a maximum when the glutamate center of mass is 46.7 Å from the center of mass of GR and this maximum is immediately followed by a decrease in entrance area indicating the relaxation of GR upon complete substrate release into bulk solvent. This SMD simulation agrees with the previous notion that GR undergoes conformational changes during its catalytic cycle, and now shows that these conformational
changes correspond to significant changes in the protein solvation energy, which will directly affect complex affinity (i.e., more negative protein solvation energies will contribute to weaker ligand binding; *vide infra*).

Figure 8. a) Area of active site entrance and corresponding protein solvation energy at varying time points along the trajectory of a Steered Molecular Dynamics simulation. The x-axis corresponds to the distance between the center of the mass of D-glutamate and the center of mass of GR as D-glutamate is being pulled out of the active site. The area of the active site was calculated as explained above. Protein solvation energy was calculated for each time-point using the Poisson-Boltzmann method with an internal dielectric of 25, a solvent dielectric of 78, and a salt concentration of 0.1 M. The region shaded in yellow represents entrance areas observed for inhibitor-GR complexes after standard MD simulation. Twelve structures were selected arbitrarily for analysis. Arrows indicate structures selected for use in ensemble docking. b) The user-defined exit vector for D-glutamate (shown in stick rendering) from the active site of *B. subtilis* GR employed for SMD unbinding simulations is shown as a red arrow leaving the active site entrance. The external force was applied only along the pulling vector. The glutamate was not constrained in the plane orthogonal to the pulling vector (see Computational Methods section for a detailed description of the SMD unbinding).
The data from the SMD simulation in Figure 8 covers a relatively large range of openings, relative to the areas of opening seen in equilibrated GR-ligand complexes obtained from classical MD simulations (Fig. B.5). The range of openings seen in GR-ligand complexes from classical MD is depicted by the yellow shaded area in Figure 8 (i.e., opened GR structures captured by ligands may be a subset of structures in the SMD D-glu-unbinding trajectory). If the distribution of conformations of GR is relatively independent of the nature of any particular active site ligand, then a single SMD unbinding simulation with the natural substrate (which is also the ligand in the original co-crystal structure) would be a sufficient approximation of the liganded ensemble of GR, and obviate the need for unbinding simulations for any particular ligand of interest. In other words, this simple, single SMD with D-glu is used to construct a new target, in lieu of the crystal structure. It is important to stress that the SMD simulation is only ever performed one time (i.e., on the native substrate), which is used to prepare the new target ensemble, which will be docked against the library of ligands used in this study.

The Flexible Enzyme Receptor Method for Steered-MD Docking (FERM-SMD).

The following docking and scoring method incorporates the structural data obtained from the SMD procedure described above for the binding trajectory of the native substrate with GR in order to improve ligand rank ordering relative to classical docking (where only a single structure is used as a receptor). The dominant trend in the erroneous rank-ordering of classical docking with GR is both the assignment of high affinities to weak inhibitors and the large scatter in the correlation between predicted and experimental binding energies. The incorporation of an ensemble of structures taken from the GR-substrate
unbinding trajectory allows one to largely correct for these problems with classical docking, as described below.

Figure 8 clearly shows the trend in solvation energy of GR with opening. When calculating ligand binding free energy values with endpoint methods (reviewed recently\(^4\)), \(\Delta G_{\text{bind}}\) is composed of constituent parts of a thermodynamic box that involves solvation of the individual components. The binding energy expression is:

\[
\Delta G_{\text{bind,solv}} = \Delta G_{\text{bind, vacuum}} + \Delta G_{\text{Solv,complex}} - \left(\Delta G_{\text{Solv,ligand}} + \Delta G_{\text{Solv, receptor}} \right) + \Delta G_{\text{np}} \quad \text{Eq. 1}
\]

Equation 1 shows that the more negative the value of \(\Delta G_{\text{bind,solv}}\) then the more positive will be the overall \(\Delta G_{\text{solv, receptor}}\) for a given ligand, assuming all other parameters are constant. Thus, structural changes in the receptor that lead to more favorable solvation energies will result in more unfavorable (i.e., weaker) binding of a given ligand, assuming that the solvation energy of the GR-ligand complex is relatively unchanged.

Our hypothesis is that this is the major feature that is causing overestimation of ligand affinity for GR using classical docking. For the case of GR, this means that the larger openings of GR-ligand complexes and their more favorable solvation energies of their corresponding protein component would lower binding affinities of ligands that populate those states (assuming that the GR-ligand complex solvation energy is not greatly different than the fully closed state). This concept is illustrated in Figure 9, which depicts a central manifold that represents the native substrate (dark grey structure) unbinding trajectory, which has been elucidated with SMD (Fig. 8a). A substrate analog (black structure, upper manifold of Fig. 9) has a high affinity for the closed state (which closely matches the crystal structure), and little affinity for more opened states; this represents a situation where binding affinity would be well predicted using classical docking methods, and approximates a true positive. On the other hand,
some compounds (light grey structure, lower manifold of Fig. 9) will have an affinity for multiple structures along the ligand unbinding trajectory. To the extent that open forms are highly complementary to a given ligand, the classical docking assumptions fail, for numerous reasons, as outlined above. Therefore, compounds that "capture" or form complexes with more open GR structures should be identified and have a weighted docking score that accurately reflects the reduced affinity. A weighting scheme based on a statistical thermodynamically-determined ensemble from SMD is one approach to construct a corrected binding energy calculation. However, energies obtained via SMD are notoriously not reflective of experimental conditions[18,19]. In the FERM-SMD scheme presented below, the inhibitor-enzyme distribution is determined by a weighting factor based on the relative binding affinity of a given ligand within the SMD ensemble, while the $\Delta\Delta G_{\text{protein,solv}}$ (i.e., the change that occurs in the open state relative to the closed state) is used to correct the predicted binding affinity of each inhibitor-enzyme complex, as described below.
Figure 9. Scheme for Hybrid Steered Molecular Dynamics-Docking and how it might elucidate rank-order decoys (RODs) amongst a set containing true positives. In the boxed region is a simplified representation of steered molecular dynamics (SMD) including the removal of substrate (yellow) along the indicated vector (arrow), and resulting in the subsequent opening of GR. Structure ascertained from SMD are then used as receptors in docking of inhibitor 1 (blue) and inhibitor 2 (red). A true positive (as is the case for inhibitor 1) will result in high affinity binding to the closed form ($K_d = X$) and low affinity binding to the open form ($K_d > X$). A rank-order decoy (as is the case for inhibitor 2) will result in high affinity binding to the closed form ($K_d = Y$) but also high affinity binding to the open form due its ability to also bind an alternate binding mode only present in the open form ($K_d < Y$).

The FERM-SMD/Docking weighting and correction method is summarized as follows:
where, \(\text{FERMScore} \) is the predicted binding metric (more negative value corresponds to tighter binding); \(X_n \) is the correction factor for docking to the \(n^{th} \) structure of an ensemble of target structures obtained by steered MD unbinding of the natural substrate (i.e., a single SMD simulation used for all docking studies); \(\Delta G_{\text{bind}n} \) is the predicted change in free energy for binding of a given ligand to the \(n^{th} \) structure of an ensemble of target structures obtained from SMD, as described above; \(\Delta G_{\text{solv}n} \) is the change in solvation energy of the \(n^{th} \) structure of the SMD ensemble, going from a low dielectric constant to that of aqueous solvent, by numerically solving the Poisson-Boltzmann (PB) equation; \(\Delta G_{\text{solvx}} \) is the change in solvation energy of a reference structure of the SMD ensemble (here the most closed or starting structure), going from a low dielectric constant to that of aqueous solvent, using PB approaches (as above); \(a_n \) is the weighting factor for docking a given compound to the \(n^{th} \) structure of the SMD ensemble; \(K_i \) is the equilibrium dissociation constant obtained for docking a given ligand to the \(n^{th} \) structure of the SMD ensemble using AutoDock. \(\sum_{\text{closed}}^{\text{opened}} K_i \) represents a summation of all of the calculated equilibrium constants determined via docking to the SMD ensemble for ligand \(\phi \).

The FERM-SMD/Docking approach is to simply dock any given ligand to representative structures from a single SMD simulation from Figure 8 (performed on D-glu), which are indicated by the black arrows (in Fig. 8A), and span the range from essentially fully closed to the most open (for overlay of
structures, see Fig. B.1). When applied to the 17-ligand set of GR, the correlation between predicted and experimental binding energies increases to $R = 0.79$ with an RMS error of 0.70 kcal/mol. This is a significant improvement relative to orthodox docking, in both of the critical areas of R value and the RMS error (i.e., scatter). Importantly, these large improvements were obtained with little additional simulation time (*vide infra*). This is a noteworthy improvement in the field of predicting ligand affinities and performs well against both expensive free energy approaches (TI and WHAM$^{[13, 43, 44]}$) and significantly surpasses most end point methods (MD/MM/PBSA/GBSA type$^{[15, 43, 45, 46]}$) as well as other ensemble MD/Docking methods$^{[16]}$; when one considers the improvement in rank-ordering (relative to standard docking) of a set of ligands per simulation time, relative to more expensive techniques, the FERM-SMD/Docking approach is exceedingly attractive. This will be fully discussed below.

![Graph](image)

Figure 10. Correlation of binding free energies as predicted by FERM-SMD/Docking and experimental binding affinities from various inhibitor-GR complexes. FERMScore values are predicted using the FERM-SMD/Docking scheme described above. Experimental binding constants are approximates
based on experimentally-derived K_M, K_i, and IC_{50} values. Data is fit to a semi-log regression and the Spearman correlation coefficient is noted. The ± 1 kcal/mol threshold is marked (dotted lines).

In order to explore whether significant improvement in the correlation could be attributed simply to ensemble docking regardless of where receptor structures were acquired, the FERM-SMD/docking method was performed where SMD-derived structures were replaced with three structures acquired from a 16-nanosecond classical MD simulation of an apo-RacE monomer. QR analysis was conducted on snapshots from the classical MD simulation to provide the three most structurally-distinct snapshots and best represent the sampled structural space. QR analysis has been shown previously to successfully distill MD results structurally without losing representation energetically.$^{[47,48]}$. With all other aspects of the scheme remaining the same, this modified method did not improve upon the correlation achieved by orthodox docking (Fig. B.3). This finding reaffirms the ability of SMD to sample a greater structural space and this supports the idea that relatively large global fluctuations are a key parameter in correcting rank ordering with a flexible target. Also worth noting, individual docking to any one of the three structures acquired from SMD does not result in an improvement in the correlation over orthodox docking to the crystal structure (Fig. B.2), pointing to the importance of ensemble docking and ruling out the possibility of FERM-SMD’s success being simply the result of a single structure providing a more optimal receptor.

A particularly difficult challenge for any computational method is to rank order congeneric sets. All of the compounds in our 17 ligand set have a low molecular weight (124-260) and negative charges, consisting of carboxylates and/or sulfonates (except 2, which has an oxyanion), with some variation in the number of rotatable bonds. If one examines, for instance the subset of compounds that have single sulfates, and compares the rank-order performance
of orthodox docking versus FERM-SMD/Docking (Table 3, see Table B.1 for a complete table of predicted and experimental affinities), it is apparent that the former results in a narrowing and incorrect ordering, while the latter results in a spreading out of the affinities that mirrors the experimental trend. It is instructive to examine how the SMD ensemble is used to dock and score compounds into a more realistic rank-ordering. Figure 11 compares the "well-behaved" 1 which possesses a relatively enhanced binding affinity for the closed form of GR (Fig. 11a and 11b) to 10, which tends to partition into more open forms of GR, relative to 1. This differential partitioning would pose serious problems for accurate rank-ordering using classical docking, but is corrected using FERM-SMD scoring.

Table 3. Predicted and experimental binding constants of select sulfonate-containing ligands to exemplify the superior rank-ordering of the FERM-SMD method.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Predicted Binding Constant (mM)</th>
<th>Actual Binding Constant (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crystal Only</td>
<td>FERM-SMD</td>
</tr>
<tr>
<td>1</td>
<td>0.29</td>
<td>0.002</td>
</tr>
<tr>
<td>6</td>
<td>0.76</td>
<td>0.44</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
<td>0.91</td>
</tr>
<tr>
<td>15</td>
<td>62.0</td>
<td>8.9</td>
</tr>
</tbody>
</table>

*Relative binding constants are predicted by docking to the crystal structure ("Crystal Only") or by docking to the SMD-derived ensemble ("FERM-SMD") and calculated using the logarithmic regression shown in the correlations in Figure 6 (y = -0.334ln(x)+5.883) or Figure 10 (y = -0.163ln(x)+1.194), respectively.
Figure 11. Example of partitioning of false positive (rank-order) decoys into open forms of GR from the SMD ensemble used in the FERM-SMD/Docking procedure. Panels a and b illustrate the case of a "well behaved" ligand, in that it does not partition into opened structures; Panel a is the ligand map for the top docked pose of 1 to the closed form, which is strongly favored in this case; panel b is the top docked conformation into an opened structure from the GR SMD ensemble, which has a strongly diminished affinity for the target, showing a change in the hydrogen bond donors to sulfate and more solvent exposure of the ligand relative to the closed complex. Panel c and d summarize the binding pattern of the rank-order decoy, 10, which partitions into the more opened forms of GR (relative to compound 1); the FERM-SMD/Docking approach identifies and corrects the scores of these rank-order decoys, as described in the text.
Discussion

Presented here for the first time is a set of *bona fide* inhibitors of glutamate racemase (13 of the 17 ligands analyzed by FERM-SMD/Docking) spanning a large range of potencies and scaffolds. Especially interesting is the discovery of a unique family of sulfonate-containing aromatic compounds characterized best by 1, which has the lowest K_i (9 µM) of any GR inhibitor yet characterized. It is noteworthy that several studies have identified antibacterial and antifungal activity as well as the low toxicity of 1 (and derivatives thereof)\cite{38,39}, however the target and nature of the bioactivity were not determined. Compound 1 is one of our most promising leads for optimization, and thus it is essential that the structural moieties responsible for its relatively high affinity and ligand efficiency be clarified. Not surprisingly, Figure 11 indicates that rank-ordering, and thus logical structure based design is problematic without increased accuracy and precision in the prediction of binding free energies. Surmounting this barrier will facilitate the development of sorely-needed antibacterial therapeutics.

It has become clear that the main failure of docking for a flexible target, such as GR, is the gross assumption of a single representative structure for the receptor. Previous studies have reported the successful implementation of ensemble docking in virtual screening as a means of addressing receptor flexibility and improving enrichment and the accuracy of ligand placement\cite{2,7,49}. This study aims at extending the reach of classical docking into the realm of affinity rank-ordering by enhancing target information (i.e., steered ensemble docking). The wide variety of programs and approaches for representing local receptor flexibility by using thermal sampling techniques mixed with classical scoring functions are not appropriate for solving the affinity rank-order problem. The authors are not aware of any published study in which such approaches are tested for the ability to rank-order validated sets of inhibitors.
The FERM-SMD/Docking approach represents receptor flexibility in an inexpensive manner by utilizing ensemble docking of SMD-derived structures, which when combined with solvation free energy calculations, corrects for previously inaccurate rank-ordering of ligands. This relatively inexpensive SMD simulation provides a much improved target (ensemble) than the single crystal structure used in orthodox docking and virtual screening. The improvement in Spearman correlation coefficient \(R = 0.79 \) and precision \(\text{RMSE} = 0.7 \text{ kcal/mol} \) due to the FERM-SMD/Docking, places this approach amongst the highest accuracy (as measured by rank-order correlation) methods that have been published. The best methods for achieving high accuracy and precision are mostly alchemical approaches (e.g., TI)\(^9, 11, 44, 50, 51\), reaching \(R \) values in the range of 0.72 to 0.85 and \(\text{RMSE} \) values in the range of 0.4 kcal/mol to 0.7 kcal/mol. However, several studies achieved high accuracy \((R > 0.7) \) using endpoint approaches (e.g., MM/GBSA\(^{15}\)), but these often had much lower precision than alchemical methods\(^9, 15, 43, 45, 46\). Several authors have cited a 1 kcal/mol threshold value as having real benefits in the workflow of lead optimization\(^9, 41\). However, the benefits of precise prediction of relative ligand affinities extend beyond simple synthetic convenience. This is especially true in the rapidly changing landscape of natural products synthesis, as recently reviewed by Li and Vederas\(^{52}\). Currently, the intersection of drug discovery and natural products is characterized by great compound diversity and even greater synthetic expense, thus the importance of accurate rank-ordering goes beyond improvement of workflow and will most likely mean the difference between pursuit and abandonment of a candidate compound. Consequently, accuracy and precision is best achieved with either alchemical approaches or an efficient ensemble docking and scoring method, such as FERM-SMD or the Docking/MD/LIE of Stjernschantz and Oostenbrink (2010)\(^{16}\).

One recent and noteworthy study by Stjernschantz and Oostenbrink outlined the successful implementation of a hybrid docking and MD scheme that
employs end-point Linear Interaction Energy (LIE) calculations for cytochrome P450 2C9[16]. Under the assumption that a multitude of binding poses not only exist but each contribute to the overall binding affinity of a ligand to P450 C29, classical docking to a crystal structure was carried out and 4 pre-determined poses (of varying ligand orientation within the active site) were selected from the docking results. These select four complexes were then subjected to 2 nsec of MD simulation and binding energy calculations via LIE. The correlation of predicted and experimental binding energies of a set of 12 ligands was improved significantly (R=0.83, RMSE=0.7 kcal/mol) over ChemScore alone (R=0.55; the scoring function utilized by GOLD)[16]. This method is comparable in accuracy and precision to the scheme presented here but differs greatly in its computational requirement. Contrary to the FERM-SMD method, the method discussed above requires four individual MD simulations for each ligand. The FERM-SMD method uses approximately 50 psec production simulation time for the actual SMD, while alchemical methods often employ about 20 nsec per ligand, depending on the number of λ values used per transformation, often resulting in hundreds of nsec per entire ligand set[42].

Another study, by Colizzi \textit{et al.}[53], recognizes that orthodox docking fails to represent the true binding energy of a congeneric set of β-hydroxyacyl-ACP dehydratase inhibitors. By exploiting the power of SMD to capture conformational states that are otherwise not sampled by classical MD, the method developed in this study correctly partitions inhibitors into “active” (IC\textsubscript{50} values in the low μM-range) and “inactive” compounds by comparing the force profiles produced from individual inhibitor-unbinding SMD simulations. Like the study conducted by Stjernschantz and Oostenbrink, this method requires individual MD simulations for each inhibitor, a more costly undertaking than the single SMD simulation required by FERM-SMD. Additionally, the method developed by Colizzi \textit{et al.} has not yet demonstrated whether the generated force profiles have the resolution to allow for accurate rank-ordering of a set of ligands, only general partitioning of
inhibitors that vary in potency by a factor of at least two orders of magnitude (ie. an enrichment study).

Currently, the FERM-SMD method is not without limitations. Primarily, the applicability of the method is limited by the ability to correctly represent unbinding in a steered molecular dynamics simulation. Specifically, correct sampling is essential to the accuracy of the subsequent docking and scoring. For this system, the pulling vector used in SMD was easily estimated (as should also be the case for other enzymes with buried active sites and a single substrate entrance/exit). However, in the case of enzymes with large, poorly-defined active sites, determining the correct pulling vector for an unbinding SMD is far less trivial. If the unbinding (or binding) trajectory is non-obvious, elucidation may be achieved by multiple exit vector SMD simulations, which may significantly reduce the efficiency of the improvement in accuracy. However, even this may be preferable to performing alchemical calculations on a large set of ligands. Additionally, at this time, FERM-SMD is not an accurate means of calculating absolute binding free energies. It should be noted that a variety of MD sampling approaches have been used to determine precise absolute free energies of binding for one or a few compounds\cite{50, 54, 55}, with errors of only 1 or 2 kcal/mol, but here we only consider comparisons of methods for accurate and precise determination of relative binding free energy from validated sets of inhibitors.

Mobley \textit{et al.} suggested that it may be necessary to account for not only protein conformational changes alone, but also to determine the free energy differences associated with the conformational transitions in the receptor, in order to achieve free energy calculations with high accuracy\cite{50}. Indeed, FERM-SMD/Docking takes into account a correction based on estimated changes in the $\Delta G_{\text{Solv,Receptor}}$ between different structures of the ensemble, which are used to correct the docking score, where it is assumed that $\Delta G_{\text{Solv,Receptor}}$ is the dominant factor in free energy changes between structures in the ensemble. Thus, this parallels the predictions made by Mobley \textit{et al.} that not only would one have to
account for structural changes that occur in the target, but also to consider energetic changes that occur between such structures. However, it is surprising that a correction simply based on endpoint $\Delta G_{\text{Solv,Receptor}}$ using PB approaches would be sufficient to achieve the large enhancement seen in this study. This may be due to the accuracy of the AutoDock scoring function to predict ligand affinities (for binding to a single receptor structure, i.e., with no receptor flexibility), which includes empirically parameterized terms for ligand desolvation and entropy. Furthermore, the version of AutoDock used in this study (a module of the YASARA Structure package, YASARA Biosciences$^{[56]}$) employs a more sophisticated charge acquisition scheme than standard AutoDock packages, based on a semi-empirical quantum chemical RESP-like autoSMILES method$^{[57,58]}$.

In the future, it would be desirable to apply this method to other flexible enzyme targets in order to test the applicability of FERM-SMD/Docking across a range of enzyme classes as well as reveal any additional inadequacies or biases inherent to the system. As pointed out by Shirts et al., obtaining high-accuracy ligand binding data has been surprisingly problematic$^{[9]}$. However, the recently NIH-funded initiative, Community Structure-Activity Resource (CSAR)$^{[59]}$, has begun to address this problem by curating high quality binding and structural data from previously proprietary pharmaceutical databases.

A hybrid Steered-MD-Docking procedure has been described, which corrects the rank ordering of a set of 17 inhibitors of the highly flexible, antimicrobial drug target, glutamate racemase. The current study employs this technique in the elucidation of binding determinants for a new class of sulfonate GR-inhibitors, best exemplified by 1, which was shown in this study to be a competitive inhibitor with a K_i of 9 µM. This hybrid SMD-Docking approach is shown to have high accuracy, precision and efficiency (i.e., improvement in R value per total simulation time), when compared to the many other methods that attempt to predict binding affinities for protein-ligand complexation.
Materials and Methods

Materials. Inhibitor compounds were acquired from a variety of vendors. Chemical or common names are listed and catalog numbers as well as numeration utilized in the current study is noted in parenthesis. Croconic acid (2, LT00453399) was purchased from Labotest (Bremen, Germany). 4-Hydroxy-1,3-benzenedisulfonic acid (3, BAS 00124393) was purchased from Asinex (Moscow, Russia). From Sigma Aldrich (St. Louis, MO) we obtained the following: α-ketoglutarate (5, K1875), tartrate (16, 228729), D-glutamate (4, G1001), D-glucuronic acid (8, G5269), citrate (17, C8532), 4-pyridazine carboxylic acid (12, 297763), (R)-(+-)2-pyrrolidone-5-carboxylic acid (13, 422614), 2-hydroxy-5-nitrobenzenesulfonic acid (11, S364169), chloroaniline-4-sulfonic acid (6, S438774), and benzimidazole-2-sulfonic acid (1, 530646). Both dipicolinic acid (9, 02321) and L-pyroglutamic acid (14, 83160) were supplied by Fluka, while formylbenzenesulfonic acid (10, S0122) and methyl-propenesulfonic acid (15, M1408) were purchased from TCI America (Portland, OR). Compound 13a (7) was generously provided by Igor Komarov (Kyiv Taras Shevchenko University, Kyiv, Ukraine)\[60\]. The %-purity and method of purity analysis for each active compound is listed in Table B.1. Concerning the coupled-enzyme assay, all reagents were purchased from Sigma Aldrich: iodonitrotetrazolium (I8377), diaphorase (D5540), ATP (A7699), NAD+ (N7004), and L-glutamate dehydrogenase (G2501). All reagents related to buffer preparation for protein purification and circular dichroism were purchased from Sigma-Aldrich. Amicon centrifugal filtration devices were purchased from Millipore (Billerica, MA). Finally, HIS-Select Cobalt Affinity Gel (H8162) was purchased from Sigma-Aldrich.

Protein Expression and Purification. A 10 mL starter culture of LB medium with 100 μg/mL ampicillin was prepared from the stock *E. coli* BL21 (DE3) cells containing pET-15b plasmid (cells and plasmid acquired from Novagen/EMD
Biosciences [San Diego, CA]) with the gene encoding RacE from *B. subtilis* and grown overnight at 37 °C with rotation. The 10 mL starter culture was back-diluted into 1 L fresh LB medium with 100 μg/mL ampicillin. Cells were grown at 37 °C with shaking until the optical density at 600 nm reached 0.5-0.8. Protein expression was induced upon addition of a final concentration of 0.1 mM IPTG. Following induction, cells were grown for an additional 16-20 h at 37 °C with shaking (16 °C for mutant proteins). Cells were harvested by centrifugation at 5,000 x g for 15 min. Cell lysis was achieved through sonication (3x 20 sec cycles, 23 kHz and 20 W), using a 100 Sonic Dimembrator (Fisher Scientific). Insoluble materials were pelleted by centrifugation at 30,000 x g for 30 min and clarified lysate was applied to batch-style affinity chromatography using His-Select Cobalt Affinity Gel. Concentrated eluant was incubated at 37 °C for 15 min with 1 mM ATP and 1 mM MgCl₂ to remove high molecular weight contaminants suspected to be chaperones. Eluant was then diluted 10-fold with H₂O and submitted to ion exchange chromatography using a BioRad Uno Q1 column on a BioRad BioLogic DuoFlow HPLC. Pooled fractions were then exchanged into protein storage buffer (50 mM Tris, 100 mM NaCl, 0.2 mM DTT, pH 8.0) and concentrated utilizing a 10,000 MWCO Amicon centrifugal filter device. Finally, protein stocks were stored at a final concentration of 7-10 mg/mL with 20% glycerol at -20 °C.

Enzyme Kinetics via Circular Dichroism. Racemization of D-glutamate to L-glutamate by glutamate racemase (GR) was assayed by measuring molar ellipticity at 225nm continuously for 15 min using a JASCO J-720 spectropolarimeter (JASCO Inc., Easton, MD). IC₅₀ curves were acquired in the presence of 0.5 μM GR and 1 mM D-glutamate with varying concentrations of the inhibitor compound. Data was analyzed using the accompanying software, JASCO Spectra Manager v1.54A. Kᵢ values were acquired through global fitting of three Michaelis-Menten curves conducted in the presence of three distinct concentrations of inhibitor and 0.5 μM GR. Global fitting to varying inhibition...
models was completed using GraphPad Prism v5. All assays were performed at 25 °C.

Enzyme Kinetics via the Coupled-Enzyme Assay. For compounds whose contribution to the spectropolarimeter noise was too great to acquire accurate kinetic curves (i.e., compounds required in excess or compounds with substantial optical activity), the previously established coupled-enzyme assay for measurement of D-glutamate to L-glutamate racemization was utilized\(^6\). \(IC_{50}\) curves and \(K_i\) values were acquired in the same manner in the presence of 0.38 \(\mu M\) GR. Absorbance at 500 nm (production of reduced INT) was measured using a Varian Cary-300 UV-VIS spectrometer (Agilent Technologies). Data was acquired using the accompanying Cary Kinetics software. All assays were performed at 25 °C.

