The Analytic Potential of Scientific Data: Understanding Re-use Value

Carole L. Palmer, Nicholas M. Weber, and Melissa H. Cragin
Center for Informatics Research in Science and Scholarship
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
clpalmer; cragin; nmweber@illinois.edu

ABSTRACT
While problems related to the curation and preservation of scientific data are receiving considerable attention from the information science and digital repository communities, relatively little progress has been made on approaches for evaluating the value of data to inform investment in acquisition, curation, and preservation. Adapting Hjørland’s concept of the “epistemological potential” of documents, we assert that analytic potential, or the value of data for analysis beyond its original use, should guide development of data collections for repositories aimed at supporting research. Three key aspects of the analytic potential of data are identified and discussed: potential user communities, preservation readiness, and fit for purpose. Based on evidence from research from the Data Conservancy initiative, we demonstrate how the analytic potential of data can be determined and applied to build large-scale data collections suited for grand challenge science.

INTRODUCTION
Research libraries and repositories are facing the monumental task of collecting tremendous amounts of digital data. The volume of data, as well as the complexity and high cost of curating and preserving data, will require these organizations to establish priorities for what they collect. In some sense, they will do what collection developers in research libraries have always done—make judgments about what information sources are of enough value to their service communities to justify the expense of collection, curation, and preservation.

Of the principles identified by Uhlir for the preservation of scientific data, one is particularly important in regard to these judgments: “the value of data increases with their use” (2010, p. 1). This principle is in response to what Uhlir calls the “information gulags” or data cemeteries—the inaccessible warehouses of data in research centers and the decaying files kept privately by scientists, treated as valueless byproducts rather than assets of research. While the principle is sound, it is difficult to follow in the practice of building a data repository, since it suggests that something that is uncertain—the potential for re-use—should be a primary factor in determining the value of a data set.

This paper addresses the question of how repositories can assess the re-use value of data, based on research and development from the Data Conservancy initiative, where the potential for re-use is considered one of several important criteria for acquisition and allocation of resources for curation. As one of the first two NSF DataNet awards, the Data Conservancy (http://dataconservancy.org/), based at Johns Hopkins University, is part of a program established to create a network of cyberinfrastructure organizations to “catalyze the development of a system of science and engineering data collections that is open, extensible and evolvable” (NSF-OCI, 2007, p. 2). The aim of the Data Conservancy (hereafter referred to as DC) is to develop a “blueprint for research libraries” for provision of data curation and repository services. As such, it is developing infrastructure and professional processes to meet its mission to collect, organize, validate, and preserve observational data that will allow scientists to address the grand research challenges that face society (Choudhury & Hanisch, 2009).

Preservation of observational data is a high national priority, since unlike experimental data they cannot be reproduced (NSB, 2005). “Grand challenge” research has been a concern of U.S. based science policy for several decades, with the concept first introduced in the wake of 5th generation computer development during the 1980’s (Stevens, 1994). The term has since been widely adopted to refer to areas of research that have the potential to profoundly impact political and economic dimensions of society (NSF-TFGC, 2011). Scientists tackling grand research challenges, like predicting the impacts of climate change or protecting ecological biodiversity, are increasingly dependent on robust computing capabilities
and ready access to high quality data of various types and scales of analysis. They are expected to produce and consume vast quantities of observational data in the conduct of daily research activities (NSF- CIC, 2007).

For DC to support grand challenge science it will need to efficiently and reliably collect and provide services for an extensive range of highly heterogeneous data products. Therefore, an essential part of scoping the DC initiative was the development of a policy to guide what data will be brought into DC to meet its mission. As a research library based initiative, its disciplinary purview is broad, including astronomy and the earth, life and social sciences. The first two DC test cases for data ingest were extremes on the continuum of big and small science—a highly sophisticated terabyte-scale data resource developed by the astronomy community and a complex set of heterogeneous geology data gathered by a single research laboratory over the course of one scientist’s career. Though the types of data and the phenomena represented in these two cases are quite disparate, they both exemplify observational scientific data that records historical, non-recurring events or specific states and conditions at a particular place and time.

