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ABSTRACT

Poor water qualityacrosshe Mississippi River basin and its outlet, the Gulf of Mexiso,
undermining the health of ecosystems, economies, and public health. Agricultural proituction
the watershed has been identified as the dominant factor contributing to poor water quality.
Substantial investment by communities, governments, and research is dedicated to identifying
appropriate agricultural management and practices to mitigdtegras enteringhese
waterbodies.Efforts must acknowledge diversity in agricultural production, stakeholders,
environmentahnd societalactorsto successfully address water quality issues. Consequently, it
is important to develop comprehensive tdblst can inform decisiemakers with practical

solutions with respect to environmental, economic, societal, and policy goals.

In this study, a coupled humamatural systems model and software interface was developed
to simulate feasible agricultural may@gment and policy changes in an ezsttral lllinois
watershed to identify strategies suitable for producers and puobders. The Soil and Water
Assessment Tool (SWAT) was calibrated ugpodlicly availablesources and comparable
previous studie®or nutrient loads, water yield, tHérained flow, and crop yields (natural
systems outcomes). SWAT modeling performance was satisfactory or better with respect to
previous studies (annual PBIAS for nitrogen, phosphorous, water flow, and crop yi€lts < 2
An agentbased model was developed for community and farmer behavior to simulate
hypothetical policy initiatives, economic returns, best management practice adoption-(human
systems outcomes). The models were coupled to form a software interfdEPGAM (the
Integrated Tool for Environmental Economic and Policy Goals in Agricultural Management).

ITEEPGAM was used to perform an analysis of waterspestific BMPs (winter cover



cropping, nutrient application timing, and drainage water managemend) \&lth fertilizer

reductions and hypothetical tax, incentive, cost share policy initiatives.

The development of ITEEPGAM and scenario analysis demonstrated that significant and
complex natural systems and human systems phenomenon can be satisfactwigd and
analyzed for potentially greater environmental and economic gains. The study showed a lower
potential for environmental gains (8%9% reductions in nitrogen and phosphorous) that other
BMP studies in similar areas due to a smaller set of Bd®Rsidered and an incorporation of an
agentbased model to drive adoption behavior. Modeling results and agent behavior highlighted
the importance of agent profiles, focusing input ranges and practical management choices to
achieve useful conclusionsn this study, it was evident that enforcing fertilizer reductions
beyond 15% were impractical for farmers. The scenario analysis highlighted effective policy
instruments and potential redundancies. Incentives presented the mestexdiste return for
designing community policy, but were not suitablétolgetdeyond $1,000,000 as incentives
serval to supplement farmer returns without environmental benefit. Cost shares were effective
at increasing adoption, but onkp to a threshold of adopters. Slitax schemes could promote
adoption and generate revenue for the community. Winter cover cropping coupled with small
fertilizer reductions with the greatest potential for preserving economic performance and
improving environmental gains while maintaigiadoption rates. In the case of nutrient
management paired with fertilization reductions, it could only offset very small fertilizer

reductions and was therefore not economical.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The most recent EPA report on our nationdés w
of rivers and streams are impaired, the percentage of impaired watelttasireseased over
the last 12 years, ambn-point source pollutiofrom agricultures a key limiting factor in
improving water qualitfU.S. Environmental Protection Agency, 200M) particular,
agriculturalnutrientexport from the Mississippi River wasdred is contributing to poor surface
and groundwater water quality in the Midwest and hypoxia in the Gulf of M¢Rindart &
James, 1999)The excessautrients contribute teutrophication, amcreasen algalgrowth and
a rapid consumption of oxygen the algaalecays With increaseautrophication and lower
oxygenlevelsaquatic | i fe cannot sust a(Rabaldistetsae | f and
2001) Theconsequences of poor water quality and t
Mexico are widespread and significantlypoxia and elevated nutrient levéfgeaten
ecosystem stability, degrades drinking water supplies, contributes to closed beddimgsan
waterfront usage, endangers human, animal, and pet health, and suppresses tourism, property
values, and fisherie§Rabalais et al., 2002)TheLouisiana Universities Marine Consortium
which has mappkthe dead zone each year for nearly three decagpesisthat the amount of
nitrates flowing into the Gulf of Mexico has increased by up to 38e the consortium began
mapping t he nDéoaming lmornbée:dNutrient pdi@ién s a growing problem

all along the MississippR012)



Midwestern agriculture and its production practices are of particular importance in
addressing the hypoxid.and use in the Upper Mississippi River basin has been idehéifiehe
dominant factor contributing televated water nitrate concentrations #relhypoxia in the Gulf
of Mexico (David et al., 2010) The National Water Quality Assessment Program atttieed
States Geological Survey estimates that these regiomisbede nearly 60% of the nitrogém
the Gulf of Mexico, mostly from corn armbybearcropping and 54% of th@hosphorus
primarily from corn andoybeans and nerecoverable animal manure on pastfdsxanderet
al., 2008) In areas like EasTentral lllinois which is the subject of this studgnd usas
predominantly intensive corn asdybean production with high nitrogen inputs. In addition,
agricultural production utilizes extensive hydrological nfigdtions including channelization of
the headwater streams and intensive tile (subsurface, artificial) draimdigéls to lower water
tables and efficiently route water to stregiBaker & al., 2008; David et al., 2010 hese
modifications have been implemented in at@asorically rich with wetlands due to the flat
terrain, humid climate, and poorly drained soils. Implementing drainage and converting lands
for agricultural productioexpedites water flownd diminishes the capacity of the river basin to
remove nutrientand in turn, createdargernutrientloads to surface wate(Baker & Johnson,
1981; Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008)

The most recent Gulf Hypoxia Action Plan, put forth by the USEPA, established targets for
the size of the hypoxia and identified needs and actiorecfoeving its goals. The plan called
for a 45% reduction in total nitrogen and phosphorus loads with the goal of a 5,989gdaxic
region in 2015Mississippi Rive/Gulf of Mexico Watershed Nutrient Task Force, 2008he
task force recommended comprehensive watershed management planplantenting

conservation and best management practices to mitigaienttranspet in agricultural



watersheds a& criticalarea in addressingelproblem of the hypoxic regidiMississippi

River/Gulf of Mexico Watershed Nutrient Task Force, 2008atershed management plans
involving implementation of best amagement practices (BMPs) can help reduce pollution from
agricultural sources. BMPs are structural or-stmctural control measures that can be
implemented to mitigate pollutant loads at their source or their transport to rgogatier

bodies. Structural practices are physical modifications such as waterways, terraces, wetlands and
diversionsand can help reduce erosion, or sediment loss. Sediment loss and erosion degrade
agricultural productivity by consuming cropland area smitiresourcesNon-structural

measures are managemegiated changes like planting decisions &erdlizer application

timing and techniqueNon-structural measures can help prevent nutrient and soil fokEge

scale assessment of conservatiacpces in the UppévlissouriRiver basin from 2002007
showed thaimplementing theseonservation practices haveduced the loss from agricultural
area to receiving waterbodiessg#fdiment by 61%, total nitrogen loss by 2G#dtotal

phosphorus loslsy 44% (USDA-NRCS, 2012a)ldentifying and treatment of areas with a

critical need referred to as targeting the most effective way to achieving further gains
(USDA-NRCS, 2012b)

In order to effectively deploy strategies and progrdargescale polieesand targeted
technical solutions are needed to regulate nonpoint source nufhesssssippi River/Gulf of
Mexico Watershed Nutrient Task Force, 2008he 2008 Farm Bill provided more than $7
billion for promoting agricultural production and environmental quality by supporting
implementation of structural or nestructural managementgzctices under its Environmental
Quiality Incentives Program (EQIRAlexander et al., 2008)Further, as a part of the Farm BiIll,

the USDANRCS initiated the Conservation Effect Assessment Program (CEAP) to acaount fo



how society would benefit from the substantial funds dedicated to promoting conservation in
agriculture(USDA-NRCS, 2012a) In addition, The Clean Water A@l.S. Environmental
Protection Agency, 1972in combination with government oversight from the EPA, require
states to identify impaired and polluted watersheds, reasons for their impairment, and Total
Maximum Daily Loads (TMDL) for nutrients to rese the health of targeted watersh@dsS.
Environmental Protection Agency, 19723uch watershed management initiatives argang
interdisciplinary efforts involvingollectionof datg field and basin studies, model development
and application, and research.

Informing watershed management and meeting the needs of initiatives to improve water
quality must recognize interconnected human and natural influeld¢at®rsheds encompass
diverse natural influences with numerous larsés, terrains, river networks, and climates and
these landscapes interact with hydrologic processes ultimately affecting the fate and transport of
nutrients(Wortmann,2008) Environmental outcomes are also linked to diverse human
influences like agricultural production, economic returns, land development, legal structures and
government policy. Acknowledging both sides of the equation is necesstsactions and
feedback from the natural or human environments have compromised water management goals
in many areas of the worl(@cDonnell, 2008) Further, htegrated watershed analysis is a
dynamic process and mustknowkdge changingcircumstances across time and space.

Enacting changes may result in #raergence of new problems or opportunities, or changed
perspectives and value$ stakeholderg§Walter et al., 2007)

In agricutural watershed management, an integrated approach must identify the appropriate

strategy for the farmer with respectagricultural production with naturahd sociecultural

systemsldentifying areas forite appropriate conservation strategies shotddunt for



ecological effectsassociated implementation cqsighile recognizing stakeholder interests and
behaviors unique totheareaA f ar mer 6 s adbptipntof acselect@nacticena tine
reasons underlying that choj@ee critical dimasions for a comprehensive understanding of
watershed managemeiMowak & Korsching, 1998)Finally, management plans musse
monitoring, modeling, extensipand other evaluation methodsmeasurgrogress toward

estdlished goalgWortmann, 2008)

1.2 Objectives

The goal of this study is to identify suitable conservation strategies and initiatives as part of

an ongoing University of lllinois at Urbar@hanpaign (UIUC) study of a typical Ea§tentral

lllinois agricultural watershed. The study models environmental outcomes with respect to, and

as a result of, producer goals and behavior. The study develops, implements, utilizes a coupled

naturathuman systes model to form conclusions about the economic and environmental
performance of varied watershed management. The rbsalgjectives can be outlined fiour
parts:
1. The developmentalibration, and validatioof a hydological (natural systems) model to
guantify, characterize and predmaitrientflux, hydrologic flow; and cropyield in the

study area.

2. Integrate modeled agricultural conservation practices and management techniques for the

area

3. Modelgovernment and producer behavior watihagenbasednodelto reflect observed
adoption of conservation practices and management.

4. Couple the agerttased model with the hydrologic model and design testing of

conservation strategies, producer outcomes and watershed management



This study focuses on thépperSdt Fork watershed in Eaglentral lllinois. The UpperSalt
Fork watershed is an agricultural area which is predominantlycropped in corn and
soybean. The watershed is monitored for water quaditylengaged with extension outreach
(Davidet al, 2011)by the University of lllinois at Urbar@hampaign (UIUC) In addition,
UIUC has partnered with area producers to test mitigation techniques and technologies. The
hydrologic and agertased models are calibratedlwobserved metrics characterizing typical
producers andfeasibleset ofbest management practices in the area. This study incorporates
information on established best management practicestaailvedadoption rates derived from

the pamership between UIUC and area producers.

Conservation practices and funded initiatives designed to improve water quality are available
through UIUC and USDANRCS programs within the study area in E@sntral lllinois(David
et al., 2011; NRC&ISDA, 2012). However, effective implementation of these technologies
and initiatives is often undermined in watersheds by a lack of knowledge regarding optimal
locations and suitable adoptéPannell, 2006) To remedy this disconnect betwaenhnology
and adopters, it is important to understand how strategies perform in specific locations and how
key stakeholders such as regulators, producers, and communities respocil strategies. The
comprehensive watershed modeling tool developed irsthd/i one that places agricultural
and watetuse strategies in a broad technical, economic, and social contextsnore
effectively capture sitgpecific characteristig®g.g., climate, topography, and soil) and evaluate
multiple scenarios that would be very expensive to address with field studies. The model utilizes
a fnwhfat scenari o analysis to provide scientifi
management alteatives and can assist stakeholders in achieving effective integrated water

resources management and protectiothefwatershed and downstream consequences in the



Gulf of Mexico. This study seeks to inform decisionaking for selection of mitigating
straegies and provision of watgquality forecasts. Integratirggnaturalsystemsnodel with a
humansystems component providasationale for adoption that is correlated with both
productivity goals and improvements in water quality. This approach canbhnaad
applicability for other water systems affected by4pomt source pollution, such as: parking

lots, roads, suirban developments, forestry areas, surfage@ng, and construction sites.

1.3 Thesis Outline

Chapter 2 of this study begins with aiew of modeling approaches for agricultural
processes and human systems to predict environmental and behavioral outcomes. The review
presents the considerations and examples of coupling heystams and hydrological modeling
for decision making in agri¢wral management. Chapters 3 and 4 outline the methodology of
the study. Chapter 3 details the development and results of the hydrological modeling
component along with the implementation of best management practices. Chapter 4 summarizes
the agenbasd modeling approach and integration into the hydrological model. Chapter 5
summarizes the scenario analysis and results from the modeling. Chapter 6 provides a

discussion of the results and conclusions. Chapter 7 provides recommendations for fukther wo



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Agricultural production practices and management in the study area and similar
Midwestern watersheds are contributing to poor water quality and harmful environmental
out comes, pr iZwanreidl yi nd tthhee(BBkeuatdfl, 2008; Middsskppi c 0
River/Gulf of Mexico Watershed Nutrient Task Force, 2008; Reyat, 2006) Poor water
guality contribute to human and animal health concerns, ecosystem instability, economic loss,
and food insecurityRabalaiset al, 2002) There is significant investment by communities and
institutionsto addresshe consequees. Dolsthathelp decisiormakers identify successful
strategies are importaint facilitating an analysis of the underlying factors contributing to poor
water quality These tools necessitate models to quantify and link environmental outcomes with
land management, conservation practices, and economic outcomes.

This study sought to model the effect and the adoption of conservation practices in an
EastCentral lllinois watershed using a coupled nattmahan systems model to identify
initiatives and tehnologies to address poor water quality while acknowledging economic yields.
The coupled model is an approach that acknowledges the interconnected and complex nature of
the issue. This section introduces the two systems modeling domains (natural anjl dmoin
the underlying processes they address. A discussion of the body of work idemiggessary

tools and data for this analysis along with and implementing and applying models follows.



2.1.1 Natural Systems Watershed Hydrology

Watersheds are complex huraaatural systems that incorporate geographic, environmental,
hydrologic, economic, human and social interactidfgdrologic processes like stream flow and
nutrient loads in watersheds are the result of interactietvggen environmental and physical
processes such as precipitation, infiltration, percolation, runoff, and evapotranspikaterew
of surface watephenomengs essential to understanding the physical processes this study will
model.

TheE a r t h Olagic ¢yslets driven by the sufBlack, 1991) The sunodés radia
surface water causing evaporation. Evaporation transforms surface water from the liquid to the
gaseous state, to form part of the atmosph@ycling energy in the atmosphere and interaction
of gaseous water with land mass changes the water vapor back to the liquid state again through
the process afondensatiomo form clouds. When the atmosphere is saturated with moisture,
precipitation(rain or snow) is produced. The precipitation either to falls back to surface water
storage or encounters the land surface. Rainfall reaching the ground surface collects to form
surface runofbr it mayinfiltrate into the ground.Additionally, rainfall may be intercepted by
vegetation on the ground and evaporated back to the air by evaporation. The liquid water in the
soil thenpercolateshrough the unsaturated layers to reachathter tablewhere the ground
becomes saturated, or it is taken up byetatipn from which it may banspiredback into the
atmosphere. The net effect of transpiration and evaporation is called evapotranspatiace
runoff andgroundwateflow to surface streams and riversay beheld in lakesbut finally

flows intothe ocearor evaporates. Mrients and particlesdhere tavater, moving through the



system as wellOnce the water returns to a waterbody and evaporates, the perpetual cycle
continues. Thisycle sustains all life on earth and human populatidnghe context of
planning and management of water resources, evaporation together with precipitation governs
the amount of runoff available for human ne@dsh et al, 1998)
2.1.2 Natural Systems Nutrient Cycling

Along with the hydrology, nutrient cycling and availability, particularly of nitrogen, is of
primary importance in agricultural ecosystems. All amino acids, the building blocks of
biological organisms and proteins, contain nitrogen. It is essential fargymtihesis. While the
atmosphere is composed of 78% nitrogen, which exists in its gaseous form, this form cannot be
utilized by plants. The nitrogen cycle (fixation, uptake, mineralization, nitrification, and
denitrification) describes how nitrogen arnittagen containing compounds transform for
incorporation into biological organisms. Nitrogen must be converted to ammoniust) (NH
nitrate (NQ"), or urea ((NH) 2CO) for utilization in plants. Nitrogen fixation is the process by
which gaseous nitrogen converted to ammonium. Application of fertilizer, cultivation of
legumes, and burning fossil fuels all fix nitrogen. Uptake is the incorporation of ammonium into
a plant. Mineralization is the decay of organic matter nitrogen (dead plant matter) into
ammonium. Nitrification is the conversion of ammonium into nitrate by bacteria; the bacteria
derive energy from nitrification. It is important because ammonium is positively charged,
whereas nitrate is negatively charged. Ammonium is attracted tovedgatharged soil
particles and nitrate is repelled. Therefore, nitrate is susceptible to washing away (leaching)
from soil. Finally, denitrification is the procelsg which nitrate is converted back to gaseous
nitrogen and nitrite. The nutrient cyclgcflitates and limits plant growth, governs nitrogen

transport andleterminesheamount of pollutants delivered to receiving waterbodies.
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2.1.3 Human Systems Watershed Management and Use

In addition to the water and nutrient cycle, waterdigtiology is also the result of human
impacts like terrain modification and influences by institutions such as government and society.
For example, urban development has changed wind patterns, temperature, and vegetation to
affect evaporation and rundfshaw, 1994) Urbanization of an area tends to increase peak
runoffs because of the efficient delivery of rainwater to streams through sewer systems and the
decrease in losses to infiltration because of large expansepatious areaSingh 1987)
Further, agricultural production modifies species and spatial patterns of vegetattberafare
infiltration and evapotranspiration. In the Midwestern agricultural watersthedisy, is drained
artificially from row-cropped agricultural areas, affecting surface runoff and stream flow
processe$Schilling & Helmers, 2008) In addition, nodifications to the natural water network
in Midwestern agricultural watersheds can include widening, deepening, straightening of
streams, rivers, and ditch&ingh et al., 1987) Such modifications are important factors in
characterizing the hydrology ofveatershed.
2.1.4 Watershed modeling

Watershed modeling is necessary to characterize, quantify, and analyze these natural and
human systemslt is impossible to observe, measure, and predict watershed processes like
precipitation, nutrient flux, and aguiltural operations across every point in a watershed. It
unwieldy and unfeasible tmanuallyobserve théarge scaleeffectsof physical phenomenan a
watershed across area and time. Watershed models simplify complex-hatuga systems,
like agicultural drainage systems, and their interconnected companesriger to simulate and

predict these phenome(Black, 1991) Better watershed and modeling techniques are
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facilitating the deployment and applizat of tools, information, and decisionaking in
managing these watersheds for larsg and environmental integrity. It is helpful to be able to
forecast changes in the river flows, nutrient flux and the state of the catdhroeaér to
determinebeneicial watershed management scherf&saw, 1994) The Soil and Water
Assessment Tool (SWAT) is one particular model that has been broadly applied to characterize
and forecast watershed processes. SWAT model depanidtasourcedor topogaphy,
precipitaton, landuse and management. These monésyrate ecology, economics,
hydrology, and natural resources and environmental sciences.

