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Abstract 
Because there is no perfect technique for automatic identification of bibliographic records, cleaning the 
identification results manually is indispensable. However, to recruit human resources for the task is often 
difficult. This paper discusses a microtask-based crowdsourcing approach to the problem. An important 
issue is to design a good strategy for generating tasks to be assigned to workers, maintaining the quality 
and reducing the number of tasks. In this study, we explore a design space defined by two criteria to 
reduce the number of assigned microtasks for finding misidentifications caused by automatic identification 
techniques. We compare four task-generation strategies using bibliographic records of the National Diet 
Library. One of the strategies reduced 55.7% of tasks from the baseline strategy and statistic analysis 
showed that the quality of its result is comparable to those of the other three strategies. 
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1 Introduction 
Recently, there have been many attempts to construct union catalogs by collecting and joining bibliographic 
records originally managed by different organizations. However, it is often the case that one source (e.g., a 
book) is represented by more than one bibliographic record. Therefore, it is common practice to conduct 
automatic identification of bibliographic records in which algorithms identify the records that represent the 
same source. For example, the National Diet Library (NDL) in Japan conducts automatic identification for 
constructing its union catalog. 

A common approach to automatic identification is to use algorithms for computing the 
identification key for each record, and we determine that records having the same key represent the same 
source. In many cases, algorithms of automatic identifications use ISBNs to compute identification keys, 
because they are the only numbers that exist in virtually all bibliographic records. 

However, it is well known that there is no perfect technique for automatic identification of 
bibliographic records. There are several reasons for this. First, the contents of different records representing 
the same source are not necessarily the same if their creators are different; attributes such as title may have 
spelling variants. It may miss some words or may have values that should be entered for other attributes. 
For example, Figure 1 shows two apparently different records that represent the same source. The strings 
in the title attributes are slightly different from each other, and the string in the series attribute of the 
second record is an abbreviation. NDL also has many record pairs in which both represent the same source 
but one is written in Japanese while the other is in English. Note that the machine can determine that two 
records represent the same source only if both the identification keys and other information in the records 

http://crowd4u.org/


iConference 2014  Atsuyuki Morishima et al. 

are exactly the same. If not, the machine can conclude that two sources (books) are neither different nor 
the same, because it is difficult for the machine to determine whether different words and sentences in two 
records are semantically equivalent to each other. 

Second, the values used to compute identification keys are often inappropriately assigned to the 
sources. For example, a recent research by NDL found that it is not rare for different sources to have the 
same ISBN (Publishing a detailed report on the topic is one of our future work). A reason is that publishers 
often reuse the same ISBN for different publications. Another reason is that bibliographic records tend not 
to be updated after an incorrect ISBN is given to the record. Keys derived from such inappropriate numbers 
lead to misidentifications by algorithms of automatic identification, i.e., different sources are incorrectly 
determined to be the same source. 

Therefore, it is necessary to manually verify the automatically identified records for final 
identification. Humans are good at determining whether the difference in two records implies a 
misidentification, because they can tell whether two different expressions are semantically equivalent. 
However, the number of records that require manual verification can be large, and it is often difficult to 
recruit human resources for the task. 
 
Title  Series  Publisher  
Towards the e-society : e-commerce, e-business, and e-government : 
the first IFIP Conference on E-Commerce, E-Business, E-
Government (13E 2001), October 3-5, 2001, Zurich, Switzerland / 
edited by Beat Schmid, Katarina Stanoevska-Slabeva, Volker 
Tschammer  

The 
International 
Federation for 
Information 
Processing ; 74  

Kluwer 
Academic 
Publishers  

Towards the e-society: e-commerce, e-business, and e-government : 
the first IFIP conference on e-commerce, e-business, e-government 
(13E 2001) October 3-5, 2001, Zurich, Switzerland. : Oct 2001, 
Zurich, Switzerland  IFIP ; 74  

Kluwer 
Academic 
Publishers  

Figure 1: Bibliograhic records having the same ISBN 

This paper discusses a crowdsourcing approach to the problem that is taken by L-Crowd project 
(http://crowd4u.org/lcrowd). To our knowledge, L-Crowd is one of the largest crowdsourcing projects for 
library-related problems; the project involves core members and collaborators from more than 16 universities 
and the NDL of Japan. 

