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ABSTRACT 

 

Poor water quality across the Mississippi River basin and its outlet, the Gulf of Mexico, is 

undermining the health of ecosystems, economies, and public health.  Agricultural production in 

the watershed has been identified as the dominant factor contributing to poor water quality.  

Substantial investment by communities, governments, and research is dedicated to identifying 

appropriate agricultural management and practices to mitigate pollutants entering these 

waterbodies.  Efforts must acknowledge diversity in agricultural production, stakeholders, 

environmental and societal factors to successfully address water quality issues.  Consequently, it 

is important to develop comprehensive tools that can inform decision-makers with practical 

solutions with respect to environmental, economic, societal, and policy goals. 

In this study, a coupled human-natural systems model and software interface was developed 

to simulate feasible agricultural management and policy changes in an east-central Illinois 

watershed to identify strategies suitable for producers and policy-makers.  The Soil and Water 

Assessment Tool (SWAT) was calibrated using publicly available sources and comparable 

previous studies for nutrient loads, water yield, tile-drained flow, and crop yields (natural-

systems outcomes).  SWAT modeling performance was satisfactory or better with respect to 

previous studies (annual PBIAS for nitrogen, phosphorous, water flow, and crop yields < 20%).  

An agent-based model was developed for community and farmer behavior to simulate 

hypothetical policy initiatives, economic returns, best management practice adoption (human-

systems outcomes).  The models were coupled to form a software interface, ITEEPGAM (the 

Integrated Tool for Environmental Economic and Policy Goals in Agricultural Management).  

ITEEPGAM was used to perform an analysis of watershed-specific BMPs (winter cover 
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cropping, nutrient application timing, and drainage water management) along with fertilizer 

reductions and hypothetical tax, incentive, cost share policy initiatives.    

The development of ITEEPGAM and scenario analysis demonstrated that significant and 

complex natural systems and human systems phenomenon can be satisfactorily modeled and 

analyzed for potentially greater environmental and economic gains.  The study showed a lower 

potential for environmental gains (8%-10% reductions in nitrogen and phosphorous) that other 

BMP studies in similar areas due to a smaller set of BMPs considered and an incorporation of an 

agent-based model to drive adoption behavior.  Modeling results and agent behavior highlighted 

the importance of agent profiles, focusing input ranges and practical management choices to 

achieve useful conclusions.  In this study, it was evident that enforcing fertilizer reductions 

beyond 15% were impractical for farmers.  The scenario analysis highlighted effective policy 

instruments and potential redundancies.  Incentives presented the most cost-effective return for 

designing community policy, but were not suitable to budgets beyond $1,000,000 as incentives 

served to supplement farmer returns without environmental benefit.  Cost shares were effective 

at increasing adoption, but only up to a threshold of adopters.  Small tax schemes could promote 

adoption and generate revenue for the community.  Winter cover cropping coupled with small 

fertilizer reductions with the greatest potential for preserving economic performance and 

improving environmental gains while maintaining adoption rates.  In the case of nutrient 

management paired with fertilization reductions, it could only offset very small fertilizer 

reductions and was therefore not economical.   
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CHAPTER 1 

INTRODUCTION  

 

1.1  Problem Statement 

The most recent EPA report on our nationôs water quality found that 64% of lakes and 45% 

of rivers and streams are impaired, the percentage of impaired waterbodies has increased over 

the last 12 years, and non-point source pollution from agriculture is a key limiting factor in 

improving water quality (U.S. Environmental Protection Agency, 2009).  In particular, 

agricultural nutrient export from the Mississippi River watershed is contributing to poor surface 

and groundwater water quality in the Midwest and hypoxia in the Gulf of Mexico (Burkart & 

James, 1999).  The excess nutrients contribute to eutrophication, an increase in algal growth and 

a rapid consumption of oxygen as the algae decays.  With increased eutrophication and lower 

oxygen levels, aquatic life cannot sustain itself and results in a ñDead Zoneò (Rabalais et al., 

2001).   The consequences of poor water quality and the hypoxia or ñDead Zoneò in the Gulf of 