Classical MD Simulations. The molecular dynamics simulations were performed with the YASARA Structure package version 9.11.9 (YASARA Biosciences)\(^5\). A periodic simulation cell with dimensions of 54.99 Å, 64.39 Å, and 57.77 Å was employed with explicit solvent, using the monomer (C chain) of PDB 1ZUW (\(B.\) \textit{subtilis} RacE GR with ligand D-glu). The AMBER03 force field was used with long-range electrostatic potentials calculated with the Particle Mesh Ewald (PME) method, with a cutoff of 7.864 Å\(^6\). The substrate force field parameters were generated with the AutoSMILES utility\(^5\), which employs semi-empirical AM1 geometry optimization and assignment of charges, followed by assignment of AM1BCC atom and bond types with refinement using RESP charges, and finally the assignments of general AMBER force field atom types. The hydrogen bond network of GR is optimized using the method of Hooft and coworkers\(^6\), in order to address ambiguities from multiple side chain conformations and protonation states that are not resolved by the electron density. YASARA’s pKa utility was used to assign pK\(_a\) values at pH 7.0\(^6\). The box was filled with water, with a maximum sum of all bumps per water of 1.0 Å, and a density of 0.997 g/ml. The simulation cell was neutralized with NaCl (0.9% final concentration; %
Waters were deleted to readjust the solvent density to 0.997 g/ml. A short MD was run on the solvent only. The entire system was then energy minimized using first a steepest descent minimization to remove conformational stress, followed by a simulated annealing minimization until convergence (<0.05 kJ/mol/200 steps). The MD simulation was then initiated, using the NVT ensemble at 298 K, and integration time steps for intramolecular and intermolecular forces every 1.25 fs and 2.5 fs, respectively.

Steered Molecular Dynamics Simulation. The singular steered MD simulation was carried out using the YASARA Structure package v9.11.9. Before applying the steering potentials in the production phase, the classical MD procedure, described above, was executed. The production phase consisted of external steering forces applied to the center of mass of the GR enzyme and the glutamate ligand. A vector leading out of the constricted entrance to the active site of GR was selected (shown in Fig. 8B, depicted as a red arrow) for constant velocity pulling of the glutamate ligand into bulk solvent. The velocity of the ligand in the pulling vector was set in a window of 0.2 to 0.5 Å/ps using a scaled pulling force of 5000 pN. The large magnitude of the applied steering force constant allows one to make a stiff spring approximation, which has been shown to significantly minimize fluctuations of the pulling coordinate from one trajectory to another. The external force was applied only along the pulling vector. The glutamate ligand was not constrained in the plane orthogonal to the pulling vector. The forces and the velocity in the pulling direction were calculated at every time step. The entire production simulation consisted of ~ 50 ps, which resulted in a translocation of the glutamate ligand a distance of ~ 30 Å from the active site of GR.

Preparation of Docking Receptors. Twelve structures were selected from the SMD simulation at regular time intervals and active site entrance area was approximated by calculating the area of a plane defined by four points (the γ-carbons of Pro41, Pro44, Pro146, and Pro150). Three structures were selected
from that subset to reflect three points, approximately equidistant, along the continuum of active site entrance areas. The structures correspond to the following distances between the centers of mass of the glutamate molecule and GR: 28.8, 43.7, and 46.7 Å, respectively. Structures were prepared for virtual docking by first deleting all water molecules, salt ions and the substrate, D-glutamate. A simulation cell was centered on the catalytic cysteine residues, Cys74 and Cys185, and dimensions of the cell were adjusted for individual structures to encompass the entirety of the active site. The same preparation was used for docking to the crystal structure of RacE from *B. subtilis* (1ZUW, chain C).

Virtual Docking of Known GR Ligands. Ligands were constructed and minimized in MOE v2009.10\(^{[68]}\) and imported into YASARA for virtual docking. YASARA v9.11.9\(^{[56]}\) employs AutoDock 4\(^{[58]}\) in its docking functionality. AutoDock uses a Lamarckian genetic algorithm to sample ligand conformations and binding modes. The following general docking parameters were used: 25 independent docking runs, each with a total of \(2.5 \times 10^6\) energy evaluations, a torsional degrees of freedom value of 8, grid point spacing was left at the default of 0.375 Å, and the force field selected was AMBER03. Specific to the genetic algorithm, the following parameters were used: a population size of 150, \(2.7 \times 10^4\) generations, an elitism value of 1, a mutation rate of 0.02, and a crossover rate of 0.8. Final poses were considered distinct if they varied by > 5 Å RMSD. AutoDock uses a semi-empirical free energy force field to predict free energies of binding which accounts for intermolecular and intramolecular energies, as well as charge-based desolvation. Calculated binding energies and corresponding binding constants, acquired from the docking output file, were applied to the FERM-SMD correction equation (see Results). All correlation datasets are fit to a semi-log equation and indicated R values represent the Spearman’s coefficient of rank correlation as calculated by GraphPad Prism v5.0.
Protein Solvation Energy Calculations. The protein solvation energy was calculated for each structure attained from the SMD simulation using the Poisson-Boltzmann method. In the Poisson-Boltzmann method, the calculated solvation energy is based on numerical solution of the differential Poisson equation (also called the finite difference method) and the solvent is represented as a continuum having a relatively high dielectric constant, while the protein and ligand may be viewed as point charges projected onto a grid in a low dielectric continuum. Structures were prepared by deleting all water molecules, salt ions and substrates. The internal dielectric was set to 25, which resulted in more consistent energy predictions between structures and was thus determined to be most representative for the highly-hydrophilic glutamate racemase active site. The overall trend in solvation energies over the span of the SMD was the same with an internal dielectric of 2 (Fig. B.8). The external dielectric was set to 78 and the salt concentration was set to 0.1 M. Solvation energies were reported in kcal/mol.

Acknowledgements

This work was supported by NIH AI076830 (M. A. S.). Special thanks to Dr. Keith Westcott for his contribution to the Keith R. Westcott Graduate Student Education Fund (K. L. W.).

References

[56] (2010). YASARA (9.11.9 9.11.9). Vienna, Austria, YASARA Biosciences GmbH.

CHAPTER 3: IN SILICO OPTIMIZATION OF A FRAGMENT-BASED HIT YIELDS BIOLOGICALLY ACTIVE, HIGH EFFICIENCY INHIBITORS FOR GLUTAMATE RACEMASE.

Abstract

A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase, is optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid MD-docking and scoring scheme, FERM-SMD, is utilized to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high and low affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency is increased approximately 4-fold against glutamate racemase from the model organism, B. subtilis. Lead derivatives show 2- to 4-fold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis, over E. coli and S. aureus, show dependency on the chemical substituent added to the parent scaffold. Finally, insight is gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The result of this study is a novel small molecule inhibitor of GR with the following characteristics: $K_i = 2.5 \mu M$, LE = 0.45 kcal/mol/atom, LiPE = 6.0, MIC$_{50}$ = 260 μg/mL against B. subtilis, EC$_{50,\text{lysis}}$ = 520 μg/mL against B. subtilis

Introduction

In an era of increasingly prolific multi- and total-drug resistant species of bacteria such as E. coli, M. tuberculosis and S. aureus, the need for rapid discovery of novel antibiotic classes is greater than any previous time in
history. Compounding this problem is the pronounced dearth of both antimicrobial lead compounds as well as FDA-approved drugs emerging from the drug discovery enterprise, including both academia and industry\[^1\]. An illuminating review by O'Shea and coworkers\[^2\] reveals that no novel class of antibacterials was developed and approved between 1960 and 2001 despite exhaustive efforts and the parallel development of key techniques. Since the introduction of streptogramins and quinolones in the early 1960s, the growing need for antimicrobials has outpaced the rate of approval of novel drugs. Passage down the pipeline of drug discovery is complicated by the requirement that any antimicrobial target must be essential within a class of bacteria as well as non-essential or absent in humans; or possess significant structural distinction from any human homologues. Additionally, inhibitors must satisfy stringent physico-chemical requirements that ensure bioavailability, minimal toxicity, and efficacy. Recent reviews of the current state of affairs in drug discovery have revealed that lack of chemical diversity in HTS- and genomics-based drug discovery campaigns has been a significant culprit in the failure to obtain novel antimicrobial lead compounds\[^1, 3\].

Bacteria require a number of D-amino acids for the biosynthesis of the peptidoglycan cell wall. It has been well established that improper peptidoglycan cross-linking is the basis for a number of known antimicrobial drugs, including the β-lactam class and vancomycins, which act to promote osmotic lysis\[^4\]. In addition to preventing cross-linking itself, inhibiting enzymes that catalyze the formation of D-amino acids also leads to lysis due to high internal osmotic pressure. The two ubiquitous D-amino acids in bacterial cell walls are D-alanine and D-glutamate, which are biosynthesized by alanine and glutamate racemases, respectively. The natural product D-cycloserine is a mechanism based inhibitor of alanine racemase, a PLP-containing enzyme, and has been shown to kill bacteria by making them osmotically sensitive\[^5\]. Similar studies have also been carried out on glutamate racemase (abbrev. GR; EC 5.1.1.3) inhibitors, establishing a mode
of action involving damage to the maturation of the peptidoglycan cell wall\[^6\]. Unlike AR, GR is a cofactor-independent racemase, which catalyzes a stepwise proton abstraction/donation via two cysteines acting in a general acid/base mechanism\[^7\]. The general α/β-fold forms two domains, which enclose a relatively small buried active site that is saturated with polar residues. Not surprisingly, GR knockout studies on several pathogenic organisms resulted in D-glutamate auxotrophs\[^8\]. Thus, the strategy of attenuating the pool of D-amino acids is an attractive option for the development of novel antimicrobial agents. However, the only compound in this class that is approved for clinical use is the natural product D-cycloserine, and only in combination with other antibiotics, due to its undesirable side effects.

To date, only a handful of potent inhibitors have been discovered for bacterial glutamate racemases. A SAR approach produced a 4S-substituted D-glutamate analog, which had low-micromolar potency against glutamate racemase from *S. pneumoniae*, but suffered from species specificity due to steric clashing with a species-variable valine bridge to a hydrophobic pocket proximal to the binding cleft\[^9\]. Later, a high-throughput screening campaign of nearly 400,000 compounds resulted in the serendipitous discovery of an uncompetitive inhibitor, which binds to a species-specific allosteric site\[^6\]. More recently, a virtual screening campaign targeting a transition-state-like model of the target enzyme produced several low-micromolar, competitive inhibitors\[^10\]. A trend in the molecular makeup of these inhibitors was clear: aromatic or cyclic compounds containing sulfonic acid moieties. This isn't surprising considering previous work that supports the presence of a cyclic carbanion/aci-dienolate transition in the glutamate racemase reaction, which places significant negative charge density in the back of the active site\[^11\]. The superiority of these sulfonic acids over carboxylates (such as that in the natural substrate) could be due to the more dispersed partial negative charge in the sulfonate, compared to the SP\(^2\) hybridization of a carboxylate. Most recently, a unique ensemble docking scheme was applied to GR from *B.*
subtilis to successfully rank several sulfonate-containing aromatic compounds with potencies ranging from low micromolar to high millimolar\(^{[12]}\). The best of these compounds, 1H-benzimidazole-2-sulfonic acid (\(K_i = 9 \mu M\)) is the subject of this study.

We present here a fragment-based approach to optimization of the previously mentioned lead compound using entirely *in silico* methods for derivative ranking prior to synthesis and experimental testing. Fragment-based methods offer a number of distinct advantages in drug discovery, particularly the optimization of ligand efficiency (LE) and lipophilic efficiency (LiPE) while maintaining potency\(^{[13]}\). Placement and subsequent scoring of potential derivative compounds was achieved via ensemble docking with a unique scoring scheme described in Whalen and coworkers.\(^{[12]}\) In the current study, thirty-three derivatives of the lead compound were docked to an ensemble of conformations generated using steered molecular dynamics and ranked using a modified binding energy score. Six derivatives were synthesized and assayed experimentally, resulting in the discovery of two competitive inhibitors with increased inhibitory potency, as well as excellent ligand and lipophilic efficiencies. Additionally, compounds were assayed for bacterial growth inhibition as well as induction of cell wall lysis, ultimately establishing that this class of GR inhibitors targets bacterial cell wall synthesis *in vivo*.

Results and Discussion

BISA, a Scaffold for Optimization

Compound 1 (Figure 15, 4-hydroxy-1,3-benzenedisulfonic acid) was discovered in a virtual screening campaign against GR using the Chemical Computing Group Lead-like library (~1 million compounds)\(^{[10]}\). The inhibitory constant against GR from *B. subtilis* was 58 ± 13 \(\mu M\). Scaffold hopping to compound 2 (Figure 15, 1H-benzimidazole-2-sulfonic acid) increases affinity against this target to 9 ± 2 \(\mu M\). Compound 2 also shows equal potency against two isozymes of GR from *B. anthracis* (RacE1 and RacE2) as well as
GR from *F. tularensis* (Murl), two bacterial species currently considered as Tier 1 Biological Select Agents by the US government (Figure 12). The high ligand efficiency of this fragment, coupled with its cross-species activity made compound 2 an ideal candidate for optimization.

In order to generate a basis for rational lead optimization, a basic understanding of the physicochemical components of binding between ligand and receptor is required. As an alternative to x-ray crystallography or NMR, virtual docking was used to generate structural information regarding the interaction of GR and compound 2. Compound 2 was docked *in silico* to GR using a previously solved crystal structure (PDB: 1ZUW) as the receptor. The result of docking shows compound 2 with its sulfonic acid situated in the most buried region of the active site, between the catalytic cysteines (Figure 13). The sulfonate moiety is seen participating in several hydrogen bonding interactions with Asn75, Thr186, and Cys185. Additionally, the benzene moiety is interacting with Ser11 via an O-H--π interaction. These moieties both appear to contribute to recognition of compound 2, and thus the optimization strategy focused on the addition of substituents that would produce additional interactions while preserving the original contacts. As seen by their solvent exposure and protein proximity (symbolized with light blue shading or a grey dotted line, respectively, in Figure 13), carbons 4, 5, and 6 within the benzene ring could serve as starting points to build on additional chemical groups without encountering steric clash from active site residues. Depending on their size, substituents added at these positions have the capacity to reach additional binding pockets proximal to the main substrate binding cleft.
Figure 12. IC$_{50}$ curves for the parent compound 2 against a range of GR isozymes isolated from the indicated bacterial species. Indicated IC$_{50}$ values (in micromolar) acquired via fitting to a dose-response curve.

<table>
<thead>
<tr>
<th>Species</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. subtilis</td>
<td>250 ± 20</td>
</tr>
<tr>
<td>B. anthracis 1</td>
<td>120 ± 5</td>
</tr>
<tr>
<td>B. anthracis 2</td>
<td>40 ± 5</td>
</tr>
<tr>
<td>F. tularensis</td>
<td>110 ± 12</td>
</tr>
</tbody>
</table>
Derivative Selection and Synthesis

An *in silico* library containing compounds 3 through 35 (Figure 15) was developed based on a previously established two-step synthetic process (Scheme 1) and the commercially-available 1,2-phenylenediamine derivatives. This synthetic scheme was chosen for its relative ease, while additional chemistry may be attempted in the future to further grow fragments out of the substrate-binding cleft. Before any compound was synthesized, the library was subjected to a hybrid ensemble docking scheme, referred to as the
Flexible Enzyme Receptor Method by Steered Molecular Dynamics (aka. FERM-SMD), previously described by Whalen and coworkers[12]. Figure 14 details how unique conformations of the protein target were generated using steered molecular dynamics simulations to emulate the substrate unbinding trajectory. Starting with a crystal structure of D-glutamate bound to glutamate racemase, D-glutamate is pulled from the active site over the course of the simulation. In the process, the enzyme alters its structural conformation to allow substrate passage from the buried binding cleft. Three snapshots were chosen to represent three distinct structural states, distinguished by the entrance to the binding cleft: closed, partially open, and fully open (Figure 14). Compounds are docked to all three structures and their predicted binding affinities are adjusted according to the respective protein solvation energy (these varied greatly, and affected the accuracy of the binding affinity calculation) and weighted to indicate relative binding specificity to one of the three receptors. Previous studies have shown that the final score produced by FERM-SMD, deemed FERMscore, shares a high correlation with experimental binding affinities, particularly for congeneric ligands of GR. On a set of 17 ligands, FERM-SMD has a predictive accuracy of ± 1 kcal/mol[12].
Figure 14. A steered molecular dynamics simulation was conducted on the glutamate-bound crystal structure of glutamate racemase from *B. subtilis*. A force was applied on the bound substrate along the vector indicated in the top picture (red arrow). Structures were obtained along the unbinding trajectory that correspond approximately to the following states: closed, partially open, and fully open. With substrate removed, these structures then provide the receptors for ensemble docking of the derivative library. Previous results indicate that the highest-affinity inhibitors will bind preferably to the closed conformation, over the partially and fully open conformations.

FERMscores for the library of interest, spanning from 0.4 to 13.7, are indicated in Table 4. The parent compound, 2, scored the third highest FERMscore. The two compounds giving higher calculated FERMscores (compounds 18, and 29) in addition to a third compound, 4, that possessed a FERMscore in the top 15% of all derivatives were synthesized under contract by Enamine Ltd. (see Materials and Methods) and all compounds were heretofore synthetically novel. In addition to the compounds predicted to have improved binding affinity, three immediately available compounds (15, 24, and 26) were acquired to test the predictive capacity of the employed scoring method. Compound 7 had an intermediate FERMscore, but distinct chemotype, which had not been heretofore tested on any GR and was thusly
chosen for testing. Unfortunately, several attempts to synthesize compound 7 were unsuccessful, and it was eventually abandoned. The experimental results are detailed below.

Scheme 1. Scheme for synthesis of 1H-benzimidazole-2-sulfonic acid derivatives using differing phenylenediamine starting points.

In vitro Testing of Derivatives

Inhibition constants (Kᵢ) were acquired for all derivatives against purified GR from *B. subtilis* (Figure 16, Table 5). Compounds 15, 24 and 26, all possessing predicted FERMscores lower than the parent compound, gave Kᵢ values greater than or within error of that of the parent compound. Compound 24 suffered from a nearly 100-fold loss in binding affinity, which was well predicted by FERM-SMD, as it possessed the lowest FERMscore of the compounds tested. Of the compounds predicted to be higher affinity binders by FERMscore, compound 18 and 29 have Kᵢ values within error of the parent compound, although the Kᵢ of 29 is improved, 6.4 μM versus 9 μM. This result was not surprising considering the FERMscores only vary by 5.4 units between the parent scaffold and the highest scoring derivative. Compound 4 is also predicted to be high affinity, and shows 4-fold improved affinity over the parent compound, with a Kᵢ of 2.5 μM. This is the most potent non-glutamate-based, competitive inhibitor of glutamate racemase to date. Overall, FERM-SMD was successful in distinguishing between tight binding derivatives (Kᵢ between 2.5 to 12 μM) and weaker binding derivatives (Kᵢ between 13 and 830 μM).
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
</tbody>
</table>

Figure 15. Parent scaffolds and lead derivatives considered in this study. Compounds of interest are highlighted accordingly: lavender = original virtual screening hit; cyan = parent scaffold; green = compounds tested with high predicted affinity; red = compounds tested with low predicted affinity; yellow = compound synthesis attempted, yet unsuccessful.
Table 4. FERMscore assignments as predicted by FERM-SMD, ranked from highest to lowest score, corresponding to highest to lowest predicted binding affinity.

<table>
<thead>
<tr>
<th>Compound [a]</th>
<th>FERMscore</th>
<th>Compound</th>
<th>FERMscore</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>13.7</td>
<td>26</td>
<td>1.20</td>
</tr>
<tr>
<td>18</td>
<td>9.25</td>
<td>7</td>
<td>1.15</td>
</tr>
<tr>
<td>2</td>
<td>8.28</td>
<td>6</td>
<td>1.10</td>
</tr>
<tr>
<td>5</td>
<td>4.92</td>
<td>23</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>4.45</td>
<td>15</td>
<td>0.969</td>
</tr>
<tr>
<td>34</td>
<td>3.75</td>
<td>20</td>
<td>0.902</td>
</tr>
<tr>
<td>14</td>
<td>3.23</td>
<td>33</td>
<td>0.792</td>
</tr>
<tr>
<td>13</td>
<td>2.99</td>
<td>16</td>
<td>0.781</td>
</tr>
<tr>
<td>12</td>
<td>2.98</td>
<td>32</td>
<td>0.756</td>
</tr>
<tr>
<td>9</td>
<td>2.97</td>
<td>28</td>
<td>0.756</td>
</tr>
<tr>
<td>8</td>
<td>2.33</td>
<td>35</td>
<td>0.751</td>
</tr>
<tr>
<td>22</td>
<td>1.76</td>
<td>25</td>
<td>0.750</td>
</tr>
<tr>
<td>17</td>
<td>1.64</td>
<td>3</td>
<td>0.732</td>
</tr>
<tr>
<td>21</td>
<td>1.44</td>
<td>10</td>
<td>0.723</td>
</tr>
<tr>
<td>11</td>
<td>1.31</td>
<td>24</td>
<td>0.643</td>
</tr>
<tr>
<td>19</td>
<td>1.29</td>
<td>31</td>
<td>0.534</td>
</tr>
<tr>
<td>30</td>
<td>1.28</td>
<td>27</td>
<td>0.406</td>
</tr>
</tbody>
</table>

[a] Compounds of interest are highlighted accordingly: green = compounds tested with high predicted affinity; cyan = parent scaffold; red = compounds tested with low predicted affinity; yellow = compound synthesis attempted, yet unsuccessful.
Figure 16. *In vitro* inhibition data used to acquire K_i values for each derivative.

Ligand efficiency and lipophilic efficiency were calculated for each derivative (Table 5). Ligand efficiency is a method of normalizing binding affinities for compounds of differing molecular weights\[14\]. Additionally, several studies have shown that fragment-based drug discovery is more successful if high ligand-efficiency is maintained through lead optimization\[14\]. This practice lowers the occurrence of so-called "molecular obesity" as compounds are modified to achieve higher potency and favorable pharmacokinetic/pharmacodynamic profiles\[14b\]. With the exception of compound 15, each assayed derivative maintained high ligand efficiency (> 0.3 kcal/mol/atom). Of the compounds predicted to be high affinity by the FERM-SMD method, compound 4 and 29 exhibited higher efficiency than compound 18 (0.45, 0.34 and 0.30, respectively). Lipophilic efficiency is
another measure that is indicative of successful passage down the drug development pipeline, where affinity values are normalized for the partition coefficient (logP) of the inhibitor[15]. Compound 4 and 29 benefit from an improved lipophilic efficiency (6.0 and 6.6, respectively) over the parent scaffold (5.3). Ligand efficiency and lipophilicity efficiency values equal to or greater than 0.3 kcal/mol/atom and 6.0, respectively, are in the desirable range for further study and optimization[14a, 15].

Additionally, novel compounds were tested for formation of colloidal aggregates, a common cause of false positive results. Previous studies have revealed that glutamate racemase is susceptible to inhibition by colloidal aggregates in a non-drug-like fashion. In order to distinguish between inhibition via colloidal aggregation and true binding, enzyme activity is measured in the presence of the inhibitor in question, as well as a sub-micellar concentration of detergent, 0.01% Triton X-100. In the case that a compound is inhibiting an enzyme via a colloidal aggregation, the apparent inhibition will be completely relieved in the presence of detergent. Colloidal aggregates must be abandoned due to their non-drug-like mechanism. All novel compounds tested in this study proved not to operate via the colloidal aggregate mechanism (Figure C.10).
In vivo Testing of Biological Activity

In order to assess the capacity of these compounds to reach the enzyme target in vivo, inhibition of bacterial growth as well as capacity to induce cell lysis was assayed with several species of bacteria. B. subtilis was investigated, as the isozyme of GR from this species was the model for all in silico predictions. Additionally, E. coli and S. aureus were investigated as each provides a unique challenge for inhibitor compounds: an additional physical barrier to entry in the case of Gram-negative E. coli and an abundance of efflux pumps in the case of S. aureus[16]. All tested derivatives of compound 2 show increased potency with regards to growth inhibition for B. subtilis (Figure 17). MIC\textsubscript{50} values are increased 2- to 3-fold over the parent scaffold (Table 6). Surprisingly, the least potent compound in vitro, 24, shows the greatest potency in vivo. This result suggests that factors other than

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ki (uM)</th>
<th>LE[a]</th>
<th>LiPE[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9.0 ± 2.0</td>
<td>0.53</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>2.5 ± 0.4</td>
<td>0.45</td>
<td>6.0</td>
</tr>
<tr>
<td>15</td>
<td>21 ± 5.0</td>
<td>0.46</td>
<td>4.4</td>
</tr>
<tr>
<td>18</td>
<td>12 ± 3.6</td>
<td>0.30</td>
<td>5.0</td>
</tr>
<tr>
<td>24</td>
<td>830 ± 75</td>
<td>0.20</td>
<td>1.9</td>
</tr>
<tr>
<td>26</td>
<td>13 ± 2.4</td>
<td>0.48</td>
<td>4.5</td>
</tr>
<tr>
<td>29</td>
<td>6.4 ± 3.5</td>
<td>0.34</td>
<td>6.6</td>
</tr>
</tbody>
</table>

[a] Ligand efficiencies (LE) determined by converting K\textsubscript{i} values to binding energies and dividing by the number of non-hydrogen atoms. Units = kcal/mol/atom. [b] Lipophilic efficiencies (LiPE) determined by subtracting logP values from the log(K\textsubscript{i}) for each compound.

Table 5. In vitro results for derivatives of the parent scaffold, 2.
enzyme binding affinity may complicate the overall efficacy of this chemotype of antimicrobial compounds.

Compounds 4, 18, and 29 were also tested against *E. coli* and *S. aureus* (Figure 18). Compounds 18 and 29 were both highly specific for *B. subtilis*, showing no significant growth inhibition at concentrations below 3 mg/mL for *E. coli* and *S. aureus* (Table 6). On the contrary, compound 4 shows growth inhibition of both *E. coli* and *S. aureus* at concentrations approximately 2-fold higher than the MIC₅₀ against *B. subtilis* (Table 6). Examination of their respective chemical structures yields one possible rationale for this distinction (see Figure 15 for structures). Compound 4 possesses a more compact chemical shape, most likely making contacts specific to the most buried, and most highly conserved, region of the GR active site. Whereas compounds 18 and 29 contain larger chemical additions to the benzene ring, which may clash with the outer region of the GR active site, which is more structurally diverse region. These *in vitro* (and *in silico*) results support the fragment-based strategy of growing the scaffold out of the highly buried active site without sacrificing the original contacts.

In order to hone in on the mechanism of action for the derivatives assayed in this study, a commercially-available cytotoxicity assay, CytoTox-Glo™ (Promega), marketed for use with mammalian cells, was adapted for use with the examined bacterial species. The relationship between cytotoxicity, specifically cell lysis, and the readout (luminescence) is outlined in Figure 19. If the compounds here reach the glutamate racemase target and inhibit the production of D-glutamate, the lack of this key component will result in an overall break-down in peptidoglycan synthesis, and subsequent cell lysis caused by osmotic stress. Lysed cells will leak intracellular proteases into the surrounding media. The CytoTox-Glo™ reagent is composed of a pro-luciferin substrate, that once cleaved by proteases, can be acted upon by a supplied luciferase to produce the luminescent readout. Controls using FDA-approved antibiotics with known mechanisms of action were conducted to optimize the provided reagents (Figure 20a). *S. aureus* was exposed to varying
concentrations of ampicillin (a transpeptidase inhibitor) or tetracycline (a microbial ribosome inhibitor) for 24 hours, and then incubated with the CytoTox-Glo™ reagent. As expected, ampicillin yields a dose-dependent increase in luminescence, while tetracycline elicits no increase in luminescence at concentrations up to 100-times the published MIC$_{50}$ (Figure 20a). This optimized assay was then applied to cells treated with our inhibitor derivatives.