In the project, we crowdsource performing microtasks designed for solving library-related problems. 
Here microtasks are tasks that can be performed in a short period of time. For example, Figure 2 is a 
microtask that asks a human whether the two faces in the photographs are the same person. 

Microtask-based crowdsourcing is a popular form of crowdsourcing, with many microtask-based 
crowdsourcing platforms such as Amazon’s Mechanical Turk. In general, a microtask-based crowdsourcing 
platform has a task pool into which requesters register microtasks that will be assigned to workers. L-Crowd 
uses a microtask-based crowdsourcing platform named Crowd4U (http://crowd4u.org) (Morishima, 
Shinagawa, Mitsuishi, Aoki, & Fukusumi, 2012). Crowd4U is deployed at universities, and many anonymous 
or registered volunteers perform the microtasks registered in Crowd4U’s task pool. 

The contributions of the paper are as follows: 
 

(1) Crowdsourcing for identification of bibliographic records. To our knowledge, this paper is the 
first to discuss microtask-based crowdsourcing in the identification of bibliographic records. There are 
attempts to use crowdsourcing to solve library-related problems. For example, in the “Civil War Faces” 
project, the Library of Congress crowdsources the tagging of photos through Flickr 
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(http://www.flickr.com/photos/library_of_congress/sets/72157625520211184/). Australian National 
Library crowdsources proofreading the results of applying OCR to old newspapers 
(http://trove.nla.gov.au/ndp/del/home). Bodleian Library of University of Oxford crowdsources enhancing 
metadata of music scores (http://whatsthescoreatthebodleian.wordpress.com/). Our approach is unique in 
the following two ways. First, we use human power to find semantic equivalence between different 
expressions, while others use it to recognize patterns in images. Second, we discuss the strategies for 
generating tasks in a scientific way, while we have not noticed any other projects that gave their scientific 
justifications for their design decisions. This paper is the first to present a formal framework for the 
application of crowdsourcing to the problem of finding misidentifications. 

 
(2) Novel technique for generating microtasks. When we apply microtask-based crowdsourcing, what 
constitutes an appropriate design of microtasks and how to generate them is an important issue. The design 
and generation strategy of microtasks affects both the number of necessary microtasks to reach the goal 
and the quality of the output data. This paper explores a design space of microtask-based crowdsourcing 
that is defined by two criteria for finding misidentifications of bibliographic records. One of the two criteria, 
called the contraction, is a novel technique we proposed (Tomita, Morishima, Uda, & Harada, 2013) for 
extending the design space. In general, contraction is a technique in graph theory to merge different nodes 
into one in a given graph (Wilson, 2010), and is often used to reduce the size of the graph without losing 
some important properties of the graph. We show that the technique is effective in reducing the number of 
microtasks in the problem of finding misidentifications, keeping data quality acceptable. 

 
(3) Experiments with NDL data. We conducted an experiment using a real set of NDL bibliographic 
records to compare four variations of microtask generation strategies within the design space. As explained, 
the NDL conducted automatic identification for constructing its union catalog and suffered from the 
problem of misidentifications. Our experimental results suggest that crowdsourcing is promising in a real 
setting. In addition, we plan to use the proposed scheme to obtain data to improve the query results of 
bibliographic search in other libraries in Japan. 

 
The remainder of this paper is as follows. Section 2 explains related work. Section 3 formalizes our problem 
as a human-powered join. Section 4 presents four strategies for generating microtasks in a design space 
defined by two independent criteria. Section 5 shows the results of our experiments to compare the four 
task-generation strategies, and Section 6 is the summary.  