Mexico are widespread and significant.   Hypoxia and elevated nutrient levels threaten 

ecosystem stability, degrades drinking water supplies, contributes to closed beaches and limits 

waterfront usage, endangers human, animal, and pet health, and suppresses tourism, property 

values, and fisheries  (Rabalais et al., 2002).  The Louisiana Universities Marine Consortium, 

which has mapped the dead zone each year for nearly three decades, reports that the amount of 

nitrates flowing into the Gulf of Mexico has increased by up to 300% since the consortium began 

mapping the ñDead Zoneò in 1985 (Blooming horrible: Nutrient pollution is a growing problem 

all along the Mississippi, 2012). 
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Midwestern agriculture and its production practices are of particular importance in 

addressing the hypoxia.  Land use in the Upper Mississippi River basin has been identified as the 

dominant factor contributing to elevated water nitrate concentrations and the hypoxia in the Gulf 

of Mexico (David et al., 2010).  The National Water Quality Assessment Program at the United 

States Geological Survey estimates that these regions contribute nearly 60% of the nitrogen in 

the Gulf of Mexico, mostly from corn and soybean cropping, and 54% of the phosphorus 

primarily from corn and soybeans and non-recoverable animal manure on pastures (Alexander et 

al., 2008).  In areas like East-Central Illinois, which is the subject of this study, land use is 

predominantly intensive corn and soybean production with high nitrogen inputs.  In addition, 

agricultural production utilizes extensive hydrological modifications, including channelization of 

the headwater streams and intensive tile (subsurface, artificial) drainage, in fields to lower water 

tables and efficiently route water to streams (Baker et al., 2008; David et al., 2010).  These 

modifications have been implemented in areas historically rich with wetlands due to the flat 

terrain, humid climate, and poorly drained soils.  Implementing drainage and converting lands 

for agricultural production expedites water flow and diminishes the capacity of the river basin to 

remove nutrients and, in turn, creates larger nutrient loads to surface waters (Baker & Johnson, 

1981; Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008).   

The most recent Gulf Hypoxia Action Plan, put forth by the USEPA, established targets for 

the size of the hypoxia and identified needs and actions for achieving its goals.  The plan called 

for a 45% reduction in total nitrogen and phosphorus loads with the goal of a 5,000 km2 hypoxic 

region in 2015 (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008).  The 

task force recommended comprehensive watershed management plans and implementing 

conservation and best management practices to mitigate nutrient transport in agricultural 
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watersheds as a critical area in addressing the problem of the hypoxic region (Mississippi 

River/Gulf of Mexico Watershed Nutrient Task Force, 2008).  Watershed management plans 

involving implementation of best management practices (BMPs) can help reduce pollution from 

agricultural sources. BMPs are structural or non-structural control measures that can be 

implemented to mitigate pollutant loads at their source or their transport to receiving water 

bodies.  Structural practices are physical modifications such as waterways, terraces, wetlands and 

diversions and can help reduce erosion, or sediment loss.  Sediment loss and erosion degrade 

agricultural productivity by consuming cropland area and soil resources.  Non-structural 

measures are management-related changes like planting decisions and fertilizer application 

timing and technique.  Non-structural measures can help prevent nutrient and soil loss.  A large-

scale assessment of conservation practices in the Upper Missouri River basin from 2003-2007 

showed that implementing these conservation practices have reduced the loss from agricultural 

area to receiving waterbodies of sediment by 61%, total nitrogen loss by 20%, and total 

phosphorus loss by 44% (USDA-NRCS, 2012a). Identifying and treatment of areas with a 

critical need, referred to as targeting, is the most effective way to achieving further gains 

(USDA-NRCS, 2012b)   

In order to effectively deploy strategies and programs, large-scale policies and targeted 

technical solutions are needed to regulate nonpoint source nutrients (Mississippi River/Gulf of 

Mexico Watershed Nutrient Task Force, 2008).  The 2008 Farm Bill provided more than $7 

billion for promoting agricultural production and environmental quality by supporting 

implementation of structural or non-structural management practices under its Environmental 

Quality Incentives Program (EQIP) (Alexander et al., 2008).  Further, as a part of the Farm Bill, 

the USDA-NRCS initiated the Conservation Effect Assessment Program (CEAP) to account for 
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how society would benefit from the substantial funds dedicated to promoting conservation in 

agriculture (USDA-NRCS, 2012a).  In addition, The Clean Water Act (U.S. Environmental 

Protection Agency, 1972), in combination with government oversight from the EPA, require 

states to identify impaired and polluted watersheds, reasons for their impairment, and Total 

Maximum Daily Loads (TMDL) for nutrients to restore the health of targeted watersheds (U.S. 