Watersheds are coupled humaatural systemwhere human decisns affect the
environment (e.g., water quality, streamflow), and environmental outcomes affect human
decisionmaking (e.g., resource quality, water availability). As a result, comprehensive modeling
of such systems for planning, management and other mgpeguires an approach that
considers both the human and natural asgdlg®t al, 2011) In models characterizing the
behavior of entities, an agebased model (ABM) is one particular approach, and is most natural
for describing and simulating a behavioral sys{@wnabeau, 2002)For coupled naturdluman
systems, integrating biophysical model s | i ke
of expanding multdisciplinary work to better inform decisiemaking, management, and
optimal resource utilization in watershegtiejadhashemet al, 2011)
2.1.5 Overview

This literature revievis a summary othe body of researclegarding the implementation and
application of SWAT and other biophysical models, and their integration with socioeconomic
models like agenAbased modelingApplying watershed models, like SWAT with sufficient

inputdatacan accurately quantifyutrient and pollutant loads and crop yields for varied

12



management to identify appropriate conservation strategies. Pairing these environmental models
(natural models) with human models (economic, social) can help identifeitestive

management and poy initiatives, and provide decisiesupport for stakeholders. This section
summarizes the body of work supporting this propostie following sectionsdatasources

modeling and simulation, and decision support in human and natueinsystodeling.

For sourcesf input datamodeling and simulation, and decision suppa@thes arranged
into an overview ofhetopic; then specifics on applications, usages, and considerations; and
finally, conclusions on the mettls, advantages, and shortcomings. The slalecesection
outlinestypes ofinputdata necessary to perform coupled humatural systems modeling in
watershed management. There are exagi@sourcesand considerations imake when
selectingnputdata. The modeling and simulation section presents examples, performance and
applications of natural and human systems maddispendently, followed by coupled
techniques. Finally, the decisisupport section presents typegools and their use in

watershed management.
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2.2 Data Sources

2.2.1 Data SourcesOverview

Data sourcefor coupled naturahuman systems models can lagegorized into five
categories:

1 Physical,

1 Environmental,

1 Societ#institutional,

i Economic, and

1 Behavioral.

Both human and natural models incorporate societal/institutioftaimation Natural models
incorporateobservedhysical and environmentaiputdata. Human models rely amformation
describingeconomicand behavioral/adoptigpghenomenon There are two considerations to
make when assessimgputdata needs: the scale/resolutionnpiut data, and
software/programming/formatting needs to utiizputdata. This review will highlight several
publications to illustrate the types d@dtasourceqTable 2.) needed and the considerations in
selectingnput data.

Sources of inputlata for coupled naturdluman systems modeling for watershed
managemerdregenerally available publicly arelectronically (Table 2.1)Sourcesfor natural
systems modelingreavailable through government agencies (national, state, county, local) and
university extension or research centafsatershed managemantormationis generally
providedby national agenciesr local agenciespecificto the study area. The diversity of
geography, environment, and management techniques for watersheds requgreeaet of

sourcego modelthem. Themodelinggoals, area, and modeling techniques for a study

14



determinanput datarequirements. For example, in this study of an agricultural watershed
spaming two counties in EasEentral lllinois, he lllinois Agronomy HandboofHollinger &
Angel, 2009)and lllinois State Water Survéijlinois State Water Survey, 201gjovided
information for weather, crops, fertilizers agivage guidelines fdhe agricultural practices
typified by the counties in the statelthihois, while the USDA(USDA-NASS, 2012)providel
countylevel average crop yields for the entire United Sta@iher necessaipformation
typifiesphysical processes like nutrient uptake and radiation utilization in amypss
agricultural watersheddnformationmay be specific for a model for Midwestern corn with tile
drainage, or tillage typegenerdized for the entire Midwest.These considerations demonstrate
that scale, modeling outcomes, and model selectiodeteeminants ofelecting input datand
source(Table 2.11 2.2). Tables 2.1 and 2.2 provide an overviewdatasourceswithin the two

domains of natural and human systems, with a description of the tgpéasburce
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Table 2.1:Natural SystemsData SourcesOverview

Natural Input Daa DataSource Reference
Systems Type
Physical Topography National Elevation (USGS, 2012a)
Dataset and GIS Portal
lllinois Geospatial (Minois Natural
Clearinghouse Resources Geospatial
Data Clearinghouse,
lllinois Height
Modernization: Digital
Elevation Data)
Stream National Hydrography (USGS, 2012b)
Network DataseandGIS Portal
Land Cover National Land Cover (USGSNLCD, 2012)
DataseGIS Portal
Soil Type NationalSoil DataseGIS SSURGOQ(USDA-NRCS,
and Portal 2012d)STATSGO2
Properties (USDA-NRCS, 2012d)

Environmental

Precipitation
Temperaturg
Water
Balance

Streamflow

National Climatic Data
Center

Local weather databases

Local research centers

Local water budget
studies

NationalWater
Information System

(NOAA, 2012)

(Ohio Agricultural
Research and
Development Center,
2012)(lllinois StateWater
Survey, 2012)Vinstanley
et al., 2006)

(Arnold, 1996)(Mitchell,

Banasik, Hirschi, Cooke,
& Kalita, 2001)

(USGS, 2012¢)
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Table 2.1:Natural SystemsData Sources Overview(Cont.)

Natural Input Data Data Source Reference
Systems Type
Environmental Water Quality NationalWater (USGS, 2012c¢)
(Cont.) (Nutrient Information
Flux) System
Local Agency (M. W. Gitau, Chaubey, Gbur
Monitoringand Pennington, & Gorham,
Sampling 2010)Vendrell et al., 1997)
(U.S. Environmental
Protection Agency, 2009)
Nutrient University (lowa Learning Farms &
Balance, Extension Practical Farmers of lowa,
Accumulation Area Studies June 2011jMclsaac & Hu,
(Crop) 2004b)
Societal/ Point Source National Agency (Environmental Protection
Institutional Impact Monitoring Agency, 2012a; Environmentz

Crop Yield

Agricultural
Management
BMP
Modeling

National and Local
Surveys

Research and
University Reports

IndustryReports

Area Studies

Protection Agency, 2012b)
(USDA-NASS, 2012)

(UIUC-ACES, 20032012)

(Vitosh, Johnson, & Mengel,
1995)Sustainable Agriculture
Network, 2007)CES
(Cooperative Extension
Service), 1987)

(lllinois Department of
Agriculture, 2010)

(David, Gentry, Starks, &
Cooke, 2003)Green, Tomer,
Di Luzio, & Arnold,
2006YUSDA-NRCS, 20123;
USDA, 2009jM. W. Gitau et
al., 2010§st. John & Ogle,
October 2008)
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Table 22: Human SystemsData Sources Overview

Human Input Data DataSource Reference
Systems Type
Economic  Financial University (University of lllinois at Urbana
Research Agency Champaign (UIUC) College of
Extension Agricultural, Consumer and
Environmental Sciences (ACES
20032012)
Professional (Ilinois Society of Proéssional
Societies Farm Managers and Rural
Appraisers, 2012D'Brien &
Duncan, 2011)
NationalAgency (USDA, 2009JEconomic
Research Service, United States
Department of Agriculture, 2007
Behavioral Management SurveyResults  (Penningtoret al., 2008)Upper
Decisions, University Salt Fork Status Update and
LandUse, Extension Report, 2011(Lant, Loftus, Kraft,
Adoption & Bennett, 2001JUSDA, 2007;
USDA - NRCS, 2011; USDA
Farm Service Agency, 2004)
Government, (Butler & Srivastava, 2007;
National Limnotech, 2007JUSDA, 2006)
Reporting
Local Studies (Claasen, 2009; Lambert,
Sullivan, Claassen, & Foreman,
2006)
Societal Policy, Tax, Government (USDA-NRCS 2012x-c)(USDA-
Institutional Regulation Agencies FSA, 2013)
FarmerFarm  Government (USDA 2009)
Demographics Agencies
Legal (Champaign County GIS
boundaries Consortium 2013) (USDASA

2013)

18



2.2.2 Data Sources in Natural Systems Modeling

Natural systems modeling of hydrologic processes, nutrient transport, and crop growth for
watershed management rely on physical, environmental, and societal/institunpanakata.
Physicalinput datainclude elevation, land use, spilopertiesand crop growth and nutrient
consumption. Environmental datelude weather, streamflow measurementster balance
estimatesflow partitioningand nutrient momoring. Institution&dataincludecrop planting
patterns and locations, crop yiedthtistics agricultural management inputs, and point source
loadings delivered to rivers and streamlthree categories alataare utilizedfor modeling the
placement and effect oboservation strategies.

Physicalinput data in natural systems models are comprised of static features within a study
area: topography, location of streams, soils, and land cover. The scale and resotigtan of
depends on the model objectives andilability. Elevation data such as LIDAR (Light Imaging
Detection and Radagreavailable through local or statewide agensigsh adllinois Natural
Resources Geospatial Clearingho(lmois Natural Resources Geospatial Data Clearinghouse
201]). LIDAR elevation data for Champaign County in lllinbae an average sampling rate of
1.2 metergAero-Metric, 2008) Lower resolutios ofelevation datareavailable through
agencies like the USGS National Elevation Datdd&GS, 2012a) The USGS compiles
elevation datavith resolutimsof 10, 30, and 90 metedepending on availability for the United
StateJUSGS, 2012d)

Selecting thescale ofdata is studharea specific. Natural systems modeling scales &#om
specific field to an entire watershed of a major river like the Mississippi River. The hydrologic
budget and crop yields for the Upper Mississippi River Basin (UMRB), approximately 491,665

km?, were modeled using the Soil and Water Assessment Tool (3{@Adivasaret al, 2010)
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The study tested using a 30 meter (1:24000) and a 90 meter (1:1000000) digital elevation map
for the National Hydrography Dataset (NH@SGS, 2012h)anduse the study used data from
USDA Cropland Data LaygtJSDA-NASS, 2013)pnd the USGS National Land Cover Data
(USGSNLCD, 2012)processed in ArcGIS/ArcSWA(Srinivasan, 2009) The study did not

find a substantial difference in their slope calculations and consequentlgrédictions of
streamflow. The larger resolution reduced the size ahih& datafiles and expedited

processing.

While a low resolution map did not affect modeling performance in a large watershed,
resolution ofelevation datavas a significant factor in modeling watershed size, runoff, and soll
erosion in the 21.3 kAiGoodwin Creek watehgd in Mississipp(Di Luzio et al, 2005) In the
18.9 knf Moores Creek watershed in Arkansas, the effect of DEM resolution depended on model
output variable of interestesolution ofelevation dataarying between 100 meters to 200 meters
produced streamflow, nitrat@trogen, and total phosphorus within a relative error of +10%
(Chaubey et 8l2005) An upper limit of 50 meters foesolution ofelevation datavas
proposed for satisfactory modeling of streamflow, and soil map scale of 1:25000 for satisfactory
modeling of sediment loadinghaplot, 200%)

In addition to terrain, physical features like land cover andosogdertiesdetermine the
movement of water and nutrients through watersf®daw, 1994) The USGS Land Use and
Land Change dataset (1:250000) and National Land Cover Dataset (30 meter regtl628)
NLCD, 2012)are commonly used in SWAT simulations. WHhilte resolution oélevation data
is the most critical input for SWAT simulatiorsgtisfactory streamflow modeling performance
requires a maxinm land use resolution of 300 meté@otteret al, 2003) USDA-NRCS

provides two soil databases for properties and types of soils. SSURGO (The Soil Survey and
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GeographicJUSDA - NRCS, Soil Survey Geographic (SSURGO) Databhas)a resolution of
1:24,000 and its predecessor STATSGO (The State Soil and Geographic) has a 1:250,000 scale.
SWAT model output for Walnut Creek watershed intcdriowa was compared to measure the
effects of using threeesolutions okoil data 1:25,000 SSURGO,1:250,000 STATSGO, and
1:500,000 soil data derived from STATSGASDA-NRCS, 2013)Chaplot, 2005) Runoff was

not significantly affected byesolution ofsoil data, but nitrogen and sediment load were

significantly reduced for coarser scalesoil data. Modeling performance for nitrogen and

sediment was best waithe finest resolutionf SSURGO data.

Physical data modelingeedsdependon studies in tiledrained areas for observed flow
partitioning between surface runoff, percolatiorgp nutrient uptake and growtfrhree studies
employed a GIS software, Arc6(ESRI, 2010)to manage, arrange, and fotrapatial data
layers. In addition, SWAT has been integrated into ArgSIgivasan, 2009p facilitate
managingdata fortheanalysis. A simulation of fertilizer reduction strategies in an lllinois
watershedHu et al, 2007; Mitchellet al, 2000)was calibrated by enforcing a minimum tile
drainage water yield of 75%f total water yield based on area field studigchell et al.,

2000) Using observed data for nitrogen content, fixation, uptake, and leeching in Midwestern
watershedMclsaac & Hu, 2004a}he study identified the need for a denitrification parameter in
SWAT for calibration Similarly, a simulation of streamflow and water balance in the tile
drained South Fork Watershed in logdoriasi et al, 2009)was initialized with drainage design
parameterfrom lowa State ExtensiofCES (Cooperative Extension Service), 1980l

calibrated the model to pérbn 76% of total flow as tile flow based on previous estimates
(Green et al., 2006)SWAT was applied to the Upper Big Walnut Creek in Ohio and utilized

observation®f tile drainage flow partitioningobserved corn and soybean biomass
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accumulation, harvested nitrogen content, uptake, and fixation to model nitrogen flux and crop
yield (Nair et al, 2011)

Environmental and institutionalput data needs amore common across studies and natural
systems models. Studies utilize daily precipitation, temperature, evapotranspiration data from
agencies such as the National Climatic Data Center (NGR&onal Climate Data Center,

2012; NOAA, 2012)or local agencies relevant to the study area like the Ohio Agricultural
Research and Development Cerfteair et al., 2011; Ohio Agricultural Research and
Development Center, 2018j the Illinois State Water Survey Climatolod(siu et al., 2007;

lllinois State Water Survey, 2012Dn the fieldscale, orsite meteorological measurements for

a 22hectare plot in lowa were used to model nitrate dynamics and hydrologic budgets using the
field-scale natural systems models DRAINM@IOSkaggs, 1980and RZWQM (Root Zone

Water Quality ModelYAgricultural Systems Research Unit, 200%)orpet al, 2009) Crop

yield information for grain weight anaoisture content was obtained through a previous study

for the study areéColvin, 1990) On the basirscale, one study found that the effect of the

number of precipitation stations for a modeling runoff and géroflux in a 51 kriwatershed in

lowa and a 918 kiwatershed in Texas did not result in a significant decrease in model accuracy
(Chaplot, 2005) However, in a comparative analysis of precipitation station dehiyasi &
Starks(2009)found modeling conservation practice effectiveness should utilize the highest
number of precipitation stations available. In a separate watershed and study, &18teis
(2010)also recommended the finest resolution of precipitation stations and mix of STATSGO
and SSURGO soil datasets for nutrient transport studies.

Similarly, models utilize daily, monthly and annual streamfioeasurementsom national

and local agencies like the US@3SGS, 2012¢)and countylevel yearly crop yieldtatistics
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from the USDANASS (USDA-NASS, 2013)or studyarea specificlata sourcelike UIUC
FarmDoc(University of lllinois at Urbang&Champaign (UIUC) College of Agricultural,
Consumer and Environmental Sciences (ACES), Z?) The Upper Mississippi River
Basin studySrinivasan et al., 201@)sed streamflouneasurementsom 11 USGS stations
(USGS, 2012c}o calibrate and validate SWAT simulations. The chasations corresponded
to the nearest subbas (Snnivasant2008elindattosafthe on Ar ¢ SW
hydrology of the watershed. Theidy used USDANASS crop yieldstatisticSf(USDA-NASS,
2012) which is available yearly countyy-county, and aggretgd it into SWAT subbasinsThe
analysis of the much smaller watershed in Ezasttral lllinois(Hu et al., 2007)ncorporated one
USGS(USGS, 2012c3treamflow gauge, and USDRASS (USDA-NASS, 2012)rop yields,
which were weighted by the proportioheach county in the watershed.

SWAT has builin functionality to implement and simulate the effect of human activities
(Neitschet al, 2009) For examplegstimatedrom the lllinois Commercial Fertilizeéfonnage
Reports from the lIllinois Department of Agricultuitéinois Department of Agriculture, 2010)
the USDANASS(2012) and the lllinois Agronomy Hatbook(Hollinger & Angel, 2009)were
used to initialize existing SWAT cropping, fertilizer and tillage modeling routines to simulate the
fertilizer reduction scenarios in the E&&tntral Illinois watershestudy(Hu et al., 2007)
Countylevel estimates from the Conservation Technology Information Center in Ohio, and the
USDA Census of Agricultur@BJSDA-NASS, 2009)were used with SWAT rdines for tillage
practices and fertilizer applications in the Ohio crop yield calibration gtddly et al., 2011)

Similar builtin routines in SWAT have been modified and extended with shnely specific
inputdata to assess varied management. Uspgt data from the USDANRCS, the Texas

State Soil and Water Conservation Board (TSSWCB), and the Irrigation Technology Center at
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Texas A&M University, an analysis of different irrigation amounts, timings, andéreges was
performed in the intensively canal irrigated Arroyo Colorado Basin in Tiga®manet al,
2011) The study initialized SWAT routines for: point source inputs for municipal treatment
plants and shrimp fens(Rains & Miranda, 2002)rrigation schedules for sorghum, cotton, and
sugar canéTexas Water Development Board (TWDB), 200&)d land leveling owater
management irrigation BMR3 exas Water Development Board (TWDB), 2005)imilarly,
data from the Texas Natural Resource Conservation Commi{ddararland & Hauck, 1995)
on the location, size, herd size, and waste application management plans for dairy cow
operations in the North Bosque River watershed in Tewesisused to identify the effect of
manure application on nitrate lev¢&aleh et al., 2000)Increasing availability and frequency of
datahave expanded modeling capabilities, and ways to calibrate and verify naystains
models(Gassmaretal., 2007)
2.2.3Data Sourcesin Human Systems Modeling

While natural systems models produce accurate simulation of hydrologesst doption
of BMPs in agricultural managementdependent on accurate modeling of hydrologic processes,
but economic, social and institutional forces as Webwak & Korsching, 1998) Studies
regarding management in watershed and conservation strategy adoption rely on economic,
behavioral and institutionalata to characterize human influences on environmental outcomes.
Institutional data sources are organizations that define considerations like laws, taxes, standards,
and codes; thegpan both human and natural systems modé€8egtion2.2.2. Itis
recommended to include empiricddservationsvhen available toelatethe model in reaWworld
outcomegRobinson et al., 2007)Economic and behavioral data sources are generally derived

from localresearch agemesand surveying or government reporting like the USDA agricultural
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censugUSDA-NASS, 2009) Similar to naturakystems data, scale and resolution must be
considered. Like precipitatn, single point measurement may not be availableirgmd data

need to be defined in termsafegion which involves establishing a boundary that is

meaningful but does not actually existcDonnell, 2@8). Moreover, surveying or voluntary
participation in data collection, like the USDA Census, may not accurately represent behavior in
adefined area.

Modeling economic outcomes for human systems in agriculture draws on data related to
prices, costs, pfability, and market performance. Typical Central lllinois farmer balance
sheets from University of Illinois extensigdIUC-ACES, 20032012) and carbon credit pricing
from the Chicago Climate Exchanf@JaterContinental Exchange, 2018as used to model
planting decisions with respect to the adoptibthe bioenergy cropiscanthugNg et al.,

2011) Empirical data on prices, costs of production, property law from government reports
(Muchniket al, 1996)in a Chilean watergfd were used to modebusehold adoption behavior
with respect to government policy changBsrger, 2001) Using data from the European Farm
Accountancy Data Network (FADNJEuropean Commision, 2018h farm size, farmer
demographics, costs, and labor utilization, an analysis was performed on policy changes on
European farms with respect to rent, interest rates, and in¢teppeet d., 2006) The FADN
datawereused to define farmer behavior, socioeconomic status, and managerialaatuility
simulate policy outcomes

Decisionrmaking in humassystems models has also incorpadampirical socioeconomic
observations Le etal. (2008)identified one challenge in modeling lande change in
Vietnamese agricultunasdeveloping an empirically groled decisiormaking mechanism.