Figure 17. MIC$_{50}$ curves for the parent scaffold and the two most potent derivatives against *Bacillus subtilis*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>B. subtilis</th>
<th>E. coli</th>
<th>S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.72 ± 0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0.26 ± 0.11</td>
<td>1.6 ± 0.20</td>
<td>1.0 ± 0.25</td>
</tr>
<tr>
<td>15</td>
<td>> 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>0.36 ± 0.02</td>
<td>> 3</td>
<td>> 3</td>
</tr>
<tr>
<td>24</td>
<td>0.14 ± 0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>> 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>0.32 ± 0.01</td>
<td>> 3</td>
<td>> 3</td>
</tr>
</tbody>
</table>

[a] in mg/mL
Figure 18. MIC$_{50}$ curves for highest-ranked derivatives, by FERMscore, comparing species specificity between *E. coli*, *B. subtilis*, and *S. aureus*.
The modified CytoTox-Glo™ assay confirmed 4 as acting via an inhibitory mechanism that effects the peptidoglycan with both *S. aureus* and *B. subtilis* (Figure 20b). Luminescence increases concurrently with increased dosing of compound 4 for *S. aureus*. While the assayed concentrations do not span the entire MIC₅₀, due to solubility limitations, an approximately 40% increase in luminescence was observed in the millimolar range of inhibitor. For *B. subtilis*, the species for which compound 4 elicits greater growth inhibition, we observe a dose-dependent increase of 400% in luminescence in the low-millimolar range. The observed EC₅₀ for lysis occurs at 520 μg/mL, a concentration only slightly above that of the MIC₅₀ for growth inhibition (260 μg/mL). The proximity of these two values is supportive of cell lysis as being the main cause of cell death. Considering the many barriers an antibacterial compound must overcome, both physical (peptidoglycan and efflux) and chemical (metabolism), in order to reach the desired target protein, the ability of compound 4 to cause cell lysis is excellent support for its further development as an antibacterial therapeutic.

Figure 19. Schematic of treatment of bacterial cells with CytoTox-Glo™ assay. The CytoTox-Glo™ reagent contains both the protease substrate, AAF-luciferin, as well as luciferase. Bacterial cells contain intracellular enzymes capable of cleaving AAF-luciferin, releasing luciferin, the substrate of luciferase.
Figure 20. Controls for a commercially-available cytotoxicity assay that monitors cell wall lysis with a luminescent readout (a). Bacteria treated with two antibiotics, only one utilizing a mechanism of action that interferes with peptidoglycan synthesis, shows distinct luminescent dose responses. Cell lysis data for *S aureus* and *B. subtilis* cultures treated for 24 hours with compound 4 (b). Luminescence is measured in arbitrary units, corrected for the cell density of the sample (variable depending on growth inhibition), and presented as a percentage of untreated cell luminescence.

Conclusion

This study summarizes the successful utilization of a novel *in silico* docking and scoring scheme for selection of derivatives of a lead scaffold via rank-ordering of binding affinity. The model system used here employs the antibacterial target, glutamate racemase, and a low-micromolar competitive
inhibitor, 1H-benzimidazole-2-sulfonic acid (compound 2), as the lead compound. This platform can potentially be used for optimization of lead compounds for other flexible drug targets. In current lead optimization campaigns, the rate-limiting step is often acquisition of high-resolution structural data, particularly for flexible enzymes, on the enzyme-drug complex. Binding pose predictions made by docking software have been largely validated as correct in many cases via comparison with experimental data, specifically several programs place ligands within 2 Å RMSD of the crystallographically determined pose for over 90% of the assessed ligands[17]. The perennial problem lies in the ability of the scoring functions to accurately rank-order docked ligands across a variety of targets[17]. By developing an in silico method of derivative ranking based on the docked complex of the parent scaffold with a predictive error of only ± 1 kcal/mol for binding energy, we can remove the need for time- and resource-consuming NMR or x-ray crystallography experiments. Additionally, the ability to predict the binding potency of potential derivatives, renders the chemical synthesis of weak binders unnecessary. Here we show that the described scheme guides optimization of a lead compound, with a minimized resource and time investment.

The goal of this exercise was to modify the existing chemical scaffold in order to increase binding affinity to the target enzyme, while also maintaining favorable physicochemical properties (here, ligand efficiency and lipophilic efficiency) and biological activity. A docked complex of compound 2 and glutamate racemase was used to assess the most optimal locations for substituent addition. Based on that analysis, a library of 33 derivatives of compound 2 were subjected to a hybrid ensemble docking scheme, FERM-SMD, in order to rank their potential binding potencies. Of the 33 derivatives, 6 compounds were tested experimentally producing the final selection of compound 4. Compound 4 has increased binding affinity for the purified enzyme: 2.5 μM versus 9 μM, high ligand efficiency: 0.45 kcal/mol/atom, high lipohilic efficiency: 6.0, increased growth inhibition of B. subtilis: MIC\textsubscript{50} = 260
μg/mL versus 720 μg/mL, and finally, effective bacterial cell lysis: \(EC_{50,\text{lysis}} = 520 \mu g/mL \). The FERM-SMD methodology has afforded a facile optimization from a high-LE hit with relatively low synthetic cost by precisely identify binding rank-ordering. Future studies will focus these techniques on increasingly more complex derivative libraries, in order to achieve even greater \textit{in vitro} and biological activity.

Experimental Section

Docking and FERM-SMD: Virtual Screening

The original FERM-SMD method is described in great detail by Whalen and coworkers\cite{12}. BISA derivatives were prepared \textit{in silico} using MOE v2011.10\cite{18} (Chemical Computing Group). An ensemble of GR structures was generated using steered molecular dynamics simulation. Three structures were chosen at approximately the most closed (corresponding to 0 ps of simulation time), partially open (13.9 ps, simulation time), and fully open (20 ps, simulation time). Docking to the ensemble of GR structures was achieved using YASARA v9.11.9\cite{19}, which utilizes an optimized version of AutoDock 4\cite{20}. Simulation cells were centered around the active site and expanded to include the residues surrounding the cleft entrance. Simulations cells had the following dimensions (in Å): "0 ps" receptor = 18.75 x 20.19 x 19.29; "13.9 ps" receptor = 19.08 x 21.56 x 18.07; and "20 ps" receptor = 18.94 x 21.31 x 18.93. Receptor-ligand docking combinations that resulted in more than one high-ranking pose were visually assessed by the author, and the pose that placed the core scaffold in a position most similar to the parent scaffold position was chosen as the "true" pose. Resulting binding energies and affinities for docking to all three receptors were then imported into Excel (Microsoft Office) and adjusted for receptor-protein solvation, producing a final FERMscore\cite{12}.

Compound Synthesis and Acquisition
Compound 1 (catalog #BAS 00124393, >98% purity) was acquired from Asinex, Ltd. (Moscow, Russia). Compounds 2 (catalog # 530646, 98% purity) was acquired from Sigma-Aldrich (St. Louis, MO, USA). Compound 15 (catalog # 5648649, 100% purity) was acquired from ChemBridge Corp. (San Diego, CA, USA). Compound 24 (catalog # STK695918, 98% purity) was acquired from Vitas-M Laboratories, Ltd. (Moscow, Russia). Compound 26 (catalog # Z57080960, 95% purity) was acquired from Enamine Ltd. (Kiev, Ukraine). Compounds 4, 18, and 29 were synthesized for the first time in published literature by collaborators at Enamine Ltd. (Kiev, Ukraine) following the synthetic process outlined in Scheme 1. 1H NMR spectra for each synthesized compound is provided in the Supplemental Information (Figures C.3-C.5). HPLC data showing purity analysis is available in the Supplemental Information for each newly synthesized compound (Figures C.6-C.8).

Protein Expression and Purification

Genes of glutamate racemase were isolated from B. subtilis, B. anthracis (two isozymes), and F. tularensis, and expressed in E. coli and purified using a protocol previously described by Whalen and coworkers[12] Briefly, hexa-histidine-tagged recombinant proteins were purified via a two-step process composed of cobalt-affinity (His-Select Affinity Resin, Sigma-Aldrich) and anion exchange (UNO Q Continuous Bed column, BioRad). Proteins were stored in buffer containing 100 mM NaCl, 50 mM Tris, 0.2 mM DTT, pH 8.0 at a concentration of 7-10 mg/mL. Molecular weight was confirmed via SDS-PAGE analysis (Figure C.1), and protein foldedness was assessed using circular dichroism (Figure C.2).

\textit{In Vitro} Inhibition of Enzyme Activity

Steady-state kinetics for D to L racemization was measured using circular
dicroism on a JASCO J-715 Spectropolarimeter. All compound stocks were made up in 50 mM potassium borate buffer pH 8.0, at concentrations varying from 25-100 mM, depending on compound solubility. Reactions were carried out at 25°C in 50 mM potassium borate buffer pH 8.0 with 1 μM purified enzyme. CD signal (mdeg) was measured continuously at 220nm for 10 min. Plots of CD versus time were fit linearly to obtain initial velocity. Substrate was varied from 0.25 to 5 mM. For Kᵢ determination, three Michaelis-Menten curves were obtained for each inhibitor: one in the presence of no inhibitor, and two in varying concentrations of the inhibitor. A single data set, composed of three curves, was fit to a competitive inhibition model using GraphPad Prizm v.5.0[21], and the Kᵢ is obtained as a best-fit value. For IC₅₀ determination, reactions are supplemented with varying concentrations of the inhibitor, and the observed V₀ in nmol/sec is normalized to a %-activity value based on an uninhibited reaction. %-Activity values are plot versus the log of the inhibitor concentration. The data set is then fit to a log[inhibitor] versus response model (with variable slope) to calculate the IC₅₀, using GraphPad Prizm v.5.0[21]. For LiPE calculations, compound logP values for the ionic species were calculated using MarvinSketch (ChemAxon).

In Vivo Inhibition of Bacterial Growth

A 5 mL culture of bacteria (B. subtilis DB104, E. coli Acella, or S. aureus ATCC 12600) was incubated overnight at 37 ºC in Tryptic Soy Broth one day prior to the assay. 96-well plates were prepared with 2X media, phosphate-buffered saline, the compound of interest and a 20 uL inoculum of bacteria, totally 200 uL per well. Compound stocks were prepared in phosphate-buffered saline at a concentration of 10, 12.5 or 25 mM, depending on compound solubility. A serial dilution ranging from 0.1 to 3000 micromolar for the compound of interest was assayed. The overnight culture, at an optical density of approximately 2.0, was diluted 20-fold in water prior to inoculation, such that initial optical densities were approximately 0.01. A table of reagent volumes and diagram of plate layout can be found in Figure C.9 of the
Supplemental Information. Plates were mixed and incubated at 37 ºC for 24 hr. Absorbance at 600 nm was measured on a GloMax-Multi Detection System. MIC$_{50}$ values were determined by fitting data to a log[inhibitor] versus response model using GraphPad Prism v.5.0$^{[21]}$. The bottom and top values are constrained to 20% and 100%, respectively.

Cell Wall Lysis Assay

Bacterial cell wall lysis was assayed using a modification of the CytoTox-Glo assay$^{[22]}$ (Promega Corp.). 100 µL of the contents of a 96-well plate treated as described above were moved to a white, round-bottom, 96-well plate. 25 µL of the CytoTox-Glo reagent buffer was added to each well, mixed and incubated at room temperature in the dark for 15 min. Luminescence was measured on a GloMax-Multi Detection System. Luminescent values were normalized based on the absorbance value at 600 nm for each respective well. Data was then fit to a log[agonist] versus response model, with no upper or lower constraints, using GraphPad Prism v5.0$^{[21]}$.

Acknowledgements

This work was supported by the NIH in the form of grant numbers R01 GM097373-01A1 (M. A. S.) and AI076830 (M. A. S.), and the Chemical Biology Training Grant at UIUC (K. L. W.). A special thanks to Irina Yavnyuk and Tatiana Galushka for facilitating our fruitful collaboration with Enamine Ltd.

References

[21] GraphPadPrizm, 5 ed. (Ed.: G. Software), San Diego, California, USA, **2007**.

CHAPTER 4: FLOODING ENZYMES: QUANTIFYING THE CONTRIBUTIONS OF INTERSTITIAL WATER AND CAVITY SHAPE TO LIGAND BINDING USING EXTENDED LINEAR RESPONSE FREE ENERGY CALCULATIONS*

ABSTRACT: Glutamate racemase (GR) is a cofactor independent amino acid racemase that has recently garnered increasing attention as an antimicrobial drug target. There are numerous high resolution crystal structures of GR, yet these are invariably bound to either D-glutamate or very weakly bound oxygen-based salts. Recent in silico screens have identified a number of new competitive inhibitor scaffolds, which are not based on D-Glu, but exploit many of the same hydrogen bond donor positions. In silico studies on 1-H-benzimidazole-2-sulfonic acid (BISA) show that the sulfonic acid points to the back of the GR active site, in the most buried region, analogous to the C2-carboxylate binding position in the GR-D-glutamate complex. Furthermore, BISA has been shown to be the strongest non-amino acid competitive inhibitor. Previously published computational studies have suggested that a portion of this binding strength derives from complexation with a more closed active site, relative to weaker ligands, and in which the internal water network is more isolated from bulk solvent. In order to validate key contacts between the buried sulfonate moiety of BISA and moieties in back of the enzyme active site, as well as to probe the energetic importance of the potentially large number of interstitial waters contacted by the BISA scaffold, we have designed several mutants of Asn75. GR-N75A removes a key hydrogen bond donor to the sulfonate of BISA, but also serves to introduce an additional interstitial water, due to the newly created space of the mutation. GR- N75L should also show the loss of a hydrogen bond donor to the sulfonate of BISA, but does not (a priori) seem to permit an
additional interstitial water contact. In order to investigate the dynamics, structure and energies of this water-mediated complexation, we have employed the Extended Linear Response (ELR) approach for the calculation of binding free energies to GR, using the YASARA2 knowledge based force field on a set of ten GR complexes, and yielding an R-squared value of 0.85 and a RMSE of 2.0 kJ/mol. Surprisingly, the inhibitor set produces a uniformly large interstitial water contribution to the electrostatic interaction energy \((V_{el})\), ranging from 30 to > 50%, except for the natural substrate (D-glutamate), which has only a 7% contribution of \(V_{el}\) from water. The broader implications for predicting and exploiting significant interstitial water contacts in ligand-enzyme complexation are discussed.

1. INTRODUCTION

Numerous studies have established the bacterial cell wall and the enzymes responsible for its construction as valid targets for broad-spectrum antibiotics.\(^1,2\) An essential enzyme in this class, which has not been targeted by antibiotics, is glutamate racemase (GR), which produces D-glutamate, an essential molecule for a number of pathogenic bacterial species. GR is a member of a family of co-factor-independent racemases and epimerases, which employs 1:1-proton transfer using juxtaposed thiol/thiolate general acid-bases and hydrogen-bonding to the Ca-carboxylate. Previously, GR knockouts have resulted in D-glutamate auxotrophs, validating the essentiality of GR.\(^3,4\) Structure-based,\(^5\) HTS,\(^6\) and QSAR\(^7\) approaches to obtaining active site competitive inhibitors have been problematic for disparate reasons, including flexibility of the enzyme and the inconsistent presence of a hydrophobic pocket proximal to the active site from species to species. Thus, it is highly desirable to obtain effective inhibitory scaffolds against GR, which have favorable drug-like physico-chemical properties. A greater understanding of the physical determinants of molecular recognition is the key to directing future efforts.
The essential and conserved active site residues of GR-ligand recognition have been well established, especially for D-glutamate, by a number of methods, including: sequence conservation,8 mutagenesis studies,8-10 co-crystal structures,5, 6, 11-16 and computational studies.9, 17 These residues include (using \textit{B. subtilis} numbering): Asp10, Ser11, Cys74, Asn75, Thr76, Cys185, His187 and Thr186; where Cys74 and Cys185 act as the general acid/base for racemization. Asn75 is in a unique position, forming the back “wall” of the active site directly between the catalytic cysteines - a central location for forming strong hydrogen bonds with the Ca-carboxylate of D-glutamate, as well as contributing to active site volume. Previous computational studies have indicated that its amide functional group is a major source of electrostatic interaction energy with the glutamate carbanionic transition state.9 MD simulations in the current study also implicate the amide functional group of Asn75 as being a hydrogen bond donor to the Ca-carboxylate of D-glutamate. However, computational studies with a number of other active site ligands indicate that Asn75 is part of a network of interstitial waters, which are associated with charged and polar inhibitors in the active site of GR. This network also involves the conserved residues Thr76 and Thr118. Thus, based on its total sequence conservation, and its role in ligand recognition, Asn75 is the most important residue of GR that has, heretofore, not been subjected to a mutagenesis investigation. In the current study we create the N75A and N75L mutants, both \textit{in vitro} and \textit{in silico}, in order to understand the importance of the amide functional group in both recognizing the native substrate, as well as several of the most efficient competitive inhibitors.

In addition to the Asn75, another major contributor to ligand-binding energy in GR is interstitial water, which was also identified as a major source of transition state stabilization.9 It is not surprising that the water-mediated contacts in GR are highly ligand dependent. A number of recent studies in other enzymes have indicated that water networks and interstitial water structure greatly depend on the particular nature of the enzyme-ligand contacts.18-21
An examination of GR crystal structures deposited in the RCSB Protein Data Bank reveals a heterogeneity in the location and number of the crystal-water oxygen atoms, which, in part, correlates to the type of ligand in the complex (Table 7). The scope of crystallographic data for GR-ligand complexes is limited to essentially D-Glu (and D-Glu analogs) and negatively charged oxygen-based buffers (acetate, citrate, phosphate, succinate, sulfate, and tartrate). A histogram comparing the numbers of interstitial waters between the former and the latter is illustrated in Figure 21. It is clear from the juxtaposition of these histograms that a variety of water-mediated GR-ligand contacts are possible. Unfortunately, although a number of recent competitive inhibitors for GR have been discovered, there remains a dearth of structural data, especially regarding tight binding complexes in the buried active site.

Previously, two attractive micromolar competitive inhibitors of GR from *B. subtilis* were identified. These compounds are $1H$-benzimidazole-2-sulfonic acid ($1, K_i = 9 \mu M$)22 and croconic acid ($2, K_i = 42 \mu M$)23 Both compounds possess high ligand-efficiency, making them potentially attractive scaffolds for lead optimization. However, the source of the strength of their binding energy (as well as the lack of binding energy in many other negatively charged competitive inhibitors) remains elusive. The current work integrates experimental studies on wild-type GR and the Asn75 mutants with computational studies, in order to parse the contributions to binding free energies for a number of different classes of competitive GR inhibitors, using the Extended Linear Response (ELR) method. The findings from these studies point to a stark difference in the use of water-mediated ligand contacts between the natural substrate (D-Glu) and the set of non-congeneric inhibitors. The extent of these differences and the implications for future drug design against GR are discussed below.
Table 7. Analysis of all deposited GR co-crystal structures from the RCSB PDB. Number of interstitial waters indicated per monomer for each structure.

<table>
<thead>
<tr>
<th>PDB</th>
<th>Species</th>
<th>Ligand</th>
<th>Monomer A</th>
<th>Monomer B</th>
<th>Monomer C</th>
<th>Monomer D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B74</td>
<td>A. pyrophilus</td>
<td>D-glutamine</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1ZUW</td>
<td>B. subtilis</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2DWU</td>
<td>B. anthracis 1</td>
<td>D-glutamate</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2GZM</td>
<td>B. anthracis 2</td>
<td>D-glutamate</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2JFN</td>
<td>E. coli</td>
<td>D-glutamate</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFO</td>
<td>E. faecalis</td>
<td>D-glutamate</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFP</td>
<td>E. faecalis</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFQ</td>
<td>S. aureus</td>
<td>D-glutamate</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFU</td>
<td>E. faecium</td>
<td>phosphate ions</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFV</td>
<td>E. faecium</td>
<td>citrate</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFW</td>
<td>E. faecium</td>
<td>tartaric acid</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFX</td>
<td>H. pylori</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFY</td>
<td>H. pylori</td>
<td>D-glutamate</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2JFZ</td>
<td>H. pylori</td>
<td>D-glutamate</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2OHO</td>
<td>S. pyogenes</td>
<td>sulfate ion</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2OHV</td>
<td>S. pyogenes</td>
<td>naphthylmethyl-D-glu</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2VVT</td>
<td>E. faecalis</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2W4I</td>
<td>H. pylori</td>
<td>D-glutamate</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3IST</td>
<td>L. monocytogenes</td>
<td>succinic acid</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3ISV</td>
<td>L. monocytogenes</td>
<td>acetate ion</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3OUT</td>
<td>F. tularensis</td>
<td>D-glutamate</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3UHF</td>
<td>C. jejuni</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3UHO</td>
<td>C. jejuni</td>
<td>D-glutamate</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4B1F</td>
<td>H. pylori</td>
<td>D-glutamate</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Structures were downloaded directly from the RCSB PDB and hydrogen atoms were added using the "Clean All" function of YASARA v9.11.9. All non-hydrogen atoms were fixed, and an energy minimization was performed to relax hydrogen atoms. Interstitial waters are defined as a single water molecule forming at least two hydrogen bonds: one with the bound ligand and one with the enzyme. Monomer labeling is arbitrary and does not correspond to PDB labeling.

SSeveral deposited structures are unliganded and have been excluded from this analysis. Their PDB ID numbers correspond to 1B73, 3HFR, and 3UHP.
2. MATERIALS AND METHODS

2.1. Materials

Croconic acid (LT00453399) was purchased from Labotest (Bremen, Germany). From Sigma Aldrich (St. Louis, MO) we obtained the following: 1H-benzimidazole-2-sulfonic acid (530646), D-glutamate (G1001), iodonitrotetrazolium (I8377), diaphorase (D5540), ATP (A7699), NAD+ (N7004), and L-glutamate dehydrogenase (G2501). All reagents related to buffer preparation for protein purification and circular dichroism were purchased from Sigma-Aldrich. Amicon centrifugal filtration devices were purchased from Millipore (Billerica, MA). Finally, HIS-Select Cobalt Affinity Gel (H8162) was
purchased from Sigma-Aldrich.

2.2. Experimental Methods

2.2.1. Protein Expression and Purification

Recombinant protein was expressed in E. coli BL21 (DE3) cells containing a pET-15b plasmid with the N-terminal 6X-His-tagged gene of choice. Protein purification was achieved via cobalt-affinity chromatography followed by anion exchange chromatography. Details of both the expression and purification scheme were previously described by Whalen et al.24

2.2.2. Mutant Construction

Mutant racE_N75A and racE_N75L were prepared using a QuickChange II XL Site-Directed Mutagenesis Kit (Stratagene, Santa Clara, CA) and primers obtained from Eurofins MWG Operon (Huntsville, AL). See Supplementary Information Table D.1 for primer sequences. Previously prepared and recently isolated pET15b containing the gene of interest was used as the template DNA. A BioRad MJ Mini Personal Thermal Cycler (BioRad, Hercules, CA) was used for all PCR reactions. Mutagenesis was confirmed via in-house DNA sequencing using an ABI 3730XL capillary sequencer.

2.2.3. Protein Secondary Structure Determination

Circular dichroism was employed in structure determination. A 10 μM solution of the enzyme of interest in an optically clear borate buffer (50 mM boric acid, 100 mM KCl, 0.7 mM DTT; pH 8.0) was measured from 190-260 nm, with 5 replicates. The averaged spectra was deconvoluted into respective secondary
structure motifs (α-helix, β-sheet, and disordered) using the DichroWeb online server. The CDSSTR method was utilized with database 4 as a reference.

2.2.4. Enzyme Kinetics

Stereoisomerization of D-glutamate by glutamate racemase was assayed using a J-720 CD spectropolarimeter from JASCO (Easton, MD). A jacketed cylindrical cuvette with a volume of 750 μL and a path length of 10 mm was used for each assay. Readings were measured at 220nm continuously. All measurements were conducted at 25 °C. Concentrations of D-glutamate were varied from 0.25–5 mM in an optically clear borate buffer (50 mM boric acid, 100 mM KCl, 0.7 mM DTT; pH 8.0). Reactions were initiated upon addition of enzyme (approx. 0.5 μM). Data acquisition was performed using JASCO Spectra Manager v1.54A software, and fitting was performed using GraphPad Prism v5.0 from GraphPad Software (San Diego, CA). Inhibitor IC\textsubscript{50} curves were obtained using a coupled-enzyme assay25 with iodonitrotetrazolium absorbance at 500 nm as the readout, as both inhibitors studied were optically active at 220nm. Assays were again conducted at 25 °C in the presence of 3-6 μM GR. For comparison with calculated binding energy values, experimental IC\textsubscript{50} values were converted to K\textsubscript{i} values via the Cheng-Prusoff equation, and then binding free energies via the standard Gibbs free energy relation.

2.3. Computational Methods

2.3.1. Virtual Docking

The co-crystal structure of GR from \textit{B. subtilis} bound to D-glutamate (1ZUW, chain C) was prepared for virtual docking by first deleting all water molecules, salt ions, peptide chains A and B, and the substrate, D-glutamate. A simulation cell was centered on the catalytic cysteine residues, Cys74 and Cys185, and dimensions of the cell were adjusted to encompass the entirety of
the active site resulting in the following cell dimensions (x-y-z): 19.9-15.2-17.2 Å. Residue 75 was left unaltered in the case of docking to the wild-type model, but for docking to the N75A and N75L models, Asn75 was replaced with an alanine or leucine residue in silico, respectively. All ligands, including D-glutamate, were constructed and minimized in MOE v2011.10 (Chemical Computing Group) and imported into YASARA for virtual docking. YASARA v12.4.1 employs AutoDock 4 in its docking functionality. Specific details regarding pose generation and scoring can be found in Whalen et al. The top-ranking complexes were then used as starting structures for molecular dynamics simulations.

2.3.2. Molecular Dynamics Simulation

The molecular dynamics simulations of the docked complexes (based on the PDB 1ZUW, as described above) were performed with the YASARA Structure package version 12.4.1 (YASARA Biosciences). A periodic simulation cell with boundaries extending 10 Å from the surface of the complex was employed with explicit solvent, and the cell was neutralized with NaCl (0.9% by mass). The YASARA2 force field was used with long-range electrostatic potentials calculated with the Particle Mesh Ewald (PME) method, with a cutoff of 7.86 Å. The ligand force field parameters were generated with the AutoSMILES utility, which employs semi-empirical AM1 geometry optimization and assignment of charges, followed by assignment of AM1BCC atom and bond types with refinement using the RESP charges, and finally the assignments of general AMBER force field atom types. Optimization of the hydrogen bond network of the various GR-ligand complexes was obtained using the method established by Hooft et al., in order to address ambiguities arising from multiple side chain conformations and protonation states that are not well resolved in the electron density. Following neutralization, a final density of 0.997 g/mL was employed. A previously described simulation annealing protocol was followed before initiation of simulations using the NVT ensemble at 298 K, and integration
time steps of 1.25 and 2.5 fsec for intra- and intermolecular forces, respectively. MD simulations of individual ligand in solvent and salt were performed as above, within a simulation cell having x-y-z dimensions of approximately 70-70-70 Å, and a total volume of ~340,000 Å³. Snapshots were saved for all cases at intervals of 25 psec, and the electrostatic interaction energy (\(\langle V^{el} \rangle\)) and the van der Waals interaction energy (\(\langle V^{vdw} \rangle\)) were calculated at each of the time points, and averaged to yield the values in Table 11. Solvent accessible surface areas were constructed with a solvent probe radius of 1.4 Å and the following radii for the solute elements: polar hydrogens 0.32 Å, other hydrogens 1.0717 Å, carbon 1.8 Å, oxygen 1.344 Å, nitrogen 1.14 Å, sulfur 2.0 Å. All surface area calculations were performed with the YASARA Structure package.

2.3.3. Ligand Interaction Maps and Reports

Ligand interaction maps were generated from the final snapshots of the 4-ns MD simulation using MOE v2011.10 (Chemical Computing Group). Pocket analysis was conducted on the same structures using the Site Finder utility of MOE, using the default alpha sphere radius.

2.3.4. Multiple Regression Analysis Applied to Linear Response

Multiple regression analysis using the R statistical package, version 2.13.1, was used to optimize the \(\alpha\), \(\beta\), \(\gamma\), and \(\delta\) coefficients in Eq. 5. A linear model equating experimental binding free energies, listed in Table 11 and the computationally-derived values from Table 11 (i.e. \(\Delta(V^{el})\), \(\Delta(V^{vdw})\), and \(\Delta SASA\)) was employed to obtain optimized values for \(\alpha\)-\(\gamma\), and no restraints were used in the parameter optimization.