2 Related Work 
Our problem is related to various topics from different domains. This section enumerates some of them. 

 
Automatic Identification of Bibliographic Records. Automatic identification techniques compute 
identification keys from bibliographic records and conclude that two records represent the same source if 
they have the same keys. For example, a study attempted to develop appropriate identification keys for 
Unicanet, a well-known union catalog network in Japan 
(http://unicanet.ndl.go.jp/psrch/redirect.jsp?type=psrch). Another example is the NDL search 
(http://iss.ndl.go.jp/), which implements automatic identification techniques using several variations of 
identification key. Both work utilize ISBN as part of the identification keys. However, publishers do not 
necessarily assign ISBNs appropriately. We plan to apply our technique to find misidentifications due to 
inappropriate assignment of ISBNs and analyze the obtained results for improving the quality of 
identification keys. 
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Efficient Processing of Human-powered Operations. Strategies for generating microtasks are an 
important factor for successful crowdsourcing. For example, in some cases, workers tend to avoid performing 
a complex task even if they are paid more than the sum of the price for each component of the original task 
(Kittur, Smus, Khamkar, & Kraut, 2011). In essence, our problem can be modeled as a human-powered 
join (Marcus, Wu, Karger, Madden, & Miller, 2011), an operation to determine whether a pair of data items 
satisfy a given condition. In our setting, the condition is that two bibliographic records with the same ISBN 
represent different sources. Efficient processing of human-powered joins is discussed in existing papers 
(Marcus, Wu, Karger, Madden, & Miller, 2011; Mitsuishi, Morishima, Shinagawa, & Aoki, 2013). Proposed 
techniques include (1) changing the size of tasks; (2) changing the presentation of microtasks; and (3) using 
the power of crowd to reduce the number of tasks. 

Recently, Wang et al. independently proposed to consider transitive relations to reduce the number 
of required tasks in human-powered joins (Wang, Li, Kraska, Franklin, & Feng, 2013). The proposed 
technique is related to our contraction technique in the sense that they use the results for some pairs to 
infer the results of other pairs. One of the contributions of our paper is that it shows our design space for 
task-generation strategies that incorporates this family of optimization techniques is effective in finding 
misidentifications of bibliographic records, a real problem in the library domain. 

 
Data Quality in Crowdsourcing. Another important issue in the data-centric crowdsourcing is data 
quality. Since many techniques for improving data quality are independent of the task design, our proposed 
technique can be combined with many existing techniques. For example, many crowdsourcing adopt 
majority voting (Marcus, Wu, Karger, Madden, & Miller, 2011), a technique that relies on the law-of-large-
numbers. In Section 5, we show that one of our task-generation strategies significantly reduces the number 
of tasks and the quality of outputs is comparable to the others when we adopt majority voting. Another 
approach is a coordination game (Morishima, Shinagawa, & Mochizuki, 2011), in which rational workers 
give appropriate values. Jain and Parkes (2008) provides a game-theoretic analysis of games with a purpose 
for obtaining data, and shows that a simple change of the incentive structure can affect the obtained data. 

3 Identification of Bibliographic Records 
In this section, we first briefly explain the problem of identification of bibliographic records. Then, we 
formalize our problem as a human-powered join. 

3.1 Identification of Bibliographic Records 
Given two bibliographic records bi and bj, identification of bibliographic records is to determine whether bi 
and bj represent the same source. 

This can be done manually by experts, or automatically by machines (algorithms) if bibliographic 
records are machine-readable. The latter is called automatic identification of bibliographic records. A general 
approach for automatic identification is to compute identification keys using data encoded in bibliographic 
records and then to determine that two bibliographic records refer to the same source if they have the same 
key. Typically, identification keys are computed using ISBNs (ISO 2108:2005) and MARC numbers (ISO 
2709:2008), which are assigned by publishers and MARC management institutes, respectively, for 
distinguishing publications. However, at present, ISBNs are the only numbers that exist in virtually all 
bibliographic records. Other numbers, such as MARC numbers, are not in common use compared to ISBNs. 
Therefore, they are used as a supplementary means in automatic identification techniques. 

The problem is that the results of automatic identification techniques are not necessarily correct, 
because it is impossible to construct a perfect identification key (Taniguchi, 2009). There are several reasons 
for this. First, because the bibliographic records are created manually, the created records often have minor 
variations or are just incorrect. Second, even if the information written in the records is correct, ISBNs, 
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which in many cases are used to construct identification keys, are often inappropriately assigned by 
publishers to sources so that they cannot work as perfect identifiers. 

3.2 Formalization 
Given that the results of automatic identification of bibliographic records are not necessarily correct, and 
that we need to use human power to solve the problem, we apply a crowdsourcing approach to the problem 
of finding misidentifications. In this section, we formalize our problem as a human-powered join (Marcus, 
Wu, Karger, Madden, & Miller, 2011). A human-powered join is a special form of the join operation of 
database relations (tables). Logically, the join operation first enumerates every pair of tuples (rows) of two 
relations and then selects from the candidate pairs those pairs that satisfy the given condition, which will 
be included in the results. In a human-powered join, humans determine whether each pair of data items 
satisfies the given condition. For each pair of data items, a task is invoked to ask a worker whether a pair 
of data items satisfies a condition. For example, assume that we have a relation of photos of human faces 
and want to self-join the relation to find pairs that has photos of the same person. Then, Figure 2 is an 
example of a microtask that asks a worker if the persons in two photos are the same. 