Empirical typological Viethamese farm datsereusedto define human, social, physical and
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financial, dong withnatural constrainfdo model agricultural policy adoptidhe et al,

submitted for publication) For a watershed in Southern lllinois,ut¢ adoptiorof BMPsand
economic outcomes were forecast@dngupta et al., 2008king used surveresults(Lant et al.,
2001)regarding participation in the Conservatioes@rve Program (CRP). The survey polled
235 area producers for possibility of adoption, age, experience in farming, income. The study
also used USDANASS (2013)spatial data defining farm acreage in CRP, and economic
incentive rates from the Farm Service Age(id$DA-FSA, 2013) Similarly, data for the cost

of BMP implementation estimategereobtained from by the USDAIRCS(201Z).

In asimilar approach to characterize adoption behavior and its impaciaderscale
assessment of conservation practice effectiveness in the Upper Mississippi RivetBasa
NRCS, 2012h)employed a 3/ear USDANRCSsurvey(USDA-NRCS 2007)of adoption and
the 2007 Census of Agricultu(gSDA-NASS, 2009)o typify farms in the areaThe NR}

CEAP survey(USDA-NRCS 2007)provided 3,703urvey pointsn the Upper Mississippi River
Basin, which were used to designate areas and thegiatezbfarming practicesThe study
extrapolated the survey data across subregions within the UMRBjeardeemed réhble
reporting athatscale The extrapolation was used to target critical areas for adopting
conservation practices.

2.2.4 Data Sources Conclusions

Data sources in paired humaatural systems can be categorized into five categories:
physical, environmental, social, economic, and behavioral. There are considerations of scale,
resolution, processing time, and modeled areayefreral, lower resolutions and larger areas
result in and less predictive pow@rinivasan et al., 2010Higher resolutions result in more

processing time and are highly predict{(@tauet al, 2011) Precipitation and topography data
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resolution has been identified as the most significant factor for the accuracy of hydrologic

assessmeriMoriasi et al., 2007)

It is impottant to recognize that the necessswyrces of inputlataarewidely and freely
available. Data sources range from university extension agencies to govesoareas Data
may not come ready to use out of the bdkere is processing requiréat different model input
requirements. Fortunatelyghaances in GISs have facilitated and expedited data processing for
analysis. Data management software is also necessary to proces$ oatput and input.

Natural systems data ranfyjem the slge of a hill to the water to the nitrogen content of
corn growing downstreanData areobtained from government, research agency, and related
studies.Human processeasformation isgenerally available through surveasedesearch and
reporting through government initiatives by agencies like the USDA and NRCS or local surveys
specific to the study area. Extrapolatingutdata for areas whedataarenot available is
necessary. Further, it is important to recognizegbate private production methods like
fertilizer application rates and timing are generalized by industry or government reports for areas
whereinput data ar@ot availablglllinois Department of Agriculture, 2010)Input data for
modeling BMPsarederived from institutional data sources that measure their adoption, field
studies on their effectiveness, and previous modeling studies where these strategies have been
parameterizedFurther, GIS software facilitates a locatispecific analysis of BMP
installations. BMP modeling data sources are at the nexus between human and natural systems
modeling. Finally, data describing human systems for economic, policy, and social dgetors
drawn from government agencies, surveys, and trade/industry organizations/publications.
Grounding humatsystems models with empirical dasean important consideration.

Implementing a model for phenomena like larsg change should be informedlassessed
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with observations of the realorld phenomenon when available and feasible. Incorporating
empirical observationgslike surveyresults is improving their usefulness in applications,

reflecting realistic assumptions and practical outcofiatthewset al, 2007)
2.3 Modeling and Simulation

2.31 Introduction

Modeling of coupled humanatural systems in agriculture is a useful tool for stakeholders
where it is not practical or too expensive &fprm longterm physicallybased studies. This is
due to diverse production approaches, diffusive impact, and expansive geography in agriculture.
Direct water monitoring and field studies are usually costly and labor intensive, and require
many years ofmonitoring to sufficiently account for climatic fluctuation&cknowledging
human interactions and accounting for their impact increases the complexity of the system but
facilitates a more robust modeling outco(iveDonnell, 2008)

Coupled humamatural systems models can be described and selected using the following
considerations: known or available model inputs, desired scale, and desired modelrqujsit.
select from the variousatasourcesliscussedSection 2.2)streamflow partitioning, plant
growth, crop yields, conservation adoption rateslfinancial benchmarksThe availability of
thisinputdata informs model selection afatilitatesverification of outputs like: scenario and
sensitivity andysis, forecasting, and management recommendations. This study summarizes
some of the widely used hydrological/physical models used in agriculture and their applications
in longterm coupled analyses. The summary outlines the capabilities, performdnce an
applications of these models with a focus on SWAT studies of BMP effectiveness and watershed

management in Midwestern agriculture. Of particular importance for this thesis are the

28



applications of SWAT to model hydrology, nutrient flux (specificallyat#, tile drainage, and
Midwestern corn and soybean BMPs.
2.32 Natural-Systems Models

This section will introduce commonly appliedturatsystem models in agricultural
watersheds. The reviewed models can be categorized by scalsch&dand watelned scale.

The discussion is divided into capabilities, performance, and applications of these models.
2.3.2.1 Naturatsystems models capabilities

The Soil and Water Assessment Tool (SWAT) is a basitershed scaleontinuougime
model that operatesia daily/monthly/yearly time step and is designed to predict the impact of
management on water, sediment, and agricultural chemical yields in ungauged watersheds
(Neitschet al, 2011)

As outlined in the SWAT Theoet i ¢ a l D o SWAT eomde@uilizes waterslfied by
dividing similar topographic, soil, and lange areas into hydrologic response units (HRUS)
which are connected by the stream netwd?kblished equatioran soil water content,
precipitation, sudce runoff, evapotranspiration, percolation, and groundwater return (base) flow
are employed to moddhily water budgets. Plant nutrient consumption, which is estimated by
supplyin the soilandcropping demandsnd nutrient and sediment routing rousiraee
documented as wellThe model is physically based, computationally efficient, and capable of
continuous simulation over long time periods with builtnodeling of BMPs like tilerainage,
filter strips, animal grazing ¢Neitsch et al., 2011; Parajdt al, 2008) These routines are
adaptable to diverse watersheds. As a result, SWAT is a parantetesive model using
physically based and empiriaa&lationshipsSources ofnput data are readily available from

governmenand localagenciegSection2.2.9.
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The Hydrol ogical Simul ation Progr astaler Fortr

model for simulating hydrology and water quality for a wide range of conventional and toxic
organic pollutant¢Bicknell et al, 2001) The documentation for HSPF describes the capabilities
and under |l yi ng deashe@perattdeon anihouryshseale) ahGBMVPS can

be simulated either through land use changes, eoaddodules.HSPF conceptualizes
watersheds as@llection of pervious and impervious subwatersheds routing to a stream
segment or mixedse reservoirEmpirical equations govern the water budget and account for
interception, infiltrationgvapotranspiration, snowmelt, surface runoff, interflow, gdowater

loss and recharge, and base flow. Physical properties and published equations determine
pervious land surface erosion and transposstieam sediment transport, and deposition. HSPF
employs subroutines of nutrient dynamics and calculates individitrient balances at a user
specified time step. HSPF allows for detailed inputs of field operations and fertilization rates
(management activities) through its special actions module. It simulatggam fate and
transport of a wide variety of pfotants, such as nutrients, sedimelssolved oxygen

biochemical oxygen demand, temperature, bacteria, andleBeed constituents, including
pesticides (Bicknell et al., 2001)Boreh et al(Borah et al., 20063oncluded in a review of

HSPF for TMDL applications that: HSPF is chosen for modeling because of its flexibility, ability
to simulate a wide range of useonfigurable inputs, modular structure that allows okonly

those components needed for a specific application, and USEPA and USGS support. Its
limitations include largeequirements oiput datathe need for monitored data in order to
perform calibration, and a steep learning cBerah et al., 2006) Like SWAT, it is also a

long-term model and is not suitable for single event simulation.
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Both SWAT and HSPF are approved by the EPpadormTMDL reporting requirements
(Shoemakeet al, 2005) Both are comprehensive watershed models with a focus on
agricultural applicationthatmodel agricultural practices like irrigation, drainage, wetlands and
BMPs(Borah et al.2006) In addition, HSPF and SWAT include modeling of atmospheric
deposition, which is an important consideration in large watershed or es{Gagssnan et al.,
2007) Fertilizer and manure application are alsduded which is a significant factor in the
nutrient cycle in many agriculturally oriented watersheds md@assman et al., 20Q7)

Watersheebasin models provide a resolutiontbéir smallest reporting unitSWAT
assgns anHRU based on area, solil type, and slope, for examipieldscale modelson the
other handhave a resolution of the study area provided by the user. The Root Zone Water
Quality Model (RZWQM) is difield scale physical, biological, and chemigatocess model that
simulates plant growth and movement of water, nutrients, and pesticides over and through the
root zone at a representative area of an agricultural cropping system. It idienensional
verticaly into the soil profilemodel desigad to simulate conditions on a ualtea basis. But
in agricultural management alternatives include evaluation of conservation tillage and residue
cover versus conventional tillage, methods and timing of fertilizer and pesticide applications,
manure analternative chemical formulations, irrigation and drainage technology, methods and
timing of water applications, and different crop rotationdvia et al., 2001)DRAINMOD is
also afonegdlimensional, field&scale computemodel designed to simulate the effects of artificial
surface and subsurface drainage systems on the hydrology and nutrient flux of agricultural fields.
DRAINMOD can simulate cropping decisions, fertilizer applications, tillage practices, and

drainage sstem desigm. (Skaggs, 1980)
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2.3.2.2 Naturatsystems models performance

A model 6s performance is usually assessed by
specific to modeling objectivedn the context of watehed management, the hydrologic
balance, the amount of precipitation, infiltration, runoff, and streamflow are usually described
and compared to observed data where possible. Assessing performance is done statistically,
graphically, or by reporting valitied results. The two most common statistical measures are the
regression coefficient, Bquared (R, and the Nasi$utcliffe model efficiency (NSENash &
Sutcliffe, 1970)coefficient. Rsquared measures howclaséhe model ed out comeobs
l ine matches the observed v a-bquased indicates garfecdys i o n
correlated regression lines, and a value of zero indicates no correlation. NSE measures how well
simulated values versus s#yved data match the 1:1 line. NSE ranges from negative infinity to
1. Avalue less thani@dicates that the mean of the observed data is a better indicator than the
model. Rsquared and NSE are, by far, the most widely used performance statigios use
SWAT model calibrations and validatio(fSassman et al., 20Q7)ercent bias is also used to
categorize model accuracy for less sampled outcomes like crop yield, which is an annual event
(Gassman et al., 20Q7)

Moraisi et al.(2007)proposed a NSE greater than 0.5 (daily) @& (monthly) and percent
bias within 25 percent (daily) and 10 percent (monthly) for hydrologic assessments, and percent
bias within 70% for nitrogein a review of performance criteria for SWAT and HPSF
applicationgMoriasi et al., 2007) Gassmaset al. (2007rompiled Rsquared and NSE
performance statistics for SWAT applications for 115 hydrologic assegsrand 37 pollutant
studieg(Gassman et al., 2007Most studiesvith sufficientsources of inpudiataexceeded

Mor i asi @Asabietalj 2008;rHu et al., 2007; Moriast al, 2012) with weaker results
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for daily performance, inadequate input data (low precipitation resolution for large study areas),
and simulations with uncalibrated parame{&assman et al., 20Q7)

Experience and environmental analysis are important in initializing models to achieve
satisfactory performand&hoemaker et al., 2005pParameteintensive models requisame
sort of calibration. Calibration of parameters can be done by applying known values directly,
manually testing combinations and values, or automating the selection. Mixing the approaches
can also improve performance and reduce uncertainty in the.mddeual calibration involves
changing parameters within a desired range and evaluating performance statistics, elements of
the hydrograph, or chosen modeling objectives. In cases where manual calibration is too
laborious, automatic calibration in therfn of an objective function and a range of parameters
may be searched.

Moriasi et al.(2007)recommended guidelines for watershed calibration procedures as well.
To form a robust model, a calibration should include the full range of hydrologic events in
watershed. Average, wet, and dry years should be included in a caliljBracmortet al,
2006) Calibration procedures should consider water balance components like peak flow, tile
flow, surface runoffMoriasi et al., 2007) Observed values of the water balance like
evapotranspiration should be verified along with reasonable estimates of plant growth and
biomass production. The calibration procedures with respélaese guidelines for relevant
studies in this analysis will be covered in the application section.
2.3.2.3 Naturatsystems models applications

This study focuses on modeling agricultural Midwestern watershed and the effectiveness of
conservation stragies with respect to water quality and producer behavior. To demonstrate the

capabilities of the discussed models and provide a measure of their performance in this domain, a
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few relevant applications will be presented in the following three categaties woncentration
on SWAT: hydrologic assessments, crop yield and nutrient modeling, and BMP analyses.
2.3.2.3.1 SWAT Hydrologic Assessments

One of the first SWAT hydrologic assessments validated flow partitioning and
evapotranspiratiomodels over thregears forthree lIllinois watershed#\rnold, 1996) ranging
in size from 122 to 246 ki SWAT was calibrated manually fagjusting the soil available
water capacity and the surface runoff coefficient or curve numiteran Rsquared of between
0.63 and0.95 for the three gaugesonthly total stream flow, and annual water balance
componentsvithin 25% of observed value®oth SWAT and HSPF were applied to thach
larger Iroquois River Watershed (5568%rim Centralllinois by manually calibrating SWAT
parameters (surface runoff coefficient, plant evapotranspiration, tile drain depth, baseflow
recession coefficient) and 14 HSPF parametdsdribingsoil infiltration rate,
evapotranspiration rate, surface rummatie)(Singhet al, 2005) The study assessed-y&ar
model verification period and showed that both models performed with a N&B&dbr
monthly flow and0.80 for daily flow. The study noted that SWAT regd considerably less
effort to apply and may have resulted in better performance as a result of tile drainage
capabilities(Singh et al., 2005) The 2012 version @WAT with DRAINMMOD tile drainage
routineswas calibrated manually and used to magtedamflow andvater balance spanning a
threeyear calibration and fivgear validation period in the South Fork Watershed in lowa
(Moriasi et al., 2012) By varyingtile drainage desigparameterssurface runoff and
evapotranspiration parametenger fixed intervalsvithin feasible regionsdaily flows were
modeled with NSE 09.76 (0.85) and).5 (0.7) for daily (monthly) calibration and validation

periods respectively.

34



2.3.2.3.2 SWAT Crop Yield and Nutrient Modeling

Modeling nutrient flux and pollutant levelgth respect tarop yieldsis of primary
importance in agricultural watersheds for this analyBisan analysis of fertilizer reduction
strategies Eagtentrallllinois Embarras watershe@WAT modelednonthly streamflows with
an NSE 010.85 (0.69), monthly NQ@ fluxes with an NSE 00.2 (0.31) for calibrationvalidation
regions, along with corn and soybean yields within 10%ridr8year periodHu et al., 2007)
The calibratiorwas performed in three stages for hydrology, nutrient flux, and finally crop yield
using an automated triahderror search of parameter rang@&utrient flux wascalibrated
using past estimates th#rogen balance for pageld studiegMclsaac & Hu, 2004bin the
region. The nitrogen fixation in soybeans and harvested nitrogen was overestimated, and the
study recommended additional parameterization in SWBWAT was calibrated usingur-
stage iterative calibration proceduby assessing modelitcomeperformance after each step
and repeating if insufficiepnandapplied to the Upper Big Walnut Creek (UBWC) watershed in
central Ohig(Nair et al., 2011) The four stages were: parameter selection, hydrology
calibration, crop yield calibration, and nutrient loading calibration. The parameter set included
the surface runoff coefficient, evapotranspiration rates, croentuuptake rates, nitrogen
content in biomass, and leaf area indices. The study modeled daily streamflow oweraa 10
validation period with a NS of 0.5, monthly nitrogen flux with an N®.66, and corn, soybean,
and winter wheat yields all withibO percent. The harvesterbpnitrogen wasssessed for
accuracy usinghe estimatesame field studie@Mclsaac & Hu, 2004as performed in Hu et al.
(2007) While the calibration procedure is significant aniizing as muchnputdata as

possible is recommended, anuncalibrated SWAT model applied to the Upper Mississippi
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River Basin, crop yields were modeled within 25%, and monthly streamflows with an NS
between.10 and .8 across 11 subbagi@snivasan et al., 2010)
2.3.2.3.3 SWAT BMP Analyses

SWAT has builtin functionalityfor modeling several agricultural practices including
changes in fertilizeand pesticide application, tillage operations, crop rotatiams, wetlands,
and pondgNeitsch et al., 2011; Srinivasan et al., 2010)e model also hake capacity to
represent many other commonly usednagemenpractices in agricultee SWAT was
calibrated using a manual and automatic procedure across 39 SWAT parametappliaddo a
Central lllinois watershed to develapcoupled optimizaticwatershed mod€Bekeleet al,
2011)for optimal selection and placement of best management praciaely. streamflow
performance was NSE 6f68, andannualsediment, phosphorus, nitrogen were all modeled
within 6% error. The BMPcorporated in the coupled model wéesed on typical
managerant in the study areélter strips, grassed waterways, and constructed wetlands.
SWAT directly simulated filter strips and constructed wetlands. Theibuittutines for grassed
waterways are represented in the modeigigarameters governing chanpebcesses such as
channel roughness, cover, and erodibility fac{Bekele et al., 2011)The study identified
preferred placement locations or HRUs in the watershed for a particular BMP type linking
pollutant reduction at the watershed outlet and minimizing BMP costs.

SWAT was also applied to the Silver Creek watershed in Southwest Ibimimisntify
appropriate BMP placeme(Kaini et al, 2012) The cébration identified parameters and used
an automated calibration routine to vary the parameters to mininszgi&ed for 14 streamflow
parameters first and then 4 sediment parameters. Daily streamflow modeling performance over

two years was NSE d.73,and sediment with a NSE 0f76. Grassed waterways, filter strips,
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terracing, and stabilization structures were simulated usingib@®NWAT implementations
which modify parameters average slope length, erodibility, and runoff coeffi¢igitsch et
al., 2011) The study identified costs and optimized locations for 20%, 40%, and 60% reductions
in sediment. As part of USDA Conservation Effectiveness Assessment Program (CEAP),
SWAT was applied to a 32 Knwatersied in Northwest Arkansas to model r&tructural
BMPs. The study considered reduced poultry litter and commercial fertilizer application rates,
application timing and chemical amendment to poultry litter, improved grazing and pasture
management, and edgéfield and riparian buffer zones. The study included weather variations
as well to assess BMP effectiveness across spatial and temporal scales. The application required
more than 43,000 runs of the SWAT model over 2 weeks using Ganftee public dmain
software system for high throughput computi@@ndor Team, 2013; TeraGrid, 2013WAT
output was processed for analysis using MATLAB. The study concluded that N losses were
greatest fordll fertilizer application for all grazing management and P losses were not sensitive
to fertilizer application timing for no grazing and optimum grazing management. The interaction
effects between litter application timing and grazing management oséd3 lioglicated that low
intensity grazing management had greater impacts on P losses than litter application timing.
2.3.23.4 Other Analyses

A few applications of the other discussed models are presented to demonstrate their
capabilities, calibration, ahperformance. The Root Zone Water Quality Model (RZWQM) was
applied to a field near Story City, lowa to model tile flow, NIDx, and crop yield¢Bakhshet
al., 2001) Over a three year period the model simulatiedlow, NOs losses in tile water, and
yields by showing a percent differencei 8%, 15%, and 4%, respectively, between measured

and simulated valuesThe calibration was performed sequentially with the hydrologic
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component first, then nutrients, afaally crop parameterBakhsh et al., 2001)Drainable
porosity and saturated hydraulic conductivity of the soils, nutrient transfer coefficients, and plant
growth parameters were used.