3. RESULTS AND DISCUSSION

3.1. Steady-state kinetics shows racemization activity in mutants, with mild
K_M alterations.

As discussed above, we predict Asn75 to be key to pocket volume and polarity, and thus, water accommodation. Two variations of Asn75 mutants were constructed, where asparagine was swapped for alanine or leucine. Wildtype and mutant variants of GR from *B. subtilis* were purified recombinantly from *E. coli* (see Figure D.2 for SDS-PAGE). Circular dichroism shows that neither mutation causes significant changes to the secondary structure of GR (Figure 22, Table 8). Mutant and wild-type enzymes were assayed to determine steady-state kinetic constants, K_M and k_cat, in the D- to L- direction of racemization (Table 9). The apparent K_M values increased by a factor of 2-fold and 6-fold relative to wild-type for GR-N75L and GR-N75A, respectively. It is difficult to explain what causes the variation in Michaelis constants between GR variants from these studies due to the complicated nature of this constant, which includes association, dissociation, and catalytic steps. More striking is the 28-fold increase in k_cat caused by the N75A mutation. This phenomenon is currently the subject of a separate study.

![Graph showing CD (mdeg) vs Wavelength (nm) for WT, N75L, and N75A](image)

Figure 22. Comparison of the secondary structure of wild-type and mutant GRs confirms no unfolding or dramatic structural alteration induced by mutation to residue 75. Circular dichroism measurements made in triplicate using a Jasco J-715 spectropolarimeter.
Table 8. Deconvolution of circular dichroism spectra into respective secondary structural motifs.

<table>
<thead>
<tr>
<th>Protein</th>
<th>%-α-helix</th>
<th>%-β-sheet</th>
<th>%-disordered</th>
<th>NRMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR-WT</td>
<td>60</td>
<td>14</td>
<td>24</td>
<td>0.001</td>
</tr>
<tr>
<td>GR-N75L</td>
<td>65</td>
<td>12</td>
<td>22</td>
<td>0.003</td>
</tr>
<tr>
<td>GR-N75A</td>
<td>59</td>
<td>16</td>
<td>25</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*Deconvolution performed using the online server, DichroWeb. NRMSD given is for the comparison of experimental and calculated spectral data.

Table 9. Steady-state kinetic parameters (D- to L- racemization) of wild-type and mutant GR.

<table>
<thead>
<tr>
<th>Protein</th>
<th>K_M (mM)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>k_{cat}/K_M (s$^{-1}$ mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR-WT</td>
<td>0.13 ± 0.01</td>
<td>1.64 ± 0.03</td>
<td>12.6 ± 0.08</td>
</tr>
<tr>
<td>GR-N75A</td>
<td>0.73 ± 0.09</td>
<td>45.6 ± 1.9</td>
<td>62.5 ± 0.13</td>
</tr>
<tr>
<td>GR-N75L</td>
<td>0.49 ± 0.10</td>
<td>0.15 ± 0.01</td>
<td>0.31 ± 0.10</td>
</tr>
</tbody>
</table>

*Steady-state kinetics measured by monitoring ellipticity at 220nm over time using a Jasco J-715 spectropolarimeter. D-glutamate concentrations varied from 0.25-5.0mM, and data fit to the Michaelis-Menten equation (with errors from nonlinear regression fitting).
3.2. Active Site Mutation Causes Ligand-Dependent and Residue-Dependent Binding Effects

1H-benzimidazole-2-sulfonic acid (1) and croconic acid (2) are both competitive inhibitors with low-micromolar inhibitory constants that were previously discovered in virtual screening studies.22, 23 These compounds vary substantially in electrostatics and shape. The potency of each inhibitor was determined experimentally against either GR mutant. Compound 1 showed a 50% increase in IC\textsubscript{50} for the N75L mutation, and a striking 600% increase in IC\textsubscript{50} for the N75A mutation, compared to the IC\textsubscript{50} for wildtype GR (Table 10). As suspected, the leucine and alanine substitutions cause binding energy changes of unequal magnitude, but surprisingly 1 suffers a greater binding energy loss in GR-N75A where we hypothesized additional water would be introduced to the active site. When comparing free energy binding values calculated from these IC\textsubscript{50} values, the same trend holds true. In the case of compound 2, only modest IC\textsubscript{50} decreases of 20% and 40% were observed for the N75L and N75A mutations, respectively, relative to the wildtype IC\textsubscript{50} value (Table 10). Although there is a statistically significant decrease in the value of the IC\textsubscript{50} for GR-N75A-2 compared to WT, the significance of this change does not hold with respect to their K\textsubscript{i} values. Nevertheless, complexation of both of these compounds, to both wildtype and mutant GR, were subjected to more in-depth structural and computational analyses.
Table 10. GR inhibitors and substrate examined in this study.

<table>
<thead>
<tr>
<th>#</th>
<th>Ligand Name</th>
<th>Ligand Structure</th>
<th>IC₅₀ Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1H-benzimidazole-2-sulfonic acid (BISA)</td>
<td></td>
<td>Graph showing IC₅₀ values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kᵢ (WT) = 9 ± 2 μM²²</td>
</tr>
<tr>
<td>2</td>
<td>croconate</td>
<td></td>
<td>Graph showing IC₅₀ values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kᵢ (WT) = 42 ± 10 μM²³</td>
</tr>
<tr>
<td>3</td>
<td>D-glutamate</td>
<td></td>
<td>Kₘ (WT) = 130 ± 10 μM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kᵢ = 110 ± 14 μM (Fig. S5)</td>
</tr>
<tr>
<td>4</td>
<td>α-ketoglutarate</td>
<td></td>
<td>IC₅₀ (WT) = 430 μM²²</td>
</tr>
<tr>
<td>5</td>
<td>chloroaniline sulfonic acid</td>
<td></td>
<td>IC₅₀ (WT) = 720 μM²²</td>
</tr>
</tbody>
</table>
Ligand structures shown with molecular surface (van der Waals) rendering. Hydrophobic regions are colored green, mildly polar regions are colored blue, and hydrogen bonding regions are colored purple. IC$_{50}$ curves were experimentally acquired via methods described in the Materials and Methods section.

3.3. Molecular Dynamics Simulations Indicate Morphological and Ligand-binding Changes Resulting from N75A and N75L Mutations

In order to elucidate the nature and strength of the GR-ligand binding energies for a range of competitive inhibitors, we used a combination of docking, classical MD simulations and extended linear response (ELR) free energy calculations. Firstly, we describe the morphological characteristics of the GR-ligand complexes, followed by an analysis of the sources of binding free energy, including the role of interstitial water.

3.3.1. Placement of Ligands in GR Active Sites.

A docking protocol, based on AutoDock 4.2, was used to place all of the ligands employed in the MD simulations (see Computational Methods section). Subsequently, these complexes were all subjected to the same protocols for simulated annealing energy minimization, followed by 4 ns of classical MD simulations, using the YASARA2 knowledge-based force field, using an explicit solvent model and periodic boundaries (see Computational Methods for details). These MD simulations were later used in ELR free energy calculations as described below. This type of hierarchical approach has proven successful in
numerous LIE/ELR studies.37-39

3.3.2. Molecular Dynamics Simulations of GR-Ligand Complexes.

MD simulations were employed to obtain structural information for each inhibitor-GR complex. All ten complexes achieved RMSD equilibrium between 1 and 1.5 ns (Figure D.1). Structures from the end of a 4 ns simulation were used to parse the GR-ligand interactions. GR-1 and -2 complexes were of particular interest, due to reasons outlined above. A distinct characteristic of the GR-N75A-1 complex is that the ligand is less solvent exposed (than the GR-WT- and GR-N75L-1 complexes). The morphological characteristics of these various GR-ligand complexes may be described in a number of ways. A ligand pocket analysis of the three 1-bound complexes shows that the volume of the active site is markedly reduced for the GR-N75A-1 (Table D.2), relative to GR-N75L- and GR-WT-1 complexes. Furthermore, in addition to the reduction in the size of the active site of GR-N75A, the openness of its cleft is significantly reduced, relative to wild-type and GR-N75L complexes, as described in Figure 23 and Figure D.3. A cross-section of the three complexes of GR-1 from equilibrated MD snapshots at 4 ns are compared in Figure D.4. The wild-type complex contains a water channel that leads out of the back of the active site (away from the entrance), while the GR-N75A and GR-N75L active sites are not contiguous with this water channel (Figure D.4). The presence of this connected water channel in the wild-type GR (and its absence in the mutants) is a stable characteristic seen throughout the MD simulations. Additionally, while there are only two, or one, interstitial waters present in the wild-type and GR-N75A complexes, respectively, there are four interstitial waters in the GR-N75L complex (Figure 23). Lastly, the key hydrogen-bond contacts between 1 and GR are more optimal in the wild-type complex than in either Asn75 mutant, and this will be fully discussed below.
Given the gross morphological differences between the three GR species, it naturally follows that inhibitor 1 should be less solvent exposed in the N75A mutant, which is borne out in the ligand-interaction maps shown in Figure 23. Both the benzyl ring and sulfonate oxygens are somewhat less solvent exposed in GR-N75A, than in wild-type and GR-N75L complexes.

Although these MD simulations do provide some insight into the nature of GR-1 complexation, and more particularly the role of a key residue, Asn75, what is desired is a quantitative description of the free energy contributions of the GR pharmacophore. It is apparent from the relatively large plasticity exhibited by GR, from the MD analysis above, that diverse ligands may yield quite different GR-liganded complexes, particularly with regard to active site volume and interstitial water. In fact, a number of recent reports have also highlighted the idiosyncratic nature of interstitial water structure in enzyme active sites, where the presence of interstitial water can act as a favorable or unfavorable component of the total binding energy. In one particular study, Barandun and coworkers observed striking differences in binding energies between tRNA-guanine transglycosylase and sets of lin-benzoquarine and lin-benzohypoxanthine inhibitors. Barandun et al. used X-ray crystallography to expose ligand-dependent conformational changes in key active site residues, which results in the import of interstitial water. Without high-resolution structural information such as that obtained by Barandun and coworkers, enzyme-plasticity and numerous water-mediated contacts make the determination of meaningful enzyme-ligand binding energies a non-trivial task. It would be extraordinarily useful to be able to predict the gross morphological changes as well as the specific active site alterations due to complexation with particular GR inhibitors, and more importantly their binding free energies. To that end we applied the Extended Linear Response (ELR) method for calculating binding free energies, to a set of 10 different GR-ligand complexes (vide infra).
Figure 23. Ligand interaction maps for the inhibitors, 1 (top) and 2 (bottom), bound to wild-type (A and D) GR-N75L (B and E), and GR-N75A (C and F) active sites support the energetic evaluations conducted via ELR. Maps generated from structures from the final snapshot of a 4-nsec MD simulation. Residues are indicated with labeled circles. Direct hydrogen bonding interactions are indicated with blue (backbone) or green (side-chain) dashed lines. Interstitial water-hydrogen bonding interactions are indicated with gold dashed lines. Solvent exposure is indicated with light blue shading and the active site surface proximal to the ligand is indicated with a grey line.
3.4. Binding Energy Calculations Using ELR

A permutation of the ELR methodology first described by Jorgensen has been applied to 10 different GR-ligand complexes.41 A number of ELR approaches41-44 have been described, and are based on the Linear Interaction Energy (LIE) method, first described by Aqvist \textit{et al}.45 The seminal studies for utilizing the linear response approximation employ expressions for the hydration energy of ions, and it can be shown that the electrostatic portion of this free energy ($\Delta G_{\text{sol}}^{el}$) is defined by Equation 1.46, 47 This expression was then extrapolated by Aqvist and co-workers to the problem of considering ligand-protein binding, where they showed that the electrostatic contribution to the binding free energy was expressed by Equation 2, where the ΔV term now refers to the difference between protein and water systems.45

$$ \Delta G_{\text{sol}}^{el} = \frac{1}{2} \langle V_{(\text{ion-solv})}^{el} \rangle $$

Eq. 1

$$ \Delta G_{\text{bind}}^{el} = \frac{1}{2} \Delta \langle V_{\text{prot-solv}}^{el} \rangle $$

Eq. 2

In the LIE approach, one obtains interaction energy components from molecular dynamics or Monte Carlo simulations, then parses the binding energy contributions into an electrostatic component (based on linear response) and a van der Waals component based on an empirically scalable parameter:

$$ \Delta G_{\text{bind}} = \frac{1}{2} \Delta \langle V^{el} \rangle + \alpha \Delta \langle V^{vdw} \rangle $$

Eq. 3

$\Delta \langle V^{el} \rangle$ indicates differences in the average electrostatic interaction energies between the two states (i.e. solvated and enzyme-bound systems). Statistical
analysis of multiple systems by Aqvist and coworkers lead to an optimal set α value of 0.161.45 Later studies employed a coefficient, called β, that is variable and ligand-dependent (ranging from 0.33 to 0.5) in place of the fixed $\Delta\langle V^{el} \rangle$ coefficient of 0.5, thus deviating from linear response.48 These α and β parameter optimizations worked well for a number of systems,45,48 but in the case of a thrombin target, it was necessary to add an additional offset term, γ, in order to reproduce the experimental binding free energies (Eq. 4).49 In this case the γ term was a relatively large offset at -2.9 kcal/mol. These, and other studies, led Aqvist and coworkers to speculate that this constant offset value was highly dependent on the type of receptor site.50

$$\Delta G_{\text{bind}} = \beta \times \langle V^{el} \rangle + \alpha \times \langle V^{vdw} \rangle + \gamma$$ \hspace{1cm} \text{Eq. 4}$$

An augmented approach to the above model (Eq. 5), in which changes in ligand solvent accessible surface area (ΔSASA) are also empirically scaled was applied by Jorgensen and coworkers, using the OPLS force field, and investigating the binding of a set of sulfonamide inhibitors to human thrombin, arrived at solutions with significantly lower β values than the linear response approximation.42 Later studies, with various force fields, also found solutions with β values significantly different from linear response approximation.44,51

$$\Delta G_{\text{bind}} = \beta \times \langle V^{el} \rangle + \alpha \times \langle V^{vdw} \rangle + \gamma \times \Delta\text{SASA} + \delta$$ \hspace{1cm} \text{Eq. 5}$$

While the meaning of the β parameter is based on the linear response approximation, which derives from the potential of mean force from changing electric fields in polar solvents, the physical meaning of the α value is much more ambiguous. The α term has been empirically derived, and lacks any clear \textit{a priori} physical meaning. Kollman and coworkers determined that the α value is highly
correlated to a weighted change in nonpolar SAS upon ligand binding,52 which they show to be dependent on the nature of the protein binding site (the more nonpolar the buried moiety, the more positive the weighting). Furthermore, optimization of the α parameter is expected to also implicitly include terms such as desolvation and entropy loss. Orthodox linear response-based methods are, however, not expected to explicitly account for long-range solvent-solute interactions, although more accurate methods for capturing such effects have been developed.53 It is not surprising then that significant variation in the values of α and β (as well as γ and δ) exist across systems and methodological approaches.

In the current study, we are applying the above ELR approach, using ΔS_{SASA} and a constant offset value (δ) in order to reproduce the absolute binding free energies for the given set of ligands to GR. Furthermore, we are using the YASARA2 knowledge-based force field (KBFF) in 4 ns simulations for each GR-ligand complex (see Computational Methods for details). Ten different GR complexes, employing compounds indicated in Table 10 were used in ELR calculations; Table 11 lists the average $\langle V^{el} \rangle$ and $\langle V^{vdw} \rangle$ interaction energies for both solvated and enzyme-bound systems. In all cases, these highly polar ligands had negative values for $\langle V^{el} \rangle$ in both the enzyme-bound form and the solvated system. However, all of the ligands had more negative $\langle V^{el} \rangle$ values in the solvated system than in the enzyme-bound form, leading to all positive values for $\Delta(V^{el})$. As expected, the converse of this was true for the $\Delta(V^{vdw})$, having all negative values. The change in solvent accessible surface area, as well as the experimentally-determined binding values are indicated in Table 11.

The adjustable parameters were then optimized using multiple regression analysis, and the results of this are indicated in Table 12. The residual standard error yielded a value of 2.0 kJ/mol, with an R value of 0.92. It is remarkable that the β value here (0.07 ± 0.01) is within error of the lowest RMS model of studies.
on sulfonamide inhibitors of thrombin \(\beta = 0.071 \pm 0.02\)\(^{42}\), as well as a composite of ELR performed on 3 different protein kinases \(\beta = 0.0848\)\(^{54}\); and laying in between \(\beta\) values determined for CYP1A2 (= 0.014 to 0.034\(^{51}\)) and HIV-1 reverse transcriptase (0.144\(^{43}\)). Taken together these ELR studies using three different force fields and six different enzymes converge on solutions of \(\beta\) values that are definitively lower than the original linear approximation, but \textit{in toto} are relatively precise.

The optimized \(\alpha\) value in the current study is 0.04 \pm 0.05. Previous LIE and ELR studies have shown that the \(\alpha\) value has been arguably the most difficult parameter to estimate. Aqvist and coworkers obtained an optimized \(\alpha\) value of 0.18 on a system composed of four different targets,\(^{55}\) while other studies found diverse optimized values that ranged from being within error of zero\(^{43}\) to being quite large (> 0.5).\(^{51}\) A relatively large standard regression error on the \(\alpha\) value was obtained for three different protein kinases by Tominaga and Jorgensen (\(\alpha = 0.0771\)\(^{54}\)). The optimized \(\gamma\) value in this study indicates that larger buried solvent accessible surface area correlates with more unfavorable binding energy, which means that there is something other than simple cavitation being reported. One possibility is the ejection of stabilized, interstitial waters in the apo-GR structure. Ejection of such waters has been estimated to be \(\sim\)1.8 kcal/mol/water.\(^{56}\) Previous steered MD studies on GR indicated that severe alterations in the global shape of the enzyme occur in a ligand-dependent manner.\(^{22}\) GR structures that exhibited greater degrees of active site cavity opening (induced by steered MD removal of ligands) also exhibited significantly greater free energies of protein solvation, suggesting that the ligand-induced changes in complex structure may have a number of non-obvious energetic implications.
Table 11. Data used in the Extended Linear Response calculations. *

<table>
<thead>
<tr>
<th>Complex</th>
<th>$\langle V^{el} \rangle$ (kJ/mol)</th>
<th>$\langle V^{vdw} \rangle$ (kJ/mol)</th>
<th>$\Delta\langle V^{el} \rangle$ (kJ/mol)</th>
<th>$\Delta(V^{vdw})$ (kJ/mol)</th>
<th>ΔG_{bind}^{Exp} (kJ/mol)</th>
<th>Calculated $\Delta SASA$ (\AA^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-WT</td>
<td>-617</td>
<td>-199</td>
<td>+9</td>
<td>-137</td>
<td>-28.8</td>
<td>277</td>
</tr>
<tr>
<td>1-N75A</td>
<td>-581</td>
<td>-224</td>
<td>+45</td>
<td>-162</td>
<td>-19.5</td>
<td>307</td>
</tr>
<tr>
<td>1-N75L</td>
<td>-590</td>
<td>-220</td>
<td>+36</td>
<td>-158</td>
<td>-23.9</td>
<td>294</td>
</tr>
<tr>
<td>1-wb</td>
<td>-626</td>
<td>-62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-WT</td>
<td>-1643</td>
<td>-134</td>
<td>+60</td>
<td>-119</td>
<td>-25.0</td>
<td>232</td>
</tr>
<tr>
<td>2-N75A</td>
<td>-1671</td>
<td>-141</td>
<td>+32</td>
<td>-126</td>
<td>-26.4</td>
<td>231</td>
</tr>
<tr>
<td>2-N75L</td>
<td>-1684</td>
<td>-119</td>
<td>+19</td>
<td>-104</td>
<td>-26.4</td>
<td>230</td>
</tr>
<tr>
<td>2-wb</td>
<td>-1703</td>
<td>-15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3-WT</td>
<td>-1071</td>
<td>-150</td>
<td>+53</td>
<td>-149</td>
<td>-22.2</td>
<td>270</td>
</tr>
<tr>
<td>3-wb</td>
<td>-1124</td>
<td>-1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-WT</td>
<td>-1717</td>
<td>-160</td>
<td>+167</td>
<td>-159</td>
<td>-19.4</td>
<td>247</td>
</tr>
<tr>
<td>4-wb</td>
<td>-1884</td>
<td>+0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-WT</td>
<td>-532</td>
<td>-166</td>
<td>+73</td>
<td>-125</td>
<td>-18.4</td>
<td>311</td>
</tr>
<tr>
<td>5-wb</td>
<td>-605</td>
<td>-41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6-WT</td>
<td>-1753</td>
<td>-172</td>
<td>+140</td>
<td>-147</td>
<td>-15.4</td>
<td>274</td>
</tr>
<tr>
<td>6-wb</td>
<td>-1893</td>
<td>-25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Carrots ($\langle X \rangle$) indicate the average of an ensemble, where the ensemble of structures is obtained from molecular dynamics simulations. Abbreviations: el, electrostatic; vdw, van der Waals; SASA, solvent accessible surface area; wb, water box.

Table 12. Multiple regression coefficients from fitting to the Extended Linear Response model. *

<table>
<thead>
<tr>
<th></th>
<th>Multiple Regression Estimate</th>
<th>Regression Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (van der Waals)</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>β (electrostatic)</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>γ (SAS) (kJ/\AA^2)</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>δ Intercept (kJ/mol)</td>
<td>-43</td>
<td>6</td>
</tr>
</tbody>
</table>

The residual standard error from the multiple regression fit was 2.0 kJ/mol. The Multiple R-squared value was 0.85.
3.5. Water contributions to total binding energy are strongly ligand-dependent.

Another trend in the ELR data is that the relatively closed state of GR-N75A yields, not surprisingly, more favorable $\Delta (V^{vdw})$ (relative to wild-type and GR-N75L), for both inhibitors 1 and 2. This corresponds to the smaller active site volumes seen for the N75A mutant, its greater degree of cleft closure around the ligands as well as the solvent exposure, as presented in Figure 23. These enhanced van der Waals contacts do not necessarily track with greater binding affinities, as the quality of electrostatic interactions with the protein as well as the water network would need to be maintained in this reduced volume cavity. In order to parse the electrostatic contributions in terms of protein- and water-
mediated contacts, for all of the GR-ligand complexes in this study, we determined the $\langle V^c \rangle$ in the absence of water (vide infra).

The striking conclusion from analyzing the ligand-protein and ligand-water-mediated contributions to $\langle V^c \rangle$ is that for most ligands there is a very large percentage of the interaction energy achieved through water contacts (Table 13). These values range from 7% for D-glutamate (3) to 54% for 4. However, the range for all ligands except for D-glutamate is 24-54%, indicating that all of the inhibitors here depend significantly more on water-mediated contacts for enzyme-binding than the natural substrate. In order to make the most stark comparison of these varying modes of water utilization, we juxtapose the ligand maps from the end of the MD simulation for D-glutamate- and 4-bound complexes (Figure 25). The ligand map of D-glutamate in Figure 25 illustrates the high efficiency of the natural substrate in making productive electrostatic protein contacts, which is highlighted by the presence of a singular water-mediated contact. Interestingly, this single water contact occurs at the γ-carboxylate, remote from the high-quality α-carboxylate-protein contacts in the rear of the cavity. This is not true of the inhibitors examined in this study. Compound 4 typifies this flooding of the active site of GR, in which there is extensive use of water-mediated contacts that contribute to the binding energy.

Another GR-ligand complex that exhibits this flooding phenomenon is GR-N75L-1, whose ligand map was presented earlier in Figure 23, and in which numerous water-mediated contacts could be seen. Table 13 shows that 1 bound to GR-WT has a 32% $\langle V^c \rangle$ due to water-mediated contacts, while 1 bound to GR-N75L exhibits a value of 47%, which is clearly reflected in the ligand interaction maps (Figure 23). Not surprisingly, 1 bound to GR-N75A has approximately the same dependence on water-mediated contacts as in the GR-WT complex. This reveals that the very poor quality of ligand-protein interaction energy, particularly in the hydrogen-bonding between the sulfonate of compound
and the back of the active site pocket (proximal to the mutated Asn75 position) is present in GR-N75L. In other words, the damage due to the pharmacophore by swapping the amide of Asn75 for the isopropyl of leucine could be rescued by simply flooding this polar active site, and increasing the number of water-mediated contacts. An astute observation made by Barandun and coworkers is that despite favorable interactions between imported water and the protein, these interactions are rarely sufficient to compensate for losses of direct ligand-protein interactions.20 The difference in compound 1 binding energy between GR-WT and GR-N75A is most likely the result of an altered binding pose that produces suboptimal bond distances and angles for direct contacts between ligand and protein. This reduction in pose quality is quantified in Table 13 where electrostatic interaction energy is calculated in the absence of water (-419 kJ/mol vs -391 kJ/mol for WT vs N75A). Additionally, distances and angles were calculated and averaged for all protein-ligand hydrogen bonding interactions in the final three snapshots of either complex's MD simulation (Figure D.6). The results show an increase in overall bond distance and a reduction in bond angle in the case of N75A, consistent with its smaller electrostatic protein-ligand interaction energy (Table 13). In addition, there is one less bridging water molecule in the N75A-complex compared to the wildtype complex.

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic interaction energies in the absence of water $(\langle V_{ei}^{\text{el}} \rangle_{\text{protein}} \text{[kJ/mol]}$)</th>
<th>$%$ of $\langle V_{ei}^{\text{el}} \rangle$ due to interstitial water-ligand interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-WT</td>
<td>-419</td>
<td>32</td>
</tr>
<tr>
<td>1-N75A</td>
<td>-391</td>
<td>33</td>
</tr>
<tr>
<td>1-N75L</td>
<td>-314</td>
<td>47</td>
</tr>
<tr>
<td>2-WT</td>
<td>-777</td>
<td>53</td>
</tr>
<tr>
<td>3-WT</td>
<td>-993</td>
<td>7</td>
</tr>
<tr>
<td>4-WT</td>
<td>-798</td>
<td>54</td>
</tr>
<tr>
<td>5-WT</td>
<td>-377</td>
<td>29</td>
</tr>
<tr>
<td>6-WT</td>
<td>-1314</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 13. Parsing the contributions of interstitial waters to ligand binding set.*
Figure 25. Ligand interaction maps for D-glutamate (A) and 4 (B) bound to wild-type GR. Residues are indicated with labeled circles. Direct hydrogen bonding interactions are indicated with blue (backbone) or green (side-chain) dashed lines. Interstitial water-hydrogen bonding interactions are indicated with gold dashed lines. Solvent exposure is indicated with light blue shading and the active site surface proximal to the ligand is indicated with a grey line.
4. CONCLUSIONS

The optimized ELR model resulted in an $\alpha = 0.04$ and $\beta = 0.07$, both values within error of a number of published values on various enzymatic systems. This solution required an offset (δ value) or $-43 \pm 6 \text{ kJ/mol}$ and yielded an R-squared value of 0.85 and an RMS error of 2.0 kJ/mol. The MD simulations indicated that GR-N75A had a reduced active site volume, less open active site cleft, and decreased solvent exposure with 1H-benzimidazole-2-sulfonic acid (1), a recently identified high-efficiency competitive inhibitor. Results of the ELR study indicated that $\Delta\langle V^{vdw} \rangle$ for GR-N75A with 1 and another attractive competitive inhibitor, croconate (2), are more favorable relative to their wild-type and GR-N75L counterparts.

Analysis of the contributions of water-mediated contacts to the GR-ligand electrostatic interaction energies reveals a surprisingly large role in all ligands (24-54%), except the natural substrate (7%). In the case of inhibitor 1, the N75A mutation results in non-optimal sulfonate-protein hydrogen bonds in the rear of the active site, and reduction in active site volume (relative to wild-type). While in the case of the N75L mutant, the sulfonate-protein hydrogen-bonding is even poorer, yet the larger active site volume and degree of cleft openness, led to water-mediated rescue of GR-ligand binding energy. These findings yield deep insight into potential antibacterial mutagenesis mechanisms. Despite the attractiveness of 1 as a scaffold, optimization should be pursued cautiously since it is possible to make a mutant that damages the pharmacophore, and still produces a perfectly functional glutamate racemase.