Note that the model is compatible with the formalization of the record linkage problem presented 
in (Gu, Baxter, Vickers, & Rainsford, 2003), in which the problem is modeled as computing the Cartesian 
product of sets of records and then checking whether two records in each pair match with each other. 
Modeling our problem as a human-powered join generalizes this formalization so that the process of checking 
whether the condition holds is partly crowdsourced. 
Bibliographic Records. We use a relation with a relational schema B(tid,record) to store a set of 
bibliographic records (Figure 3). Here, tid is a tuple identifier and record is a relational attribute to store 
each bibliographic record. Note that tid is not an identifier of sources represented by records, but that of 
tuples in the relation. 
Automatic Identification. Each technique for automatic identification of bibliographic records using 
identification keys can be modeled as a self-join of Relation B as follows: 

 
𝐵𝐵 ⋈𝑘𝑘𝑘𝑘𝑘𝑘(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)=𝑘𝑘𝑘𝑘𝑘𝑘�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′�∧𝑡𝑡𝑡𝑡𝑡𝑡<𝑡𝑡𝑡𝑡𝑡𝑡′ 𝐵𝐵′ 

 
Here B′ is an alias of Relation B to distinguish two relations in the self-join. key(v) is a function defined 
by each automatic identification technique to compute identification keys. As mentioned, each identification 
key is computed using values contained in record in automatic identification techniques. We need tid < 
tid′ to avoid re-evaluating the same record pair, i.e., to avoid evaluating the pair (tid2,tid1) if the pair 
(tid1,tid2) has already been evaluated. 

 

 

Figure 2: Example of a task for a human-powered join (photos are taken from JAFFE Database (Lyons, 
Akamatsu, Kamachi, & Gyoba, 1998)) 
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tid  record  
1  (Towards the e-society:..., ..., X publisher)  
2  (The XML book, ... , ..., Y company)  
3  (Towards e-society:, ..., ..., X publishing)  

Figure 3: Example of a relation B(tid, record) 

Finding misidentification by human-powered joins. 
Then, the process of finding misidentification can be written as a human-powered join as follows. 
 

𝐵𝐵 ⋈𝑘𝑘𝑘𝑘𝑘𝑘(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)=𝑘𝑘𝑘𝑘𝑘𝑘�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′�∧𝑡𝑡𝑡𝑡𝑡𝑡<𝑡𝑡𝑡𝑡𝑡𝑡′∧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′� 𝐵𝐵′ 
 
Here diff(record,record′) is the condition the workers examine to see if the pair of records satisfies. The 
condition holds if record and record′ represent different sources (books). Therefore, the result of the human-
powered join will contain the set of record pairs, each of which has two records with the same key, but 
considered by workers to represent different sources. 

 
Definition of the same source. Assume that b1 and b2 have the same identification key. We define that 
b1 and b2 represent the same source if they are equivalent at the expression level defined by FRBR (IFLA 
Study Group on the Functional Requirements for Bibliographic Records, 1998). In other words, diff(b1,b2) 
holds if b1 and b2 represent sources that are different to each other at the expression level. The reason we 
chose the expression-level equivalence is that ISBNs and MARC numbers are assumed to be unique at this 
level. 

4 Strategies for Generating Microtasks 
In our approach, we need to generate microtasks for asking workers whether diff(record,record′) holds for 
given record and record′. In this section, we introduce two criteria to define the space for designing 
strategies, and explain four strategies within it. 

To discuss the strategies, we introduce groups of bibliographic records. A group Gk is a set of 
bibliographic records with the identification key k and is defined as follows: 

 
𝐺𝐺𝑘𝑘 = {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝐵𝐵(𝑡𝑡𝑡𝑡𝑡𝑡, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), 𝑘𝑘𝑘𝑘𝑘𝑘(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑘𝑘}. 