DRAINMOD was compared t8WAT for the Embarras watersh@@entry et al., 2009) in
EastCentral lllinois discussed in the SWAT section to simulate the nitrogen budget.
DRAINMOD was calibrated with evapotranspiration coefficients, crop rooting depths, physical
soil parameters, amdtainage system design. DRAINMOD underperformed SWAT with a
prediction efficiency 00.80 and0.53 for monthly streamflow and nitrate flux respectively, and
over predicted crop yieldsby®% f or a 10 year period. I t 60s
compari®ns were made on a representative unit area, as DRAINMOD is &diiel model.

Best management practices have also been modeled on a representative unit area basis
(specific plot, or field scale modeling). Nine plots in Minnesota, ranging from .8 tiea2 were
assessed using DRAINMOD to show that shallow drainage and controlled drainage, two
alternative drainage practices receiving much attention in the region, were both predicted to
reduce annual drainage volumes anckM@rogen losses, with thettar appearing to be the
most effectivgLuo et al., 201Q) Drainage design, crop nutrient uptake, denitrification, nutrient
transport parameters were all manually calibrated first for physical properties of the atba lik
depth to the impermeable layer, then for hydrology, and then for nutrient flux. Flow predictions
ranged from 2 to 24 percent error across the 9 plots and 7 years. Nutrient predictions ranged
from O to 85percenterror, and crop yields were predidteithin 5 percent errgilLuo et al.,

2010) 36 oneacre plots in Nashua, IA were studigd Ma et al., 2007using the RZWQM to
simulate the trends of tillage practices, crop rotationl, controlled drainage on yearly drain

flow and yearly N loss in drain flow, their effects on corn yield were less adequately simulated.
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The tillage practices, soil properties, and manure applications from one plot were used to
calibrate the model. Syer et al(2011)used the RZWQM to demonstrate that N loads to tile
drains can be reducediZB% using winter annual cover crops in Midwestern niaieeze
soybean and maizeoybean rotations.
2.3.24 Natural-Systems M odelsConclusions

Four natural systems models have been presented to demonstrate the capabilities and
performance of modeling the hydrology, pollutant transport, and yield in Midwestern agricultural
watersheds. Criteria for sufficiemodeling performance were presented to serve as benchmarks
for applications. The analysis shows that the SWAT is one model that can provide functionality
and meet these criteria. SWAT is a bastale model, provides a resolution for placement of
strudural and nosstructural BMPs through a watershedaccepted for TMDL analyseghich
serve as a plan for improving water qualandis the most extensively applied model for
Midwestern agricultural watershe@@Sassman et al., 2007)
2.3.3 Human-SystemsM odels

Integrating the human dimension in watershed management is importgtérmining both
theeffectiveness and efficien@f resource management programs. Human dimensions of water
and land use have been modeled for forecasting, planning, and conservation. Modeling of the
behavior of agricultural stakeholders and the economic tradeoffs posed by production have been
utilized to improve outcomes. In agricultural conservation, modelfied ar mer 6 s adopt i ¢
lack ofadoption of a select practice and the reasons underlying that choice are critical
dimensions for a comprehensive understanding of agricultural processes. Government agencies
and agricultural extension entities have degel decisiormaking models to assist producers

and researchefsr conservation planningThis sectionsummarizes specific humaystems
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models in agricultural, along with broader approaches taken in modeling human systems along
like agentbased modelingvith an overview of some of the efforts to model humsgstems

employed in agricultural watershed management, and descriptions of their capabilities,
performance. The reviewed models have coupled natural components. As a result, the review of
applicatons is presented in the context of coupled analyses.

2.3.31 Overview of Models

One model designed to capture farm decismaking is the Comprehensive Economic and
Environmental Optimization Tool and the related Farm Economic Model (FEM) developed by
the EPA(Keith et al., 2000; Osait al, 2000) The model operates on an annual time step and
can be executed for extended periods of 30 years or moresdkiegesof inputdata required to
simulate a farm in FEM include type of livestock system, manure management methods,
cropping systems, facilities and equipment, field characteristics and other external factors.
Economic outputs generated by FEM include total revenue, @oemps (crop and livestock,
fertilizer, labor, etc.), total cost, net returns, costs of individual production, debt payment, and
owner's equityfOseiet al, 2000)

Another tool to model farm decisianaking is the Integrated Farm System Model available
through the USDA ARS (Rotz et al., 2012) The model considersop rotations, feeding
strategies, equipment, facilitiespangother management options that carebeluated. The
model requires considerable calibration because of the number of options available to the user.
The farm model is designed to represent the performance and economics of a farm firm by
considering all major production costs and income fodpcts leaving a farm. This assumption
all ows the measure of system performance to r

year 60s pr eobtyear trap omventoriésrare sold and feed shortages are purchased to
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maintain steady state aceuiung of resourcefRotz et al., 2012) The ISFM was calibrated to

predict farm yields for a 100 hectare pasture ¥athr forage species for dairy cow production
(Corsonet al, 2007) Along withcalibrated parameters like foragewth rate, rooting depth,

nutrient uptake, yields and pashg parameterg¢Rotz et al., 2012fpr economic yields were
calibrated. Net returns per cow for each species were simulated, with a correlation to yields of at
least0.92.

ISFM and FEM are modethatare designed to typify singlefarm unit. Modeling human
decisionmaking on a largescale in communities andatersheds increases the complexithe
dynamics of a watershed is influenced both by environmental factors and by actions of
individuals and institutions. Its behavior is characterized by interactions, emergence-and non
linearities. It is difficult to dserve and recognize feedback loops and unpredictable
consequences in social and biophysical systems. ISFM and FEM provide results with a
resolution of the study ar@mly. A broader scale model, SEAMLESS, conceptualizes typical
agricultural actors, menelos of the production chain, government entities, and market forces for
the European Uniofvan Ittersum et al., 2008)The model requires a calibrated baseline with
selected agrtechnological options, andsulates economic and environmental outcomes over
15 years.SEAMLESS provides international, national and regional policies for simulation.
SEAMLESS requires extensive calibration across components to account for diversity within the
European Union.

Two broad modeling approaches to hursystems that have been applied beyond
agricultural watershed management to areas like urban land use, water demand an@gicing
cellular automation and agebased modeling. These modeling approaches can be corgstructe

for studyspecific applications, and therefore do not have generic properties. Each approach may
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use a togdown or bottoraup approacliiMatthews et al., 2007)Top-down models define criteria
or objectives to idtate how an area should be spatially structureattoBrup models are
developed with rules specifying interactions among individual deemigkers (e.g., residents,
businesses, institutions, etc.) or, at a higher level of abstraction, interactiorg iagheidual
land use parcels to simulate the emergence of land use patterns o @uoim@et al, 2011)

Cellular automation conceptually divides a surface into cells and associates with each cell an
automaton, an eity that independently executes its own stasémsition rules, taking into
account the nearby celldantzet al, 2010) In land use change, implementation of the model
occurs in two general phases: calibvatiwhere historic growth patterns are simulated; and
prediction, where historic patterns of growth are projected into the future.

Agentbased modeling is another technique used to describe human pr¢Redsen et
al., 2007) Agentbased modeling facilitates forecasts, decismaking, and scenario analysis
for largescale, diverse, otherwise complex human processes like watershed management. Such
models can be valuable tools to identify potential mechanamesilience of specific social
ecological systemsln agentbased modeling, rules determine how autonomous entities behave
and interaction with other entities in a modeled system. The agents can be programmed and
calibrated according to realorld olservations but there is limited validation of agbased
modeling result because it is an abstraction of larger immeasurable system. However, the
abstraction can characterize systems beyond mathematical classificatABW mindset
consists of desdring a system from the perspective of its constituent. It has several advantages:
ABM captures emergent phenomena, provides a natural description of a system, and is flexible.
ABMs also have their disadvantages: human behavior is difficult to quardiilyrate, and

sometimes justifyBonabeau, 2002)
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2.3.32 Applications of Coupled NaturaFHuman Systems Models

Because of the coupled nature of these analyses and the direction of this study, applications
of humansystems models are summarized in a review of coupled stuhesteview focuses
on agricultural management with respect to environmental and economic costs.

The Farm Economic Model (FEM) with SWA®as usedo evaluate the impacts of a late
spring nitratgest (LSNT) and a fall and winter cover crop (rye) on the a Northern lowa
agricultural watershe(Salehet al, 2007) The simulation results wecempare to a field test
of a 25% reduction in N&N due to the LSN'BcenariqJaynes et al., 2004)TheFEM was
used to generate several scenarios and retaieonmental impact® economic costs. The
application of LSNT resulted in a reduction (31%) of nitrate losses a cost of&gibatUsing
rye as cover crop during fall and winter resulted in reduction of sediment and all nutrients at a
cost of about $26/ha if planted after corn harvest only and about $34/ha if planted after both corn
and soybean harvests.

The Integrated Fari8ystem Model (ISFM) was appli¢Botzet al, 2011)to evaluate

methods for applying manure in Pennsylvania pastures. The model predicted ammonia
emissions, nitrate leaching, and phosphorus runoff losses simiterste measured over four
years of field trials. Each application method was considered on three Pennsylvania farms over
25 years. The ISFM related farm profits to nutrient losses. On a swine archiédeef
operation under grass production, shallow dhgéction increased profit by $340 while reducing
ammonia nitrogen and soluble phosphorus losses by 48% and 70%, respectively. Gana corn
grassbased grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble
P loss by 76% withittle impact on farm profit. Incorporation by tillage and band application

with aeration provided less environmental benefit with a net decrease in farm profit. On a large
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cornandalfalfa-based dairy farm where manure nutrients were available isexterop

needs, incorporation methods were not economically beneficial, but they provided environmental
benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow
disk injection provided the greatest environmentakfieat the least cost or greatest profit for

the producer.

An agentbased model was constructed to determine and assign BMP installations (filter
strips, netill, and permanent vegetation) in a Northern Kansas watershed management plan
(Nejadhashemi et al., 2011Yhe ABM used the cost of implementing each BMP usingtione
and annual costs over a given time horizon for each BMP on each farm. The price of targeted
nutrient was calculated as the governmenigetidor reducing that nutrient (per unit nutrient).
Adoption would occur if BMP cost per reduction in the nutrient exceeded the government budget
per unit nutrient. The study coupled the ABM with SWAT and varied BMP costs and
government budgets to fineh @ptimal reduction strateggovernment funds could be allocated
up to $1 million on BMP implemention before allocating any funds for dredging to address

sediment loadingNejadhashemi et al., 2011)

An agentbased model was built to simulate biofuel cropping and carbon credit adoption in a
Central lllinois watershefNg et al., 2011) The study formed the agemased model defining
initial perceptions of prices, costs, yleland the weather, and how they update those perceptions
with time. Agents were diverse in their land holdings, quality of land, economic advantage,
yields, time discount rates, foresights, and risk aversions as well. Farmer behavior adapted over
time regarding initially unknown practices with respect to their neighbors and experience. The
ABM was coupled with SWAT. The results of the study highlighted potential market

instruments that would be more successful and nitrate mitigation strategiesalNg@t1)
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identified the need for better ways to verify ABM conclusions and incorporate observations and
empirical data in model formulation.

Researchers performed a laiggale simulation of The Chesapeake Bay Waterahed) a
coupled naturahuman agetbased model to identify stakeholders and policy initiatives to
improve the ecological health of waterstfedarmonthet al, 2011) The studyonductedhe
University of VirginiaBay Game to simulated decisiomeking and calibrated the simulation to
observed watershed health. Results from the game showed a dramatic reddicéaruinents
flowing into the lay from the agriculture sector, and an increase in overall bay health and a
sustainable fishing industryWatershed improvement positively affectadming sector
profitability, suggesting an opportunitgr policy incentives to support the transition to new
practiceqLearmonthet al, 2011)

In land-use modelingZellner(2007)developed War-Use LandUse Model, an agent
based model to simulated lande changes in Southeast Michigan and the linkage to
groundwater aquifer depletion. The study defined hydrological pracass® physical
groundwater dynamics. The model defined agents as residents, stone quarries, golf courses and
farmers) based on empirical and surlb@ged attributes. The conclusions identified zoning
practices were the most important policy point iougrdwater effects.

Additionally, there have been studies to incorpoeategirical data from surveys and
experiments for defining agent decisioraking and verifying model behavior. Gé#lndWinker
(2003) modeled the foreign currency exchange markegusi ABM andvalidatedtheir results
with observed market data. Castella e{2005)demonstrated that langse scenarios in
agricultural watersheds in Northern Vietnam could/dledatedusing an ABM with observed

data. The model was initialized witlata from village surveys on population, ethnicity, number
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of buffaloes, and presence of reforestation or development projects. Agent behavior was seeded
with behavior rules for typical farmer resource profiles.
2.3.33 Coupled Natural-Human Systems Moels Conclusions

Physical models like SWAT are highly predictive for water processes like flow and water
quality. They have capabilities for reliably simulating crop yields, management, and BMP
installations. Physical models found to be highly integrasyathetic, and useful for local
stakeholders and regional policy makers at the field and watershed scale. Human systems
models are helpful and necessary to form a more comprehensive description of an agricultural
system, but difficult to verify becauseiman behavior and decisions making is difficult to model
andinputdatarelieson unobservable outcomes over time. Integrating the two biophysical
processes and socioeconomic processes in agriculture, water use, land use is a necessary and
emerging reseah area. Increasing the use of empirical data is facilitating validation of paired
physicathuman models and making them more integrative. They can lead to insights on
achieving optimal watershed management strategies. They provide policy makers with
decisionmaking support for resource allocation, especially by taking into account the diversity
of stakeholder trajectories and by eliciting the driving forces of land change and water use

associated with each type of agrcosystem.
2.4 Decision Support

24.1 DecisionSupport Overview

Coupled humamatural systems models are leading to conclusions on the hydrology,
management, land use, nutrient transport, economic tradeoffs, and conservation practice adoption
in agriculture In practice, these models areant tanform the stakeholders with information

and analysis that would otherwise be too expensive or infeasible to olbigirmportant to
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model gtimal placement of agricultural BMPs with respect to the taftiebetween multiple
objectives can adrol diffuse pollution and lower costs for varied entities and across many
scales. The modeling has led to the development of de@sjgport tools in agricultural
management. Two important decision support tatilcussed in the following sectiomase
DSSAT and TMDL reporting.

2.4.2 DecisiorSupport Tool Overview

The decision support system for agrotechnology transfer (DSSAT) is an approach to
understand, predict and manage agricultural decisions. DSSAThoalate fieldscalesingle
crop producthn systems considering weathengpgenetics, soil water, soil carbon and nitrogen,
and management in single or multiple seasons and in crop rotations and incorporate factors such
as soil phosphorus and plant disegSeses et al., 2003)DSSAT provides a platform that
allows one to easily comparkeanativesfor specific inputs DSSAT provides a user interface
for the user to specify parameters, management, season/time frame, and outputs.

Total Maximum Daily Lod (TMDLSs ) specify the amount of pollutant that needs to be
reduced to meet standards, allocates pollutant load reductions, and provides recommendations to
achieve those reductiofShoemaker et al., 2005A TMDL is the allowable load of any
pollutant that a stream can receive and still achieve water quality standards and support its
designated use. A TMDL is comprised of loads from permitted point, diffused and natural
background sources. While a coupled humatural systems modeling approach represents one
option to meet reporting requirements, integrated models are important resources for-decision
makers to identify viable strategiesel&cting the appropriate model is crucial in developing a
feasible, defesible and equitable TMD{Shoemaker et al., 2005} ikely benefits and

drawbacks associated with various loading alternatives are central to effective management.
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Modeling analyses can be used to test multipbmaigos, with various allocations to nonpoint
and point sourcegor example, coupled SWAT models are being usddMBL analyses to
inform policy regulating discharges into waterbodies.
2.4.3 Decision Support ToolApplications

DSSAT was coupled with RZW@ to simulate subsurface drainage, nitrate concentration in
flow, and crop yield under various nitrogen application rates with winter cover cropping in a
corndoybean system in central lo\la et al., 2008)The model results suggest that cover
cropping did not reduce main crop yield with nitrogen application ediege61 kghanitrogen.

SWAT is being used imMDL analysesd inform policy regulating discharges into
waterbodies. Rosenthal et @001)conducted an analysis in the Arroyo Colorado River
watershed in Texas as part of a TMDL study to determine the impacts of platPgiB
different areas of the watershed. The watershed had a mixture of urban and agricultural lands and
excessive sediment and nutrient loads in the waterways. Sediment and nutrient loadings were
simulated by SWAT for the outlet of the watershed. The SWhodel estimated an-stream
reduction of 50% for nitrate and phosphorus with a 50% reduction in fertilizer application rate.
Saleh et al(2007)studied the largest dairy producing area in Texas as part of a TrglBied
study. It was suspected thatanure application in the North Bosque River watershasi
delivering excessive nutrientis the waterways The study utilized the Agricultural Practice
Extender (APEX) to simulate the effect of buffer strips on the edge of field loadings of nutrients
andsediment, and the output loadings were then input into the SWAT model to simulate
transport and fate through the watershed. The study evaluated various phosphorus control
scenarios, removal of dairy cow manure from the watershed, reductions of phospluaiong

cow diets, and reduced manure application rates.
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In addition, larger scale studies are utilizing coupled natwralan systems models to assess
the effectiveness and direct future efforts of policy initiatmesgriculture managementhe
USDA-NRCS utilized SWAT to analyze the Conservation Effect Assessment Project (CEAP)
which funds conservation practices in U.S. farudSDA-NRCS, 2011) CEAP estimated
conservation benefits for reporting at the national and regional levels and to establish the
scientific understanding of the effects and benefits of conservation practices at the watershed
scale. Producers were able to install structural practices like terraces and filter strips, adopt
nutrient management and retire land with assistance frod3B. The study assessed the
options available to producers and most beneficial opportunities in the future using SWAT and
APEX andfound that conservation practices have reduced wind erosion by 64%, sediment losses
by water erosion by 61%, surface ngem loss by 45% while subsurface nitrogen loss by 9%,
phosphorus loss by 44%. The study identified the most critical conservation needs in the future:
sediment loss, nitrogen loss through surface and subsurface flow, and phosphorus loss. In
addition, tke study identified nutrient management as the most effective way to improve
environmental outcomes in the Upper Mississippi River Water@h8BA - NRCS, 2011)

2.4.4 Decision Support Conclusions

Coupled naturahuman systems are helpful for determining the effects and optimal
placement of agricultural BMPs and the traudfs between multiple objectives in order to eost
effectively control diffuse pollution at varied scales.(field andwatershedcale$. Thesedols
are assisting decision making for producers and institutions. The use of these tools is limited
with respect to physical and soe@conomic data needs and usually requires advanced user skills

to be successfully adjusted in various spatial scalesiarations. The tools are good for

49



researchers for simplified and generalized scenario analysis. As recent studies indicate, the

models are informing polieynakers and producers.
2.5 Literature Review Conclusions

Coupled humamatural models can accurgteharacterize and quantify processes in
agricultural systems. Data and modeling tools are widely available and largely free. Depending
on the scale (spatial and stakeholder) and modeled process (nutrient, crop, social), there are
many approaches andote to consider. Natural systems models are more precise in quantifying
verifiable data like flow and concentratiohrluman systems models are less rigid and may not be
verifiable. Integrating both domains leads to more robust, practical conclusiomsppitoach
is being employed in watershed management and policy deam&img for all stakeholders.