ASSOCIATED CONTENT

Supporting Information. Additional figures including: SDS-PAGE analysis of purified recombinant proteins, MOE computational pocket analysis, mutagenesis
primers, D-glu titration to GR, and MD simulation RMSD plots. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Dr. Ashley Spies, email: michael-spies@uiowa.edu; mailing address: PHAR S313, 115 S. Grand Avenue, Iowa City, IA 52242

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work was supported by the NIH in the forms of Grants AI076830 and GM097373, as well as the Chemical Biology Interface Training Grant (UIUC).

ABBREVIATIONS

GR, glutamate racemase; ELR, extended linear response; el, electrostatic; vdw, van der Waals; BISA, 1H-benzimidazole-2-sulfonic acid; SASA, solvent accessible surface area; wb, water box.

REFERENCES

2. Walsh, C. T., Enzymes in the D-alanine Branch of Bacterial Cell Wall

25. Rej, R., A Convenient Continuous-Rate Spectrophotometric Method for

40. Ellermann, M.; Jakob-Roetne, R.; Lerner, C.; Borroni, E.; Schlatter, D.; Roth, D.; Ehler, A.; Rudolph, M. G.; Diederich, F., Molecular Recognition at the

49. Ljungberg, K. B.; Marelius, J.; Musil, D.; Svensson, P.; Norden, B.; Aqvist,

CHAPTER 5: THE NATURE OF ALLOSTERIC INHIBITION IN GLUTAMATE RACEMASE: DISCOVERY AND CHARACTERIZATION OF A CRYPTIC INHIBITORY POCKET USING ATOMISTIC MD SIMULATIONS AND pKa CALCULATIONS*

Abstract

Enzyme inhibition via allostery, in which the ligand binds remotely from the active site, is a poorly understood phenomenon, and represents a significant challenge to structure-based drug design. Dipicolinic acid (DPA), a major component of Bacillus spores, is shown to inhibit glutamate racemase from Bacillus anthracis, a monosubstrate/monoprocess enzyme, in a novel allosteric fashion. Glutamate racemase has long been considered an important drug target for its integral role in bacterial cell wall synthesis. The DPA binding mode was predicted via multiple docking studies and validated via site-directed mutagenesis at the binding locus, while the mechanism of inhibition was elucidated with a combination of Blue Native PAGE, molecular dynamics simulations, free energy and pKa calculations. Inhibition by DPA not only reveals a novel cryptic binding site, but also represents a form of allosteric regulation that exploits the interplay between enzyme conformational changes, fluctuations in the pKa values of buried residues and catalysis. The potential for future drug development is discussed.

1. Introduction

D-glutamate (D-glu) has been shown to be an essential feature of the peptidoglycan layer of bacterial cell walls in a number of pathogenic organisms, strongly suggesting that blocking its biosynthesis would be an attractive mode of action for antimicrobial drug discovery. The enzyme glutamate racemase (GR) is responsible for the biosynthesis of D-glu in bacteria, employing a cofactor independent 1,1 proton transfer to invert the stereochemistry of the L-glutamate substrate. GR is a highly pursued antimicrobial drug target, and has been the subject of numerous ligand discovery studies.

Extensive inhibitor development against GR has been directed toward the CDC’s Category A agents. B. anthracis, the causative agent of inhalational anthrax and a Category A agent, is unique in possessing two functional GR isozymes (RacE1 and RacE2). These particular enzymes have been the subject of extensive structural and kinetic characterization. Active site differences between the two isozymes, specifically a key valine residue that bridges the active site and an adjacent hydrophobic pocket at the entrance of RacE2 (but not RacE1), have hampered efforts to develop a common and potent inhibitor for both B. anthracis GR isozymes.

Accurately modeling enzyme (or receptor) flexibility has long been recognized as one of the grand challenges in structure-based drug discovery. A diverse set of crystallographic, computational and screening studies have pointed to the extensive flexibility of the GR enzyme, thus creating challenges in elucidating both its catalytic mechanism, as well as the functional pharmacophore for effective structure-based drug discovery campaigns. An important corollary to receptor flexibility is the possibility for allosteric regulation by an effector molecule, with previous successes seen across several classes of...
enzymes. According to the Monod-Wyman-Changeux (MWC) model, a flexible (unliganded) enzyme samples a range of conformational states, which may be captured or recognized by a ligand or set of ligands. If significant distortion of a target enzyme is populated in these pre-binding equilibria, then capture of an inactive conformation represents a reasonable strategy for structure-based drug design. Accordingly, an alternative approach to finding inhibitors for GRs would be to identify noncompetitive (or uncompetitive) inhibitors, which act remotely from the active site. This strategy was utilized by Lundqvist and coworkers in the discovery of a pyrazolopyrimidinedione analogue (“Compound A”) inhibitor against H. pylori GR. Compound A was identified in HTS against AstraZeneca’s compound library as an inhibitor of racemization in the D→L direction. Lundqvist et al. elegantly demonstrated that Compound A was an extremely rare uncompetitive inhibitor of a monosubstrate-monoproduct enzyme in the D→L direction. Interestingly, this inhibitory approach exploits the fact that reduction of the kcat/KM of a racemase in one direction must equal its reduction in the reverse direction (vide infra), which results in a net decrease in the production of D-glu in vivo as indicated by the accumulation of peptidoglycan precursors in the cytoplasmic extract of H. pylori cells treated with Compound A. This inability to produce peptidoglycan is lethal for H. pylori cells, as demonstrated by a minimal inhibitor concentration (MIC) of 8 μg/mL for Compound A. However, the natural effector molecule acting at the Compound A binding pocket remains unknown.

In the current study we have discovered a novel inhibitory property for a natural product, dipicolinic acid (DPA), which is acting as an allosteric inhibitor of both B. anthracis GR isozymes, and has a distinct binding pocket from Compound A of Lundqvist et al. Furthermore, we employ experimental and computational studies to elucidate this remote binding locus as well as propose an atomistic rationale for DPA inhibition supported by MD simulations.
energy and pKa calculations of the dynamic GR ensemble. Interestingly, DPA is a natural product occurring at high concentrations within the *B. anthracis* spore and has been implicated to play a key role in that organism’s life cycle. The implications for *B. anthracis* sporulation and drug discovery are discussed.

2. Computational and Experimental Details

2.1. Site-Directed Mutagenesis

Mutants *racE2_K106A* and *racE2_S207A* were prepared using a QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene, Santa Clara, CA) and primers obtained from Eurofins MWG Operon (Huntsville, AL). Previously prepared and recently isolated pET15b (Novagen, San Diego, CA) containing the gene of interest was used as the template DNA. A BioRad MJ Mini Personal Thermal Cycler (BioRad, Hercules, CA) was used for all PCR reactions. Mutagenesis was confirmed via in-house DNA sequencing using an ABI 3730XL capillary sequencer. Primer sequences are detailed in Supplementary Table 4.

2.2. Protein Expression and Purification

Proteins were expressed using the BL21 strain (Novagen, San Diego, CA) of *E. coli* and pET15b expression vector (Novagen, San Diego, CA). Purification was composed of three key components: Cobalt-affinity chromatography, ATP incubation to remove chaperone contaminants, and anion-exchange chromatography. Expression and purification are described in full detail in Supplementary Information.

2.3. Enzyme Kinetics – Circular Dichroism
Stereoisomerization of D-glutamate by GR was assayed by measuring angle of rotation (mdeg) at 220-225nm using a J-720 CD spectropolarimeter (JASCO, Oklahoma City, OK). Data was fit to Michaelis-Menten equations as well as nonlinear regression curves for noncompetitive inhibition using GraphPad Prism v5.0 (GraphPad Software Inc., La Jolla, CA). Complete details of kinetic assay conditions can be found in Supplementary Information.

2.4. Colloidal Aggregation Control

Inhibitors were analyzed for the possibility of colloidal aggregation using a detergent-based assay previously established by Feng and Shoichet and successfully applied to this particular system in Whalen et al.7,16. Further details can be found in Supplementary Information.

2.5. Blue Native – Polyacrylamide Gel Electrophoresis

Protein samples were incubated in loading buffer (100 mM Tris-Cl, 40% glycerol, 0.01% Coomassie Brilliant Blue G, pH 8.0) and the compound of interest (1 mM or 45 mM) at room temperature for 15 minutes. Blue-native (BN) polyacrylamide gels were prepared at a resolving concentration of 10% (30:0.8 total acrylamide:bis ratio) with a 5% stacking gel. The compound of interest was incorporated into both the gel and running buffer (100 mM Tris-Histidine, pH 8.0) at the desired concentration. Gels were run at constant voltage (100 V) and constant amperage (15 mA) for approximately 3.5 h at 4 °C. Gels were stained using Imperial Protein Stain and destained in water. Respective intensities of protein bands were analyzed by pixel quantification of a gel scan using Adobe Photoshop CS4 Extended v11.0 (Adobe Systems Inc., San Jose, CA).

2.6. Docking of DPA to GR
Protein Receptor Preparation: The PDB file 2GZM was downloaded from RCSB for use as the protein receptor. One dimer was deleted from the crystal cell as only one dimer would be utilized in docking. The remaining dimer was submitted to steepest descent minimization and 50 picoseconds of molecular dynamics simulation with YASARA v9.11.9 (further details below)17. All water molecules and ligands were removed from the finals structure as the last step of preparation. DPA in its deprotonated state was used as the ligand for docking.

AutoDock (through YASARA): A simulation cell was created 5 Å from all atoms with dimensions: 102 Å x 72.8 Å x 71.3 Å. The following general docking parameters were used: 25 independent docking runs, each with a total of 2.5 x 106 energy evaluations, a torsional degrees of freedom value of 8, grid point spacing was left at the default of 0.375 Å, and the force field selected was AMBER03. Specific to the genetic algorithm, the following parameters were used: a population size of 150, 2.7 x 104 generations, an elitism value of 1, a mutation rate of 0.02, and a crossover rate of 0.8. Final poses were considered distinct if they varied by > 5 Å RMSD.

GOLD: The genetic algorithm parameters were defined as such: number of islands set to 5, population size of 100, selection pressure value of 1.1, maximum number of operations set to 125,000, and a niche size of 2. Additionally, both crossover and mutation frequency were set to 95, while the migration frequency was set to 10. GoldScore was used as the sole scoring function (without the optional fifth component, internal hydrogen bond energy). DPA was docked a total of 30 times and all solutions were retained.

FRED: A box ~200,000 Å2 was drawn around the entire structure, and a high quality shape potential was created. In enumerating all possible ligand poses, a translational step size of 1 Å and a rotational step size of 1.5 Å were
used. Inner and outer contour filtering was enabled and no additional user-defined constraint filters were used. Ensemble poses resulting from exhaustive docking are scored using Chemgauss3 and the top 100 poses are retained. DPA was docked a total of 32 times.

2.7. Molecular Dynamics Simulations

The procedures and parameters for molecular dynamics simulations of GR as well as free energy calculations are described in full in the Supplementary Information.

2.8. Selection of Non-Redundant Structures from MD Simulation

Structure snapshots taken every 150 picoseconds of the molecular dynamics simulations were converted to PDB format with all water molecules removed. The collection of structures (133 structures per complex) were then imported to the Multiseq extension of Visual Molecular Dynamics v1.8.6 for Windows (VMD, Univ. of Illinois – Urbana-Champaign) and submitted to STAMP alignment (npass =1, scanscore =1, and scanslide =2). Multiseq was further used to create a phylogenetic tree based on RMSD of the Cα atoms. Finally, non-redundant structures were extracted from the phylogenetic tree using a Q_H cutoff value of 0.90.

2.9. H++ pKa Calculations

Structures were submitted in pdb format to the H++ server. All water, ligand and inhibitor molecules were deleted prior to pKa calculation. Structure “clean-up” is described in full by Gordon et al. 18 and the method of electrostatic
calculation of pKa values for all titratable groups is described in Bashford and Gerwert. pKa values presented in the text were taken from the pK\textsubscript{1/2} output of H++.

3. Results

3.1. Inhibition of RacE1 and RacE2 by DPA

DPA was originally found in a virtual screening campaign for \textit{B. subtilis} RacE but exhibited only low mM inhibition. When tested on the two glutamate racemase isozymes from \textit{B. anthracis}, RacE1 and RacE2, DPA exhibited low μM inhibition (K\textsubscript{i} = 75 ± 16 μM and 92 ± 12 μM, respectively) with clear noncompetitive behavior, as confirmed via the F test when data is fit to varying models of inhibition (Fig. 26a and E.1, Table E.1 and E.2). To our knowledge, this is the first noncompetitive inhibitor against a glutamate racemase. In general, it is quite rare to find noncompetitive or uncompetitive inhibitors for any monosubstrate-monoprotein (i.e. Uni-Uni) enzymes. The immediate tendency is to be wary of noncompetitive inhibitors discovered from screening campaigns, as they are often revealed to be colloidal aggregators that inhibit enzymes in a non-drug-like manner. Colloidal aggregators can be exposed using a simple detergent-based kinetic assay. Inhibition by DPA does not exhibit the characteristic alleviation in the presence of detergent, thus eliminating the possibility of colloidal-aggregation-based inhibition (Fig. E.2). Previously, our group successfully employed this detergent-based assay to identify a colloidal aggregator in a screening campaign against GR from \textit{B. subtilis} that exhibited apparent noncompetitive inhibition in the low-μM range. RacE2 was the main isozyme studied in the following work since \textit{B. anthracis} genetic knockout studies.
identified the absence of RacE2 as resulting in the more severe growth defect, relative to the RacE1 isozyme. Furthermore, the inhibitor studies described here focus on the D→L direction, as in the studies of Lundqvist et al., on GR inhibition by Compound A. However, it should be noted that the Haldane relationship dictates that any reduction of k_{cat}/K_M for a racemase in one direction will result in an equivalent reduction in k_{cat}/K_M in the opposite direction. This is because the equilibrium constant for a racemase is unity, and leads to the following constraint:

$$K_{eq} = \frac{k_{cat_{p-L}}}{k_{cat_{p-L}}} = 1$$

Eq. 1
Figure 26. Experimental results for noncompetitive inhibition of RacE2_WT (a), RacE2_S207A (b) and RacE2_K106A (c) by DPA. Kinetic data was attained via circular dichroism and three independent Michaelis-Menten curves were globally fit to a noncompetitive inhibition model to produce the presented K_i values (further details in Supporting Information).
3.2. Identification of a Novel Allosteric Pocket by Docking; Location of the DPA Binding Site

A blind docking campaign targeting the RacE2 dimer was carried out in order to identify the binding site of DPA. GOLD v4.1, FRED v2.2.5 and AutoDock 4 (via Yasara v9.11.9) were each utilized in this campaign and represent three different types of docking and scoring methods17,25,26. Despite using very different methods of docking and scoring (these differences are expounded upon in the Computational Procedures section of the Supplementary Information), all three programs came to the same conclusion with regards to the location of the DPA binding site (Fig. 27a). Given a RacE2 dimer from the original crystal structure (2GZM) and no user-defined specifications for the binding location, DPA was consistently positioned with highest rank in all three docking programs in a small pocket at the dimer interface, making direct contacts with Lys106 and Ser207 of one monomer and the Lys106 of the second monomer. Specifically, the Ser207 backbone amide acts as a H-bond donor to one carboxyl substituent of DPA while the Lys106 side chain of the same monomer is a donor for the second carboxyl substituent of DPA (Fig. 27b). The Lys106 side chain of the second monomer coordinates both carboxylates as well as the pyridine nitrogen of DPA. Interestingly, energy minimization results in the formation of an H-bond between the carboxylate of DPA and the beta-hydroxyl of Ser207 while the Lys contacts remain unchanged relative to the original docking pose (Fig. 27c). An MD simulation using S207A RacE2 with DPA bound was conducted to further elucidate the role of Ser207 in DPA binding. MD simulation shows that the mutagenesis of Ser207 to alanine results in a complete loss of contact with the backbone in that region, resulting in a highly solvent-exposed, and presumably unfavorable, binding position for DPA (Fig. 27d). These results point to the presence of Ser207 as being essential for organization in this region of the enzyme and accordingly, formation of the DPA binding pocket. With all three
docking programs in agreement, the predicted site was probed via site-directed mutagenesis (vide infra). Importantly, these models predicting that DPA binds at a site distal to the active site are consistent with the steady state kinetic data suggesting non-competitive inhibition.

![Figure 27](image)

Figure 27. Superpose of top-docked positions of DPA (space-filling) to the RacE2 dimer (ribbon, 2GZM) as determined by GOLD v4.1 (magenta), Autodock v4 (blue) and FRED v2.2.5 (green) (a). The binding pocket is located at the dimer interface and is composed of residues from both monomers, as detailed by the interaction map (b). After minimization, the backbone contact of Ser207 is swapped for a contact with the beta-hydroxyl group (c). After MD simulation of the top docked complex with Ser207 replaced by Ala, the binding site lacks any contact with the region previously containing Ser207 (d). Letters immediately preceding the residue numbers indicate the monomer, A or B. Ligand interaction maps were constructed using the LigX function of MOE v2009.10.

3.3. Validation of DPA Binding Site via Mutagenesis

In order to experimentally confirm the predicted DPA binding mode, the two residues predicted to interact directly with the inhibitor, Lys106 and Ser207, were mutated to alanine independently and the purified mutant enzyme was
assayed for inhibition via DPA. Enzyme activity was unaltered for both mutants relative to wild-type protein, as indicated by their k_{cat}/K_M values (Table E.3). First, RacE2_S207A was constructed and predicted to abolish a single H-bond between enzyme and ligand. The observed K_i ($K_i = 1236 \pm 950 \mu M$) increased 13x compared to wildtype RacE2, which is consistent with the loss of a single H-bond (loss of 0.68-1.88 kcal/mol, strength of a normal hydrogen bond within a protein ranges from 1 to 3 kcal/mol27, Fig. 26b). Second, RacE2_K106A was constructed, abolishing four hydrogen bonds (according to the docking model). The observed K_i ($K_i = 2342 \pm 1300 \mu M$) increased 24x compared to wildtype (loss of 1.43-2.17 kcal/mol, slightly less than predicted; Fig. 26c). The attenuation of DPA inhibition in both the mutant constructs agrees well with the predicted site being the true DPA binding site. This is a testament to the precision of GOLD, FRED and AutoDock at correctly positioning a small molecule in a blind docking situation.

Cryptic binding sites are not entirely unprecedented for glutamate racemases. In 1994, Doublet and coworkers characterized the activation of GR from \textit{E. coli} by UDP-MurNAc-L-Ala binding to a cryptic back pocket on the monomer (later co-crystallized by Lundqvist \textit{et al.})4,28. As previously mentioned, a team at AstraZeneca discovered Compound A, a novel uncompetitive inhibitor in a high-throughput screening against GR from \textit{H. pylori} and determined this compound to bind to a pocket located on the opposite face from the active site4. Thus far, these two examples have been the only homologues of GR with established allosteric regulation. Crystal structures of the activator bound to \textit{E. coli} GR (2JFN) and Compound A bound to \textit{H. pylori} GR (2JFZ) were superposed with the top-docked conformation of DPA into RacE2 in order to see whether DPA was exploiting either of these pre-established binding sites (Fig. 28). When the dimer interface is revealed by hiding one monomer, one can clearly see that the DPA binding site is distinct from those of the activator and Compound A. With
this perspective, one can envision D-glutamate bound in the active site and DPA bound to the back side as being on a shared horizontal plane. The uncompetitive inhibitor from Lundqvist et al. is bound above this plane and UDP-MurNAc-L-Ala is bound below4. Thus, the DPA binding site is unlike any established cryptic sites of GR. With the addition of DPA, three distinct cryptic sites exist within the GR receptor class, each exhibiting a different mode of regulation.

Figure 28. Superpose of a variety of GR structures in order to highlight the diversity of known allosteric positions. Superpose of DPA bound to \textit{B. a.} RacE2, UDP-MurNAc-L-Ala bound to \textit{E. c.} GR (2JFN), and pyrazolopyrimidinedione analogue (aka Compound A) bound to \textit{H. p.} GR (2JFZ). Only the trace of one monomer is shown for clarity and the perspective is looking at the enzyme face directly opposite of the entrance to the active site. D-glutamate (yellow) is seen in the background bound to the active site, while DPA (green), UDP-MurNAc-L-Ala (magenta), and Compound A (red) are seen in the foreground. All three cryptic binding sites are distinct. Indicated are center of mass distances between molecules. There is no evidence that any one GR structure possesses all of these allosteric pockets. Rather, the figure is meant to illustrate the distinctive positions and identities of these three different effectors relative to the glutamate binding pocket.
3.4. Quaternary Organization and Inhibition by DPA

One possible mechanism of GR inhibition is a DPA-induced shift in the oligomeric equilibrium. For instance, Johnson and coworkers have hypothesized that the RacE2 monomer experiences increased conformational flexibility and thus higher rates of catalysis\(^29\). In order to investigate any DPA-induced changes of the oligomeric equilibrium of GR, RacE2 dimerization was analyzed using Blue Native PAGE (BN-PAGE) gels supplemented with DPA. Gels supplemented with the DPA-analogue, 3,4-pyridinedicarboxylic acid, were used as a control. This analogue shows no inhibition against RacE2 nor RacE1, and thus is predicted not to bind the enzyme; but its presence provides a control for nonspecific interactions that may affect the BN-PAGE results. Both compounds were present in the gel, running buffer and loading buffer (respectively) at a concentration well above the \(K_i\) calculated for DPA. DPA does not induce any significant change in the monomer-dimer equilibrium of RacE2 relative to the control (Fig. E.4). Although BN-PAGE rules out the occurrence of a DPA-induced shift in the oligomeric equilibrium, the possibility remains that alloster is the source of inhibition by DPA.

As recently reported by Johnson and coworkers, certain mutations in residues located at the dimer interface result in an altered RacE2 monomer-dimer equilibrium\(^29\). Thus, both mutant constructs were analyzed via Blue Native PAGE to assess the monomer-dimer equilibrium and rule out this phenomenon as having any affect on DPA binding or overall RacE2 catalysis. Both RacE2_S207A (Fig. 29a) and RacE2_K106A (Fig. 29b) showed no significant difference in monomer-dimer equilibrium compared to wild type protein. For RacE2_K106A, these results are contrary to what was reported by Johnson and coworkers, as they observed only the monomer state for this mutant. Differences could be attributed to the method (Blue Native PAGE versus size-exclusion
chromatography) or protein concentration (45 μg/mL versus 5 mg/mL); particularly since we observed that the monomer-dimer equilibrium exhibited a dependence on protein concentration in all gels. Specifically, as protein concentration increased, the ratio of monomer to dimer decreased (Fig. 29 and E.4). We chose to examine a protein concentration in the range of those used for kinetic assays. Furthermore, these GR concentrations may be more physiologically relevant than the much higher concentrations used in the study by Johnson and coworkers29.

Figure 29. BN-PAGE to determine the oligomerization of wild-type and mutant RacE2. Wildtype RacE2 and RacE2_S207A (a) or RacE2_K106A (b) were run side-by-side at concentrations varying from 45 to 180 μg/mL. Albumin and carbonic anhydrase were included as running controls. Arrowheads indicate bands representing the dimer and monomer. Band intensity was quantified via pixel counting and the ratio of monomer to dimer was plotted against protein concentration for RacE2_S207A (solid line = WT, dotted line = mutant; c) and RacE2_K106A (d). Data represents an average of three or more independent trials with standard error shown. Data was additionally fitted to the expression for M/C ratio as a function of total protein concentration and the monomer:dimer equilibrium constant (see Supplementary Methods for derivation of this expression and model fitting parameters). The results indicate that the two mutants do not have any significant effect on the oligomeric equilibrium. Additionally, see Figure E.3 for BN-PAGE of RacE2 and running controls with NativeMark ladder.
3.5. Effect of DPA on Free Energy of Binding of D-Glu to RacE2

Molecular dynamics simulations were performed for both RacE2 dimer with D-glu bound to both active sites (abbreviated as E₂·D-glu₂), as well as the top-docked complex of RacE2 and DPA with glutamate bound to both active sites (abbreviated as E₂·D-glu₂·DPA). Both simulations were carried out for 20 nanoseconds (see Materials and Methods for a complete description of the simulation parameters). Separately, a collection of snapshots taken every 150 picoseconds (totally 133 structures) from each simulation were submitted to STAMP structural alignment and used to compose a structural phylogenetic tree based on RMSD differences between α-carbon atoms. A structural phylogenetic tree provides a graphical representation of the structure-based relationship between different simulation snapshots. Non-redundant structures were then selected from the collection to represent the most unique conformations using the widely-accepted technique of QR factorization, thus more efficiently examining phase space. A structural homology (Q_h) value of 0.90 was used as the cutoff for structural redundancy (where Q_h represents the fraction of Cα atoms that superimpose, total overlap = 1 and no overlap = 0), resulting in 14 unique structures from E₂·D-glu₂ and 2 unique structures from E₂·D-glu₂·DPA. The QR factorization results immediately indicate that the presence of bound-DPA results in limited conformational diversity for RacE2 within the respective equilibrated time series. An estimate of the binding free energy was calculated for glutamate bound to either monomer using an “endpoint” approach (recently reviewed by Steinbrecher and Labahn). The method employed here, MM-BEMSA, is a variation on the popular MM-PBSA method, with electrostatic potentials calculated with the Boundary Element Method (BEM), instead of numerically solving the Poison-Boltzmann (PB) equation. The details of this approach are described in the Computational Methods section of the Supplementary Information. Briefly, the BEM technique
for calculating electrostatic potentials has some advantages in dealing with highly
curved surfaces of macromolecules, such as clefts and buried pockets, which
made it ideal for the GR receptor35,36.

Instead of doing an endpoint free energy calculation of D-glu binding at
every time point of an MD simulation, we sought a more efficient use of
computational resources. The predicted binding energy was averaged for all non-
redundant structures from each respective trajectory. In the past, McCammon
and coworkers applied this technique to an MD simulation of Kinetoplastid RNA
editing ligase 1 (KREL1), where non-redundant representatives were shown to
possess as much binding energy information as the entire set of structures
resulting from the simulation31. Thus, the non-redundant set of MD structures,
obtained from QR factorization was used in the end point free energy
calculations of D-glu to the RacE2 dimer, with and without DPA bound (i.e. E_2·D-glu$_2$ and E_2·D-glu$_2$·DPA). For glutamate bound to monomer B, no significant
difference in free energy of binding exists between E_2·D-glu$_2$·DPA and E_2·D-glu$_2$
(-17 ± 5.0 kcal/mol versus -22 ± 2.0 kcal/mol, respectively). On the contrary, for
glutamate bound to the A monomer, a less negative free energy of binding (i.e.
weaker complexation) is seen in E_2·D-glu$_2$·DPA compared to E_2·D-glu$_2$ (-15 ± 1.0
kcal/mol versus -21 ± 2.0 kcal/mol, respectively, Fig. 30d). End point free energy
calculations (such as MM-PBSA) do not yield accurate absolute free energies37,
but have been shown to be highly accurate in terms of relative free energy
values38, and may be used as powerful predictor of trends in relative binding
affinities.
Figure 30. Ligand interaction maps for glutamate bound to monomer A of the DPA-lacking RacE2 complex (a) and DPA-bound RacE2 complex (b), as well as DPA bound to the cryptic binding site located at the RacE2 dimer interface (c). Maps were generated from the final structures of 20-nanosecond MD simulations using the LigX function of MOE v2009.10. Predicted binding energy of glutamate was averaged over the set of representative structures extracted from MD simulations of the binary (red, n=15) and ternary complex (blue, n=4, d), error bars = SEM. The details of the binding energy calculations are outlined in the Computational Procedures section of Material and Methods.
Ligand interaction mapping of equilibrated E₂·D-glu₂·DPA after the 20 nanosecond simulation show two water bridges formed between DPA and Asp210 and Glu211 of the A monomer of RacE2 (Fig. 30c). Asp 210 goes on to form a hydrogen bond with the side-chain hydroxyl of Ser207 (previously implicated in DPA binding by initial ligand interaction mapping of the top-docked complex prior to MD). Ser207 also forms a water bridge with Glu211. This complex network of direct hydrogen bonds and water bridges between DPA and the A monomer occurs twenty residues downstream of the catalytic residues, separated by a short α-helix and β-sheet. The interaction maps of glutamate bound to the active site of the A monomer of equilibrated complexes were compared. Binding of DPA corresponds with altered hydrogen-bonding within the active site as compared to E₂·D-glu₂. Briefly, in E₂·D-glu₂·DPA, glutamate forms seven hydrogen bonds with active site residues as opposed to five hydrogen bonds in E₂·D-glu₂ (Fig. 30a-b). Also, glutamate of E₂·D-glu₂·DPA is involved in five water bridge contacts while glutamate of E₂·D-glu₂ involves only three. These variations in enzyme-ligand interactions point to a global conformational change translated from the dimer interface to the active site. Specific details regarding hydrogen bonding and enzyme-ligand distances for the two complexes are described in the Supplementary Information.