 
For a given Gk, each task strategy generates a set of microtasks to obtain the set {(r,r′)|r,r′∈ Gk,diff(r,r′)}. 
Therefore, we can discuss the generation of microtasks for a particular given group without losing generality. 
In the following discussions, we assume that k is an integer and that we have G1 = {r1,r2,r3,r4} 

 

 

Figure 4: Contraction 

4.1 Task Template and the Design Space 
Our design space is defined by a task template for microtasks and two criteria to affect the number of 
generated tasks. We first explain the task template and then explain two criteria, namely, simultaneous 
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comparison and contraction. A task generation strategy is good if it requires a smaller number of tasks but 
the quality of the results remain comparable to, or better than, the others. 

 
Task template. We use BTask(r,R) to denote a task template to generate microtasks for finding 
misidentifications. Here r is a bibliographic record and R is a set of records to be compared to r. Tasks are 
instantiated by the task template with parameters. For example, let r1,r2, and r3 be bibliographic records. 
Then, BTask(r1,{r2,r3,r4}) is a task for asking workers whether any of r2, r3, and r4 are different from r1. 
Figure 8 is a screenshot of BTask(r1,{r2,r3,r4}). 

 
First criterion: size of the task. The first criterion is the size of R. For pairwise comparison, we set |R| 
= 1. For example, we use BTask(r1,{r2}) to discover whether diff(r1,r2) holds. On the other hand, tasks for 
simultaneous comparison can be implemented by setting |R| > 1. For example, from the result for 
BTask(r1,{r2,r3}), we can obtain information on both diff(r1,r2) and diff(r1,r3). 

 
Second criterion: contraction. The second criterion is whether we apply contraction to the bibliographic 
records in the process of the human-powered join. The contraction is a technique in graph theory to merge 
different nodes into one in a given graph, and the edges connected to the deleted node will be inherited by 
the merged node. In our context, we use the technique to merge two bibliographic records into one if we 
know the two records represent the same source. This is done to reduce the number of comparisons without 
changing the result of the human-powered join. For example, assume that we have a group that has four 
bibliographic records and requires six comparisons (Figure 4). If we could merge record b to record a, the 
number of comparisons would be reduced to three, and the comparison results for the removed edges would 
be derived from the results of comparing a to c and d. 

We developed four strategies for generating microtasks in the design space. First, the simplest 
strategy, A1, uses pairwise comparison and does not adopt contraction. Second, B1 uses the simultaneous 
comparison and does not adopt contraction. Third, A2 performs pairwise comparisons with the contraction 
technique. Finally, B2 performs simultaneous comparisons with the contraction technique. 

4.2 A1: The Simplest Strategy 
A1 is the simplest strategy that uses the pairwise comparison and does not adopt contraction. Figure 6 
shows an example of an A1 task. The generation process is as follows. First, for each Gk, A1 constructs a 
set Pk of pairs such that Pk = B ⋈key(record)=key(record′)=k∧tid<tid′B′. For G1, P1 = 
{(r1,r2),(r1,r3),(r1,r4),(r2,r3),(r2,r4),(r3,r4)}. In general, |pk| = ||Gk|C2|. Note that we can use Pk as an intermediate 
result to compute our human-powered join defined in Section 3.2, i.e., the join result can be computed by 
σdiff(ri,rj)(Pk). In other words, computing Pk is part of the process of our human-powered join. 

Then, the second step is to generate microtasks to ask workers which pairs in Pk satisfy diff(ri,rj). 
A1 generates BTask(ri,{rj}) for each pair (ri,rj) in Pk. In our example, we obtain six A1 tasks because |Pk| 
= 6. 

Figure 5 shows the algorithm used to generate A1 tasks, where a task is generated (Line 4) for each 
pair in Pk (Line 3). 
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1. Set of BTasks generateTasks(P_k) { 
2.  tasks = {}; 
3.      for each (r_i, r_j) in P_k { 
4.          tasks = tasks + {BTask(r_i, {r_j})}; 
5.      } 
6.  return tasks; 
7. } 
Figure 5: Algorithm to generate A1 tasks 

 

 

Figure 6: Generating an A1 task 

4.3 B1: Simultaneous Comparison 
B1 allows the simultaneous comparison but does not adopt contraction. B1 uses tasks represented by 
BTask(r,R) where R ≥ 1. For example, Figure 8 is BTask(r1,{r2,r3,r4}). B1 takes a pre-fixed parameter m 
that represents the maximum size of R. If we generate B1 tasks with m = 3 for the set G1 of bibliographic 
records, we get three B1 tasks BTask(r1,{r2,r3,r4}), BTask(r2,{r3,r4}), and BTask(r3,{r4}). Note that we can 
obtain from the results of the three tasks whether diff(ri,rj) holds for every pair in P1. 