Environmental Protection Agency, 1972).  Such watershed management initiatives are on-going 

interdisciplinary efforts involving collection of data, field and basin studies, model development 

and application, and research. 

Informing watershed management and meeting the needs of initiatives to improve water 

quality must recognize interconnected human and natural influences.  Watersheds encompass 

diverse natural influences with numerous land-uses, terrains, river networks, and climates and 

these landscapes interact with hydrologic processes ultimately affecting the fate and transport of 

nutrients (Wortmann, 2008).  Environmental outcomes are also linked to diverse human 

influences like agricultural production, economic returns, land development, legal structures and 

government policy.  Acknowledging both sides of the equation is necessary.  Interactions and 

feedback from the natural or human environments have compromised water management goals 

in many areas of the world (McDonnell, 2008).  Further, integrated watershed analysis is a 

dynamic process and must acknowledge changing circumstances across time and space.  

Enacting changes may result in the emergence of new problems or opportunities, or changed 

perspectives and values of stakeholders (Walter et al., 2007).   

In agricultural watershed management, an integrated approach must identify the appropriate 

strategy for the farmer with respect to agricultural production with natural and socio-cultural 

systems. Identifying areas for the appropriate conservation strategies should account for 
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ecological effects, associated implementation costs, while recognizing stakeholder interests and 

behaviors unique to the area.    A farmerôs adoption or non-adoption of a select practice, and the 

reasons underlying that choice, are critical dimensions for a comprehensive understanding of 

watershed management (Nowak & Korsching, 1998).  Finally, management plans must use 

monitoring, modeling, extension, and other evaluation methods to measure progress toward 

established goals (Wortmann, 2008).   

1.2  Objectives 

The goal of this study is to identify suitable conservation strategies and initiatives as part of 

an ongoing University of Illinois at Urbana-Champaign (UIUC) study of a typical East-Central 

Illinois agricultural watershed.  The study models environmental outcomes with respect to, and 

as a result of, producer goals and behavior.  The study develops, implements, utilizes a coupled 

natural-human systems model to form conclusions about the economic and environmental 

performance of varied watershed management.  The research objectives can be outlined in four 

parts: 

1. The development, calibration, and validation of a hydrological (natural systems) model to 

quantify, characterize and predict nutrient flux, hydrologic flow, and crop yield in the 

study area. 

2. Integrate modeled agricultural conservation practices and management techniques for the 

area.   

3. Model government and producer behavior with an agent-based model to reflect observed 

adoption of conservation practices and management. 

4. Couple the agent-based model with the hydrologic model and design testing of 

conservation strategies, producer outcomes and watershed management 
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This study focuses on the Upper Salt Fork watershed in East-Central Illinois.  The Upper Salt 

Fork watershed is an agricultural area which is predominantly row-cropped in corn and 

soybeans.  The watershed is monitored for water quality and engaged with extension outreach 

(David et al., 2011) by the University of Illinois at Urbana-Champaign (UIUC).  In addition, 

UIUC has partnered with area producers to test mitigation techniques and technologies.  The 

hydrologic and agent-based models are calibrated with observed metrics characterizing typical 

producers and a feasible set of best management practices in the area.  This study incorporates 

information on established best management practices and observed adoption rates derived from 

the partnership between UIUC and area producers. 