3.6. Effect of DPA Binding on pKa of Catalytic Cysteine 74

While differences in free energy of binding of D-glu may contribute partially to inhibition by DPA, they cannot explain if and why the enzyme-substrate-inhibitor (ESI) complex is enzymatically unproductive, particularly since
the binding pose of D-glu does not vary widely between E₂·D-glu₂ and E₂·D-glu₂·DPA. Considering the importance of the basicity of the general acid/base for glutamate proton abstraction⁹,³⁹ and the clear active site rearrangements that accompany DPA binding⁸, we chose to examine changes in pKa of the key catalytic residue, Cys74, for D→L racemization. Each structure selected from QR factorization of the MD simulations of both ensembles was used to calculate pKa values with the widely employed MEAD algorithm (implemented in the H++ utility¹⁸,⁴⁰). The distribution of pKa values shows a significant downward shift for Cys74 of E₂·D-glu₂·DPA compared to Cys74 of E₂·D-glu₂ (Fig. 31). Overall, the E₂·D-glu₂·DPA structures possessed pKa values in a much more limited range and with reduced values (less basic) compared to E₂·D-glu₂ structures, which possess pKa values ranging from as low as 8 to as high as 20 (Fig. 31). The possibility that the loss of extreme basicity of Cys74 is responsible for a dysfunctional ESI complex is discussed below.

Figure 31. Distribution of pKₐ values calculated for Cys74 (the catalytic base of D → L racemization) for E₂·D-glu₂ and E₂·D-glu₂·DPA. Each structure, selected via QR factorization of a collection of simulation snapshots, was each used in pKa calculation using the MEAD algorithm from the H++ program¹⁸. Details of parameters employed in these pKa calculations are located in the Computational Procedures section of the Materials and Methods.
4. Discussion

Here we have identified a natural compound, DPA (linked to the *B. anthracis* life cycle), which exhibits noncompetitive inhibition of GR from *B. anthracis* via binding to a remote and heretofore undiscovered allosteric pocket. A blind docking study, using three leading algorithms has determined the consensus pharmacophore for DPA, which lies at the dimer interface. This consensus pocket was experimentally validated via a multiple site-directed mutagenesis study. The loss of racemization activity due to DPA has no affect on the oligomeric equilibrium of GR, suggesting that inhibitor action is allosteric in nature.

A parallel computational study to understand the source of the DPA-induced allostery was undertaken. DPA-induced changes in the phase space of *B. anthracis* RacE2 showed a significant dampening of the conformational flexibility of GR. Interestingly, the large conformational fluctuations of E$_2$·D-glu$_2$ manifest large changes in the magnitude of the calculated pKa of the catalytic base, Cys74. The large pKa perturbations in the E$_2$·D-glu$_2$ are due to a variety of interactions between active site residues, particularly the interaction between the catalytic base and Asp11. Unsurprisingly, Asp11 was previously identified as being located in an area of high homology and subsequently probed via mutagenesis, resulting in a 1000-fold reduction in the observed k_{cat} of GR39. Remarkably, the very high basicity of some enzyme catalytic bases has been shown to be critical to catalytic efficiency even when the protonation state of this species (the so called "reverse protonation" state41) is not the dominant form at a given pH. The concept of the role of the reverse protonation state has been fully developed in the case of enolase and alanine racemase42,43. Thus, what is seen here in the case of GR is a manifestation of the phenomenon exhibited in enolase and alanine racemase, in which the reverse protonation state may be
the primary driver of catalytic power (i.e. a very high pKa thiolate). However, in GR there is the additional complexity of a quite flexible ensemble of protein conformations, with large fluctuations in the values of the pKa of the catalytic base. It is fascinating that the ensemble with the allosteric inhibitor (DPA) results in a conformational "freezing out" of the high pKa (i.e. catalytically reactive) forms of GR. We hypothesize that this is the source of allosteric inhibition by DPA, and refer to this mode of inhibition as Inhibition by pKa Trapping (IPKAT). We propose that this is a general phenomenon in GR that can be exploited in the DPA pocket by other small molecules, and that in principle it is possible to construct an IPKAT pharmacophore, in which GR inhibition can be predicted by the distribution of calculated pKa values of the catalytic Cys residues.

The presence of DPA in *Bacillus* spores has been well-established as DPA constitutes approximately 10% of the dry weight of dormant spores, but its exact role in sporulation and germination is only loosely understood\(^4\). DPA within spores is found primarily in its calcium-chelated form, Ca\(^{2+}\)-DPA. In the developing endospore, DPA concentrations remain low until after cortex formation, which requires peptidoglycan synthesis. In the dormant spore phase of *B. anthracis*, Ca\(^{2+}\)-DPA concentrations are very high and there is no detectable metabolic activity. Upon activation of spores by external factors, channel formation occurs allowing a large efflux of cations and Ca\(^{2+}\)-DPA out of the spore core\(^4\). This event occurs concomitantly with an adjustment of the pH from 6.5 to 7.7 and increased hydration\(^4\). All of these events are required to restart metabolism. Accordingly, both the reduced DPA concentration and elevated pH are conducive with increased GR activity (pH optimum of RacE1 and RacE2 is ~8.0\(^1\)). As the spore core grows nearly 4-5x its original size, the demand for peptidoglycan synthesis increases and thusly the demand for D-gluatamate. Additionally, D-gluatamate is required for the poly-D-gluatamic acid capsule surrounding the mature vegetative cell. Taking all of this into consideration, one
may postulate that the fluctuation of DPA concentration over the lifetime of a differentiating *B. anthracis* cell coincides with the varying necessity of D-glutamate (Fig. 32). Thus, it is appealing to imagine the inhibition of GR by DPA as more than serendipitous. Of course, future *in vivo* studies are required to further investigate the interactions of GR and DPA in spores and vegetative cells. One point to investigate is whether the efflux of DPA actually results in a cellular DPA concentration less than the K_d, approximately 90 μM, capable of entirely alleviating GR inhibition. Compartmental distributions of DPA may allow such a concentration to be reached even if the net cellular concentration of DPA is still high.

Figure 32. Schematic of life cycle of differentiating *B. anthracis* cell, with Ca$^{2+}$-DPA levels and consequent GR activity indicated.
Importantly, the ligand efficiency (free energy of binding divided by the number of non-hydrogen atoms in the ligand) of DPA is quite high (-0.458 kcal mol\(^{-1}\) per non-H atom) compared to other known allosteric ligands such as Compound A (-0.242 kcal mol\(^{-1}\) per non-H atom) and the activator of GR from *E. coli*, UPD-MurNAc-L-Ala (-0.150 kcal mol\(^{-1}\) per non-H atom). Despite binding with higher affinity, the large MW of Compound A from Lundqvist *et al.* significantly lowers its ligand efficiency\(^4\). Ligand efficiency is one of the principal factors of lead optimization\(^46\). The high ligand efficiency of DPA means that during ligand optimization, a binding affinity in the low nM can be achieved with far fewer heavy atom additions and thus a lower MW compared to compounds of lesser efficiency. Additionally, the possible chemical modifications of DPA are manifold, providing a large potential library of small molecules to screen.

Allosteric modulators represent an emerging drug class with which some pharmaceutical companies are having notable successes such as the HIV inhibitor maraviroc (Pfizer) and the hyperparathyroidism drug cinacalcet (Amgen)\(^47,48\). There are several advantages to using allosteric binding sites as drug targets over the native substrate binding site. Primarily, the allosteric sites of GR can accommodate a chemically diverse set of compounds compared to the active site, i.e. the final drug need not be a substrate analogue. A non-amino-acid-like inhibitor will increase the selectivity for GR, while lowering the chance of undesirable interactions with enzymes containing analogous binding site motifs, such as enzymes involved in amino acid synthesis or the glutamate receptors that play an important role in neural chemistry. Also, any mutations that could circumvent inhibition at this particular allosteric site would occur within the sensitive dimer interface and are thus more likely to affect dimerization and monomer cross-talk, potentially very key components of GR catalysis. The major obstacle to virtual screening campaigns targeting allostery is pharmacophore elucidation. Once this hurdle has been overcome (i.e. a defined structure activity
relationship and/or an atomistic understanding of the binding modes that lead to enzymatic inhibition), then reasonable metrics may be applied to assess binding modes and predict novel allosteric inhibitors. Such is the case now for \(B.\ anthracis \) RacE2, particularly in light of the IPKAT hypothesis outlined above, which permits a physical metric for inhibitory allostery. It is now possible to begin rational allostery-based virtual screening campaigns against the GR target class, potentially leading to new inhibitory small molecule anti-anthrax therapeutics.

Associated Content

Supporting Information Available: Additional results (including aggregation controls, statistical analysis of global fitting, BN-PAGE controls, and RMSD plots from MD simulations) as well as extensive experimental methods and computational methods may be found in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgements

This work was supported by NIH AI076830 (M. A. S.) and NIH AI057156 (S. R. B.). Special thanks to Dr. Keith Westcott for his contribution to the Keith R. Westcott Graduate Student Education Fund (K. L. W.). Additionally, thank you to Dr. Dylan Dodd for helpful discussions.
References

(25) FRED; 2.2.5 ed.; OpenEye Scientific Software, Inc.: Sante Fe, NM, USA, 2010.

(26) GOLD; 4.1 ed.; The Cambridge Crystallographic Data Centre: Cambridge, CB2 1EZ, UK, 2010.

Iqbal, J.; Zaidi, M.; Schneider, A. E. *IDrugs* 2003, 6, 587.
I. Research Objective and Main Arguments

This thesis describes the deep investigation into the nature of a flexible protein, with the ultimate goal of improving structure-based drug discovery. The previously described studies focus on protein conformational dynamics, ligand binding, and catalysis, with an emphasis on the role of water. The interdependence of these three processes has been recognized and studied individually, or in combination, in other systems. Here we focus on glutamate racemase, a validated drug target that remains a potential untapped source of novel antibiotic compounds. Below is a list of the main arguments put forth in this thesis.

1. Protein flexibility can be modeled accurately and cheaply, from a structure-based drug discovery viewpoint, by using unconventional MD simulation and ensemble docking, coupled with proper treatment of protein solvation. This can be used in hit discovery as well as lead optimization.

2. Transition-state-like inhibitors can be found faster and more efficiently by creating and targeting a "reactive" form of the protein receptor in virtual screening.

3. Interstitial water molecules play a dynamic and idiosyncratic role in the active site of a flexible enzyme, and their enthalpic contributions represent large portions of a particular ligand's binding energy. Furthermore, their contributions can be properly accounted for with the Extended Linear Response method of binding free energy calculations.
4. Small-molecules can regulate enzymes by exploiting protein conformational dynamics, specifically binding to conformations that dampen catalytic power.

II. General Research Methodology

The common *modus operandi* in the previous chapters is the discovery of physical phenomenon via experimental analysis and the subsequent rationalization via computational modeling. The physical phenomenon range from highly plastic inhibitor binding (Chapter 1-3); to surprising, mutation-dependent alteration of enzyme kinetics and ligand binding (Chapter 4); to allosteric regulation (Chapter 5). Computational techniques are employed to model the protein system and propose a molecular rationale for experimental observations. There is also a feedback mechanism that allows us to incorporate what we learn experimentally into how we model these systems in the future, in order to improve the accuracy and speed of such techniques. Often, experimental studies are driven by original computational insights.

Questions were explored using a combination of computational and experimental techniques. Foremost was the use of traditional biochemistry in the form of recombinant protein expression, chromatography-based purification, and enzyme kinetics. Second most prominent is the use of computational modeling of physical and chemical phenomena, such as small molecule docking, molecular dynamics simulations of proteins, and binding free energy calculations. Finally, I employ a mix of biophysical assays, such as bulk fluorescence studies and circular dichroism; and since the end goal of this work is the development of antibiotic compounds, *in vivo* assays for determination of bacterial cell growth inhibition and measurement of cell wall integrity via cytotoxic leakage assays.
III. Discoveries and Challenges to Pre-existing Views

In a systematic manner, the indications of each chapter are presented below.

In chapter 1, the findings indicate that an enzymatically reactive structure (derived from simulation) could produce a receptor that would more reliably discover high-efficiency hits in virtual screening than a high resolution structure of the receptor bound to the native substrate, the previous standard for virtual screening.

In chapter 2, the findings indicate that steered MD simulation offers unique benefits over classical MD simulation at producing diverse and physiologically-relevant conformations of glutamate racemase. Additionally, the utilization of these distinct conformations in an ensemble-docking campaign is capable of accurately modeling large-scale motions in a more efficient way than simulation-intensive techniques such as docking followed by individual MD simulations, Thermal Integration, or Free Energy Perturbation.

In chapter 3, the findings indicate that a lead optimization campaign can rely heavily on computational predictions in order to lower production costs and optimization time, if said computational techniques accurately rank the lead derivatives based on a binding-energy-related score.

In chapter 4, the findings indicate the role of a conserved residue in maintaining pocket structure and subsequent water organization, causing dramatic alterations to both enzyme kinetics (2200% increase in k_{cat}) and inhibitor binding (600% increase in IC_{50} for a competitive lead compound). These changes seem to be dictated by bridging water molecules, a key component of
the pharmacophore otherwise ignored by previous in silico drug discovery campaigns.

In chapter 5, the findings indicate the presence of subtle chemical changes being the source of allosteric inhibition in glutamate racemase, specifically the trapping of enzyme conformations whose lack of flexibility prevent the spike in catalytic base pKa required for proton abstraction on the Cα carbon of glutamate.

IV. Significance of these Findings to the Field

Proteins vary in what is referred to as their "druggability", a combination of physical and chemical characteristics often related to small molecule or peptide binding. With the saturation of drugs for "easy" targets, the pharmaceutical industry and academia must turn toward targeting less attractive proteins in order to find completely new treatments in the case of diseases that have yet to be tackled, or improved therapies for diseases where treatments exist, but are suboptimal. Targets are often considered difficult if they are proteins that have proven harder to characterize structurally or functionally due to a large degree of inherent flexibility, or if the potential pockets have poor physical characteristics. A quantitative understanding of the link between protein flexibility and ligand binding would reduce the discovery barrier to developing drugs for a large swath of enzymes.

More specifically, the world currently finds itself in the middle of an era of ever increasing antibiotic resistance, including the unnerving rise of bacterial populations exhibiting multi- and total-drug resistance\(^1\). The need for novel antibiotic therapies has become a mission of paramount importance. Our research attacks this mission with a two-prong approach: 1) drug discovery
campaigns themselves and 2) the development of techniques that will expedite and reduce the costs of such campaigns in the future. Either approach will benefit the field by 1) introducing novel lead compounds into the universal drug pipeline and, assuming the adoption of our techniques by other pharmaceutical and academic teams, 2) reduce the large fiscal and time barrier of other discovery campaigns.

Finally, the discoveries made in the highlighted studies, specifically Chapter 5, have important implications for general protein biochemistry. In addition to being an important drug target, as a cofactor-independent amino acid racemase, glutamate racemase performs powerful and elegantly simple chemistry. The proton on the alpha-carbon of glutamate has a pKa of approximately 18, while cysteine (the residue responsible for abstraction) has a thiol pKa of approximately 8.3 (measured for the single amino acid in solution). The key to GR catalysis is the perturbation of the thiol pKa to a value that is high enough to abstract the substrate proton. Also important is the stabilization of the carbanionic intermediate, which is most likely achieved by a large and highly optimized network of hydrogen-bonding interactions in the active site. Without the aid of a cofactor, such as a metal or pyridoxal-5-phosphate, GR manages to perturb active site pKa's via modifications to the local chemical environment. This thesis implicates the conformational plasticity of GR as being the driving force behind these modifications. Such a hypothesis also opens the door to explaining allosteric modification of enzyme chemistry in other cases where no obvious changes in the active site structure are observed with the allosteric regulator bound.

V. Limitations Encountered in This Research

The nature of both this enzyme system and the employed methodologies
leads to certain limitations that must be overcome for further advancement. First, the highest-potency inhibitor produced from lead optimization has an affinity of 2.5 micromolar. Further optimization or combination treatments with either the allosteric inhibitors of GR or known antibiotics that also target peptidoglycan biosynthesis will be required to produce reasonable antibiotic therapies. Additionally, *in vivo* assays for antibiotic potency are limited by the potency/solubility of the existing in-house GR inhibitors. Thus, higher potency inhibitors are additionally required to more confidently establish bacterial growth inhibition as well as breakdown of peptidoglycan. I believe we have maximized the potency of an inhibitor which binds specifically to the buried active site (as quantified by extremely high ligand efficiency, in other words, reaching the upper limit of binding-energy per heavy atom). Development of inhibitors with nanomolar affinity will require extension of molecules out of the active site, but this will require modifications to our current prediction mechanisms. As is, the FERM-SMD method breaks down when ligands are large enough to extend out of the buried active site and make contacts with residues in adjacent pockets. This is possibly due to the dramatically different degrees of solvent exposure between the buried active site interior and the more exposed region surrounding the active site cleft. The FERM-SMD method will most likely need to be supplemented with additional simulation in order to overcome this obstacle. For instance, if FERM-SMD and the Extended Linear Response (ELR) method could be combined, together they may be able to properly account for protein-ligand interactions occurring at both the "mostly" solvent-excluded interior as well as the solvent-exposed exterior of the binding pocket. Currently, ELR is computationally expensive (requiring two individual 4-nanosecond simulations per inhibitor of interest) and thus scripts will need to be written that can utilize the parallel computing resources available at the University of Iowa High-Performance Computing center.
Second, high-resolution co-crystal structures with the studied inhibitors are in dire need. GR consistently proves difficult to crystallize (possibly a result of its flexibility). The lack of experimental data regarding the binding mode of our small-molecule inhibitors leaves us relying on models created by molecular docking. Although using a model has proven to be accurate enough for lead optimization on the 1H-benzimidazole-2-sulfonic acid scaffold (Chapter 3), this was a pretty clear cut case, considering the compound's asymmetry and the presence of only one negative charge (negative charges are consistently positioned between the catalytic cysteines in previously reported GR co-crystals). There are many GR inhibitors for which molecular docking predicts several variable binding modes. For example, croconic acid was an interesting scaffold discovered in virtual screening (Chapter 1), but possesses symmetry and two negative charges. In this case, it would be ill-advised to conduct a lead optimization campaign relying on the modeled complex. In our efforts to address this dearth of structural information, and in addition to on-going crystallization efforts, the author has contructed a mutagenized form of GR, which once expressed with 15N-labelled histidine, is purified and sent to collaborators with expertise in the extremely high-resolution solid-state NMR technique, REDOR (Rotational Echo Double Resonance). This will be the largest protein construct to be subjected to REDOR measurements to date. With fluorine- or 13C-labeled inhibitors, this system could prove much more robust at reporting structural information. Additionally, this technique has the capacity to reach resolutions high enough to assign individual protonation states, a thrilling prospect for determining exact pKa values within the GR active site.

VI. Areas for Further Development and Research
The discoveries described here lay the groundwork for intriguing further studies with glutamate racemase. There are several opportunities now to advance drug discovery for allosteric inhibitors of glutamate racemase. The creation of a glutamate racemase model that accurately represents the transition-state conformation and its subsequent employment as the receptor for virtual screening has proven successful in discovering new competitive inhibitors (Chapter 1). If one was also able to model the conformation of glutamate racemase under the effects of an allosteric inhibitor, it may be possible to effectively target an allosteric pocket in a similar manner. There has been a general upswing of the development of allosteric regulators as viable therapeutics by the pharmaceutical industry, eg. FDA-approved, antiretroviral drug, Maraviroc (Pfizer)² and an antiparathyroidism drug, Cinacalcet (Amgen)³. Allosteric regulators provide unique opportunities for combination therapy against a single protein target. Along the same lines, the FERM-SMD method was proven effective at ranking congeneric derivatives of a lead scaffold using a steered molecular dynamics simulation to generate distinct and functionally relevant protein conformations for ensemble docking. Similar simulations can be performed with known allosteric inhibitors (eg. dipicolinic acid bound to GR from B. anthracis, or AstraZeneca's pyrazolo-pyrimidinedione analogue bound to GR from H. pylori) from their respective pockets in order to apply the same method to lead optimization of current allosteric scaffolds. A high-resolution x-ray crystal structure exists in the case of the AstraZeneca compound, but one would need to be acquired in the case of dipicolinic acid to provide a confident starting structure for such simulations.

Taking a more fundamental path, the key hypothesis proposed in Chapter 5, Inhibition by pKa Trapping (IPKAT) can be tested directly via the exact determination of the catalytic cysteines' pKa's. Previous work by the lab of Dr.
Leslie Poole (Wake Forest University) established a method that accomplishes just that by using a cysteine-specific label, iodoacetanilide, to covalently modify the target protein at varying pH. The extent of labeling can be measured with MALDI-TOF mass spectroscopy and the rate of labeling at varying pH can be plotted to determine the pKa of specific cysteines. One could perform such experiments with GR in the presence and absence of an allosteric inhibitor to determine any shifts in the pKa of the catalytic base incurred by inhibitor binding. Preliminary work on this project has already been completed by the author, but was not included in this thesis. Mass spectroscopy has confirmed the ability of the pH-sensitive label to reach and covalently modify both catalytic cysteines within the buried active site. Depending on the results obtained with allosteric inhibitors, it may also be interesting to similarly investigate the GR from *E. coli*, which is the only known GR to be regulated by an endogenous activator, UDP-MurNAc-L-Ala. If enzyme inhibition is achieved via a environmental perturbation that lowers the pKa of the catalytic base, one would expect a change in the opposite direction in order to achieve activation.

An important aspect of this work was the development of methods that improve the drug discovery and development processes. In order for these methods to be universally applicable, they must be tested with other enzyme systems. The "reactive conformation" approach to virtual screening and the FERM-SMD method of lead optimization should be applied to the other in-house systems: glucokinase, a drug target related to type II diabetes; and caspase-7, a drug target implicated in both cancer and inflammation. The distinct nature of each of these proteins will present new issues to troubleshoot and result in more robust and universal methodologies.

Finally, an additional line of work that was completed by this author, but
was not near enough to publication to be included as a thesis chapter, has entailed the incorporation of a local, highly fluorescent probe into GR as a means of monitoring the conformational changes induced by small-molecule binding. The results revealed surprising structural alterations incurred by ligand binding that were confirmed via Small-Angle X-Ray Scattering. These results corroborate the assumptions made during the development of the FERM-SMD method (Chapter 2 and 3), specifically that different small-molecules binding to the same buried active site have the ability to induce distinct conformational changes.

References

Exploiting Enzyme Plasticity and Reactivity in Virtual Screening and Ligand Discovery: the discovery of glutamate racemase inhibitors with high ligand efficiency values.

Katie L. Whalen§, Katherine L. Pankow§, Steven R. Blanke† and M. Ashley Spies‡§*

§Department of Biochemistry, †Institute for Genomic Biology, and ‡Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Computational Methods

High-throughput database virtual screening. The docking of the Chemical Computing Group’s Conformational Data Base, version 2007, (lead-like compounds, based on the parameters set forth by Oprea¹, and consisting of ~ 1 million compounds from public catalogs of 45 chemical suppliers) into the active site of the reactive conformation of B. subtilis glutamate racemase was performed as described in Spies et al.,² However, the method is briefly outlined as follows: Docking was performed using the program LigandFit³ within the Cerius2 suite (Accelrys, Inc.) The receptor was an energy minimized snap shot for MD simulations with the glutamate carbanion, which was later validated to
lead to *ab initio* QM/MM transition states, for C=C proton transfer, upon geometry optimization, as described in Spies *et al.*2 All compounds in the database were protonated, energy minimized, and docked in the binding site, performing *in-situ* ligand conformational search and rigid-body minimization of the docked poses in the receptor’s binding site. All docked compounds were scored using the LigScore scoring function available in LigandFit. The resulting docked poses were analyzed for biological and computational consistency by i) verifying that the known carbanion ligand was ranked among the best compounds, and ii) verifying that the carbanion was docked in a geometry that reproduces the initial pose.

Scoring and Ranking of Docked Poses. In the initial virtual screen, detailed above, LigScore was used in ranking docked poses, and the top 500 compounds were selected for further analysis. A more rigorous and computationally expensive ranking was employed hereafter to re-rank these compounds in order to determine compounds for actual experimental examination for GR inhibition activity. The LigX utility within the Molecular Operating Environment (MOE)4, Version 2008.10, was used to predict the binding free energy for the docked complex (i.e. the pK\textsubscript{i} value). The scoring procedure involved first a local energy minimization, in which only the ligand and all atoms (including protein receptor and water) in a sphere of 8 Å from the ligand are allowed to move in the geometry optimization. The force field used in the energy minimization was MMFF94x, using a nonbonded cutoff of 10 Å. After energy minimization, the complex is scored using the MOE’s London dG scoring function4 (*vide infra*), which is similar to the often cited scoring function used in AutoDock5. Briefly, the functional form of the London dG scoring function is as follows:
\[\Delta G = c + E_{\text{flex}} + \sum_{\text{h-bonds}} c_{\text{HB}} \cdot f_{\text{HB}} + \sum_{\text{atoms } i} \Delta D_i \]

where \(c \) is the average gain/loss of translational and rotational entropy; \(E_{\text{flex}} \) equals the energy from loss of flexibility of the ligand; \(f_{\text{HB}} \) is a measure of the degree of imperfections of hydrogen bonds (ranging from zero to 1); \(D_i \) is the desolvation energy of atom \(i \).

\[\Delta D_i = c_i R^3 \left\{ \iint_{u \in A\cup B} |u|^{-6} du - \iint_{u \in B} |u|^{-6} du \right\} \]

where \(A \) and \(B \) are the protein and ligand volumes, respectively, with atom \(i \) belonging to B; \(R \) is the solvation radius of atom \(i \); \(c_i \) is the desolvation coefficient of atom \(i \). The values of \(c \), \(c_{\text{HB}} \) and \(c_i \) were fitted from \(\sim 400 \) x-ray crystal structures of protein-ligand complexes and their corresponding experimentally determined \(pK_i \) values. The triple integrals were approximated using the Generalized Born integral. For additional information the reader is referred to the MOE (2008.10) manual (Chemical Computing Group, Inc.)\(^4\).

The London dG scoring function was a far superior ranking system than sampling using MMFF94 protein-ligand interaction energies from globally energy minimized complexes, as had been employed on GR studies in the past, which led to only weak competitive inhibitors with low mM binding dissociation constants, as described in Spies \textit{et al.}\(^2\). The MMFF94 interaction energy approach, as employed previously, was computationally more expensive, and did not locate any \(\square \)M lead compounds. In the current approach, using the ranking based on the London dG scoring led to the discovery of two \(\square \)M competitive inhibitors, one weak inhibitor and one compound which was shown to be a
colloidal aggregator (by employing the well-established detergent tests of Shoichet and coworkers\(^6,7\)).