This study draws on the procedures, model selection, data requirements, and performance
metrics to formulate a decisionaking tool for an EasCentra lllinois watershed. The literature
demonstrates that policy instruments and agricultural management decisions can be reliably
modeled for testing and forming conclusions to improve environmental and economic outcomes.
This study is guided by past couglanalysis in similar watersheds in geography and
management. The benchmarks and model development are informed by the discussed literature.
These studies have established modeling performance benchmarks, recommended procedures,
and BMP parameterizations develop defensible and comprehensive models. The studies have
produced recommendations and insights for improving water quality that are infoymed b

practical realworld outcomes, which are used to validate and compare the results of this study.
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CHAPTER 3

METHODS i NATURAL SYSTEMS MODEL

3.1 Introduction

This study sought to answer the following question: how can agricultural stakeholders improve
environmental outcomes while preserving economic gains. The study took the following
approach: model aigultural producer behavior and economic returns with respect to conservation
strategy planning, environmental outcomes, and community/government policy. To model these
outcomes, this study coupled a natural systems model and a human systems modkelsin an

Central lllinois watershed (Figure 3.1).

- Agricultural industry - Physical land (elevation, soil)
- Farming Economics - Lland Use
- Government Policy

- Social/Environmental
responsibility

) C - Environment (weather)
H u m a n Agrfcu,!turg,‘ N at u ra I >
) L

Management
Systems Systems

- Crop Yield
- NutrientTransport
- Water Quality - Crop growth

Figure 3.1: Coupled Natural-Human Systems Model

The metrics used to assess performance were water quality (nitrate and phosphorus levels),

economic gains (yield, producer returns, government expenseg/moftitconservation practice
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adoption. Each model was calibrated to reflect observed environmental outcomes and producer
behavior in the watershed. Once a calibrated model was formed, the model was employed to test
different design features of conservatistrategies and proposed government subsidies and taxes
to find potential coseffective and beneficial ways to accomplish the research objective.

The first part of the methodology is a presentation of the nadysééms model. The Soil and
Water Assesment Tool was used to deliver natural systems outcomes: water quality, crop yields,
and BMP modeling. The watershed description, calibration procedure and final SWAT model,
and representation of conservation strategies are presented in Chapter eThne@nagement
practices currently being employed in the watershed by producers were considered in this study:
nutrient management, drainage water management, and winter cover cropping. Chapter 4 presents
the humarsystems model. An agehésed model wa calibrated for cropping decisions,
economic returns, and adoption of conservation strategies in the watershed. Finally, the coupling
of the models, its interface, and the scenario analysis is presented. THeasgeihtodel directed
SWAT to implementarm decisions, and SWAT generated environmental outcomes for the agent

based model to consider in a feedback loop (Figure 3.2).
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Coupled Natural-Human Systems Modeling in Agriculture
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Figure 3.2: SWAT Agent-based Model

The coupled model produced the metrics for analyzing BMP adoption, effectiveness, and
expense. The nexus of the coupled model are the management decisions: cropping and BMP
decisions. The naturalystems model delivers environmental outcomes to the hegsiems
model; the humasystems model determines management decisions and invokaattina}

systems model in a feedback loop.
3.2 SWAT MODEL DEVELOPMENT

3.2.1 SWAT Model Overview
The natural systems component of the coupled analysis provided measures of water quality,
hydrology, and crop growth for model development. SWAT was selectaddel natural

systems outcomes (water quality, crop growth, and hydrology). SWAT has a successful
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precedent of modeling these outcomes in Midwestern watersheds similar to the study area
(Arnold, 1996; Bekelet al, 2011; Huet al, 2007; Nairet al, 2011; Nget al, 2010; Singtet al,
2005) This study focuses on four prior works that successftiliggd SWAT to model nitrate

and phosphorus flux, hydrology, and crop yield in-dgitained Midwestern watersheds: Hu et al.
(2007) studied the Upper Embarras River watershed in@Eadtal lllinois, Nair et al. (2011)
studied the Upper Big Walnut Creelatershed in Central Ohio, Ng et al. (2010) studied the Salt
Creek Watershed in Central Illinois, and Moriasi et al. (2012) modeled the water balance in the
Salt Fork Watershed in lowa. The calibration and performance of SWAT is presented with
respect tdhese studies and other selected studies.

The SWAT model and software to initialize an analysis has changed over different version
since SWATOs beginning in the 19906s. Al
followed the procedures detadl in the Theoretical Documentatifideitschet al, 2009)and the
ArcSWAT Manual(Srinivasan, 2009)ysing the AVSWATX interface. This study employed
the 2012 version WAT (Rev. 588)Neitsch et al., 2009nd the ArcSWAT 10.{Srinivasan,
2009)interface. The watershed extent and hydrology are determined by the initialization
procedure For that reason, the results of the initialization are presented after an introduction of

the location, climate and data sources for modeling the study area using SWAT.
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3.2.2 Study Location
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Figure 3.3: Upper Salt Fork Watershed
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The Woper Salt Brk Basin is located in Eagtentral lllinas (Figure 3.3). The watershed is
located in Champaign and Vermillion counties. The Upper Salt Fork Drainage Ditch and the
Spoon River flow north to south and merge into the Salt Fork RiMee. UpperSalt ForkBasin
flows through a network of artificially constructed ditches and channelized str@dadJpper
Salt Fork Drainage Ditch was constructed with g&8t bottom width, tapering upstream to a
20-foot bottom width near Ranto(ffinghet al, 1987) The construction of these channels was
to achieve the higér gradientfor expedited flow.The Salt ForlkandVermillion Riverare
currently listed as impaired under 303(d) of the 1972 Clean WatdlJASt Environmental
Protection Agency, 19729r the following reasondish kills, ammonia (total), total suspended
solids, pH, nitrogen (total), phosphorus (total), nitrsiteogen. The Spoon Riverlisted as

impaired for habitat assessment and dissolved oxfigeamotech, 2007)

The climate is temperate, with four distinct seasd@®&sed on the weather data for the
Urbana weather statiqfilinois State Water Survey, 201,2he mean annual precipitation was
1006.5mm for the yees 19952012, and the mean annual snowfall was 539.6 migure3.4
shows the seasonality of the precipitation for the Urbana eestition, 25% of the annual
precipitation occurs in the months of May and J{iieois State Water Survey, 2012Jigure

3.5 shows the monthly average temperafliliaois State Water Survey, 2012)
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Figure 3.4: Monthly Precipit ation for Upper Salt Fork watershed (19952012)(lllinois State
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Figure 3.5 Monthly Temp erature for Upper Salt Fork watershed (19952012)(lllinois
State Water Survey, 2012)

3.2.3 Data Sources
The SWAT initialization was performed in ArcGIS 1@HESRI, 202) per the instructions in

the ArcSWAT manug{Srinivasan, 2009)Data sources for this specific study incorporated:
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elevation, soils, land cover, point source inputs, precipitation, temperature, wingd reeace
humidity, solar radiation, potential evapotranspiration, stream flow, nitrategen, and

dissolved reactive phosphorous.

3.2.3.1 Elevation

LiDAR (Light Detection and Ranging) digital elevation datareused for areas within
ChampaigrCounty. LIDAR datavereacquired in 2008 by Aeretric for the USGS and
accessdthrough the lllinois Natural Resources Geospatial Data Clearingfidiirsss Natural
Resources Geospatial Data Clearinghouse, 2@i/2)lable at:
http://lwww.isgs.uiuc.edu/nsdihome/webdocs/ilhmp/county/champaign.htm)AR data for
ChampaigrCountyhadan average sampling rate o2 Ineters.LiDAR data wereused to form
a 3meter resolution raster, ensuring at least twice the sampl@rateford, 2008) For areas in
Vermillion County, digital elevation dataith a resolution of 3 metsweremerged with LIDAR
data. Vermillion County elevation dataerederived from the USGS Seamless Se(Ws8GS,

2012b)

3.2.3.2 Land Cover and Soils

Land Cover data erederived from USGS Seamless Ser86-meter NLCD 2006 data and
resampled t@ metersUSGS, 2012h) Soil type and properties were accessed through the
SSURGO databadunuilt-in to the ArcSwat 10.1 interfag€heshukoet al, 2009; USDA-

NRCS, Soil Survey Geographic (SSURGO) DatabhaS§URGO data for the area had a scale of

1:12000.
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3.2.3.3 Climate Data

Daily precipitation and temperature datareobtained through the National Ocean AA for
weather stations in Urbana (COOPID = 118740), Rantoul (COOPID = 117150), Ogden
(COOPID = 116344jNational Climate Data Center, 2012)rbana datavereused for years of
missing data at Ogden. Estimates of wind speed, relative humidity, solar radiation, and potential
evapotranspiration were obtained through the Water and Atmospheric Resources and Monitoring
Program (WARM) at the lllinois State WatBurvey(Water and Atmospheric Resources
Monitoring Program, 2013)The closest station to the study area was located in Champaign, IL
(available ahttp://www.isws.illinois.ed/warm/data/cdfs/cmiday.txt The Champaign station
was used for wind speed, humidity, radiation, and potential evapotranspiration (PET) data for the
entire study region. WARMSWS potential evapotranspiration estimates were calculated using
the PenmaiMonteith methodMonteith, 1965)the monthly average estimates are shown in
Figure 3.6.Datacollection began in 1989, and missing values were replaced with the average

for that day over the 23 years.
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Figure 3.6: Monthly PET for Upper Salt Fork watershed (19892012 (Water and
Atmospheric Resources Monitoring Program, 2013)

3.2.3.4 Point source inputs

Monthly effluent andchitrogen loadgor the three sewage treatment plaméseobtained
from the Environmental Protection Agency Enforce & Compliance History Online (ECHO) for
Rantoul Sewage Treatment Plant (STP) East (Source ID = 1L0022128), Gifford STP (Source ID
= ILG580214, and Royal Water Treatment Plant (WTP) (Source ID = ILG640131).

(Environmental Protection Agency, 2012)he daily averages for 2012 are shown in Table 3.1.
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Table 3.1 Point Sourcesi Sewage Teatment Plants(Environmental Protection Agency,

2012)
Average Daily
Average Daily Average Daily Dissolved

Average Daily Nitrogen Load Dissolved Oxygen PhosyorousLoad

Flow (m?) (kg NO2+NH3)  Load (kg Oy) (kg P)
Rantoul 10874 90.3 88.86 25
Gifford 138.12 n/a n/a n/a
Royal 0.31 n/a n/a n/a

3.2.3.5 Streamflow and Nutrient Data

Daily streamflow datavereobtained from th& SGS for the station at St.skph (site no.
03336900¥0r 20052012 (USGS, 2012afjavailable at
http://waterdata.usgs.gov/usa/nwis/uv?site_no=033369De site sampled arage daily flow
from 19521 2012 with the exception of 19912004, for which no flow data @veavailable.
Nitrateand phosphorousampling was obtained throughibanaChampaign Sanitary District
(UCSD) and University of lllinois (UIUCDepartment of Natural Resources & Environmental
Sciences (NRESBiochemistryGroup (UCSD & UIUC-NRES Biochemistry Group, 2013
(available at: saltfork.nres.uiuc.edu/water_quality.htngamples wertaken for a least a bi
weekly basis for April 15, 2008 through DecemB8r2012. This resulted in a total of 242 total
samples. To calculate loads, a linear interpolation method was use to extrapolate nitrate and
phosphorous concentrations when notlatée, multiplied by the USGS measured for that date
as performed by Hu et al. (2007). Figure 3.7 shows the monthly USGS flow values; Figure 3.8
shows the total monthly nitrate loads using the USGS flow and nitrate concentrations; Figure 3.9
shows the asrage monthly nitrate concentrations. The nitrate loads and concentrations peak in

during the wet spring months and diminish during the dry late summer months. Figures 3.10
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through 3.1 show the phosphorous loads and concentrations. Phosphorous exhitvitisr
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Figure 3.7: Average Monthly Flow Salt Fork River (USGS, 202a)
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3.2.4 Watershed delineation

All watershed processing and delineation was dameg the data sources specified in
section 3.2.3 with the AVSWAK plugin (Srinivasan, 200%pr ArcGIS (ESRI, 2010)
according to the procedures in the ArcSWAT mariNaitschet al, 2013) The watershed
outlet was set to the GES station at St. Josepfihe threshold for stream definition was set to
200hectaress suggested by AVSWAX and performed in past studi@su et al., 2007; Nair et
al., 2011) This resulted i119subbasinsvhich were defined by dominant soil type, land use,
and slope.The HRU definition was chosen to correspond to average farm size region as
performed by Nair et al. (2011). This corresponded to an HRU definition of at least 55% of an
area dedic&d to a single land use, at least 28% of the area composed of a single soil, and and at
least 28% of an area exhibiting a uniform slope. The agricultural HRU sizes ranged from 2
hectares to 1022 hectares with an average size of 149 hectares (368Td@d3rDANASS

reported an average farm size for Champaign County of 160 he@i@B#-NASS, 2009)

Theresultanwatershedvas328 knt is area. 88% of the watershedsrow-cropped
agriculture. 80% of the waterghevascomposed of poorly or moderatgbporly drained soils
according to SSURGO salata(USDA-NRCS, Soil Survey Geographic (SSURGO) Database)
The dominant soil type wd3rumme, which is poorly draine{Cooke, 2011) The terrain was
flat; 76% of the wateshed had a slope less than 2%. The distribution of soils in the resultant
watershed and their drainage class are shown in BahleThe drainage classes dezived

from the lllinois Drainage GuidéCooke, 2011)
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Table 3.2 Soil Type and Class(USDA - NRCS, Soi Survey Geographic (SSURGO)
DatabasefCooke, 2011)

Hydrologic

Soil Name % Area Group Drainage Class
Drummer silty clay loam, 0 to 2
percent slopes 39.519 D Poorly drained

Somewhat poorly
Raub silt loam, 0 to 2 percent skxp 7.449 B drained
Ashkum silty clay loam, O to 2
percent slopes 6.682 D Poorly drained
Elliott silty clay loam, 2 to 4 Somewhat poorly
percent slopes, eroded 6.099 C drained
Brenton silt loam, O to 2 percent Somewhat pody
slopes 5.689 B drained
Varna silt loam, 2 to 4 percent Moderately well
slopes, eroded 4.138 C drained
Flanagan silt loam, O to 2 percent Somewhat poorly
slopes 3.685 B drained

Moderately well

Dana silt loam, 2 to 5 percent slop 2.421 B drained
Selma loam, 0 to Rercent slopes 2.397 D Poorly drained

3.2.5 Model Calibration

SWAT provides default values for all the parameters necessary to run a simulation.

However, according the SWAT manybleitsch et al., 2013}he dfault parameter values

assigned by the interface are highly generic. The interface does not vary input values based on

watershed size or location in the world. As a result, the model requires calibiEtien.

calibration procedure for SWAT was deriviedm Hu et al. (2007) and Nair et al. (2011), and

performed in a similar stewise fashion for hydrology, nutrient flux, crop growth: incorporating
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meaningful physical parameters from past studies, and utilizing both manual and automated

search procedures.

3.2.5.1 Uncalibrated Initialization

Some physical parameters were drawn from previous SWAT stltliest al., 2007; Ng et
al., 2010; J. Singh et al., 200bBgreset and notonsidered for calibrationTable3.3 describes
the parameters adopted from previous studies and not adjusted fiitlegparameters were
associated with climate and agricultural management typical of the area, so watersheds with
similar characteristickom previous studies were selec{etl et al., 2007; Ng et al., 2010; J.

Singh et al., 2009yair et al., 2011

Table 3.3: Calibrated Initial Values From Previous Studies

Paameter Description (units) Min. Max. Calibrated Source
Snowfall Temperature (Singh et al.,
FTMP - :
S °C) 3 5 0.5 2005)
The maximum snow melt (Huetal,
SMFMX factor (mm d* °CY) 14 6.9 6.5 2007; Ng et al.,
2010)
The minimum snow melt (Huetal,
SMFMN factor (mm d* °CY) 14 6.9 2.5 2007; Ng et al.,
2010)
Initial soil water storage
expressed as aafction of (Nair et al.,
FFCB . . 1 .
c field capacity water 8 2011)
content
Fraction of fertilizer (Hu et al
FRT_LY1 appliedtotop 10 mmof O 0.2 0.01 2007) B

soil
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In addition to climate pameters, soil saturated hydraulic conductivity and soil available water
capacity properties for selected soils in Champaign County were available through the USDA
NRCS(USDA-NRCS, 2012for the study area. The soursey gives a range of values. In this
study, the mean of the values provided in the survey were used and then calibrated around the
mean within the range specified in the Champaign County survey. Table 3.4 shows the mean
values for the selected soil$he depth of the deepest layer was not adjusted as shown in Table
3.4. The depth to the impermeable layer was calibrated in a separate SWAT parameter,

DEP_IMP in the .ops file (Neitsch et al., 2013).

Table 3.4: USDANRCS mean soil saturated hydraulic coductivity and soil available
water capacity initial values [depth (mm); Ksat (mm/hr); Soil AWC (mm/mm)] (USDA-
NRCS, 2011b)

Layer 1 Layer 2 Layer 3 Layer 4
Ashkum 250; 25; .17 380; 22.7; .16 580; 13.5; .16 810; 16; .B
Drummer 180; 28.6; .22 480; 19.4; .23 810; 16.2; .23 990; 20.4; .23
Elliot 360; 8.4; .22 910; 15.2; .16 5000; 5.8; .1
Flannagan 460; 25.8; .23 580; 34.9; .23 970; 19.9; .2 1140; 17.3; .2
Brenton 410;33;.24 890;33;.19 1350;33;.18 1830;83.8;.17

Raub 460; 33; .23 810;33; .19 1270;33;.17
Varna 300:33;.21 690:3.3;.15 990:;10.1;.08 1520:3.3;.08
Selma 410;33;.23 800;33;.22 1140;33;.18 2500:33:.17

Kishwaukee 280;33;.23 1370;33;.17 3500;1524;.03

Swygert 300;11;.2 460;11;.12 790;3;.12 5000;1.26;.08
Wyanet 250;33;.23 690;33;.17 790;10.1;.12 2030;10.1;.08
Ambraw 200;33;.16 990;33;.14 1270;33;.13 1520;33;.17

Catlin 280;33;.25  1140;33;.19 1450;33;.17 1780;10;.08
Camden 230;33;.23  360;33;.22 560;33;.21 890;33;.19
Sawmill 250;33;.22  810,;33;.22 1470,33;.2 1650;33;.16
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Table 3.4(cont.): USDA-NRCS mean soil saturated hydraulic conductivity and soll
available water capacity initial values [depth (mm); kKsat (mm/hr); Soil AWC (mm/mm)]
(USDA-NRCS, 201Lb)

Layer 5 Layer6
Ashkum 1220; 26.25; .1% 1520; 26.7; .13
Drummer 1520; 76.8; .2
Elliot
Flannagan 1520; 83.4, .2
Brenton
Raub
Varna
Selma 5000;83.4;.09
Kishwaukee
Swygert
Wyanet
Ambraw
Catlin
Camden 1320;33;.16 2030;.14;83.4
Sawmill

SWAT requiredarm management parameters like crop type, planting date, and fertilization
beyond the generic setufhe entire watershed was planted in a corn and soybean rotation as in
Huetal. (2007)Hal f of t he agr i c uWwithoornthén sdybedhdnd halve r e
of the agri cul t usogbkansHieabrsBasedcon e llpnbisAgtoremhy
Handbook(Hollinger & Angel, 2009)and previous SWAT simulations the timing of dlag,
tillage, and heat units to maturity were set and not calibrated fufdeetilizer inputs in the
nearby Embarras watershed were modeled using a split fall and spring application at a rate of

190 kg/ha nitrogen in previous stud{gtu et al., 2007; Mclsaac & Hu, 2004for this study,
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nitrogen was applied during the fall (Decemb®&} Brior tocorn yearsat a rate of 224&g/ha

(200 Ibs/ac) in the form of anhydrous ammonia. David et al. (28§8nated anhydrous

ammonia application rates of between 150 to 225 kg/ha of nitrogen for typical Midwestern corn
production. Also, nitrogen inputs on the high end of the range and above Hu et al. (2007) were
selected after a discussion with UIUC extengCzapar, November 9, 2012hd fall application

was chosen to facilitate an analysis between spring and fall application. In addition,
phosphorous was applied prior to soybean years in the form afarmononium phosphate

(MAP) at a rate of 126.6 kg/H&lollinger & Angel, 2009) The rate and timing was derived

from recommendation s in the lllinois Agronomy Handbook agrtegc conservation tillageas
peformedon April 20", cornplanting on April 2%, and harvest on October15For soybean

years, generic conservation tillage occurred on M&y pnting on May 2%, and harvest on
October " (David et al, 1997; Hollinger & Angel, 2009) The heat units until maturity were

set according to results for corn (1400) and soybeans (1400) from the Potential Heat Units
Program(Grassland Soil and Water Research Laboratory, 2@i/3)lable at:

http://swat.tamu.edu/software/poterdiedatunit-programj

3.2.5.2 Calibration Procedure

Calibration was done with the following two objectives: ensure the model refleszsved
watershed phenomenon like flow partitioning and nitrogen fixation, and then search other
parameters to improve model performance. The calibration followed-avsteprocedure
similar to the Hu et al. (2007) and Nair et al. (2011), and incomgmbtaeir considerations of
modeling watershed phenomenon. Each step involved selecting a modeling outcome (first
streamflow, then nutrient flux, finally crop yield) and parameters for calibrating that outcome.