The DC collection policy establishes general and specific domain targets. It also articulates a range of criteria by which data are considered eligible for inclusion in DC; considerations include value, uniqueness, risk of loss, funding requirements, and right of deposit. These criteria will not be applied strictly, but rather weighed against the costs of acquisition and subsequent services, prioritizing data for targeted research areas considered valuable for re-use. The greatest challenge in developing the collection policy has been the articulation of criteria for evaluating, or in some sense, predicting, the potential for a dataset to be re-used.

Our approach to understanding re-use value draws on core library and information science related to information seeking and subject representation, specifically Birger Hjorland’s (1997) concept of “epistemological potential.” Below, we elaborate our conceptual framework for analytic potential, but first we provide background on trends in science and related work in information science that inform our perspective and approach. The remainder of the paper presents our conceptual approach to “analytic potential” and evidence from our data practices research illustrate key aspects and application of the conceptual framework, which will guide collection and curation priorities for DC, but which, we believe, also has broader application for data repositories more generally.

BACKGROUND

The Science Data Imperative

While curation and preservation of scientific data are receiving considerable attention from the information science and digital repository communities, relatively little progress has been made on approaches for evaluating the value of data to inform investment in acquisition, curation, and preservation. The social sciences have historically been at the vanguard of data preservation in response to the need to retain census data and longitudinal national survey data. Now, the demand for trusted data repositories is increasing in the sciences, due to the rise in computationally driven inquiry that depends on networked technologies and persistent access to large amounts of data. Moreover, other kinds of science will be increasingly seeking repositories for their data, in response to funding agency requirements for formal data management plans (e.g., NSF-DMP, 2010).

Data collection challenges are particularly complex for large, multi-disciplinary repositories, like the DC, that are open to many different kinds of data from many disciplines, large and small. They need to accommodate “big sciences” like astronomy, where a given resource may consist of many terabytes of data and computational tools are often necessary for interpretation. As with other big sciences where sharing of uniform data lends itself to aggregation, visualization and pattern analysis, the astronomy community is already largely committed to building sharable data resources.

However, by some measures, up to 80% of all science is in the long tail of smaller, less costly research projects, largely associated with small science (Heidorn, 2008). And, small science is expected to produce more data overall than big science (Carlson, 2006). In sciences like geobiology and soil science, for instance, researchers tend to work independently or in small groups, on hypothesis driven research questions, gathering data into privately held collections for local analysis. Currently, these data are rarely shared and re-used, in part because there are no suitable repositories, a problem that stems from the complexity and variation within the practice and culture of small science (Cragin, Palmer, Carlson & Witt, 2010). Small science data have potential for analysis across aggregates, similar to big science. But, their value for re-use may also be complementary, as a unique piece of a complex puzzle or an important addition to a series of measures over time.

 Appropriately, a second principle asserted by Uhlir (2010) is that “digital resources will not survive or remain accessible by accident” (p. 5). He calls attention to the well-known “memory hole” caused by the inadvertent loss of data from NASA Explorer I, but more importantly notes the continual, distributed, invisible, and irreversible loss of data across science over time. In fact, the mission of most large research libraries, and, by extension, their data repositories, includes the preservation of the scientific and scholarly record. However, strategies for acquiring and retaining data as historical or cultural evidence of the conduct of science will require very different collection strategies and curatorial investment.
than data collected to support current or future analysis for research purposes. Archiving the research record calls for broad coverage of the entire enterprise of science, coordinated among institutions to capture the output at large without unnecessary duplication. Data to support active research requires preservation and provision of additional access services, as well as assurance of quality and usefulness.