Detailed Docking of 3 into the Reactive Conformation of GR versus Docking into GR Crystal Structure Using Docking-Energy Minimization. The goal was to look at all reasonable poses of 3 docked into the reactive form of GR and the crystal structure of GR (PDB 1ZUW), retaining all docked poses and allowing each pose to undergo minimization and resoring with London dG, as above. The Dock utility of MOE (Version 2008.10) was employed. Briefly, the Alpha Triangle method\(^4\) was employed for the placement stage, followed by scoring using the London dG scoring function. The next step was a refinement stage, consisting of a full force field (MMFF94) energy minimization of each pose into the rigid receptor, followed by a resoring using the London dG scoring function. This procedure was followed for both the reactive form of GR as receptor and the crystal structure of GR as receptor, respectively. All explicit solvent was included in the receptor, and the energy minimization convergence is defined as an RMSD gradient of 0.01 kcal/mol/Å\(^2\), with an upper limit of 500 iterations. The MMFF94 force field is used in the energy minimization; receptor residues over 6 Å away from ligand poses are not included in the energy calculation. The final energy was calculated using the Generalized Born solvation model\(^4\).

Calculation of Tanimoto Volumes for 3 Docked into Reactive Conformation of GR and the Crystal Structure of GR. Tanimoto volumes (\(T_{vol}\)) is a measure of the goodness of overlap between docked poses (or between a docked pose and an experimentally determined receptor-ligand complex), which has the following form\(^8-10\):
\[T_{vol} = \frac{O_{xy}}{I_x + I_y - O_{xy}} \]

where, \(O_{xy} \) is the overlap in molecular volume between two docked poses; \(I_x \) and \(I_y \) are the molecular volumes of docked poses \(x \) and \(y \), respectively. For the case of perfect overlap between pose \(x \) and \(y \), \(O_{xy} \) is equal to the molecular volume overlap between compounds \(x \) and \(y \), which reduces \(T_{vol} \) to a value of unity. When there is no overlap at all between poses, then \(O_{xy} \) approaches zero, and \(T_{vol} \) approaches zero. \(T_{vol} \) is considered a superior method for the similarity of placement between complexes, because it accounts for cases where a ligand may be rotated \(\sim 180^\circ \) (i.e. flipped), but which accurately describes the available and occupied active site space\(^8-10\).

Calculations of Molecular Volumes Using Yasara. The solvent excluded (ie Connolly) surface of \(3 \), from docked poses, was calculated using the program YASARA\(^11\) (Version 9.5.10), using the ‘Numeric’ algorithm option, with the default grid resolution.

Experimental Methods

Materials. Materials for Luria-Bertani (LB) medium were purchased from BD Diagnostics (Franklin Lakes, NJ). Isopropyl-β-D-thiogalactoside (IPTG) was purchased from Fisher Scientific (Fair Lawn, NJ). Ampicillin, dithiothreitol (DTT), and β-mercaptoethanol were obtained from Sigma Aldrich (St. Louis, MO). Amicon centrifugal filter devices with a molecular weigh cutoff of 10,000 were purchased from Millipore (Billerica, MA). Ni-NTA His-Bind Resin was obtained from Invitrogen. Materials for preparing the Ni-NTA bind, wash, and elute buffers were obtained from Sigma Aldrich. Iodonitrotetrazolium chloride, Nicotinamide adenine dinucleotide hydrate (NAD\(^+\)), Diaphorase from *Clostridium kluyveri* and
L-Glutamate Dehydrogenase from bovine liver (obtained as an ammonium sulfate suspension) was purchased from Sigma Aldrich. Adenosine-5'-Diphosphate, Disodium Salt, Dihydrate was obtained from USB Corporation (Cleveland, OH). Compound 4 (ID# S364169) was obtained from Sigma-Aldrich. Compound 5 (ID# BAS 00124393) was obtained from Asinex (Salem, NC). Compound 1 (ID# MMSA-1076) was obtained from Scientific Exchange (Center Ossipee, NH). Compound 3 (ID# LT00453399) was obtained from Labotest OHG (Niederschönau, Germany). Compound 7 was obtained from InterBioschreen (ID# BB_NC_0417). Compound 8 was obtained from Sigma (ID# 297763). Compound 2 was obtained from Sigma’s Rare Chemical Library (ID# S819670).

GR Expression and Purification. The expression and purification of RacE (*B. subtilis* GR)², RacE1 and RacE2 (isozymes of *B. anthracis* GR)¹² were as described previously. A 10 mL starter culture of LB medium with 100 μg/mL ampicillin was prepared from the stock *E. coli* BL21 (DE3) cells containing a pET-15b-racE plasmid and grown overnight at 37 degrees Celsius with rotation. The 10 mL starter culture was back-diluted into 1 L fresh LB medium with 100 μg/mL ampicillin. Cells were grown at 37 degrees Celsius with shaking until the optical density at 600 nm reached ~ 0.5. RacE expression was induced upon addition of a final concentration of 0.1 mM IPTG. Following induction, cells were grown for an additional 16 h at 37 degrees Celsius with shaking. Cells were harvested by centrifugation at 5,000 x g for 15 min. Supernatant was discarded and cell pellets were resuspended in Ni-NTA bind buffer (50 mM phosphate, 300 mM NaCl, 20 mM imidazole, 0.5 mM Tris carboxyethyl phosphine, pH 8.0). Cell lysis was achieved through sonication (3x 20 sec cycles, 23 kHz and 20 W), using a 100 Sonic Dismembrator from Fisher Scientific. Insoluble materials were pelleted by centrifugation at 30,000 x g for 30 min and clarified lysate was applied to 4 mL bed volume of Ni-NTA His-Bind resin. Bound protein was washed with 2X 16 mL of wash buffer (50 mM phosphate, 300 mM NaCl, 40mM imidazole, 0.5 mM Tris
carboxyethyl phosphine, pH 8.0). Bound protein was eluted twice with 4 mL elution buffer (50 mM phosphate, 300 mM NaCl, 250 mM imidazole, 0.5 mM Tris carboxyethyl phosphine, pH 8.0) and the collected eluant was exchanged into protein storage buffer (50 mM Tris, 100 mM NaCl, 0.2 mM DTT, pH 8.0) utilizing a 10,000 MWCO Amicon centrifugal filter device from Millipore. Concentration by centrifugation and resuspension in protein storage buffer was repeated twice more for a total of 3 buffer exchanges.

Protein concentration was quantified by absorbance spectroscopy based on previously employed methods13. Based on the primary amino acid sequence, the extinction coefficient for RacE was calculated to be 24,401 M-1 cm-1 at 280nm. Absorbance readings were acquired using a Cary 300 Bio UV-Vis\textsuperscript{ible Spectrophotometer from Varian Incorporated (Palo Alto, CA). Finally, protein stocks (final concentration = 0.420 mM) were stored in protein storage buffer with 20% glycerol at -20 degrees Celsius.

Enzyme Kinetics – Circular Dichroism. Stereoisomerization of D-glutamate by glutamate racemase was assayed using a J-720 CD spectropolarimeter from JASCO (Easton, MD). A jacketed cylindrical cuvette with a volume of 750 μL and a path length of 10 mm was used for each assay. Readings were measured at 220nm or 225nm depending on contributions to the signal by the inhibitor. All measurements were conducted at 25 °C. Concentrations of D-glutamate were varied from 0.25–5 mM in an optically clear borate buffer (50 mM boric acid, 100 mM KCl, 0.7 mM DTT; pH 8.0). Reactions were initiated upon addition of RacE (0.84 μM), RacE2 (0.47 μM) or RacE1 (0.49 μM) . Data acquisition was performed using a JASCO Spectra Manager v1.54A software and Excel, and fitting was performed using GraphPad Prism v5.0 software from GraphPad Software (San Diego, CA). For weaker inhibitors with high absorbance, where higher concentrations were employed, a 1 mm path length cuvette was used in
order to avoid saturating the instrument. Data was also presented as Lineweaver-Burke plots, using KaleidaGraph v4.03 by Synergy Software (Reading, PA).

No Observed Time-Based Inhibition of GR by 5. Inhibitors were analyzed for time-dependent inhibition by mixing RacE (0.56 μM) and inhibitor (50 μM) in optically clear borate buffer (50 mM boric acid, 100 mM KCl, 0.7 mM DTT; pH 8.0) and incubating on ice for various amounts of time (0 min, 2.5 min, 5 min, and 10 min). Reactions were initiated upon addition of D-glutamate (1 mM) and initial velocity was measured using circular dichroism as described above. Differences in initial velocity are negligible (less than 10%) for both compounds (Figure S1).

Testing for Colloidal Aggregation. It has been well established that the identification of non-competitive inhibition, which has often arisen in high throughput screenings (both virtual and non-virtual), may be the result of colloidal aggregation of the ligand of interest. This phenomenon occurs exclusively with (apparent) non-competitive, not competitive inhibitors, and has been extensively characterized and reviewed by Shoichet and co-workers6, 7. In the current study, a single non-competitive inhibitor was identified (1; Table 1). Thus, 1 was analyzed for the possibility of colloidal aggregation using a previously established detergent-based assay6. First, we describe the coupled enzyme assay used in this study14, followed by the details of the detergent assay for colloidal aggregation.

Enzyme Kinetics – Coupled-Enzyme Assay. The D- to L-glutamate racemization activities of RacE, RacE1 and RacE2 were assayed through a previously established coupled method14, utilizing L-glutamate dehydrogenase and diaphorase. Absorption data was collected on a Cary 300 UV-VIS
Spectrophotometer from Varian Incorporated (Palo Alto, CA). In this coupled-enzyme assay, the stereoinversion of D-glutamate by glutamate racemase provided the L-glutamate required by L-glutamate dehydrogenase. The NADH by-product of dehydrogenation is then oxidized by diaphorase to produce the reduced form of iodonitrotetrazolium (INT). Reduced iodonitrotetrazolium can be quantified by measuring the absorption at 500 nm.

Coupled-Enzyme Assay Calibration. The stoichiometric relationship between absorption at 500 nm and the concentration of L-glutamate produced was calculated to be approximately 0.00103 AU/nmol, with some variance depending on the absorptivity of each new batch of iodonitrotetrazolium (INT). Absorptivity of INT was determined by titrating 10 nmol- aliquots of L-glutamate into a cuvette containing diaphorase, INT, L-glutamate dehydrogenase, ADP and NAD⁺. Absorption at 500 nm is plotted as a function of L-glutamate added. The slope of this plot is the conversion factor used in the coupled-enzyme assay to convert AU/min to nmol/min.

Coupled-Enzyme Assay: test for inhibition of glutamate dehydrogenase coupling enzyme. The coupled-enzyme assay was utilized in order to determine any possible incidence of L-glutamate dehydrogenase inhibition by the added inhibitor. Michaelis-Menten curves were composed under three sets of conditions: without inhibitor, with a concentration of inhibitor that causes significant inhibition (of the full coupled system), and with the same concentration of inhibitor and twice the concentration of glutamate racemase. All other reagent concentrations remain the same. If L-glutamate dehydrogenase is not being inhibited, one would expect to see an exactly two-fold increase in activity in the presence of two-fold more glutamate racemase. In other words, the ratio of initial velocity in the presence of 1X enzyme to the initial velocity in the presence of 2X enzyme should be 1:2. For 1, the ratio is 1: 1.91 ± 0.07, which is within error due to factors of the coupled-enzyme system. Thus, 1 would not appear to be inhibiting the coupled enzyme and any inhibition witnessed is that of
glutamate racemase alone. For 4, the ratio is 1: 1.75 ± 0.01 indicating that some, but not the majority, of the total inhibition is contributed by inhibition of L-glutamate dehydrogenase. It should be noted that neither compounds 1 nor 4 could be studied using circular dichroism due to their high absorbance in the UV range.

Detergent Assay for Colloidal Aggregation (false positive for non-competitive inhibition)-Activity of RacE was measured in the presence and absence of inhibitor in buffer containing 0.01% Triton X-100 (vol/vol). The percent inhibition was compared to that acquired when conducting the same measurements in buffer without Triton-X 100. If the inhibitor is indeed aggregating, one would expect to see a decrease in the percent inhibition in the presence of detergent. A greater than two-fold decrease in inhibition confirms colloidal aggregation. These tests were all performed using the coupled enzyme assay (vide supra), together with controls and calibration. Figure 3 shows that 1 is, indeed, a colloidal aggregator (1 was the only non-competitive inhibitor found in the current study). As a further control for this study, we also performed said detergent test on the competitive inhibitors 3 and 5, which did not have any effect on rate as a function of increasing concentrations of detergent, as expected.
Figures
Figure 1

Figure A.1. Initial velocity of stereoinversion of D-glutamate catalyzed by RacE in the presence of inhibitor (3 or 5) as a function of increasing incubation time. Differences in initial velocity are negligible (less than 10%) for both compounds.
Figure A.2 A.

![Graph of IC₅₀ curve for compound 3 against Bacillus anthracis glutamate racemase isozymes, RacE1. The Log(Inhibitor) vs. Response equation (constraints: TOP = 0.22, BOTTOM = 0.04, and SLOPE = -1.0) was fit using GraphPad Prism v5.0 software.](image1)

Figure A.2 B.

![Graph of IC₅₀ curve for compound 3 against Bacillus anthracis glutamate racemase isozymes, RacE2. The Log(Inhibitor) vs. Response equation (constraints: TOP = 0.22, BOTTOM = 0.04, and SLOPE = -1.0) was fit using GraphPad Prism v5.0 software.](image2)

Figure A.2. IC₅₀ curves for compound 3 against *Bacillus anthracis* glutamate racemase isozymes, RacE1 (a) and RacE2 (b). The Log(Inhibitor) vs. Response equation (constraints: TOP = 0.22, BOTTOM = 0.04, and SLOPE = -1.0) was fit using GraphPad Prism v5.0 software.
Figure A.3. Superpose of GR complex with 3 onto GR complex with Cyclic Glutamate Carbanion. The top scoring complex from docked compound 3 into the reactive form of GR (as outlined in Figure 1) is shown with its molecular volume, while the cyclic glutamate carbanion is rendered in stick form. The overlap image derives from a full superpose of the two complexes, and only the ligands are shown for clarity. The T_{vol} value (see Computational Methods section, above, for a full description of this metric) for this overlap was calculated to be 0.55. This indicates a reasonable volume overlap between the two complexes; however, there is clearly a far from ideal electrostatic mapping between the two complexes, especially around the C$_1$ and C$_2$ carbons of the carbanion. The docking procedure is described above in the Computational Methods section.
References

10. Muchmore, S. W.; Souers, A. J.; Akritopoulou-Zanze, I. The use of three-dimensional shape and electrostatic similarity searching in the identification of a

APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 2

Hybrid Steered Molecular Dynamics-Docking: an efficient solution to the problem of ranking inhibitor affinities against a flexible target.

Katie L. Whalen¹, Kevin M. Chang¹ and M. Ashley Spies¹,²*

Department of Biochemistry¹ and Institute of Genomic Biology², University of Illinois, Urbana, Illinois 61801

Table of Contents

Supplemental Tables .. 188
Supplemental Figures .. 190
Supplemental Data (¹H-NMR peaks & Ligand Sources) 204

Table B.1. Complete set of bona fide GR inhibitors discovered in-house (in addition to the native substrate) with predicted binding constants (K_d), acquired from docking to the crystal structure alone or FERM-SMD structures and the actual binding constant as approximated by experimentally-derived K_i, K_m, and IC_{50} values. Purity and method of analysis noted for each ligand.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Predicted K_d (mM)</th>
<th>Actual K_d (mM)</th>
<th>Purity, Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Only</td>
<td>FERM-SMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.29</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>2</td>
<td>0.61</td>
<td>9.1</td>
<td>0.042</td>
</tr>
<tr>
<td>3</td>
<td>0.002</td>
<td>0.001</td>
<td>0.059</td>
</tr>
<tr>
<td>4</td>
<td>0.96</td>
<td>0.24</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>276</td>
<td>0.05</td>
<td>0.43</td>
</tr>
<tr>
<td>6</td>
<td>0.76</td>
<td>0.44</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.15</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>1.9×10^{-5}</td>
<td>1.9</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>4.4</td>
<td>0.41</td>
<td>1.9</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
<td>0.91</td>
<td>1.9</td>
</tr>
<tr>
<td>11</td>
<td>0.005</td>
<td>6.0</td>
<td>1.9</td>
</tr>
<tr>
<td>12</td>
<td>3.0</td>
<td>34</td>
<td>2.7</td>
</tr>
<tr>
<td>13</td>
<td>1.6</td>
<td>59</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Abbreviations: HPLC, high performance liquid chromatography; NMR, nuclear magnetic resonance; TLC, thin layer chromatography; PAT, perchloric acid titration; GC, gas chromatography; OxForm, oxime formation; GLC, gas liquid chromatography; SHT, sodium hydroxide titration; IET, ion exchange titration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>62</td>
<td>8.9</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1.4\times10^4</td>
<td>112</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1.9\times10^3</td>
<td>89</td>
</tr>
</tbody>
</table>
Figure B.1. Front (A) and side (B) view of active site entrance of superposed GR structures (ribbon) with Prolines shown (stick) and direction of expansion indicated (white arrows). Structures were superposed so that the RMSD of all atoms is minimal. The three structures of GR selected for ensemble docking correspond to the following distances between glutamate and GR (centers of mass): 41.9 Å (red), 43.7 Å (green), and 46.7 Å (blue). Prolines shown are the following: Pro150 (top, foreground), Pro146 (bottom, foreground), Pro44 (bottom, background) and Pro41 (top, background). Length and direction of white arrows are arbitrarily assigned and meant only as a visual aid.
Figure B.2. Correlations of binding energies as predicted by docking to a single structure from the FERM-SMD ensemble and experimentally-determined binding affinities. Structure numbers are arbitrarily assigned and the corresponding simulation time is listed in parentheses. Data is fit to a logarithmic equation and the Spearman correlation coefficient, denoted R, is indicated.
Figure B.3. Correlation of predicted FERMScore values and experimental binding affinities where the described FERM-SMD method is performed on structures acquired from a 16-nanosecond classical MD simulation of apo-RacE, in place of structures acquired from SMD. Three structures were selected from the classical MD by composing a structure-based phylogenetic tree of snapshots taken every 150 picoseconds and performing QR analysis to select for non-redundant structures, using a QH cutoff of 0.89. All other steps of the FERM-SMD method remaining the same.
Figure B.4. Global fitting to a competitive inhibition model and non-linear fitting to a dose-response curve for derivation of K_i and IC$_{50}$ values, respectively. Enzyme kinetics were measured via circular dichroism and colorimetric coupled-enzyme assays (See Methods for details) in the presence of saturating D-glutamate.
Figure B.5. Equilibration achieved over 500 picoseconds of molecular dynamics simulations. Differences between the backbone carbons of each subsequent simulation snapshot structure (interval = 25 psec) and the original structure, expressed as RMSD (Å), plotted against simulation time for each GR-ligand complex (a-q).
Figure B.6. Detergent assay for elimination of false positives due to non-specific inhibition by aggregation. Percent inhibition was analyzed for each inhibitor at a concentration near the IC\textsubscript{50} with saturating D-glutamate (1 mM) and in the presence or absence of 0.01% Triton X-100. Detergent assays were not performed for substrate analogs nor known active site binders.
Figure B.7. Electrospray ionization mass spectrometry for confirmation of ligand structure of compounds presented here for the first time as being active against GR.

a. 12 (4-pyridazine carboxylic acid)

b. 5 (alpha-ketoglutarate)
c. 1 (1H-benzimidzole-2-sulfonic acid)

d. 6 (2-chloroaniline-4-sulfonic acid)
d. 8 (D-glucuronic acid)

e. 13 (D-pyroglutamate)
f. **10** (2-formylbenzene-sulfonic acid)

g. **4** (D-glutamate)
h. **14** (L-pyroglutamate)

i. **15** (2-methyl-2-propene-1-sulfonic acid)
j. 11 (2-hydroxy-5-nitrobenzenesulfonic acid)

k. 16 (citrate)
I. 9 (dipicolinic acid, DPA)

m. 17 (L-tartrate)
Figure B.8. Area of active site entrance and corresponding protein solvation energy at varying time points along the trajectory of a Steered Molecular Dynamics simulation. The x-axis corresponds to the distance between the center of the mass of D-glutamate and the center of mass of GR as D-glutamate is being pulled out of the active site. Protein solvation energy was calculated for each time-point using the Poisson-Boltzmann method with an internal dielectric of 2, a solvent dielectric of 78, and a salt concentration of 0.1 M.
Supplemental Data

1H-NMR Peaks

The following compounds were selected from a previous virtual screening study or were analogues based on hits from the same virtual screening study[1]. Nuclear magnetic resonance (NMR) was used to confirm the structure of each hit and all experimentally-attained spectra agree strongly with chemical shifts predicted by ChemDraw Ultra v12.0 (CambridgeSoft Corp., Cambridge, MA). All 1H-NMR spectra were acquired in-house on a Varian Unity 400 MHz with a 5mm Nalorac QUAD probe, unless indicated otherwise. All samples analyzed in-house were suspended in D$_2$O.

1 (1-benzimidazole-2-sulfonic acid). δ (ppm) 7.05 (d, 2H), 7.45 (d, 2H).

2 (Croconic acid). δ (ppm) 16.78 (s, 1H).

3 (4-Hydroxy-1,3-benzenedisulfonic acid). (1H-NMR performed by Asinex, Moscow, Russia) δ (ppm) 7.03 (d, 1H.), 7.81 (d, 1H), 8.14 (s, 1H).

6 (2-Chloroaniline-4-sulfonic acid). δ (ppm) 4.54 (s, 2H), 6.78 (d, 1H), 7.35 (d, 1H), 7.55 (s, 1H).

9 (2,6-Pyridinedicarboxylic acid [dipicolinic acid]). (1H-NMR performed by Sigma-Aldrich, St. Louis, MO) δ (ppm) 8.1-8.3 (m, 3H).

10 (2-Formylbenzenesulfonic acid). δ (ppm) 7.55-7.60 (dt, 2H), 7.80 (t, 2H), 10.55 (s, 1H).

11 (2-Hydroxy-5-nitrobenzensulfonic acid). δ (ppm) 3.22 (s, 1H), 6.35 (d, 1H), 7.90 (d, 1H), 8.38 (s, 1H).

12 (4-pyridazinecarboxylic acid). δ (ppm) 7.82 (d, 1H), 9.15 (d, 1H), 9.20 (s, 1H).

13* (D-pyroglutamic acid). δ (ppm) 1.68 (m, 2H), 2.40 (t, 1H), 2.60 (m, 1H), 3.95 (t, 1H).

14* (L-pyroglutamic acid). δ (ppm) 1.68 (m, 2H), 2.40 (t, 1H), 2.60 (m, 1H), 3.95 (t, 1H).
15 (2-Methyl-2-propene-1-sulfonic acid). δ (ppm) 1.69 (s, 3H), 3.42 (s, 2H), 4.85 (d, J = 2.1, 2H).

Compounds 13 and 14 were not derived from virtual screening, but rather were substrate analogs.
Description of Sources of Active Compounds

The following compounds were direct hits from a virtual screening of ~1 million compounds (Chemical Computing Group Conformational Database Version 2007, Chemical Computing Group, Montreal, Canada) conducted previously by Spies et al.([1]; compounds 2 (croconic acid, ranking = #75), 3 (4-hydroxy-1,3-benzenedisulfonic acid, ranking = #57), 9 (dipicolinic acid, ranking = #62) and 11 (2-hydroxy-5-nitrobenzenesulfonic acid, ranking = #59). The following compounds were analogs derived from virtual screening hits: 1 (1-benzimidazole-2-sulfonic acid), 6 (2-chloroaniline-4-sulfonic acid), 10 (2-formylbenzenesulfonic acid), 12 (4-pyridazinecarboxylic acid) and 15 (2-methyl-2-propene-1-sulfonic acid). Glutamate analogs include the following compounds: 4 (α-ketoglutarate), 7 (a restricted glutamate derivative), 8 (D-glucuronic acid), 13 (D-pyroglutamate), 14 (L-pyroglutamate), 16 (citrate), and 17 (tartrate). D-glutamate itself was also included in this study (compound 5).

APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 3

IN SILICO OPTIMIZATION OF A FRAGMENT-BASED HIT YIELDS BIOLOGICALLY ACTIVE, HIGH EFFICIENCY INHIBITORS FOR GLUTAMATE RACEMASE.

Katie L. Whalen[a,b], Anthony C. Chau[b], and M. Ashley Spies *[a]

Figure C.1. SDS-PAGE analysis of purified glutamate racemases from B. subtilis (*), B. anthracis (*), and F. tularensis (**). Two isozymes exist in the case of B.

anthracis. Molecular weight of glutamate racemases from B. subtilis and B. anthracis is ~31,500 and F. tularensis is ~29,300.

Figure C.2. Circular dichroism of purified proteins to assess protein foldedness.
Figure C.3. 1H NMR spectra for compound 4. Experiment conducted at ambient temperature. Peak at 2.50 corresponds to the employed solvent, DMSO.
Figure C.4. 1H NMR spectra for compounds 18. Experiment conducted at ambient temperature. Peak at 2.50 corresponds to the employed solvent, DMSO.
Figure C.5. 1H NMR spectra for compounds 29. Experiment conducted at ambient temperature. Peak at 2.50 corresponds to the employed solvent, DMSO.
Figure C.6. HPLC analysis of compound 4, showing 98.1% purity.
Figure C.7. HPLC analysis of compound 18, showing 99.0% purity.
Figure C.8. HPLC analysis of compound 29, showing 100.0% purity.
Figure C.9. Example of MIC50 reagent volumes for a single replicate of one inhibitor. Inhibitor concentration varies along the X-axis of the plate. Two compounds could be assayed in triplicate per 96-well plate of bacteria. Blank wells contain 100 μL of phosphate-buffered saline (PBS) and 100 μL of 2X media.
Figure C.10. Colloidal aggregate testing for newly synthesized derivatives of 1H-benzimidazole-2-sulfonic acid. Racemase activity tested in the presence of a fixed concentration of inhibitor (200 μM), 1 mM D-glutamate, and with or without 0.01% Triton X-100 included in the working buffer. %-Inhibition determined in triplicate with standard deviation shown (error bars).
Figure C.11. MIC₅₀ analysis of select derivatives of 1H-benzimidazole-2-sulfonic acid against *Lactococcus lactis*. Compounds 18 and 26 show no growth inhibition within the tested range of inhibitor concentrations. Compound 29 starts to show growth inhibition at the highest tested concentration. Surprisingly, compound 4 (a potent growth inhibitor against *B. subtilis*) causes noticeable growth activation compared to untreated cells. This is an unexpected phenomenon, which may be the result of productive metabolism of the inhibitor compound.
APPENDIX D

SUPPORTING INFORMATION FOR CHAPTER 4

Flooding Enzymes: quantifying the contributions of interstitial water and cavity shape to ligand binding using Extended Linear Response free energy calculations

Katie L. Whalen1,2,3 and M. Ashley Spies1,2

1College of Pharmacy, Division of Medicinal and Natural Products Chemistry, and\n2Carver College of Medicine, Department of Biochemistry, the University of Iowa, Iowa City, Iowa; 3Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois

Reprinted (adapted) with permission from Whalen, K. L.; Spies, M. A. \textit{J. Chem. Inf. Mod.}, published online August 21, 2013; DOI: 10.1021/ci400244x. Copyright 2013 American Chemical Society. M. A. Spies contributed MD simulations and calculations related to ELR binding energy evaluations.
Table D.1. Primers used in site-directed mutagenesis to create desired GR mutations.