Conservation practices and funded initiatives designed to improve water quality are available 

through UIUC and USDA-NRCS programs within the study area in East-Central Illinois (David 

et al., 2011; NRCS-USDA, 2012b).  However, effective implementation of these technologies 

and initiatives is often undermined in watersheds by a lack of knowledge regarding optimal 

locations and suitable adopters (Pannell, 2006).  To remedy this disconnect between technology 

and adopters, it is important to understand how strategies perform in specific locations and how 

key stakeholders such as regulators, producers, and communities respond to such strategies.  The 

comprehensive watershed modeling tool developed in this study ï one that places agricultural 

and water-use strategies in a broad technical, economic, and social contexts ï can more 

effectively capture site-specific characteristics (e.g., climate, topography, and soil) and evaluate 

multiple scenarios that would be very expensive to address with field studies.  The model utilizes 

a ñwhat-ifò scenario analysis to provide scientific information on the impacts of various 

management alternatives and can assist stakeholders in achieving effective integrated water 

resources management and protection of the watershed and downstream consequences in the 
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Gulf of Mexico.  This study seeks to inform decision-making for selection of mitigating 

strategies and provision of water quality forecasts.  Integrating a natural-systems model with a 

human-systems component provides a rationale for adoption that is correlated with both 

productivity goals and improvements in water quality.  This approach can have broad 

applicability for other water systems affected by non-point source pollution, such as: parking 

lots, roads, sub-urban developments, forestry areas, surface-mining, and construction sites. 

1.3 Thesis Outline 

Chapter 2 of this study begins with a review of modeling approaches for agricultural 

processes and human systems to predict environmental and behavioral outcomes.  The review 

presents the considerations and examples of coupling human-systems and hydrological modeling 

for decision making in agricultural management.  Chapters 3 and 4 outline the methodology of 

the study.  Chapter 3 details the development and results of the hydrological modeling 

component along with the implementation of best management practices.  Chapter 4 summarizes 

the agent-based modeling approach and integration into the hydrological model.  Chapter 5 

summarizes the scenario analysis and results from the modeling.  Chapter 6 provides a 

discussion of the results and conclusions.  Chapter 7 provides recommendations for further work. 
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1  Introduction 

Agricultural production practices and management in the study area and similar 

Midwestern watersheds are contributing to poor water quality and harmful environmental 

outcomes, primarily óthe Dead Zoneô in the Gulf of Mexico (Baker et al., 2008; Mississippi 

River/Gulf of Mexico Watershed Nutrient Task Force, 2008; Royer et al., 2006).  Poor water 

quality contributes to human and animal health concerns, ecosystem instability, economic loss, 

and food insecurity (Rabalais et al., 2002).  There is significant investment by communities and 

institutions to address the consequences.  Tools that help decision-makers identify successful 

strategies are important in facilitating an analysis of the underlying factors contributing to poor 

water quality.  These tools necessitate models to quantify and link environmental outcomes with 

land management, conservation practices, and economic outcomes. 

This study sought to model the effect and the adoption of conservation practices in an 

East-Central Illinois watershed using a coupled natural-human systems model to identify 

initiatives and technologies to address poor water quality while acknowledging economic yields.  

The coupled model is an approach that acknowledges the interconnected and complex nature of 

the issue.  This section introduces the two systems modeling domains (natural and human) and 

the underlying processes they address.  A discussion of the body of work identifying necessary 

tools and data for this analysis along with and implementing and applying models follows.   
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2.1.1  Natural Systems - Watershed Hydrology  

Watersheds are complex human-natural systems that incorporate geographic, environmental, 

hydrologic, economic, human and social interactions.  Hydrologic processes like stream flow and 

nutrient loads in watersheds are the result of interactions between environmental and physical 

processes such as precipitation, infiltration, percolation, runoff, and evapotranspiration. A review 

of surface water phenomena is essential to understanding the physical processes this study will 

model.  