Building Data Collections
Uhlir (2010) makes a strong case for the value of data in the public sphere (see also, Arzberger, Schroeder, Beaulieu, Bowker, Casey, et al., 2004), but for the small sciences there are not yet proven policies or processes for collecting data for either the retention of the scientific record or for re-use for research (see, though, Whyte & Wilson, 2010). Approaches in library and information science have some promising applications for the data repository setting. For example, some existing collection development principles and criteria can be effectively extended to data repository practice, but existing collection evaluation techniques seem less applicable. In general, however, adaptations will be needed for evaluating data and building collections to meet the global aims of building a robust, functional, and interoperable network of cross-disciplinary data resources to support grand challenge science (Hey, Tansley & Tolle, 2009; NSB, 2005). At the local level, policies and processes will need to look beyond data sets that “sit behind” a published paper to acquire data of value for investigation of high-priority research questions by the scientific communities served. At the same time, each repository is contributing to the extensive and distributed enterprise as a whole, where data are a “fundamental infrastructural component of the modern research system” (Uhlir, 2010, p. 1; see also, Edwards, Jackson, Bowker, & Knobel, 2007).

The library and information science meta-science perspective (Bates, 1999) has always been fundamental to the role of providing broad, useable information collections and services, especially for the support of interdisciplinary research. To build an adequate base of resources to support interdisciplinary grand challenge science, collection developers need to understand the landscape of information produced and its roles, interrelationships, and dependencies across fields and generations of production. This cross-disciplinary, longitudinal approach to collections will be more pronounced and complex for building data collections than it ever was for literature-based collections, in part because we can no longer depend on publishers for vetting and acquisition services. Moreover, with digital data, assessments of value will not only require understanding of the content but also its structural and semantic make-up in relation to how analysis will be performed by various service communities.

Data Sharing and Re-use
The need for data to be made more openly accessible has been widely recognized, and there is a growing body of research on data sharing practices in various domains (e.g. Borgman, 2010; Blumenthal, Campbell, Gokhale, Yuel, Clarridge, et al., 2006; Whitlock, McPeek, Rausher & Moore, 2010). Studies of small science, in particular, indicate that successful digital repositories and information services will need to be responsive to the specific data practices of their user communities (Borgman, Wallis, & Enyedy, 2007).

Only a few studies have examined how scientists re-use or re-analyze data and the problems they encounter. In fields such as ecology, for example, standards adoption and metadata development were shown to be instrumental for assessing data, but ultimately re-use was contingent on individual field knowledge and established trust between researchers (Zimmerman, 2007). In other words, data re-use was a “context dependent” process. Moreover, cross-disciplinary studies of data sharing suggest that metadata from the perspective of the data producer is not likely to be adequate for representing the value of data for re-use in other fields (Cragin, Palmer, Carlson & Witt, 2010). Not surprisingly, access to data was a key factor in facilitating re-use in a study of earthquake engineers, but other key factors included the integrity of a data set, reputation of the producer, confidence that the data can be easily understood, and the general relevance of the phenomenon being recorded (Faniel & Jacobsen, 2010).

Taken together these studies suggest that indicators of quality and usefulness of the data, as well as the context of data production, are necessary to support re-use. At the same time, meaningful indicators may vary for users with different levels of expertise or from different disciplines, as will be illustrated further in the case study presented later in the paper.

CONCEPTUAL FRAMEWORK
Epistemological Potential of Documents
Hjorland (1997) discusses the notion of epistemological potential (hereafter referred to as EP) in the context of the work of subject analysis in cataloging documents for access in an information system. EP refers the range of possible intellectual applications for a given book or article beyond those intended by the author. This is a particularly apt concept in regard to the development of interdisciplinary research collections in an open digital environment where many scholarly and scientific communities have direct access to a rich base of information resources.

According to Hjorland, the metadata representing the subjects of a document should go beyond providing a description of its aboutness; it should expose its ability to “transfer knowledge”, which requires “insight or understanding of which future problems can give rise to the use of the document in question” (p. 93). A document,
however, may have an infinite number of properties capable of informing users, therefore the representation provided should be based on analysis of the document’s possible contributions to various user groups (Hjørland, 1997). Those contributions should then be prioritized based on their “long-term utility” for contributing to the production of knowledge. In producing metadata records for access, these strong contributions are encoded with categorizations appropriate to the information system’s use of enduring terms, presumably from a controlled vocabulary.