Figure 7 is the algorithm to generate B1 tasks given Pk and m. In short, we enumerate every pair 
(ri,Ri) such that (1) ri is a record that appears on the left side of a pair in Pk (Line 3) and (2) Ri is a set of 
m records each rj of which appears as (ri,rj) in Pk (Lines 4-7). For each such a pair, we generate BTask(ri,R) 
(Line 7). 

To obtain the m records, the algorithm utilizes a stack to store rj that is paired with pi (Lines 5, 
7). In Lines 10-11, it generates a task when we have n (0 < n < m) records remaining in the stack for ri. 
The algorithm does not generate tasks to produce duplicate results because Pk contains no (rj,ri) if it contains 
(ri,rj). 

 

Figure 7: Algorithm to generate B1/B2 tasks 

 1. Set of BTasks generateTasks(P_k, m) {   
 2.   tasks = {};   
 3.   for each r_i in P_k.leftRecords {   
 4.     for each (r_i, r_j) in P_k {   
 5.       stack.push(r_j);   
 6.       if(stack.length == m){   
 7.           tasks = tasks + {BTask(r_i, {stack.allpop})};   
 8.       }   
 9.     }   
10.     if(stack.length > 0)   
11.         tasks = tasks + {BTask(r_i, {stack.allpop})};   
12.   }   
13.  return tasks;   
14. } 
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Figure 8: Example of a B1 task 

4.4 A2 and B2: Introducing Contraction 
A2 (B2) is the same as A1 (B1) except that it adopts the contraction technique for reducing the number of 
tasks. If a worker determines that diff(ri,rj) does not hold for the given pair (ri,rj), we consider ri and rj are 
equivalent in the sense that the results of tasks involving ri are the same as those involving rj. Therefore, 
we can omit the tasks involving rj and reduce the number of tasks. 

The A2 tasks are generated in the following way. First, we construct the set Pk of pairs in the same 
way as for A1 tasks. As with A1, the remaining step is to generate microtasks to discover whether each pair 
in Pk satisfies diff(ri,rj). During the process, we use the result of already performed tasks to remove pair 
(rk,rl) in Pk if we know whether diff(rk,rl) holds from other results. Finally, we stop the process if there is no 
pair (ri,rj) in Pk for which we do not know whether diff(ri,rj) holds. 

Figure 9 shows the algorithm to generate tasks in A2. It generates a task for each pair in Pk (Lines 
3-4), but if the result of a performed task suggests that the two records represent the same source, (1) the 
algorithm computes another pair p that would produce duplicate results (Line 9), (2) keeps p and the 
original pair in set equiv (Line 10), and (3) removes p from Pk (Line 11). Finally, equiv is used to 
produce the results for the removed pairs (Lines 16-18). 

We can obtain the algorithm for B2 by slightly changing the algorithm in Figure 9. First, we call 
the algorithm shown in Figure 7 to produce the initial set of microtasks. Second, we insert a call for the 
same algorithm between Lines 11 and 12 to re-generate the set of microtasks. Finally, in Line 4, we register 
the generated tasks (instead of BTask(ri,{rj})) to the task pool. We omit the detail because it is 
straightforward. 
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 1. result={}  // stores the result set of pairs.   
 2. equiv={}  // a set of pairs whose results are the same.   
 3. for each (r_i, r_j) in P_k {   
 4.   TaskPool.register(BTask(r_i, {r_j}).   
 5.   Let isdiff be the result of BTask(r_i, {r_j}).   
 6.   if(isDiff) result.add((r_i, r_j));   
 7.   else { // two records represent the same source   
 8.     for each r_q s.t. r_q.tid > r_i.tid   
 9.       if(p in P_k s.t. p=(r_q, r_i) or (r_i, r_q)) {   
10.          equiv.add((p, (r_q, r_j)));   
11.          p_k.remove(p);   
12.       }   
13.     }   
14.   }   
15. }   
16. for each (p, p’) in equiv {   
17.    if(p’ in result) result.add(p);   
18. } 
Figure 9: Algorithm of A2 

5 Experiment 
This section explains the results of our experiment. The purpose of the experiment is twofold. First, we 
want to know whether the microtask-based crowdsourcing approach is applicable to the problem of finding 
misidentification of bibliographic records in a real setting. Second, we want to understand how changing 
task-generation strategies affects the process and results. In the experiment, we compared four task-
generation strategies by the number of tasks, the elapsed times for performing tasks, and the quality of data 
in terms of precision and recall. Overall, we concluded that crowdsourcing is applicable to our problem, and 
B2 significantly reduced the number of tasks while keeping the quality of its result comparable to that of 
the other strategies. 