Previous SWAT studies informed which paraenstand the range of values over which to
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calibrate. After each update to parameters, the performance of the previous outcome was

assessed for any changes.

3.2.53 Calibration Performance

A measure of simulation performaneasestablished to obsernparameter sensitivity and
assess the ability or inability of the simulation to model watershed events. For this study, the
statistical measures ofgjuaredEquation 3.1and NaskSutcliffe (Equation 3.2Nash &

Sutdiffe, 1970)were used as in similar SWAT studies:

v B ® (A D) D) o
B ® A B ® D)

5 oy B ® (D) 2

v ~ - O
P B w

Where®w and® are individual simulated and observed values, respectively®andand
@ are average simulated and observed values. -Sastiiffe measures the relationship of
observed and modeled data and a 1:1 line. A value near 1 implies a close agreement. A negative
value implies that the mean of observed aatald be a better predictor.-fRjuared is a measure
of the model 6s ability to predict the variati
observed data is equal withdguared is 1.

In addition, percent big&Equation 3.3was used to expresaderestimation and

overestimation.

) B wp T TT (019
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Model performance was compared to similar studies along with established benchmarks.
Moriasi et al.(2007)conducted a review of hydrological studies and proposed the following
recommendations for satisfactory modeling on a monthly timestep: streamflow (NS > .5, PBIAS
< 25%), ntrate and phosphorous loads (PBIAS < 70%jatistics better than these thresholds
were deemed 6good6é or (00&)also cogpauded that satisfdatoryi a s i et
modeling is dependent on the availability of data. Ideal model setup should indugsa8s of
varied precipitation (wet, dry, average), use multiple evaluatiomigebs (visual inspection,
manual calibration), and calibration of all constituents involved (all releu#nent
parameters). ideaBsmadekbsubtstuldlg épecific, and

accepablemodeling outcomes at each step.

3.2.54 SelectedCalibration Outcomes
The calibration was performed in a step wise procedure adapted from Hu et al. (2007), Nair
et al. (2011), Ng et al. (2010), Arnold (1996), and Moriasi et al. (2012). Arnold (1996) and
Moriasi et al. (2012) did not chliate nutrient flux and crop yield, but the studies informed
parameter selection and outcome ranges in this study. Each modeling outcome was calibrated in
stages: starting with hydrology, then nutrient flux, and finally crop yield. For each modeling
outacome the process was to: first select parameters for calibration and set others, vary the
parameters, assess optimum, check previous outcome, and proceed to next outcome.
Observed dataverepartitionedinto years of flow data for calibrating, andars of flow data
for validating. The recent available flow data for the USGS gauge ats8phlepa2004
through 2012 at the time of analysisSigure3.12shows the observed precipitation and flow data

for 20(6-2012
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The timescale of the calibratiowas an important consideration. In developing the natural
systems model, the objective was to facilitate an analysis of environmental and crop production
outcomes. Crop production is determined on an annual basis: planting in the spring, harvest in
thefall, with related seasonal field operations. While environmental processes are constantly
changing, the model was calibrated to best describe outcomes on tisedlmef annual crop
production. Finer timacale (daily, monthly) dataeveutilized where available to improve

modeling performance, but the goal of forecasting annual outcomes guided model development.

200 0
180 20
160 40
140 60
2
220 USGS Flow 80 ¢
£ E
i‘LOO Precip 100§
380 120&
LL
60 140
40 160
20 180
0 200

1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010 1/1/2011 1/1/2012

Figure 3.12 Precipitation and Flow (NOAA, 2012; USGS, 2012a)

A calibration period obbserved data was used to vary SWAT parameters and assess their
effect. The parametevgerev ar i ed t of iftid df ar Atbleestcal i br ati on
of parameters was used, and not modified, for a different, independent periodnzalled t
validation pfeirtt@dmay Trhet filbe stthe hi ghest measul
a Nbbestedo simul ati on ma yacteristipstfoua SWATOstudykor e d ev e
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this study, the a calibration period was set to 2B0Y0to incorporate a wet year following a

wet year, a dry year following a wet year, and a wet year following a dry year. The time period
also includes high flow events, which indicate high tile flow. This study concentrated on
modeling high flow eventsThe validation period was limited temaining years of data, 2005

2006, and2011-2012.

3.2.54.1 Hydrologic Calibration

Hydrologic calibration was performed first as done in Hu et al. (2007) and Nair et al. (2011).
The range and group of parameteziested for calibration were selected from multiple studies
(Arnold, 1996; Hu et al., 2007; Moriasi et al., 2012; Nair et al., 20Mgriasi et al. (2007)
recommended calibrating for all watershed processes intended for study. Based on the previous
work informing this study for tilelrained watersheds, the model was calibrated to model total
water yield, tile drainage yield, surface runoff yield, evapopmason, and daily streamflow. A
manual calibration of the water budget was conducted first, followed by a manual and automatic
calibration of streamflow.

To start, this study sought to model annual water yield within 10% as set forth in Hu et al.
(2007)and monthly streamflow with a NS greater than .5 for a monthly time step, which would
exceed the recommendation for satisfactory modeling by Moriasi et al. (2007). The calibration
procedure for the water budget was performed manually by varying sgbectedeters to model

observed USGS water yields.

Modeling the tile drainage flow component of the water yield is an important consideration.
The abundance of poorhjrained soils and flat terrain contributes to extensivedtisgnage for
agricultural prodction. Many watersheds in eastntral lllinois have less than 1% surface

gradient and poorly drained soils, yet subsurface drains have made these lands some of the most
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productive farmland in the worldSubsurface drainage enhances productivity analcess
sediment transport and phosphorous losses from fields; however, it increegeselivery to
the receiving water bodi€Kalita et al, 2007) David et al. (1997) estimated that 75 to 80% of
the fields have tile drainage in the nearby Embarras watershed which lias sdpography and

management.

Hu et al. (2007) calibrated SWAT for the nearby Embarras River watershed to model 75% of
the total water yield as tHdrained flow. Similarly, Moriasi adl. (2012) estimated 71% of total
water yield as tile drained, combined groundwater and lateral flow as 6%, and surface runoff at
23%. Mitchell et al(2001)estimated that tile drainage comprised®0%6 of totalflow across
four EastCentral lllinois watersheds. This study sought to model greater than 75% of total flow
as tiledrained.

Cookebs (2011) Il linois Drainage -@Banagtke i nf or
systems throughout the watershed.ok®(2011) provides general recommendations for tile
drainage systems in lllinois. These typical installation specification were used to develop ranges
of parameters for calibration. The Drainage
systems are geralized by soil type and rating by drain spacing, drainage coefficient, and mean

drain depth as outlined Table3.
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Table 3.5: lllinois Drainage Guide General Recommendations (Cooke, 2011)
Drain Spacing (m)

Fair Good Excellent
DC =6.5 DC =9.5 DC =125 Mean Drain
Soil Type Permeability mm mm mm Depth (mm)
Clay  very Low 21.3 15.24 10.7 991
Loam
Silty Clay ) 29 19.8 13.7 1036
Loam
Silt Logm Moderately 44 ¢ 30 18.3 1143
Low
Loam Moderate 61 42.7 29 1234
Sandy  Moderately 91 64 45 7 1295

Loam High

As performed in Het al. (2007)Ng et al.(2010)and Moriasiet al. (2012) single drainage
system design was applied uniformly to the study area. In this study, agricultural HRUs with a
slopeless than 2% were considered tile drained. This resulted in treating 80% of the watershed
astiedr ai ned. Si mi |(2012) coneiderdtmm af theslowa Brainage IGuide $or
establishing ranges for calibrating tile drainage parametersttitlg considered ranges from the
lllinois Drainage Guide. The primary soil in the study area was Drummer, a silty clay loam, and
ranges were selected as shownin Tal8e3hest udy al so consi201@)r ed Mor |

calibrated values.
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Table 3.6: Manual Tile Drainage Paameters Calibration (Hu et al., 2007; Moriasi et al.,
2012; Nair et al., 2011; Ng et al., 2010)

Parameter Description (units) Min. Max.
DDRAIN Depth to Drain (mm) 950 1200
DEP_IMP Depth to impermeable layer (mm) 1550 2000
RE_BSN Effective Radius of Drains (mm) 20 40
SDRAIN_BSN Drain Spacing (m) 20 30
DRAIN_CO_BSN Drainage Coefficient (mm) 5 20
LATKSATF_BSN Lateral Ksatfactor 5 1.5
GDRAIN Tile drain lag time (hours) 0 100
TDRAIN Time to drain solil to field capacity (hours 10 50

The other primary calibrated water budget component was evapotranspiration. The Illinois
State Water Survey estimated annual evapotranspiraties\aeioss Champaign County
between 610 and 685 mm. Evapotranspiration was estimated between 610 and 635 mm by

Arnold et al.(1996)and Winstanley et a(2006)for nearby weersheds.

The selection of parameters for calibrating the water budget and the considered ranges were

derived from previous studies as detailed in Table $hese parameters were selected for

manual cali brati on bas e dcatiomoftidserparanetersast al 0s
significant in hydrologic calibration. Further, these parameters were common across Hu et al.
(2007), Ng et al. (2010), and Nair et al. (20

bookended the calibrated valtrom all three studies.

77



Table 3.7: Manual Water Budget Paameters Calibration (Hu et al., 2007; Moriasi et al.,
2012; Nair et al., 2011; Ng et al., 2010)

Parameter Description (units) Min. Max.
CN2 Runoff curve number 60 80

SOL_AWC Soil Available Water Capacity -10% +20%
ESCO Soil Evaporation Compensation Factc .8 1
EPCO Soil Evaporation Compensation Factc 5 1
CNCOEF CN coefficient A 1
ICN Daily CN Calculation Method 0 1

Al t hough Mori asi et al. (2012) achieved Over

and streamflow only considering the parameters in Tald|elge other three studies considered
other SWAT parameters for calibrating str&#flow. While the parameters were not common
across all three, this study incorporated those parameters for an automatic calibration of
streamflow following the manual calibration of significant parameters. Tabla&sents those
parameters and thenges. Again, the considered range included the calibrated range from each

study.

Table 38: Automatic Streamflow Parameters Calbration (Hu et al., 2007; Moriasi et al.,
2012; Nair et al., 2011; Ng et al., 2010)

Parameter Description (units) Min. Max.
GW_REVAP Groundwater Revap Coefficient 0.02 0.1
REVAPMN Threshold depth for revap (mm) 0 500
GWQMN Threshold depth for baseflow (mm) 0 100
ALPHA_BF Basefbw Alpha Factor 0 1
RCHRG_DP Deep aquifer percolation factor 0 1
GW_DELAY Groundwater delay time (days) 0 100
CH_N1 Manning's N for tributary channels 0 0.3
OV_N Manning's N for overland flow 0 0.3
SURLAG Surface lag coefficient A 4
CANMX Maximum Caopy Storage (mm) 0 10
CH_K1 Hydraulic Conductivity for tributary channels (mm/r 0 1

The manual calibration was performed first by varying the selected parameters observing the

resultant water yield. After satisfactorily modeling evapotranspiratidninithe targeted range,
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tile-drained flow greater than 75% of total yield, and total water yield within 10% of USGS

observed levels for the calibration regi@WAT-CUP was used to perform thatomatic

calibrationfor streamflow SWAT-CUP isastandaitbe pr ogram t hat | inks to
text files(Rouholahnejad et al., 2018)nd appl i es al g4 1 BWATEI Ptés f i nd
SUFI2 (Sewential Uncertaity Fitting) (Abbaspouet al, 2004)was applied to the parameter

set SWAT-CUP and SUFR have been applied to watersheds to search for an optimum SWAT
parameter for hydrological procesggbouet al, 2012) In this sudy, 1000simulations were

performed The parameter set values were narrowed according to SBIH suggested ranges

and user judgmeraind rerun to assess for further modeling performance. An optimum and the
uncertainty of the fit was not the focus oiststudy, and the automated procedure served as a
suggestion for parameter set. The suggested
cal i brated val ufeist.6 pFarnaametyer tsheet o6waesstchecked
parameteret. Once a satisfactory hydrologic model was established, the calibration proceeded

with the nitrogen calibration.

3.2.54.2 Nutrient Calibration

This study calibrated the SWAT model for annual nitrate loads observed at the outlet to
guantify water quaty outcomes. For that purpose, the entire nitrogen cycle was considered in
the calibration. A similar procedure of manual and automatic calibration for the nitrogen budget
first and then an automatic calibration of observed nitrate loads was perfofimegignificant

parameters for calibration were derived from Hu et al. (2007) and Nair et al. (2011).

The target ranges of modeled outcomes for the nitrogen budget were derived from David et
al. (2008) and Gentry et al. (2009). David et al. (2008) nealditle nitrogen budget for the

nearby Embarras River watershed using six models, including SWAT, and compared
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performance. Hu et al. (2007) and Nair et al. (2011) both incorporated the ranges for comparing
the performance of their SWAT models as well.ntBget al. (2009) estimated field nitrogen
budgets for the Big Ditch Watershed in E@sntral lllinois. The ranges for the modeled

outcomes are shown in Tabl®3.

Table 39: Estimated Annual Nitrogen Budget in Upper Embarras River Watershed(David
et al., 2008; Hu et al., 2007)

Nitrogen Process (units) Estimate
Fertilizer (Corn) (kg N hd) 183
Nitrate-N Load (kg N ha) 20-50
N2 Fixation (Soy) (kg N ha) 102124
Grain N Harvest (kg N hg 116
Denitrification (kg N ha) 1523
Mineralization (kg N h&) 77-90
Mo del performance was assessed with respect

and performance of Hu et al. (2007) and Nair et al. (2011). Based on the studies, bifdggtn
performance was satisfactory when within 25% of target estimates (Hu et al., 2007), and monthly
flux modeling performance with a NS greater than .5 and percent bias within 70%. Model
calibration prioritized annual load prediction over daily and tinlgn The annual load prediction

was used as an input for the coupled analysis, and the nutrient budgets were used to ground the

model in estimated ranges.

Manual calibration focused on denitrification and mineralization along with parameters. The
paraméers and ranges are shown in Tablé®3.Calibrated values were informed by Ng et al.

(2010), Hu et al. (2007), and Nair et al. (2011).
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Table 3.10: Manual Denitrification Parameters Calibration (Neitsch et al., 209)
Parametel Description (units) Min.

Max.
SDNCO Denitrification threshold water content 0.01 2
CDN Denitrification exponential rate coefficient 0.001 3
CMN Humus minealization of active nutrients N/F 0.0001 .01

Automatic calibration was used foitnate load, soybean fixation, and grain nitrogen harvest.
The parameters comprised of the union of nitrogen parameters considered in Hu et al. (2007),
Nair et al. (2011), and Ng et al. (2010). Tablelahows the parameters and range of values

consideed. The ranges were constrained based on the calibrated values in three studies.

Table 3.11: Automatic Nitrogen ParametersCalibration (Hu et al., 2007; Nair et al., 2011,
Ng et al, 2010)

Parameter Description (units) Min.  Max.
N_UPDIS N uptake distribution parameter 1 70
RSDCO Residue decomposition coefficient .03 .09
NPERCO Nitrate Percolation Coefficient .01 1
ANION_EXCL Fraction of porogy from which anions are excled A A4
CMN Humus minealization of active nutrients N/P 0.0001 .01
CNYLD (Corn) Fraction of N in harvested biomass [(kg N/kg seed) 0.011 0.015
BN1 (Corn)  Fraction of N in plant at emergence [(kg N / kg bioma: 0.011 0.015
BN2 (Corn)  Fraction of N inplant at .5 maturity [(kg N / kg biomass 0.03  0.07
BN3 (Corn)

Fraction of N in plant at maturity [(kg N / kg biomass' 0.011 0.015
CNYLD (Soy) Fraction of N in harvested biomass [(kg N/kg seed) 0.04  0.07
BN1 (Soy) Fraction of N in plant at emergenigkg N / kg biomass)] 0.04  0.07
BN2 (Soy) Fraction of N in plant at .5 maturity [(kg N / kg biomas 0.038  0.06
BN3 (Soy) Fraction of N in plant at maturity [(kg N / kg biomass' 0.01  0.03

Automatic calibration was performed iteratively to maximizepge¢&ormance of modeling
observed monthly nitrate loads (NS>.5) and minimize error in predicting total annual loads

(<25%) using SWATCUP. After each set of 1000 iterations, the nitrogen balance was checked

and parameters adjusted to achieve budget essmat

81



Once nitrogen modeling targets were reached, the similar SWAT nutrient parameters relevant
for phosphoroug¢Neitsch et al., 2009)ere selected and calibrated in the same manner. The

nutrient generic paramegeRSDCO, ANION_EXCL, and CMN were not calibrated further.