Hjørland’s concrete examples of EP are for the subject analysis of books in History and Psychology, but they are illustrative nonetheless. The first demonstrates the utility of a local history of a specific geographic location in Copenhagen between 1880-1920. The book was intended to be a social historical analysis of the dynamics between the social classes of bourgeois mistresses and working class girls. However, Hjørland demonstrates the contributions it can make to researchers of family studies, sex and prostitution, police-population relationships, and unions for housemaids. His second example illustrates how the enduring contribution of a book intended to be specifically on the psychology of explanation is actually a much broader treatment of the philosophy and methodology of psychology that documents the decline of psychological theory.

In short, given a particular document, EP is an assessment of the possible user communities and the document’s intellectual contributions to those communities represented in a form that allows them to retrieve the document from an information system (see Figure 1).

Data sets, however, are the raw materials of research and do not have epistemological potential in the same way as documents. However, they do have analytic potential. That is, the results of research presented in a journal article can inform by reading or processing the rich semantic content. Data, on the other hand, do not directly inform but rather have the potential to be analyzed, and then that analysis may inform. And, most importantly, like documents, data have the potential to contribute to research beyond the original intent and domain of the creator.

Analytic Potential of Data

Analytic potential is the likelihood that a data set will be of value for future analysis by others, not just for replication, but also for new applications. Like EP, understanding user communities and contributions with “long-term utility” are involved in determining analytic potential (AP). Long-term utility tightly links two factors that have to do with the condition of the data: preservation readiness (long-term) and fit for purpose (utility). Preservation readiness refers to preparation of the data for long-term preservation and archiving, which is fundamental to making data accessible for future use. Fit for purpose is an established and vital area of responsibility for the curation of research data (Lord, MacDonald, Lyon & Giaretta, 2004). It refers to the alignment of the data with the methods and tools for a given application. For a repository like DC, we assert that fit for purpose needs to be extended to consider uses by new user communities, thus in Figure 2 we make explicit the need to determine potential user communities before making determinations of contributions with long term utility.

In short, given a particular data set, AP is an assessment of the possible user communities and the data’s possible contributions to those communities, which is in part dependent on the condition of the data for preservation, and its fit for analysis by those communities. Data with high analytic potential would be applicable to multiple communities. As with EP, these contributions need to be represented in a form that allows the user communities to find and retrieve the data, but this aspect is outside the scope of this treatment of AP.

Preservation Readiness

DC has adopted “preservation description information,” as defined by NASA’s reference model for an Open Archival Information System (OAIS), as criteria for preservation readiness (OAIS, 2002, 2-6). The DC collection policy specifies that data providers should supply information about: representation, provenance, context, reference, and fixity. Representation information combines structural and semantic information to provide meaning for a data object. Provenance describes the source of the deposit and its processing history. Context provides information on why the data were produced and relationships to other objects. Fixity is also an important aspect of preservation readiness that provides for the stability of the content within the repository, managed, for instance, through check sums over the digital information packages.

These relatively routine measures are well documented in the literature of digital repository development (OAIS, 2002; RLG-OCLC TRAC, 2002). Unfortunately, they are...
not widely understood by scientists who wish to contribute data. Therefore, preservation readiness processing is likely to become part of the curatorial services provided by DC and other repositories.

Fit For Purpose
The descriptions provided for preservation readiness, discussed above, are related to fit for purpose. And, in fact, the common notion of fit for purpose for data curation is concerned with data quality for the intended use, in line with the primary goal of preservation. For support of AP, however, preservation readiness does not necessarily cover fit for purpose for a given re-use application. For example, raw data may be preferred over data that have been transformed or derived as part of a previous analysis process. In some cases, part of a data set may be needed, requiring decomposition of a compound object or aggregation. Assuring that data are fit for purpose may also consist of tracing statistical calculations back to the tools and methods used in generating the data. This type of authentication is related to the concept of “appropriate use,” suggested by Parsons & Duer (2005), which involves verifying the credibility of a data set to be accurately and meaningfully re-used given what it purports to measure or represent. The case they describe is consistent with our interpretation of fit for purpose for AP. The data consist of 38 sets (mostly images) on sea ice concentration, derived from passive microwave remote sensing (p.34). They are held by the National Snow and Ice Data Center (NSIDC) (http://nsidc.org.), which has created a context for the data sets through linkages to relevant scientific literature, special reports devoted to a “deeper analysis of passive microwave derived sea ice products,” and a website that provides access to these products (p.34).