5.1 Settings 

 

Figure 10: Screenshot of a task on Crowd4U 

Crowdsourcing Platform. We used Crowd4U (http://crowd4u.org), a microtask-based crowdsourcing 
platform for academic purposes. Crowd4U is deployed at many universities in Japan, with anonymous and 
registered workers performing microtasks registered in its task pool. Figure 10 shows a screenshot of a 
Crowd4U microtask. 
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Data. In the experiment, we used bibliographic records of the unified catalog of the NDL. Prior to our 
experiment, the NDL applied automatic identification using ISBNs as identification keys to their records. 
Then, they selected the records whose ISBNs are not unique. 

Given the set of records, we selected bibliographic records for a source written in Japanese. In the 
experiment, the native language of all workers was Japanese and we did not want to introduce another 
factor to compare different microtask designs. As a result, we obtained 34,254 records with 11,509 different 
ISBN groups. Table 1 shows the distribution of sizes of the groups. 

Then, we conducted random sampling to extract 3% from the original groups, considering the 
distribution of the sizes of the ISBN groups. As a result, we obtain 341 groups with 933 records. We 
computed Pk for each Gk(1 ≤ k ≤ 341) and obtained Σ1≤k≤341|Pk| = 1,315. 
 

|Gk|  Number of groups  Percentage (%)  
2  8,479  73.67  
3  1,129  9.81  
4  546  4.74  
5  388  3.37 
6  260  2.26  
7  162  1.41 
8  136  1.18  
9  83  0.72  

10  103  0.89  
11  47  0.41  
12  39  0.34  
13  24  0.21  
14  13  0.11  

≥ 15  100  0.8  
Total  11,509  100  

Table 1: Distribution of sizes of groups 

5.2 Method 
We first generated the tasks for A1 and B1 for the original data set to compare the number of generated 
tasks. Since our purpose was not to find the best parameters, we set m to three in this experiment. Finding 
the best parameters is an important future study. Then, we constructed sets of tasks for A1 and B1 for the 
groups with sizes more than two, because both A1 and B1 generate the same set of tasks if the size of the 
group is two. We carefully examined the records and found that the set contained several inappropriate 
records, which had set-ISBNs. Set-ISBNs are ISBNs assigned not to books but to the set of books, and not 
intended to be used to identify individual books. We removed 27 pairs with set-ISBNs from ∪Pk. Then, we 
manually created the answer set resultans of the human-powered join, i.e., the set of record pairs representing 
misidentifications. As a result, we got Σ1≤k≤341|Pk| = 1,034, |resultans| = 737 and Σ1≤k≤341|Pk|-|resultans| = 297. In 
Section 5.3, we use the former set of pairs to evaluate the elapsed time, while we use the latter set to 
evaluate the quality of results. Then, we inserted the generated tasks into the Crowd4U task pool for 
crowdsourcing. Finally, we used the results of A1 and B1 tasks to compute the results of tasks for A2 and 
B2, by removing the tasks to be removed by A2 and B2 algorithms. Note that this is possible because each 
task is independently performed on the crowdsourcing platform, and removing some tasks does not affect 
the results of others. 
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5.3 Results and Discussions 
This section compares the four variations in terms of the number of generated tasks, elapsed time for 
performing tasks, and quality of results. 

 
Number of tasks. Figure 11 compares the number of generated tasks. As expected, both simultaneous 
comparison and contraction are effective in reducing the number of tasks. Compared with A1 tasks, A2, 
B1, and B2 tasks were reduced by 27.5%, 43.7%, and 55.7%, respectively. 
 