The target ranges of modeled outcomes for the phosphorous budget were derived from
Mallarino et al. (2011and Gentry et al. (2007). David et al. (2008) niead the phosphorus
loadings for the nearby tHdrained Embarras River watershed and two other lllinois watersheds.
Mallarino et al. (2011) measured phosphorus removal in corn and soybean harvests across 11
sites in lowa. Further, the lllinois Agronoriiandbook provided estimates for phosphorus
removal (Hollinger & Angel, 2009). The phosphorus budgets targets were derived from these

three studies as shown in TableZ.1

Table 312: Estimated Annual PhosphorusBudget in Upper Embarras River Watershed
(Hollinger & Angel, 2009; Mallarino et al., 2011; Gentry et al., 2007)

Phosphorous Budget (units) Estimate
Fertilizer (Biannual) (kg P h% 64
Dissolved Reactive P Load (kg N'Ha .30-.80
Grain P Harvest (kg N ha 52

The related parameters for @phorus as with nitrogen were considered in the automatic
calibration. The values were derived from the SWAT Theoretical Handbook as shown in Table

3.13 (Neitsch, 2009).
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Table 3.13: Automatic Phosphorus Parameter<Calibration (Neitsch, 2009)

Parameter Description (units) Min. Max.
P_UPDIS Phosphorus Uptake Distribution Parameter 0 100
PHOSKD Phosphorus Soil Partitioning Coefficient 100 200
PSP Phosphorus Sorption Coefficient 0 1
PPERCO Phosphoru®ercolation Coefficient 10 17.5

CPYLD (Corn) Fractionof P in harvested biomass [(kgkB seed)] 0.003 0.004
BP1 (Corn)  Fraction of An plant at emergence [(K®/ kg biomass)] 0.0035 0.006
BP2 (Corn)  Fraction ofP in plant at .5 maturity [(ké& / kg biomass)] 0.0006 0.003
BP3 (Corn) Fraction ofP in plant at maturity [(kgP / kg biomass)] 0.0004 0.0028

CPYLD (Soy) Fraction ofP in harvested biomass [(Kkg seed)] 0.0062 0.0072
BP1 (Soy) Fraction ofPin plant at emergence [(K/ kg biomass)] 0.006  0.009
BP2 (Soy)  Fraction ofPin plant at .5 matutty [(kg P/ kg biomass)] 0.0025 0.005
BP3 (Soy) Fraction ofP in plant at maturity [(kd?/ kg biomass)] 0.0025 0.005

3.2.54.3 Crop Yield Calibration

Crop yield calibration was similarly informed by past studies. Crop yields were calculated
from SWAT output as performed in Srinivasan et(8kinivasaret al, 2010) The leaf area
index parameter for corn and soybean was set to according to Nair et al. (2011), Ng et al. (2010),

and Hu et al. (2007) and ncalibrated further as shown in Table4.1

Table 3.14: Inputted Crop Yield Parameters (Hu et al., 2007; Nair et al., 2011)

Parameter Description (units) Value
BLAI (Corn) Leaf Area Index 5
BLAI (Soy) Leaf Area Index 4

Finally, only the harvest index (HI) and bioenergy utilization rate (BIO_E) parameter for
corn and soybeans was used to manually calibrate crop yields within 10% of observed values as

a performance target as shown in Tablé3All other parameters were set to the default in the

SWAT Theoretical DocumentatidiNeitsch et al., 2009)
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Table 3.15: Manually Calibrated Crop Yield Parameters(Hu et al., 2007; Nair et al., 2011)

Parameter Description (units) Range

HI (Corn) Harvest Index A48-.52

HI (Soy) Harvest Index .28.33
BIO_E (Corn) Biomass/Energy Ratio ((kg H(MJ/m?)) 3545
BIO_E (Soy) Biomass/Energy Ratio ((kg H(MJ/m?)) 20-30

3.2.6 Model Results
Table 3.5 shows the parameter values from the calibration procedure. Each environmental

outcome modeling results and performance are presented in the section.
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Table 3.16: Calibrated Parameter Values

Hydrologic Parameters Nutrient Parameters

Parameter Value Parameter Value
CN2 70.1 SDNCO .95
SOL_AWC -12.6% CDN .013
SOL_K -30.4% N_UPDIS 29.9
DEP_IMP 1724 NFIXMX 1.05
ITDRN 1 RSDCO .20
IWTDN 1 NPERCO 0.89
DDRAIN 1072 ANION_EXCL .091
TDRAIN 40.25 CMN .0005
GDRAIN 1 P_UPDIS 20.20
ESCO .9 PSP .048
EPCO 71 PHOSKD 169.5
CNCOEF 43 PPERCO 10.04
ICN 1
GW_REVAP .017 CNYLD (Corn) .0146
REVAPMN 1 BN1 (Corn) .0405
GWQMN 1 BN2 (Corn) 0151
ALPHA BF .684 BN3 (Corn) .0154
RCHRG_DP .01 CNYLD (Soy) .064
GW_DELAY 39 BN1 (Soy) .0319
GW_SPYLD .01 BN2 (Soy) .0168
CH_N1 .035 BN3 (Soy) .0166
OV_N 101 CPYLD (Corn) 0016
SURLAG 1 BP1 (Corn) .004
CH_N2 .062 BP2 (Corn) .003
IWQ 0 BP3 (Corn) .002
RE_BSN 20 CPYLD (Soy) .0101
SDRAIN_BSN 22000 BP1 (Soy) .007
DRAIN_CO_BSN 10.75 BP2(Soy) .004
LATKSATF_BSN .989 BP3(Soy) .003

Crop Yield Parameters

Parameter Value
HI (Corn) 5
HI (Soy) 31
BIO_E (Corn) 39
BIO_E (Soy) 22

PHU (Corn) 1800

PHU (Soy) 1800
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3.2.6.1 Hydrologic Model Results
Table3.17 shows the model results for the water budget over the eryear8eriod (1995
2012, 10 years of warup). Tiledrained flow comprised 84% of total water yield, surface

runoff 6%, and lateral and groundwater flow 10%.

Table 3.17: Average Annual Water Balance SWAT Model (20052012)

Average Annual Water Budget Component Value (mm)
Total Water Yield 365.6
Tile-drained Water Yield 306.7
Surface Runoff Yield 22.3
Lateral and Groundwater Yield 36.5
Average Evapotranspiration 650

Figure 3.B shows the calibration and validation region for the water balance. The total
water yield percent bias for the calibration and validation regions was +2%. The percent bias for
the calibration period achieved targeted performas&88), but resulted in ovesstimation of
flows for the validation region (+12%). The percent bias exceeded the target 10% because of the
calibration region selection included the wet years of 2008 and 2009. The calibration
sufficiently modeled flows for the wet years, but essdi®d a bias for large flows that was
evident in overprediction for dry and normal years in the validation region. Over prediction was
particularly evident in 2012, which was an extreme drought year. According to lllinois State
Water Survey, precipitatiowas 243 mm below the 198D10 average, and 30% of lllinois was
in severe drought, and 36% of lllinois was in moderate drouigjhb{s State Water Survey
2013. Other water budget modeling targets were met: evapotranspiration, surface-and tile

drainal partitioning were modeled within 10% of targeted estimates.
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Figure 3.13: Observed and Simulated total and tiledrained yield (NOAA, 2012; USGS,
2012a)

Figures 3.14 and 3.15 show improvement in moddbpm@ance across daily and monthly
time scales. Infrequent large peak daily flows are persistently underestimated, while the more
frequent medium and low flows are predicted well. Modeled monthly flows were predicted well

across seasons. Table&provides the statistical improvement for modeling flow across time

scales; the modeling objectives were met.
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Table 3.18: Flow Model Performance

Time Period Daily Monthly
NS R? PBIAS NS R? PBIAS
Calibration 20072010 041 045 -2.40% 063 067 -2.60%

Validation 200506, 201112 0.24 046 13.80% 0.69 0.74 14.50%

FI ow modeling was Overy goodd with respect t
Sutcliffe greater than . 5. The results are
.85 for validation and69 for calibration). Annual flow was predicted within a percent bias of
10% across the entire simulation (+2%), with an overprediction in the validation region due the
choice of two wet years in the calibration region. Figure8 &ntl 3.7 show therelationship of
observed and simulated daily flows with respect to the 1:1 line (perfect correlation). The

underestimation of large daily flows is evident, with an improvement on the monthly scale.
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The calibrated model underpredicted infregfudaily peak flows, while overpredicting the
more frequent low flows. The overprediction of the model during the dry days is responsible for
the bias below the 1:1 line. With all other water budget benchmarks satisfied, this overprediction
of more freqent low flows and underprediction of peak flows may be related to the tile drainage
flow hydrograph as related to the uniform drainage system design. Modeling higher daily peak
flow during wet periods would lower flows for drier periods, bringing theetation closer to
alignment. Also, the choice to calibrate solely on monthly and annual flow components pre
selected away from modeling daily outcomes. The broaderstale was selected because it
would be used in the coupled analysis, and therefprsaty was placed on monthly and
annual prediction. Figures 8and 3.D show the correlation of observed and simulated
monthly flows and how the underprediction of peak flows and overprediction of low flows was

less evident on a broader tireale.
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Model ed fl ow outcomes in this study were con
flow events. The selection of a tile drain depth of 1072 mm was shallower than comparable
studies, in addition to the use of new tile drainage routingee 2012 SWAT release. A depth
of 1072, spacing of 22 meters, and drainage coefficient of 10.75 mm would be classified between
6average and good drainage6 for Silty Clay an
Guide, and may not be uniformigue for the watershed. The depth was shallower than the
values in Hu et al. (2007) (1100 mm) and Ng et al. (2010) (two estimates of approx. 1200 mm).
A deeper drain would deliver larger single event loads, leaving less water for low flow longer
durationperiods.
3.2.6.2 Nitrate Model Results

Table 319 shows the modeled annual nitrogen budget components. Percent bias is reported

were modeled values were outside of targeted ranges.

Table 3.19: Average Nitrogen Balance SWAT Model (2002012)

AverageAnnual Nitrogen Budget Value Estimate PBIAS
Component (kg N/ ha) (kg N/ ha)

Nitrate-N Load (total) 23.4 20-50 -
Nitrate-N Load (surface) 1.7 - -
Organic N 1.4 -
Nitrate-N Load (subsurface) 21.7 - -

Mineralization 71 77-90 -8%
N2 Fixation 96 84-104 -

Grain N Harvest 123 116 6%
Denitrification 16.6 1523 -

Nitrogen budgets were all modeled within 10% of targets. Hu et al. (2007) reported
overestimation of nitrogen fixation (176 kg N'‘haalthough Hu et al. (2007) did not calibrate
intermedate nitrogen uptake parameters, and did not employ the maximum nitrogen fixation
parameter. In addition, Hu et al. (2007) reported an overestimation of harvested nitrogen in

yield. This calibration focused on fixing nitrogen budget parameters and trehisg other
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parameters which resulted in a closer fit for the budgets. Nitrate modeling results are shown on

daily, monthly, and annual time scales in Figur&938.3.23. Performance statistics are shown

in Table 3.D.
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Figure 3.20: Modeled andobserved annual cumulative nitrate loadgUCSD & UIUC -
NRES Biochemistry Group, 2013
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Figure 3.21: Modeled and observedannual cumulative Nitrate -N loads (annual totals)
(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.22: Modeled and observed monthly Nrate-N loads(NOAA, 2012;UCSD &
UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.23: Modeled and observed daily Mrate-N loads (NOAA, 2012; UCSD & UIUC-
NRES Biochemistry Group, 2013USGS, 2012a)

Table 3.20: Nitrate -N Model Performance
Time Period Daily Monthly Annual
NS R? PBIAS NS R? PBIAS PBIAS
Calibration 2008010 0.24 0.56 -17.8% 0.73 0.80 -154% -14%
Validation 20112012 0.55 0.87 18.0% 0.60 091 23.0% +16%

Nitrate modeling prioritized forecasting annual loads and accurately representing the nitrogen
budget. Nitrogen budgets were all modeled within 10% and annual loads within 25%. On a
mont hly scale, nitrate modeling performance
BIAS < 70%) with respect to Moriasi et al. (2007), and exceeded performance in Hu et al. (2007)
(.2 for calibration, and .31 for validation). Even daily modelindgggenance were comparable to
Moriasi et al . o6s (2007) 4amdb3a5shol the relagionshipmar k s .

between observed nitrate loads and modeled loads with respect to perfect correlation (1:1 line).
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Figure 3.24: Correlation between nodeled and observed monthly Nrate-N loads
(calibration) (NOAA, 2012;UCSD & UIUC-NRES Biochemistry Group, 2013USGS,
2012a)
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As figures 322 and 323 show there was an overestimation of high nitrate loads. As with
flow, the selection of the calibratiorgion was a significant factor in performance. There was a
high flow, high load event in May 2009 that the calibration procedure consistently overpredicted.
SWAT overestimated the nitrate load for that month by 20%. It was determined during the
calibraton procedure that this load could not be modeled sufficiently while meeting overall
nitrogen budgets and total annual load was prioritized for 2009 instead. The overestimation
could have been related to the assumption of universal fall applicationilcfder Some
application of spring fertilizer in the watershed prior the high flow event would have contributed
to |l ess |l eaching in the spring months and mor
the event and improve performance, and tlee&ling phenomenon persisted in the validation

region, with further overpredictions of high nitrate loads. This calibration decision to prioritize

annual prediction was confirmed in the valida
respecttoMorias et al . (2007): even daily performanc
recommendations.

Nitrate concentration was not incorporated into the calibration procedure because SWAT
does not provide it as a direct output on a monthly or annual timéNsépch et al., 2009)
Figures 3.8 and 327 show the results of the load divided by the volume of flow for that time

period performed after the calibration.
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Figure 3.26: Modeled and observed monthly Mrate-N concentratons (NOAA, 2012,
UCSD & UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.27: Modeled and observed annual Nrate-N concentrations(NOAA, 2012;UCSD
& UIUC -NRES Biochemistry Group, 2013USGS, 2012a)

99



Monthly concentrations were modeled with a percent bia3.4%6, NaskSutcliffe of-.13,
and R of .21. Annual nitrate concentrations were modeled with a percent bias of +7%. Annual
concentrations arutilized in the coupled analysis as a measure of water quality.

Table 3.21 shows the modeled annual phosphorus budget components. Percent bias is

reported where modeled values were outside of targeted ranges.

Table 3.21: Average Dissolved Reactive Pho$iorus Balance SWAT Model (20052012)

Average Annual Phosphorus Value Estimate PBIAS
Budget Component (kg P/ ha) (kg P / ha)
P Load (total) 548 511 -
DRP Load 354 3.8 -
Grain P Yield 38 52 -27%

Total phosphorus and dissolved reactive phogghbudgets were all modeled within 10% of
targets. Harvested phosphorus in grain could not be raised sufficiently to meet the targets, while
still meeting the targeted range of phosphorus at the outlet. Figu8ds3®31 show the daily,

monthly, andannual modeled phosphorous loads. Table 3.22 shows the modeling performance.
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Figure 3.28: Modeled and observed annual cumulative dissolved reactive phosphorus loads
(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.29: Modeled and observed daily cumulative DRP loads (annual total§NOAA,
2012;UCSD & UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.30: Modeled and observed monthlyDRP loads (NOAA, 2012;UCSD & UIUC-
NRES Biochemistry Group, 2013 USGS, 2012a)
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Figure 3.31: Modeled and observed daily DRRoads(NOAA, 2012;UCSD & UIUC-NRES
Biochemistry Group, 2013 USGS, 2012a)

Table 3.22. Phosphorus Model Performance

Time Period Daily Monthly Annual

NS R? PBIAS NS R? PBIAS PBIAS

Calibration 20082010 0.05 0.12 -32.8% 0.35 0.71  7.9% -20%
Validation 20112012 -0.28 0.02 -25.2 -0.42 0.16 25.2% 13%

Daily and monthly phosphorus modeling performance did not meet targets. Large monthly
phosphorus loads were over predicted, and individual large day loads were missed or
underpredicted. While daily and monthly loadsre not predicted well, annual loads were
prioritized for modeling, meeting 25% percent bias targets. FiguraeaB8d3.3 show the

correlation between observed and simulated loads.
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Figure 3.32: Correlation between modeled and observed monthly DRP &als (calibration)
(NOAA, 2012;UCSD & UIUC-NRES Biochemistry Group, 2013USGS,2012a)

e Simvs. Obs (Val)

1-to-1

=) . .
2,5000 | |eeeeeens Linear (8im vs. Obs (Vi)
kS
S
= 4000
[ad
o
=3000 | o
= o 7~ -
s e
S2000 | e
& e
s | & o
21000 | og.®
£ _.‘.0'\ ° y = 0.4623x + 673.24
o .g' R2 = 0.1647

0

0 1000 2000 3000 4000 5000

Observed Monthly DRP Load [kg]

Figure 3.33: Correlation between modeled and observed monthly DR®ads (validation)
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As figures 3.30 and 3.31 show there was an overestimation of high phosphorus loads while
underestimation of low phosphorus loads. While, this could not be remediexiaalibration,
the procedure instead prioritized annual loads (within 20%), after no further improvement could
be achieved. The undperformance may have been improved by calibrating phosphorus before
nitrate and selecting for phosphorus targets, litdata was prioritized. In addition, phosphorus
loadings for the Rantoul Sewage Treatment plant were only available for 2012. Incorporating
measured loadings from the Rantoul plant may have improved performance for years outside of
2012. The tile drairge calibration also constrained the ability to improve phosphorous
modeling performance. Tile drainage was calibrated for water budgets and then not considered
for phosphorous. Increasing surface drainage tends to increase phosphorous loss (Skaggs, 1994)
As a result, implementing drainage across 80% of the study area and partitioning 84% of flow
into tile drainage would | imit phosphorous | o
underestimation. Further, the surface drainage parameters iemoosidered during the water
budget calibration.

As with nitrate concentration, phosphorus concentration was not incorporated into the
calibration procedure because SWAT does not provide it as a direct output on a monthly or
annual time step. Figures3d.and 3.5 show the results of the load divided by the volume of

flow for that time period performed after the calibrat{deitsch et al., 2009)
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Figure 3.34: Modeled and observed monthly DRP corentrations (NOAA, 2012;UCSD &
UIUC-NRES Biochemistry Group, 2013USGS, 2012a)
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Figure 3.35: Modeled and observed annual BP concentrations(NOAA, 2012;UCSD &
UIUC-NRES Biochemistry Group, 2013 USGS, 2012a)
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Monthly phosphorus concentrations were modeled with a percent bias of 70.6%, Nash
Sutcliffe of-3.06, and Rof .16. Annual nitrate concentrations were modeled with a percent bias
of -30%. Annual concentratiorse utilized in the coupled analysis as a measure of water
quality.
3.2.6.3 Crop Growth Model Results

Figure 3.8 shows the crop yield model results. Annual crop yields were modeled within

10% percent bias: 3% for corn, and 1% for soybeans.
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Figure 3.36: Modeled and observed annual crp yields (USDA-NASS, 2012)

Performance benchmarks were achieved despite poorly predicting the 2012 drought yield.
The model overpredicted the yield by 72%. Corn yield modeling peaioce was6% without
considering 2012 yields. The 2012 overprediction could have been related to the overprediction
of water yield in 2012, and consequently more water available for plant uptake. The calibration

decision not to modify additional cropnaaneters could have addressed plant water uptake

106



processes, but possibly adversely affecting the more frequently observed yields. The decision
was made to treat 2012 as an exception, and to prioritize the modeling of the other years.
3.2.7 SWAT Model Cortlusions

SWAT model performance met or exceeded Osat.
low-flow periods during the summer and one high nutrient load in 2009 affected performance
measures. Calibration decisions including a deep drain to constrélouilpartitioning, and
uniform fall fertilizer application may have affected performance. Water budget, nutrient
budgets, and crop yield model performance are met target benchmarks to facilitate a coupled
analysis. These model constraints accuratelyesgmted observed environmental outcomes and
sufficiently characterized watershed phenomena with a few exceptions. Notably, firer time
scale modeling of phosphorous may have been undermined by the calibration procedure to
address phosphorous last and latkewage loading data. In addition, the extreme drought year
of 2012 was modeled poorly and could not be accounted for in the calibration procedure without

adversely affecting the performance of more frequent yield outcomes.
3.3 Modeling Best Manageent Practices

3.31 Overview

While lllinois producers have a wide variety of management options and techniques to
operate their businesses and improve land stewardship, this study focuses on three potential
strategies for analysis: rye cover croppingjrtige water and nutrient management. Research
has shown that these conservation practices are suitable for the region and effective measures for
improving water quality in Midwestern watersheds (Upper Salt Fork Project Report and Status

Update, 2011). Tdninstallation, effectiveness, and economics of these conservation strategies
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are well documented in the regi@@ooke et al.2001; Li et al., 208; Randall & Vetsch, 2005;
St. John & Ogle, 2008)
3.32 Rye cover cropping