Given the granularity and the time series these images represent, these data are “fit” for answering a certain range of scientific questions. They are not fit for scientific questions that require detailed observations, such as those needed by a biologist tracking polar bear migration where definite locales and exact daily time scales would be necessary (p. 34). This is exactly the kind of distinction that needs to be possible through an AP evaluation, which is concerned with identifying, as far as possible, the range of scientific questions, and the associated communities, to which a data set can contribute and how much investment is required in making it fit for that range of purposes.

Potential User Communities
Fit for purpose is closely tied to the user community and their research questions and analysis techniques. Identifying the range of potential communities that might find a data set useful over time requires the meta-science expertise associated with the work of information professional (Bates, 1999), since data producers are not in a position to analyze the extent to which their data may contribute to the work of other researchers (Cragin, Palmer, Carlson and Witt, 2010; Baker & Bowker, 2007). Observational data, for instance, as an immutable source for recording an event (NSB, 2005), has potential for re-use beyond their original purpose and likely beyond the discipline of origin. Some fields use observational data from numerous sources and disciplines to create complex data sets or integrate a range of data for simulations and modeling (Sundberg, 2011). This potential reach of data beyond its intended use transcends the notion of a single designated community promoted by OAIS (2002), which has been widely adopted as the de-facto standard for developing service based digital libraries and preservation repositories.

A designated community is defined by OAIS as “an identified group of potential consumers who should be able to understand a particular set of information” (OAIS, 2002, 1-10). What a given designated community is able to understand without, “the assistance of the experts who produced the information” is considered their Knowledge Base (OAIS, 2002, 3-1). The services provided by a repository are aimed at satisfying the needs of a designated community through an understanding (and monitoring) of that community’s knowledge base. By these standards, a data set that is collected by a repository must either contain, or be curated to include, all of the necessary tools, software packages, and contextual information necessary for a designated community to meaningfully use that data.

However, the OAIS notion of the designated community as a community with a unified base of knowledge and tools is not directly applicable to the DC context of “discipline crossing,” grand challenge research. It seems most relevant for data repositories developed to archive particular kinds of data, and for which the primary user community has a shared knowledge base (OAIS, p. 2-4).

In contrast, in DC we expect small science observational data collected in the field to be of interest to climate change modelers. Since these data are complex, heterogeneous, and often recorded in non-standard formats, they may not easily align with the knowledge base and tools of this potential user community. Nonetheless, they may hold enough re-use value to justify collection and investment at some level of curation.
The challenge is determining if and how much potential there is for re-use and how much investment should be put into curation to fill the knowledge base gap and improve the fit for new purposes. Ultimately, the success of DC in supporting grand challenge science will depend on efficient curation of high quality data for numerous, diverse user communities, and possibly varying levels of curation for the same data for different communities and purposes. At present in DC, our research on data practices and engagement with science working groups serve as the primary source for understanding the knowledge base of the broad range of DC user communities.

In the next section, we draw on this data practices research, which examines the spheres of context around data production and use (Baker & Yarmey, 2010) for a range of targeted scientific domains for DC. This landscape view of data and practice is providing evidence of potential user communities for certain types of data, and in conjunction with the work of the infrastructure development team, we are articulating preservation readiness and examining fit for purpose requirements for re-use.

METHODS

The profiles and cases presented below are based on our ongoing empirical research on disciplinary differences in data practices, targeting domains expected to be early data contributors to DC. Our analytical unit is a research sub-discipline, based on our previous work which suggests that this level best captures small science data practices and evidence of re-use value (Cragin, Palmer, Carlson & Witt, 2010). To date we have engaged with twenty participants who are active researchers in geology, oceanography, and environmental science, focused on areas such as climate, water, soil, and magma. We use a sequenced, multi-method approach for data collection, employing multiple semi-structured interviews, data inventorying, and artifact analysis, which work together to produce dense, high-quality case study units of evidence (Cragin, Chao & Palmer, 2011).