 

Figure 11: Number of generated tasks 

Elapsed time. Figure 12 shows the elapsed times required for performing the tasks. The figure shows the 
averages, medians, and modes of elapsed times for performing A1 and B1 tasks (Times for A2 and B2 are 
omitted because they are the same as those for A1 and B1). Here we did not include the results of two tasks 
that we failed to log the elapsed times for. Note that in Figure 12, there are large differences between the 
average times and the medians. This suggests that there are outliers. A most likely reason is that workers 
often performed other jobs while performing a task. Therefore, we applied the technique proposed by Tukey 
(1977) to remove outliers. The technique uses the box-and-whisker plot and the interquartile range (IQR) 
as a parameter, which denotes the difference between the first and third quartiles. We used 1.5IQR to detect 
outliers. A1 and B1 (excluding outliers) in Figure 12 show the times after removal. 

Overall, the figure suggests that the elapsed time for A1 tasks is shorter than that for B1 tasks. 
This is because B1 tasks require workers to perform simultaneous comparisons that are more difficult than 
pairwise comparisons. However, the elapsed times for both types of tasks are significantly below 10s, and 
short enough for microtask-based crowdsourcing. 
 

 

Figure 12: Elapsed times for performing tasks 

Quality of the results. Finally, we compared the quality of the results. Table 2 shows the results of 
human-powered joins with the four task-generation strategies. Here results is a set of record pairs determined 
by workers as misidentifications with the task-generation strategy s. Then, we computed recall, precision, 
and F-measures using resultans. 
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Figure 13 shows recalls and precisions obtained by the human-powered joins with the four task-
generation strategies. The results show that all recalls and precisions are more than 0.85 and 0.9, 
respectively. Table 3 shows F-measures, all of which are above 0.9. Figure 14 compares the number of 
required tasks and F-measures, where each point corresponds to a task-generation strategy. 
 

Strategy s  |results|  Σk|Pk|-|results|  
A1  674  360  
A2  692  342 
B1  660  374  
B2  680  354  
Answer Set  737  297  

Table 2: Number of tuples in the result 

 

Figure 13: Recalls and precisions 

 
 A1  B1  A2  B2  
F-measure  0.933  0.934  0.931  0.902  

Table 3: F-measures 

 

Figure 14: F measures and #tasks 
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The result shows that if we directly used the result, the quality of the result of B2 tasks would be lower 
than those of others. More precisely, tests for differences among the proportions show that the differences 
between recalls of A2 and B2 are significant at the 5% significance level. For precisions, the differences for 
pairs (B1, A2), (A2, B2), (B1, B2) and (A1, B2) are significant at the 5% significance level. Note that the 
result does not suggest a negative correlation between the number of tasks and data quality. In our 
experiment, the result of B2 (A2) tasks are derived from those of B1 (A1) tasks. When we adopt the 
contraction technique, the quality of the result is heavily affected by the result of microtasks performed in 
the earlier stage. Therefore, the results imply that the quality of the result of the earlier B1 microtasks was 
lower than that of A1 tasks. We can conclude that it is important to guarantee the quality of task results 
in the early stage of the process. 

In reality, however, it is rare to directly adopt the result of performing a task by one worker. It is 
rather typical to integrate results by majority voting. Then, the differences in qualities become much 
smaller. For example, if we assume that the probability is uniform and each task is performed by three 
workers, we can expect that F-measures of A1, A2, B1, and B2 are between 0.9996 and 0.9991. B2 
outperforms the others in the sense that it significantly reduces the number of tasks and its output is 
comparable to that of the other strategies. Our statistical analysis showed no significant difference in 
precision and recall if we use majority voting by five and seven workers, respectively. 

6 Summary 
This paper applied microtask-based crowdsourcing for finding misidentification in the results of automatic 
identification of bibliographic records. We modeled the problem as a human-powered join and considered 
four variations of task-generation strategies in a design space defined by two criteria. The first is the number 
of records to be compared at once, and the second is whether we apply contraction, a novel technique to 
optimize human-powered joins. We compared four task-generation strategies using bibliographic records of 
the NDL. The experimental result showed that one of the strategies reduced 55.7% of tasks from the baseline 
strategy and statistic analysis showed that the quality of its result was comparable to that of the other 
three strategies. 

Future studies include the detailed analysis of the design space with different parameter settings. 
It also includes the development of a method to incorporate techniques to improve data quality, and the 
development of a method to combine the power of experts and crowdsourcing, where disputed results are 
passed to experts for detailed verification. 
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