Cover crops are small grain or legume crops that are planted in early fall to protect and
improve water quality during the winter months. Planting cover crops has beem tehcut
fertilizer costs, reduce the need for herbicides and other pesticides, improve yields by enhancing
soil health, prevent soil erosion, conserve soil moisture, protect water quality, and help safeguard
personal healt(Sustainable Agriculture Network, 2007Jhe use of falplanted cover crops
crops can affect the water balance, reduce the sail N@vel, and provide residue cover on
agricultural fields that are normally fallow betweemsner cropgFeyereiseret al, 2006; Li et
al., 2008; Singeet al, 2011) Studies show that the phosphorus and nitrate leaching reduction
achieved by cover cropping rges between 0% and 50% (Villamil et al., 2006; Logsdon et al.,
2002). Cover cropping has been shown to not affect yield with nitrogen application rates above
80 Ibs/acre, but may decrease yields below that threshold (Li et al., 26a8¢ntral lllinois
potential cover crops are winter rye, winter wheat or hairy vetch. A producer must invest
additional time, resources, and labor to successfully achieve the benefits of cover cropping.
3.33 Nutrient Management

Timing of fertilizer application can hawesignificant impact on nitrate export and economic
benefit. Studies show that nitrogen utilization is greater, nitrate export is lower, and economic
return is greater with spring application versus(@hndall & Vetsch, 2005; Vetsch & Randall,
2004) Producers consider fall application because of equipment availability and lower input
costs. However, it has been demonstrated that more nitrogen is available for plant uptake, and

there isless time for denitrification and leeching to occur the nearer fertilizer is applied to
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planting(Foxet al, 1986) Randall & Vetscl{2005)estimated the reduction in nitrdtsses at
17% in an 8 year study in Minnesota and increased yields by as much as 7%.
3.34 Drainage Water Management

Drainage water management is the use of a control structure to vary the depth of the drainage
outlet. The depth is raised followingriiast to limit flow and nutrient leaching during the-off
season. The depth is then lowered previous to spring operations, and then raised again to
potentially store more water during the dry summer months. Drainage water management
(DWM) has been showm treduce water flow and nitrate losses through drains by as much as
50% on the long term (25 years) (Thorp et al, 2008). Phosphorous reductions can be as much as
35% (Skagss et al., 2010). In addition, yields have been shown to increase by as mugh as 5%
Midwestern watersheds, when precipitation levels are sufficient and drains flow for a long time
after planting (Frankenberger et al., 2006). These watersheds would allow for greater water

storage through management.
3.4 BMP Representation in SWAT

3.4.1 Overview

Section 3.2 details how SWAT was initialized to model and predict the hydrology, nutrient
loads, and crop yields for the watershed. This study sought to employ this model facilitate an
analysis of management decisions in the watershed.adéament decisions chosen for the
analysis included: performing winter cover cropping, and switching fertilizer application to the
spring, and managing the water table depth. The set of management decisions to include was
based ors WA T 6 s-in lunciiohdities, methods to extend them, and surkesultsof
pr oduc er sfdhese di@atpgies iwthe waterstiggper Salt Fork Project Report and

Status Update2011). SWAT provides an extensive and customizable set of configuration files
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for simulding many different agriculturahanagement practicef®rainage water management,
fertilizer applications and timingnd croppinglecisionsare provided through existing SWAT
functionality (Neitsch et al., 2013)
3.42 Rye Cover Cropping

Incorporating a winter cover crop has been shown to reduce nitrate leeching in Midwestern
cropping systemfLi et al., 2008; Singer et al., 2011Vinter cover croppingéds up nitrogen
during times of the year when corn and soybeans are not growing and taking up nutrients and
water(Kasparet al, 2007) The SWAT management (.mgt) file was used to add rye cover
cropping operationsRye cover cropping was implemented in SWAT by moving up
corn/soybean harvest operations and inserting a rye planting operation by OctbtoecdrBply
with NRCS conservation practices requiremélaea Learning Farms & Rctical Farmers of
lowa,2011) The following spring, a kill operatiol
planting as outlined in rye cover cropping operation mar(&aistainable Agriculture Network,
2007) The management file was also used to apply ainpatted fertilizer reduction for a
cover cropping year. The usaputted fertilizer reduction amount was based on cover cropping
manuals estimate that ceregd rcan add 60 Ibs/acre of nitrogen to a fi@dstainable

Agriculture Network, 2007)
3.4.3 Nutrient Management

The management (.mgt) file was also used to switch fall application to sprimpjicaion

date was at least two weeks before corn planting, centered aroundsPawilriiHu et al. (2007).
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3.44 Drainage Water Management

The operations (.ops) file was used to raise and lower the depth to the tile drain by entering a
new operatia for each depth change. To implement drainage water management for any year,
the depth of the drain was raised from the default 1072 mm to 152.4 mm on Novefhlver 30
the preceding year. The tile was lowered to the default 1072 mm on M&ialaid&do 304.8
mm on June®, and then returned to 1072 on Septemb#&r TEhis configuration ensured that all
field operations (planting, tillage, fertilizer) were performed with the drain at default depth. The
protocol was adapted from university extensaod previous studidg\le et al, 2009;

Frankenberger et al., 2006; Thatpal, 2008)
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CHAPTER 4

METHODS i HUMAN SYSTEMS MODEL

4.1 Introduction

This study interfaced natural and human systems model to assess environmental outcomes
with respect to economic performance and agricultural stakeholder detialong. Chapter 3
documented the naturaystems model implementation in the Soil and Water Assessment Tool
(SWAT). The modeling of environmental outcomes including crop yield, niasnd
dissolved reactive phosphorous along with a suite of three Best Management Practices (BMPSs)

were presented in Chapter 3.

Modeling of environmental outcomes alone is notisigft for identifying coseffective and
impactful conservation strategi@sejadhashemet al, 2011) Any analysis must consider the
motivation and behavior of human entities to form useful conclusionsanAlysis must also
address societal, economic motivations of stakeholders to assess the adoption and effectiveness
of conservatiorfNowak & Korsching, 1998) This study formulated a model to incorperat
these considerations. The output from SWAT in Chapter 3 was coupled with a-Bystems
model to form conclusions about the adoption of the BM&sservation policy initiatives,

environmental and economic impact (Figure 4.1).
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Coupled Natural-Human Systems Modeling in Agriculture

Econamic
Prices
Costs

Institutional A

Adoption Costs
Incentive Schemes
Tanes

Owner profile

HRU Decision
Model
Corn or Soybeans

Socioeconamic
Model
Income

BMP Perceptions

- Crop Decision

- Winter Cover
Crop

- Nutrient

Monogement

- Drainage Woter

Monagement

Environmental Phivsical
Precipitation Elevation
Temperatura Land Cover

Soil Properties

SWAT
Water cycle
MNutrient cycle
Crop Growth

Agricultural Management
|

Mitrogen
Crop Yield
Phosphorous

BMP Adoption
Average Farm Income
Average Crop Yield
Government Budget
Nitrogen
Phosphorous

Matural Systems Model

[=]
El Human Systems Model
S

Initial Model Inputs

Figure 4.1: Coupled Natural-Human Systems Model (Chapter 3)

This chapter details the development of the husyatems model: the procedure, algorithm,
calibration, and scenario test design. The model was implemented using the technique of agent
based modeling. First, the appoh of agenbased modeling is discussed. The chapter proceeds
with the parameterization of the model and presents its development using guidelines from past

studies for agerbased. Then the logic and progression of the model is presented. Follosving th

outlining of model logic, the rationale for initial model parameters values and then the

calibration procedure is presentethe calibrated baseline results are presented along with the

formulation of default input values for performing an analysisifiér@nt model scenarios.

Finally, the calibrated model is used to perform a scenario analysis to answer the questions about

environmental impacts related to economic outcomes and policy instruments.
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4.2 Agentbased modeling

4.2.1 Introduction

Agentbase modeling (ABM) simulates the behavior of actors (agents) in a population and
the interactions among actors within a specific environrg@itibert, 2007) In an agenbased
model, behavioral rules of individual ageatwd their interactions are established and enacted
within the environmenfKanta & Zechman, 2010)The system evolves according to agent
behavior. The model can be tested to form conclusions and better understahatitreship
between agents and their role in the environment. The applications are broad and span many
disciplines; ABMs have been used to model predatey relationshipgMock & Testa, 2007)
electricity marketgCirillo, 2006), and agricultural practice adopti@dg et al, 2011)as
discussed in Chapter 2. With the diversity of applications, there is a great flexibility in ABM
modeling.
4.2.2 Agent-based model development

Macal and North (2010) characterized the development of -bgeed models and their
conclusions provided the framework for the ABM in this study. This study adopted Macal and
Northdos (2010) gener atloutinedeap.s f or model develo

1. Identify the agents angkt a theory of agent behavior

2. ldentify the agent relationships and get a theorggeit interaction

3. Get he requisite agentlated data, initialize agents

4. Validate the agent behavior models (in additiothemalel as a whole)

5. Run the model and analyze the output fromstla@dpoint of linking the micrscale

behaviors on the agents to the mascale behaviors of the system.
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The resultant Macal and North (2010) model had three elements: agents, environment, and
relationships. Agents were selbntained, autonomous, social, adaptive, and-goahted. The
environment defined information about the placement and surroundings of agents. Relationships
governed the behavior of agents with their environment andeeéch e r . Macal and N
(2010) general model development steps and model components form the structure of this
chapter. I n addition to Macal and Northos (2
necessary for development as described by K&rtachman (2010): tedown, and bottorup
data. Topdown data described the overall performance of the system and hgitdata
governed the behavior of individual agents. In this studygdtypn data types (macro) included:
nitrogen at the outlet, phdsprous at the outlet, average crop yields, and crop prices. Bafitom
data types in this study included: farmer acreage, soil productivity, and the amount of BMP costs

shared by the community.
4.3 Agentbased model development

4.3.1 Agents

Macal and Nah (2010) recommend first identifying agents and data in the development of
an agenbased model. The ABM in this study defined two agents: a farmer agent and a
community agent. The farmer and community agent exist in the watershed study area. The
farme agent represented a typical agricultural producer in the watershed. The community agent
conceptually represented societal and government institutions. The next step in developing the
agentbased model was to establish a theory of behavior for thesageahia method to
parameterize that theory. Each agentdés theor

the model parameters used to govern their behavior.
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4.3.1.1 Farmer Agent

The theory of farmer behavior in this study was based on stoidi@smer priorities and
motivations. Each farmer makes decisions abo
behavioral theory is to operate to maximize t
their land and continue the farming wayliéé (Ohlmeret al, 1998) This primary goal
encompasses motivations and priorities: economic profitability, environmental stewardship,
social achievemer{Brodtet d., 2006; Walter, 1997)Walter (1997) describes these values in
four images of the successful lllinois farmer: sustainer of land resources, analytical operator,
long-term business manager, and exemplary agrariastijfe member. Similarly, Brodt (26D
formed three categories of the motivations of farmers: environmental stewardship, production
maximization, and networking entrepreneurship. These common themes of economic
awareness, social responsibility, and environmental stewardship form theobéisesfarmer
agent. In addition, farmer behavior is dependent on their time engaged with a piece of land
(Brodt 2006). Producers make different economic investments and dstiasad on the
duration farming one piece of land and their anticipated tioméinuing to farm that lan(Hoag
et al, 2012) The farmer agent was parameterized to reflect these motivations: sociability,
environmental awareness, economic awareness, and farming time hdrzomorporateltiese
themesdnto the development of the ABM, each farmer agesdparameterized with measures
of thesemotivations(Table 4.1). A farme® social networlconsisted of nearby producers
within a specified distanceThelist of neighborsvasbased on thaiserinputted geographic
distance. All neighbors that were locatedhvi a userdefined distance wellded to the list.
The farmer agent parameters were initialized according to Section 4.3.4 to include diverse farmer

behavior across the watershed.eT™alculations foanticipateccropyields and BMP opinions
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used for making management decisiarsdocumentedn Section 4.3.2.The feasible ranges of
S, E, and M, were establishedadjustarandom variable that tested the likelihood of
management destons as detailed in Section 4.3.Zhese parameters were employed to weigh
outcomes and facilitated increasing or decreasing the likelihood of making one management

decision or another.

Table 4.1: Farmer Agent parameterization

Parameter Description(units) Range
3 31 AEAAE] EOU o p
% %l OEOT TN xAA@RAITA O P P
- AT 1T TMIxEAMOAT AOO p P
C &AOi4fEQ(A OEURR OO
$ &AOI. RE CEAISERIOAAN A

The modelparameterization was not necessarily a metric by whichatke judgmets about
typical EastCentral lllinoisproducers, but a meansfaxilitateand affectistinctagent behavior
and as outlined in Macal and North (2010) for defining agents. Farm decrs&mg may
involve many different strategies and combinationthese priorities, and these parameters were
used to express that diversity in agents, not as a commentary on the personalities of area
producers.

Macal and North (2010) recommestiocating and incorporating practical data
parameterizing agentsn this study, farmer agepirameterization with respectéoconomic
behavior was derived from studies on the financial structure and performance of typical lllinois
farms. The economics of each farmer agent were represented by annual net return basis for corn
and soybean production in Central lllinois as reported in the lllinois Farm Management
Handbook (Table 4.2UIUC-ACES, 2012)
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Table 42: Central Illinois Farm Returns 2005-2012 (UIUC - ACES, 20032012)

High Productivity Low Productivity
Year Corn Net Return Soy Net Corn Net Return Soy Net
($/acre) Return ($/ace) Return
($/acre) ($/acre)
2005 15 -9 -33 -22
2006 86 3 79 -3
2007 298 161 253 142
2008 158 52 139 66
2009 -90 1 -54 15
2010 201 144 121 118
2011 241 81 175 98
2012 174 79 144 102

The Handbook provided estimates for all costs, revenues, andsré&uhigh and low

productivity farms. The ABM grouped the cost data (fertilizers, grain handling, machinery,
labor, interest on debt, power, repairs, disaster insurance) and revenue data (crop, government
payments, offarm, investments, insurance) frahre Handbook into an annual performance (net
return). In this manner, the ABM abstracted costs like labor and insurance to facilitate an

analysis of returns with respect to BMP installations.

Farmer agent net returns were implemented in the ABM withez#st at the beginning of

the year for planning, and then calculating actual returns at the end of a year (Table 4.3).

118



Table 43: Farmer Agent Economic Rarameterization

Parameter Description[units]
i year

9 E Farmer Observed Yields (year) [bu/ac

9 E FarmeN e i g h ®bserveddYields (year) [bu/ac]
&9 E Farmer Forecasted Yields (year) [bu/ac]

0 E Farmer Observed Revenue Per Yield (year) [$ / bu
&0 E Farmer Forecasted Revenue Per Yield (year) [$

# E Farmer Observed Cost Per Yield (year) [$ / bu/ac
&# E Farmer Forecasted Cost Per Yield (year) [$ / bu/e

) E Farmer Observed Revenue (year) [$]
&) E Farmer Forecasted Revenue (year) [9$]

Returns were calculated by multiplying bytrevenue per unit yield less the cost per unit yield

by the yield, less BMP and policy costs (Equation 4.1), which are introduced in 4.3.3.

YE 9EzZOQ0E #E O60méioléa®bwoi (4.1)

Farmer adoption of BMPs wasgmilarly driven by economics, sociability, and environmental
awareness. THdSDA-NRCSmulti-year study of the CEAP (Conservation Effectiveness
Assessmentidgram) in Upper Mississippi River Basin discussed in Chapter 2 provided
important conclusions on why and whedsdriving conservation practice adopti@idoag et al.,
2012; USDA- NRCS, 2011) This nodel incorporated those conclusions in the logic for farmer
BMP adoption. The CEAP assessment found that producers adopt first and foremost if practices
increase profits. Producers also adopt if there are observable benefits such as reduced erosion,
whereas nutrient management where benefits are abstracted are less likely to be adopted.

Receiving a positive recommendation from a trusted source like an agricultural supplier or
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neighbor also drives adoptioilso, ome producers are simply more interested

implementing conservation practices. In addition, producers with a strong network of peers to
discuss changing management and the finances reflect higher adoptighioaipet al., 2012)
Thesefactors driving doption were parameterized in a BMP opinibat would decide the

likelihood of adoptiorfor each farmer along with theirneg hbor s6 opi ni ons ( Tab
agent BMP opinions were the result of logic detailed in Section 4.2.3 and similar to fgamer a
characteristic parameters, served as the likelihood of adoptibn (@ addition, as farmer

agents adopted practices, they tabual#teir perceived reduction of nutrient loads for assessing

BMP performance laterPerceived reduction was represehas a fraction of load delivered to

the far mel)bés outlet (O

Table 4.4 Farmer BMP Opinions

Parameter Description Range
o) Q Initial Farmer BMP Opinion (year) 0-1
0 i Q Nei ghborsé Averapge | 0-1
0 0 Farmer Nitrate Reduction from BMPs (year) 0-1
O Q Farmer Phosphorous Reduction from BMPs (ye 0-1

Each farmersé BMP opinion was updated annual
The BMP scoring systemmeasud a f ar mer sdé perception of the
nei ghborsd perceptions, t heinfluergeohteaomrhunity.n v i r on
How the scorevasupdated annually, along with its effect on opinions, and assessing the costs
andbenefits of a BMP is described in detail in the ABMic section (Section 4.3.2Fach

scorewas a measure of the four motivations (effe
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environmental awareness, and community) and used to form an updated BMP opimgenofr

0-1).

Table 4.5: BMP Score

Parameter Description Range
Y Q BMP Score (year) 0-1

The parameters governing the behavior of farmer agents have been presented in this section.

The community agent is presented next, and then édglee model follows.

4.3.1.2 Community Agent

The community gent representea hypothetical institution that at the very least reveals top
down data for the watershed to farmer agents. If specified by the user, the community agent
couldalso apply regulary or incentive measures. The core community agent was initialized
with average yield data, average revenue and costs for corn and soybeans, and a community

policy time horizon (Table 4.6).

Table 4.6: Community Agent parameterization

Parameter Descripton (units) Range
9 E I OA OAICIAT OTOEGWB A AOA >0
# E Average Farmer Cos(gear) [$ /acre] >0
0 E Average Farme€ropRevenue (year) [$ / lshel >0

O #1101 OBWEQH OEURAOO >0

The community agent also ingmrated user inputted parameters for water quality thresholds,
incentives and BMP cost shares, and tax levies (Table 4.7). The community policy time

horizon was used to enforce policy instruments. For example, if an incentive for BMP
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installations waswailable, it was available for farmers for the community time horizon. With
respect to an Ea€tentral lllinois, these functions (taxes, incentives,-sbsires) and data (crop
yield, average price receivedjiginate from a group of organizatiomsthe area. The

community agent could be conceived as serving functions of the local/state/federal government,
extension agencies like the USDA and NRCS, and university research and extension. For
example, the USDANRCS EQIP program implements a cgséring agreement for a BMP like
winter cover crofUSDA-NRCS 2012), the University of lllinois disseminates annual financial
performance metrics and crop yields in conjunction with the UBIDIAIC-ACES, 2012)and a
potential incentive scheme could be implemented by local government. The community agent
housed and revealédp-down data to farmer agents as the simulation evolved. Wadbtygat

the outlet was also recorded by the community agent. Nitrogen and phosphorous levels are
monitored by University of lllinois and the Urba@dampaign Sanitary Distriq CSD &

UIUC, 2013)in the Upper Salt Fork watershed (Table 4.7). In addition, the averaged crop yields
for the watershed were tabulated by the community agent and disssshtim&armer agents.

The ranges for policy initiatives were derived from observed concentrations for nutrient
thresholds and rates thatwoulle sul t i n initiatives that woul d
analysis could be performedlutrient conentrations were used as the measure of water quality
because of the availability of direct measurermbgtUCSD & UIUC. In additionnutrient
concentratiomeflects both the nutrient load and water flow, providing a consistent measure
acrossvet and dryyears. As discussed in Chapter 3, monthly nutrients ranged from .07 to 1

mg/L for phosphorouand 0 to 12 mg/L for nitrogen. The ranges for policy initiatives were
designed tdacilitate an analysis of scenarios withinimal impact to excessive. Forarple, a

hightax rate of $3,000,000 withlaw threshold of 5 mg/L would result in a tax of $6,000,000

122