A Pre-Interview Worksheet is used to orient participants to our specific interests in their data, setting the scene for the questions that follow in the Research Interview. The worksheet responses often provide important domain-specific information necessary for the curation process. They also facilitate deep discussion on the participant’s research practices. A subsequent Follow-up Interview is used to clarify or address gaps. This interview has been especially important for probing on specific data types identified by participants as having value for other users and to document deposition requirements and essential curation to support re-use.

Like most case study research, the volume or density of each case varies, with the rigor emerging from the systematic, iterative approach across cases. The sequencing and multiple modes of engagement allow us to identify overlaps in research problems, methodologies and types of data associated with user communities, and to conduct deeper analysis to address “how” and “why” questions about data needs and uses (Cragin, 2009). Comparative cross-case analysis is ongoing, but here we draw on initial within-case analyses to demonstrate aspects of AP across areas of earth science and in relation to particular geophysics data sets, specifically in the area of volcanology. Interview excerpts have been slightly refined to improve readability, while references to scientists are obscured to maintain participant confidentiality.

<table>
<thead>
<tr>
<th>Data objects</th>
<th>Geobiology</th>
<th>Volcanology</th>
<th>Soil Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(original analytic purpose, for preservation)</td>
<td>Site-specific time series:</td>
<td>Rock profile</td>
<td>Database, work and soil samples</td>
</tr>
<tr>
<td></td>
<td>“reduced spreadsheets” of averaged rock, water chemistry measures;</td>
<td>- physical rock</td>
<td>- multiple abiotic soil measurements</td>
</tr>
<tr>
<td></td>
<td>- microscopy images;</td>
<td>- thin section</td>
<td>- sensor and network function</td>
</tr>
<tr>
<td></td>
<td>- annotated field photos;</td>
<td>- chemical analysis</td>
<td>- associated metadata</td>
</tr>
<tr>
<td></td>
<td>- microbial genomics</td>
<td>- photographs (35mm slides; digital)</td>
<td>- soil composition</td>
</tr>
<tr>
<td>Designated Community</td>
<td>Geobiology</td>
<td>Igneous petrology</td>
<td>Biogeochemistry</td>
</tr>
<tr>
<td></td>
<td>Geology (general)</td>
<td>Geophysics</td>
<td>Earthworm ecology</td>
</tr>
<tr>
<td></td>
<td>Microbiology</td>
<td>Geochemistry</td>
<td>Soil Science</td>
</tr>
<tr>
<td>Potential User Communities</td>
<td>Evolutionary biology</td>
<td>Glaciology</td>
<td>Biodiversity</td>
</tr>
<tr>
<td></td>
<td>Bioprospecting</td>
<td></td>
<td>Environmental sciences</td>
</tr>
<tr>
<td></td>
<td>U.S. Park Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples of Potential Re-use Value</td>
<td>Microbial data might be analyzed to assess the presence and extent of disease.</td>
<td>Field photos with spatiotemporal stamp can be used to assess changes to glaciers over time.</td>
<td>While spatially sparse, the taxonomic, soil carbon, and ground cover data are sampled over time; these might be useful for indicators of local environmental change.</td>
</tr>
</tbody>
</table>

Table 1. Aspects of analytic potential for data in three fields.
ANALYSIS
Earth Science Précis
The case studies are quite deep, covering a range of information aimed at informing curation and infrastructure development, but they are also useful for basic AP profiling. Table 1 (see above) presents a small sample of three sub-disciplines in the earth sciences, covering primary data types, the designated community, potential user communities, and projected opportunities for re-use.