<table>
<thead>
<tr>
<th>Desired Mutation</th>
<th>Template DNA</th>
<th>Primer</th>
<th>Primer Sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>N75A</td>
<td>pET15b-racE_WT</td>
<td>RacEN75Afor</td>
<td>gctcggtgctgctgctgctgacagcaacagcagatcg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RacEN75Arev</td>
<td>gcagacagcaacagcagatcg</td>
</tr>
<tr>
<td>N75L*</td>
<td>pET15b-racE_C74A</td>
<td>RacEN75AC74Afor</td>
<td>cacaagtcagctgcagcagctgaatcagcaacagcagatc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RacEN75AC74Arev</td>
<td>gatcagtgcgttgtacagcagctgatacaacagcagacatgg</td>
</tr>
</tbody>
</table>

The production of GR-N75L was a serendipitous result of mis-priming in PCR during parallel attempts to construct racE-C74A-N75A with the listed primers and pET15b-racE-C75A as template. Sequencing confirms racE-N75L is the only resulting mutation. This result was highly repeatable.
Table D.2. Active site analysis of inhibitor-bound GR complexes via MOE Site Finder.*

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Inhibitor</th>
<th>Size</th>
<th>PLB</th>
<th>Hyd</th>
<th>Side</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR-WT</td>
<td>BISA</td>
<td>189</td>
<td>2.49</td>
<td>18</td>
<td>140</td>
<td>D10 S11 G12 V13 G14 G15 T37 C40 P41 Y42 G43 A73 C74 N75 T76 A77 V96 T118 N120 T121 V149 E153 C184 C185 T186 H187 F246 I249</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>192</td>
<td>2.43</td>
<td>21</td>
<td>147</td>
<td>D10 S11 G12 V13 G14 G15 T37 C40 P41 Y42 G43 A73 C74 N75 T76 A77 V96 T118 N120 T121 V149 E153 C815 T186 H187 Q245 I249</td>
</tr>
<tr>
<td>GR-N75L</td>
<td>BISA</td>
<td>187</td>
<td>2.94</td>
<td>16</td>
<td>141</td>
<td>D10 S11 G12 V13 G14 G15 T37 C40 P41 Y42 G43 A73 C74 L75 T76 A77 V96 G117 T118 N120 T121 V149 E153 G184 C185 T186 H187 Q245 I249</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>156</td>
<td>3.02</td>
<td>11</td>
<td>117</td>
<td>D10 S11 G12 V13 G14 G15 C40 P41 Y42 G43 P44 C74 A75 T76 A77 V96 G117 T118 N120 T121 V149 E153 C184 C185 T185 H187 Y188</td>
</tr>
<tr>
<td>GR-N75A</td>
<td>BISA</td>
<td>131</td>
<td>2.98</td>
<td>10</td>
<td>93</td>
<td>D10 S11 G12 V13 G14 G15 P41 Y42 G43 A75 T76 A77 G117 T118 N120 T121 V149 G184 C185 T186 H187</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>127</td>
<td>2.86</td>
<td>8</td>
<td>93</td>
<td>D10 S11 G12 V13 G14 G15 C40 P41 Y42 G43 P44 C74 A75 T76 G117 T118 N120 T121 V149 P150 E153 G184 C185 T186 H187</td>
</tr>
</tbody>
</table>

* Final snapshots from MD simulation were imported to MOE v2011.10. "Size" indicates the number of contact atoms in the receptor. "PLB" corresponds to the Propensity for Ligand Binding [Soga 2007] score. "Hyd" indicates the number of hydrophobic contact atoms in the receptor. "Side" indicates the number of sidechain contact atoms in the receptor. Finally, "Residues" indicates the residues that make up the calculated site.
Figure D.1. Cα-atom RMSD plots for GR inhibitors (A) and substrate (B) over the course of each complex's 4-ns MD simulation.
Figure D.2. SDS-PAGE analysis of purified recombinant RacE (*B. subtilis*). Molecular weight is approximately 31,000 Da with the 6X-His-tag.
Figure D.3. Quantification of the active site cleft for BISA (1) and CA (2) in complex with GR-WT, GR-N75L, or GR-N75A. Cleft measurements made by calculating the area between four points which form a circumference about the active site entrance (A). Measurements made for the final three snapshots of each complex simulation with standard deviations shown (B).
Figure D.4. Molecular surface representations of GR-BISA complexes. Structures were obtained from the final snapshot of each 4-ns MD simulation. Solvent accessible surface area is rendered in white using the YASARA Structure package. Surfaces are cut away to show the ligand binding pocket shape. Key residues interacting with the ligand (directly or via interstitial bonds) are shown (stick, magenta). BISA is shown bound to the active site (stick, elemental coloring). Hydrogen bonds are shown (yellow, dotted line), and all interstitial waters are shown (stick, elemental coloring). Each structure is oriented with the entrance to the active site positioned at the left of the image.
Figure D.5. Titration of D-glutamate to RacE-C74A for determination of dissociation constant. RacE-C74A is a functionally-inactive form of glutamate racemase that can bind D-glutamate, but cannot abstract the Cα proton. Intrinsic tryptophan/tyrosine fluorescence (excitation at 280 nm, emission at 343 nm) was measured continuously at 25°C using a Cary Eclipse Fluorescence Spectrophotometer (Agilent). A 90 μM solution of purified RacE-C74A in 50 mM Tris-HCl, 100 mM NaCl, pH 8.0, 2 mM DTT was incubated in a quartz cuvette (pathlength = 10 mm) for 10 min at 25°C prior to the first injection. A 50 mM solution of D-glutamate in the same buffer was used for substrate injections. The titration was repeated three times. Data was fit to a "Total binding - one site" model with GraphPad Prism v5.0. The dissociation constant is within error of the reported K_M value.
Figure D.6. Average angle and distance measurements for ligand-protein hydrogen bonds observed in the final 3 snapshots of MD simulation. Measurements made for 3 individual snapshots per simulation. Each complex contained between 3-4 hydrogen bonding interactions between ligand and protein. The 1-WT complex possessed the most optimal overall bonding distances and angles, where both 1-N75A and 1-N75L complexes suffer from increased bond distances and decreased bond angles.
APPENDIX E

SUPPORTING INFORMATION FOR CHAPTER 5

Inhibition of *B. anthracis* Glutamate Racemase by DPA: Discovery of an Allosteric Cryptic Binding Site

Katie L. Whalen¹, Kenneth B. Tussey², Steven R. Blanke³,⁴, and M. Ashley Spies¹,⁴*

Department of Biochemistry¹, Program for Biophysics and Computational Biology², Department of Microbiology³, and Institute of Genomic Biology⁴, University of Illinois, Urbana, Illinois 61801

Table of Contents

Supplemental Methods... 228

Supplemental Computational Methods... 230

Supplemental Results.. 232

Supplemental Tables and Figures... 234

Supplemental References.. 243

227
Supplemental Methods

Protein Expression and Purification

A 10 mL starter culture of LB medium with 100 μg/mL ampicillin was prepared from the stock *E. coli* BL21 (DE3) cells containing pET-15b plasmid with the gene of choice and grown overnight at 37 °C with rotation. The 10 mL starter culture was back-diluted into 1 L fresh LB medium with 100 μg/mL ampicillin. Cells were grown at 37 °C with shaking until the optical density at 600 nm reached 0.5-0.8. Protein expression was induced upon addition of a final concentration of 0.1 mM IPTG. Following induction, cells were grown for an additional 16-20 h at 37 °C with shaking (16 °C for mutant proteins). Cells were harvested by centrifugation at 5,000 x g for 15 min. Supernatant was discarded and cell pellets were resuspended in bind buffer (50 mM phosphate, 300 mM NaCl, 20 mM imidazole, 0.5 mM Tris carboxyethyl phosphine, pH 8.0). Cell lysis was achieved through sonication (3x 20 sec cycles, 23 kHz and 20 W), using a 100 Sonic Dimembrator from Fisher Scientific. Insoluble materials were pelleted by centrifugation at 30,000 x g for 30 min and clarified lysate was applied to 4 mL bed volume of His-Select Cobalt Affinity Gel. Bound protein was washed with 2X 16 mL of wash buffer (50 mM phosphate, 300 mM NaCl, 40mM imidazole, 0.5 mM Tris carboxyethyl phosphine, pH 8.0). Bound protein was eluted twice with 4 mL elution buffer (50 mM phosphate, 300 mM NaCl, 250 mM imidazole, 0.5 mM Tris carboxyethyl phosphine, pH 8.0) and the collected eluant was concentrated via centrifugal filtration. Eluant was incubated at 37 °C for 15 min in the presence of 1 mM ATP and 1 mM MgCl₂ to remove molecular weight contaminants suspected to be chaperones. Eluant was then diluted 10X with H₂O and submitted to ion exchange chromatography using a BioRad Uno Q1 column on a BioRad BioLogic DuoFlow HPLC. Pooled fractions were then exchanged into protein storage buffer (50 mM Tris, 100 mM NaCl, 0.2 mM DTT, pH 8.0) and concentrated utilizing a 10,000 MWCO Amicon centrifugal filter device. Finally, protein stocks were stored at a final concentration of 7-10 mg/mL with 20% glycerol at -20 °C.

Colloidal Aggregation Control

Inhibitors were analyzed for the possibility of colloidal aggregation using a previously established detergent-based assay¹ (successfully applied this system to expose colloidal aggregators in Whalen *et al.*²). Activity of RacE was
measured in the presence and absence of inhibitor in buffer containing 0.01% Triton-X 100 (vol/vol). The percent inhibition was compared to that acquired when conducting the same measurements in buffer without Triton-X 100. If the inhibitor is indeed aggregating, one would expect to see a decrease in the percent inhibition in the presence of detergent (as seen in Whalen et al.5). Feng and Shoichet stated that a greater than two-fold decrease in inhibition confirms colloidal aggregation1.

Enzyme Kinetics – Circular Dichroism

Stereoisomerization of D-glutamate by GR was assayed by using a J-720 CD spectropolarimeter from JASCO, Inc. (Easton, MD). A jacketed cylindrical cuvette with a volume of 750 μL and a path length of 10 mm was used for each assay. Readings were measured at 220nm or 225nm depending on contributions to the signal by the inhibitor. All measurements were conducted at 25 °C. Concentrations of D-glutamate were varied from 0.25 – 5 mM in an optically clear borate buffer (50 mM boric acid, 100 mM KCl, 0.7 mM DTT; pH 8.0). Reactions were initiated upon addition of enzyme (approx. 0.5 μM). Data acquisition was performed using a JASCO Spectra Manager v1.54A software and Excel, and fitting and statistical analysis was performed using GraphPad Prism v5.0 (GraphPad Software, Inc., La Jolla, CA).

Monomer:Dimer Equilibrium Model and BN-PAGE Data Fitting

A monomer:dimer equilibrium model was formulated using the following relationships:

\[
K_d = \frac{M}{c} \quad \text{Eq. 1}
\]

\[
P_T = M + C \quad \text{Eq. 2}
\]

where \(M\) is the monomer concentration, \(C\) is the complex, or dimer, concentration and \(P_T\) is the total protein concentration.

\[
K_d c = M^2 = (P_T - C)^2 \quad \text{Eq. 3}
\]

Substitution via Eq. 1 and solving for \(C\) gives:

\[
C = \frac{-\alpha \pm \sqrt{\alpha^2 - 4P_T}}{2} \quad \text{Eq. 4}
\]

where \(\alpha = -2P_T - K_d\). A similar procedure for monomer concentration leads to:

\[
M = \frac{K_d + \sqrt{K_d^2 + 4K_d P_T}}{2} \quad \text{Eq. 5}
\]
The M/C ratio was measured via pixel quantification of BN-PAGE gels and the total protein concentration is known. The initial value of K_d was set arbitrarily to 0.01 μg/mL and solved by fitting the data. All data fitting was executed using GraphPad Prism v5.0. Additionally, combining equations 3 and 4 leads to the simpler expression in Eq. 6.

$$\frac{M}{C} = \frac{\sqrt{ck_d}}{c} = \frac{k_d}{\sqrt{c}}$$

Supplemental Computational Methods

Molecular Dynamic Simulations

The molecular dynamics simulations were performed with the YASARA Structure package version 9.11.9 (YASARA Biosciences). A periodic simulation cell with boundaries of 99.64 Å, 70.54 Å, and 68.98 Å was employed with explicit solvent, using the dimer (A and B chains) of PDB 2GZM (B. anthracis RacE2 GR with ligand D-glu). The AMBER03 force field was used with long-range electrostatic potentials calculated with the Particle Mesh Ewald (PME) method, with a cutoff of 7.864 Å. The substrate force field parameters were generated with the AutoSMILES utility, which employs semi-empirical AM1 geometry optimization and assignment of charges, followed by assignment of AM1BCC atom and bond types with refinement using RESP charges, and finally the assignments of general AMBER force field atom types. The hydrogen bond network of GR is optimized using the method of Hooft and coworkers, in order to address ambiguities from multiple side chain conformations and protonation states that are not resolved by the electron density. YASARA’s pKa utility was used to assign pK$_a$ values at pH 7.0. The box was filled with water, with a maximum sum of all bumps per water of 1.0 Å, and a density of 0.997 g/ml. The simulation cell was neutralized with NaCl (0.9% final concentration; % by mass). Waters were deleted to readjust the solvent density to 0.997 g/ml. A short MD was run on the solvent only. The entire system was then energy minimized using first a steepest descent minimization to remove conformational stress, followed by a simulated annealing minimization until convergence (<0.05 kJ/mol/200 steps). The MD simulation was then initiated, using the NVT ensemble at 298 K, and integration time steps for intramolecular and intermolecular forces every 1.25 fs and 2.5 fs, respectively.

Docking Program Specifications

GOLD employs a traditional genetic algorithm for exploring ligand conformations and binding modes within a partially flexible active site. The
GOLD scoring function for ranking binding modes is composed of terms that account for three conditions: hydrogen bonding between ligand and enzyme, the hydrophobic contribution of the energy of binding, and the internal energy of the ligand10. Quite contrary, FRED employs a non-stochastic sampling of ligand conformations by systematically rotating and translating conformers within the binding site in a stepwise fashion. Docked complexes are filtered by several default and user-defined constraints, such as the requirement that ligand conformers fit within the active site volume, and then ranked by the scoring function Chemgauss 3. The Chemgauss 3 scoring function is comprised of terms for: steric interactions, ligand hydrogen-bond donors and acceptors, interactions with active site metal atoms, and desolvation11. Lastly, AutoDock uses a Lamarckian genetic algorithm to sample ligand conformations and binding modes, which varies slightly from the traditional genetic algorithm employed by GOLD in that conformers are also allowed to search local conformational space to find local minima12. AutoDock uses a semiempirical free energy force field to predict free energies of binding which accounts for intermolecular and intramolecular energies, as well as charge-based desolvation.

D-Glu Free Energy Binding Calculations with the Fast Boundary Element Method (BEM)

The method employed here falls under the class of free energy calculations known as Endpoint Methods, which includes the popular MM-PBSA approach. These methods were recently reviewed by Steinbrecher and Labahn13, and involve calculating ΔG_{bind} from constituent parts of a thermodynamic box that involves solvation of the individual components. The binding energy expression is:

\[
\Delta G_{\text{Bind,solv}}^0 = \Delta G_{\text{Bind,vacuum}}^0 + \Delta G_{\text{solv,complex}}^0 - (\Delta G_{\text{solv,ligand}}^0 + \Delta G_{\text{solv,receptor}}^0) + \Delta G_{\text{np}}^0
\]

Eq. 7

In the MM-PBSA method the procedure is based on numerical solution of the differential Poisson equation (also called the finite difference method) and the solvent is represented as a continuum having a relatively high dielectric constant, while the protein and ligand may be viewed as point charges projected onto a grid in a low dielectric continuum. The molecular surface of the protein and ligand is the important interface between these two dielectrics. However, we employ an alternative approach to the finite-difference method called the *Boundary Element Method* (BEM)14,15. In this method much of the focus is placed on accurately representing the boundary between the two dielectrics, in which a very accurate boundary charge distribution is used to represent a uniform dielectric at the interface between the low and the high dielectric continuum. From this boundary region of uniform dielectric strength, Coulomb's Law is used to calculate the
electrostatic potentials. Each method has distinct strengths and weaknesses, yet the latter has not been as widely employed in the literature even though there have been significant advances in the speed and accuracy of this approach16-18. The BEM method was designed to perform optimally for such curved protein surfaces, by accurately representing the geometry of the protein boundaries. The work of Zauhar and Morgan19 have shown that the geometry of the boundary region is of central importance to representing the electrostatic potential of proteins15, and may avoid some of the difficulties inherent in assignment of the protein dielectric in the finite difference approach of MM-PBSA (recently reviewed by Warshel and co-workers20). A major difficulty in Endpoint methods is assigning an internal dielectric. Here we used a wide range of values for ε_p, which did not affect the relative binding energies or the trends seen in Fig. 5d, but only the absolute free energies of binding. It is important to note that $\Delta G_{\text{binding}}$ values obtained from Endpoint methods, such as MM-PBSA or BEM, should be viewed as accurate scoring functions, which have enhanced rank-ordering value, rather than as metrics of accurate absolute binding free energy21. For the current study, BEM, the boundary between solvent (dielectric constant 78) and solute (dielectric constant ranged from 2 to 28) was formed by the latter’s molecular surface, constructed with a solvent probe radius of 1.4 Å and the following radii for the solute elements: polar hydrogens 0.32 Å, other hydrogens 1.017 Å, carbon 1.8 Å, oxygen 1.344 Å, nitrogen 1.14 Å, sulfur 2.0 Å. The solute charges were assigned based on the AMBER03 force field22, using GAFF/AM1BCC23 for the ligands. The term for the hydrophobic component of ligand binding, ΔG_{np} was calculated by using the empirical treatment of Tan \textit{et al.}24 (SAV probe = 1.80 Å, surface tension (γ) = 0.0480 kcal/mol-Å3, and constant offset (c) = -3.2655 kcal/mol.).

Supplemental Results

\textbf{Monomer versus Dimer Docking}

DPA was docked to the same site with only a single monomer present using AutoDock and showed severely attenuated binding affinity (Interaction Energy = -27.45 kcal/mol (dimer) versus -14.81 kcal/mol (monomer), calculated by LigX25).

\textbf{Hydrogen-Bond Network of Active Site}

In E$_2$·D-glu$_2$, the distance between the side chain of Thr186 and His187 and the amine of glutamate was 4.34 Å and 5.32 Å, respectively. For E$_2$·D-glu$_2$·DPA, the distance between Thr186 and His187 and the amine was 2.99 Å and 3.77 Å, respectively. Thus, only in E$_2$·D-glu$_2$·DPA is Thr186 within hydrogen-bonding distance of the substrate. In addition to increased contact with
glutamate, the movement of Thr186 brings the side chain hydroxyl within hydrogen-bonding distance of Ala73 of an adjacent loop. This hydrogen bond may be responsible for bringing both the side chain and backbone amines of Asn75 close enough to glutamate to form hydrogen bonds with either oxygen of its α carboxylate (3.59 Å and 2.92 Å, respectively), interactions that are completely absent in the E₂-D-glu₂ (6.50 Å and 4.99 Å, respectively).

Structures were critically analyzed to find the source of the weaker free energy of binding of monomer A of E₂-D-glu₂-DPA. It was previously reported that a main conformational change related to glutamate binding occurs in a loop containing His187 and Thr186 which have both been indicated in binding and catalysis[26]. Thus, we began by examining the effect of DPA binding on this loop. Ligand interaction mapping of equilibrated E₂-D-glu₂-DPA after the 20 nanosecond simulation show two water bridges formed between DPA and Asp210 and Glu211 of the A monomer of RacE₂ (Fig. 5c). Asp 210 goes on to form a hydrogen bond with the side-chain hydroxyl of Ser207 (previously implicated in DPA binding by initial ligand interaction mapping of the top-docked complex prior to MD). Ser207 also forms a water bridge with Glu211. This complex network of direct hydrogen bonds and water bridges between DPA and the A monomer occurs twenty residues downstream of the catalytic residues, separated by a short α-helix and β-sheet. It is possible then that interactions between DPA and Ser207, Asp210 and Glu211 result in a rearrangement in the enzyme conformation that is translated down the backbone to the catalytic residues, His187 and Thr186.

Solvation and DPA Inhibition

An additional water molecule interacting with glutamate of the E₂-D-glu₂-DPA further indicates an active site rearrangement coincident with binding of DPA. The active site solvent accessible volume for the E₂-D-glu₂ monomer A is 1214.35 Å³ which decreases to 1171.15 Å³ for the E₂-D-glu₂-DPA monomer A, a difference of 43.2 Å³. Thus, the additional water bridge seen in E₂-D-glu₂-DPA is not due to more water molecules in the active site but instead more optimal positioning of present water molecules. Thus, greater protein solvation energy of E₂-D-glu₂-DPA appears to contribute at least partially to the source of the weaker D-glu binding free energy.

Monomer-Monomer Interactions

According to the equilibrated structure resulting from MD simulation, binding of DPA to the RacE₂ dimer interface disrupts two inter-monomer hydrogen bonds occurring between Lys106a and Asp210b (and vice versa, Lys106b to Asp210a), forcing either Lys106 to instead hydrogen bond to Glu211. There is no net loss of direct contact between the monomers with DPA bound, which agrees well with the results of Blue Native PAGE.
Supplementary Tables and Figures

Supplementary Table E.1. Fitting parameters of RacE2_WT activity versus DPA data to varying inhibition models via GraphPad Prism v5.0.

<table>
<thead>
<tr>
<th>Inhibition Model</th>
<th>Degrees of Freedom</th>
<th>Abs. Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive</td>
<td>13</td>
<td>0.001858</td>
</tr>
<tr>
<td>Noncompetitive</td>
<td>13</td>
<td>0.0009267</td>
</tr>
<tr>
<td>Uncompetitive</td>
<td>13</td>
<td>0.001597</td>
</tr>
<tr>
<td>Mixed Model</td>
<td>12</td>
<td>0.0009108</td>
</tr>
</tbody>
</table>

Supplementary Table E.2. Comparison of global fitting via F test of RacE2_WT activity versus DPA data to varying inhibition models.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comparison 1</th>
<th>Comparison 2</th>
<th>Comparison 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Hypothesis</td>
<td>Competitive Inhibition</td>
<td>Uncompetitive Inhibition</td>
<td>Noncompetitive Inhibition</td>
</tr>
<tr>
<td>Alternative Hypothesis</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
</tr>
<tr>
<td>P Value</td>
<td>0.0041</td>
<td>0.0109</td>
<td>0.6548</td>
</tr>
<tr>
<td>Conclusion (alpha = 0.05)</td>
<td>Reject Null</td>
<td>Reject Null</td>
<td>Do Not Reject Null</td>
</tr>
<tr>
<td>Preferred Model</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
<td>Noncompetitive Inhibition</td>
</tr>
<tr>
<td>F (DFn, DFd)</td>
<td>12.48 (1,12)</td>
<td>9.037 (1,12)</td>
<td>0.2102 (1,12)</td>
</tr>
</tbody>
</table>

Supplementary Table E.3. Steady-state kinetic parameters of WT and mutant RacE2 enzymes as determined by circular dichroism. Fit to the Michaelis-Menten equation via GraphPad Prism v5.0.

<table>
<thead>
<tr>
<th>Protein</th>
<th>D → L Racemization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_{cat} (s^{-1})</td>
</tr>
<tr>
<td>RacE2 WT</td>
<td>2.13 ± 0.1</td>
</tr>
<tr>
<td>RacE2 K106A</td>
<td>5.68 ± 0.8</td>
</tr>
<tr>
<td>RacE2 S207A</td>
<td>0.73 ± 0.1</td>
</tr>
</tbody>
</table>
Supplementary Table E.4. Description of primers used for site-directed mutagenesis of \(racE2 \).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Desired Mutation</th>
<th>Primer</th>
<th>Primer Sequence (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(racE2)</td>
<td>Lys106Ala</td>
<td>K106Afor</td>
<td>5'-agttattcaccaggatcacgtacgccttagcagtgacaaacacatc-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K106Arev</td>
<td>5'-gtatgttcttctgcttaagctgtaacgtgatcctgggtaataacctc-3'</td>
</tr>
<tr>
<td>(racE2)</td>
<td>Ser207Ala</td>
<td>S207Afor</td>
<td>5'-ggagataagtcacaactcattcaggtgatgaaacacag-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S207Arev</td>
<td>5'-ggegctgttctacacgaaatatgagtgtcattttcatc-3'</td>
</tr>
</tbody>
</table>

Supplementary Table E.5. Comparison of global fitting via F test of RacE1_WT activity versus DPA data to varying inhibition models.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comparison 1</th>
<th>Comparison 2</th>
<th>Comparison 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Hypothesis</td>
<td>Competitive Inhibition</td>
<td>Uncompetitive Inhibition</td>
<td>Noncompetitive Inhibition</td>
</tr>
<tr>
<td>Alternative Hypothesis</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
</tr>
<tr>
<td>P Value</td>
<td>0.0221</td>
<td>0.0484</td>
<td>0.6915</td>
</tr>
<tr>
<td>Conclusion (alpha = 0.05)</td>
<td>Reject Null</td>
<td>Reject Null</td>
<td>Do Not Reject Null</td>
</tr>
<tr>
<td>Preferred Model</td>
<td>Mixed Model Inhibition</td>
<td>Mixed Model Inhibition</td>
<td>Noncompetitive Inhibition</td>
</tr>
<tr>
<td>F (DFn, DFd)</td>
<td>6.156 (1,20)</td>
<td>4.418 (1,20)</td>
<td>0.1621 (1,20)</td>
</tr>
</tbody>
</table>
Supplementary Figure E.1. Inhibition of RacE1 by DPA assayed via circular dichroism and globally fit to a noncompetitive inhibition model, resulting in a K_i value of 78 ± 12 μM.
Supplementary Figure E.2. Colloidal aggregate test for false positives. Inhibition of RacE2 by 50 μM DPA was assayed in the presence and absence of 0.01% Triton-X 100 detergent. The percent inhibitions of either set of conditions were within error (<10%) proving DPA not to act through aggregate formation. Data represents the average of three separate trials with standard deviation shown.
Supplementary Figure E.3. Blue Native PAGE of WT RacE2 and running controls with NativeMark ladder (10% resolving gel, 4% stacking gel). Monomer band appears to migrate slightly slower than the 20 kDa marker, as expected (RacE2 monomer MW = 30 kDa). Dimer band appears to migrate slightly slower than the 66 kDa marker (RacE2 dimer MW = 60 kDa) which is most likely due to the fact that the RacE2 homodimer has a more elongated oval shape (see diagram adjacent to arrow head) than the globular marker protein, and thus migrates slower. Higher order oligomers are also present on the gel in negligible quantities.
Supplementary Figure E.4. BN-PAGE to determine the effect of DPA on RacE2 dimerization. Loading buffer, running buffer and PAGE gel contained 1 mM DPA (a), 1 mM 3,4-pyridinedicarboxylic acid (b), or buffer (c). Albumin and carbonic anhydrase were included as running controls. Arrowheads indicate bands representing the dimer and monomer. Band intensity was quantified via pixel counting and the ratio of monomer to dimer was fitted to an expression for monomer:dimer equilibrium (derivation of expression detailed above in Supplementary Methods). Data represents an average of two or more independent trials with standard error shown. Fitting of data resulted in the following K_d values for RacE2 in the presence of DPA, analogue, or buffer: 48 ± 13, 39 ± 5, and 30 ± 7 μg/mL, respectively. Thus, BN-PAGE would confirm that there is no significant change in the K_d of dimerization due to the presence of DPA.
Supplementary Figure E.5. Ligand interaction maps for glutamate bound to the active site of monomer B when DPA is absent (a) and bound (b). Maps were constructed from the equilibrated structures of the 20 nanosecond MD simulations.
Supplementary Figure E.6. Equilibration achieved over 20 nanoseconds of molecular dynamics simulations. Differences between the backbone carbons of each subsequent simulation snapshot structure and the original structure, expressed as RMSD (Å), plotted against time for the E₂·D-glu₂ (a) and E₂·D-glu₂·DPA complex (b).
Supplementary Figure E.7. Purification of recombinant 6x-His-tagged RacE2_S207A, RacE2_K106A, and WT RacE2 via Co$^{2+}$-affinity chromatography followed by UNO-Q anion-exchange chromatography.
Supplementary References