The first three rows in the table illustrate basic aspects of AP drawn from our data, beginning with a list of data types and materials (data objects) that qualify as preservation targets and need consideration for fit for purpose. For Geobiology, many types of data are collected to investigate the ways that microorganisms influence the geology of the earth and how earth environments influence the behavior of the microbes. For Volcanology, the primary sources are physical rock samples, from which a range of analog and digital data are generated. In Soil Ecology, data are collected on target species, as well as environmental variables, much of which is gathered to support interpretation of the primary biological data. The Designated Community presented in the second row represent the researchers who generated the data, and the Potential User Communities in the third row are those with interests in the observations represented in the data. The fourth row provides examples of re-use value based on our data and further engagement with scientists in Geobiology.

Volcanology Case
Due to extremely low humidity and ice cover, geological structures in Antarctica have undergone relatively little erosion since their formation millions of years ago, providing a unique opportunity for gathering igneous rocks and studying magmatic differentiation. A seminal figure in this field, Reginald Aldworth Daly stated early in the 20th century, “A final philosophy of earth history must be largely founded upon the unshakeable facts known about igneous rocks” (1933, p. 1). Formed from the cooling of magma, the study of igneous rocks and magmatic flow are fundamental to understanding of the history and formation of the earth’s crust. For volcanologists, the Antarctic site under study provides access to rock that represents a sort of time series of historical magmatic events – the geological structures are exposed but well preserved, as if someone had sliced vertically through a volcano, to show its layers and extended plumbing system.

As noted above, this large trove of data from Antarctica is being processed for ingest into the DC repository. The research group that produced this collection has made over ten data gathering trips to the region since the early 1990’s, resulting in an abundance of physical materials: literally tons of igneous rock samples, finely cut cubes (or billets), billet slices mounted on glass slides (thin sections), powdered rock, and field notebooks and photographs. The powdered rock samples are used to produce “bulk rock analysis,” which results in tabular data of the chemical composition of the samples; additional digital data include digital field photos and field notes, born-digital and digitized images from the thin section slides, resulting quantitative analysis of their contents, and recently, 3D maps of the region under study.

Preservation Readiness
Acquisition of this special collection has required creation of a detailed inventory identifying the several data types and their specifications, and then processing of analog and digital materials in anticipation of the ingest process. DC repository staff and data scientists will conduct integrity assessments for the collection, following OAIS ingest guidelines for verifying and transforming submission information packages into archival information packages.

Beyond requisite descriptive metadata, this collection requires documentary evidence related to provenance, reference, and context. To identify locations where rocks were gathered, samples are marked with an identifier that signifies the specific field campaign and the collector. All derived samples and subsequent digital data are labeled with this identifier, which is then used in the records created for the object. Recording accurate metadata for collected rock samples is crucial for accurate analysis in the laboratory setting and for validating findings disseminated to the geophysical community.

Beyond the sample number (identifier), descriptive information, such as date, time, weather condition, surrounding environment, sill position, GIS coordinates, and the condition of the specimen when collected, all contribute to preservation readiness for these data. Much of this information is recorded in field notebooks produced during data gathering trip, and which becomes part of the complete data package.

Fit for purpose
The details in the field notes are similar to a map’s legend – they give an orientation to the collected samples and guide interpretation of content. Additionally, the narratives include numerous clues as to why a certain oddity or outlying data point may appear in later chemical analysis. For instance, one participant described the value of the record of the data gathering conditions for accurate re-use in situations where abnormalities occur:

...if you see an outlier, you have to wonder, ‘ok what’s going on there,’ so you go check the field notes, well if the field notes don’t have anything written down about ‘oh this sample was really weird because of these characteristics’ or something, then they really have nothing to draw on to help them understand what at all is going on.
In evaluating fit for purpose for this collection, completeness will be an important factor to assure access to the compilation of products necessary to facilitate accurate re-use. Use of the digitized thin sections, for example, generally requires a minimum of three images—the plane polarized view, and then two cross-polarized images generated at different angles, to ensure that the minerals present are visible. These data will only be reusable for volcanology purposes if the field notebooks account for specimen gathering conditions, if the thin-sections are digitized in a way that allows for crystals to be accurately judged, and if the chemical analysis includes the documentation of any normalization performed on the original data set.

However, another domain might not require such specific field gathering information. The same participant noted that while contextual information was essential for his work, it might not be necessary for other areas of research:

...somebody for example who’s more knowledgeable about isotopes than I am can take the data that I produced and do a whole different series of investigations that I would never do myself because it’s not really even my field. There’s a lot of geochemical work that’s done that relies less on field context.

Clearly, fit for purpose may vary with the application by the user community and new applications might emerge over the course of the data lifecycle.

Potential User Communities

For a broad based repository like DC, identification of potential user communities is complex, but will need to precede analysis of, and investment in, making data fit for purpose. A solid understanding of the scope and extent of the user communities will be required to generate accurate cost estimates for curatorial activities. For the volcanology data, interest in the data will be associated with the location, time period, and phenomenon of study that the collection represents.

The chemical analysis component of the data is a useful example of a data product generated for one purpose that is likely to have broad appeal beyond the original research community. One scientist in this lab noted that the chemical analysis of an igneous rock often has numerous fields of data that their laboratory is not concerned with, but which might be of interest to someone from another discipline:

...there are people who might work on little iron and titanium oxides which I don’t really care about; there might be a couple of them in my rocks, but I’m not looking at that...they might be really interested in that and want to take the data that I’ve provided and study that, and it might be a completely different thing than I would ever do with it.

The chemical data represent a unique phenomenon with implied value for other domains. For DC, this may justify allocation of resources for preservation and curation to extend fit for purpose only for this segment of the larger data collection.

Summary

The volcanology group discussed above conducts site-specific research that generates rare observational data. These data are valued by DC because of the high cost of data gathering, the unique location under study, and the importance of the phenomena under investigation. But, there is still a need to understand AP as an additional criteria for prioritization and investment in curation. Evaluation of AP will need to take into account the conditions of the data for preservation and fit for purpose for the designated community, but understanding the potential user communities that can make new use of the data is the foremost concern.

At present, our pre-interview worksheet is capturing information that informs the types of quality evaluations necessary for a given data type and the designated community, but the staged interviews are instrumental in developing a fuller understanding of the potential value of data for re-use in new communities. Fit for purpose assessments will need to be iterative and evolve around evidence of contextual dependence for appropriate use by new user communities. As our knowledge grows about the qualities and types of data produced from DC service communities, identifying data of value for broader consumption will become more systematic and routine, and will be a vital part of the growing base of curatorial expertise.

CONCLUSION

There is no doubt that digital scientific data will not survive or become accessible without repositories dedicated to preserving these raw materials of research. And, if the value of data does, in fact, increase with their use, then repositories that commit to collecting data with analytic potential could become among the most significant resources for the production of new scientific knowledge. However, for this to happen repository developers will need to take an active approach to building data collections, encouraging and recruiting data of value for investigation of high-priority research questions by the scientific communities they serve, and perhaps by those they that were previously considered out of scope.

As we continue to elaborate and refine our framework and techniques for evaluating the re-use value of data, we will integrate the outcomes with established curatorial techniques to facilitate meaningful cross-disciplinary re-use of DC data and to develop systematic processes that can be shared with information professionals involved with collection policies and curation workflows for data in research library and repository operations. But, as was
true with bibliographic sources, research collections and services for data sources need to be understood as part of broad cross-disciplinary epistemological trends and socio-cultural dynamics of research areas (Hjørland, 1998, p.618).

Preventing “memory holes” in the scientific record will require a different approach to data collection and curation that can capture data at the point of production, since gaps arise when there are discontinuities in stewardship. The DC strategy is to develop a site based model of curation principles and processes for channeling curated series of data into repositories for preservation and access. There is tremendous need for curation for preservation and fit for purpose at the site of data production to allow repositories to concentrate on aggregating data and adding value for re-use for research purposes. This division of labor would promote progress on both the retention of scientific data and supporting re-use, toward a future system of scientific production that makes efficient and innovative use of all the assets of research.

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation (grant # 0830976) and draws on previous work supported by the Institute of Museum and Library Services (LG-06-07-0032-07).

REFERENCES