The Earthôs hydrologic cycle is driven by the sun (Black, 1991).  The sunôs radiation warms 

surface water causing evaporation.  Evaporation transforms surface water from the liquid to the 

gaseous state, to form part of the atmosphere.  Cycling energy in the atmosphere and interaction 

of gaseous water with land mass changes the water vapor back to the liquid state again through 

the process of condensation to form clouds.  When the atmosphere is saturated with moisture, 

precipitation (rain or snow) is produced.  The precipitation either to falls back to surface water 

storage or encounters the land surface.  Rainfall reaching the ground surface collects to form 

surface runoff or it may infiltrate into the ground.  Additionally, rainfall may be intercepted by 

vegetation on the ground and evaporated back to the air by evaporation. The liquid water in the 

soil then percolates through the unsaturated layers to reach the water table, where the ground 

becomes saturated, or it is taken up by vegetation from which it may be transpired back into the 

atmosphere. The net effect of transpiration and evaporation is called evapotranspiration.  Surface 

runoff and groundwater flow to surface streams and rivers, may be held in lakes, but finally 

flows into the ocean or evaporates.  Nutrients and particles adhere to water, moving through the 
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system as well.  Once the water returns to a waterbody and evaporates, the perpetual cycle 

continues.  This cycle sustains all life on earth and human populations.  In the context of 

planning and management of water resources, evaporation together with precipitation governs 

the amount of runoff available for human needs (Yeh et al., 1998). 

2.1.2  Natural Systems - Nutrient Cycling  

Along with the hydrology, nutrient cycling and availability, particularly of nitrogen, is of 

primary importance in agricultural ecosystems.  All amino acids, the building blocks of 

biological organisms and proteins, contain nitrogen.  It is essential for photosynthesis.  While the 

atmosphere is composed of 78% nitrogen, which exists in its gaseous form, this form cannot be 

utilized by plants.  The nitrogen cycle (fixation, uptake, mineralization, nitrification, and 

denitrification) describes how nitrogen and nitrogen containing compounds transform for 

incorporation into biological organisms.  Nitrogen must be converted to ammonium (NH4
+), 

nitrate (NO3
-), or urea ((NH2) 2CO) for utilization in plants.  Nitrogen fixation is the process by 

which gaseous nitrogen is converted to ammonium.  Application of fertilizer, cultivation of 

legumes, and burning fossil fuels all fix nitrogen.  Uptake is the incorporation of ammonium into 

a plant.  Mineralization is the decay of organic matter nitrogen (dead plant matter) into 

ammonium.  Nitrification is the conversion of ammonium into nitrate by bacteria; the bacteria 

derive energy from nitrification.  It is important because ammonium is positively charged, 

whereas nitrate is negatively charged.  Ammonium is attracted to negatively charged soil 

particles and nitrate is repelled.  Therefore, nitrate is susceptible to washing away (leaching) 

from soil.  Finally, denitrification is the process by which nitrate is converted back to gaseous 

nitrogen and nitrite.  The nutrient cycle facilitates and limits plant growth, governs nitrogen 

transport and determines the amount of pollutants delivered to receiving waterbodies.  
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2.1.3  Human Systems - Watershed Management and Use 

In addition to the water and nutrient cycle, watershed hydrology is also the result of human 

impacts like terrain modification and influences by institutions such as government and society.  

For example, urban development has changed wind patterns, temperature, and vegetation to 

affect evaporation and runoff (Shaw, 1994).   Urbanization of an area tends to increase peak 

runoffs because of the efficient delivery of rainwater to streams through sewer systems and the 

decrease in losses to infiltration because of large expanses of impervious areas (Singh, 1987).  

Further, agricultural production modifies species and spatial patterns of vegetation and therefore 

infiltration and evapotranspiration.  In the Midwestern agricultural watersheds, water is drained 

artificially from row-cropped agricultural areas, affecting surface runoff and stream flow 

processes (Schilling & Helmers, 2008).  In addition, modifications to the natural water network 

in Midwestern agricultural watersheds can include widening, deepening, straightening of 

streams, rivers, and ditches (Singh et al., 1987).  Such modifications are important factors in 

characterizing the hydrology of a watershed. 

2.1.4  Watershed modeling 

Watershed modeling is necessary to characterize, quantify, and analyze these natural and 

human systems.  It is impossible to observe, measure, and predict watershed processes like 

precipitation, nutrient flux, and agricultural operations across every point in a watershed.  It is   

unwieldy and unfeasible to manually observe the large-scale effects of physical phenomena on a 

watershed across area and time.  Watershed models simplify complex human-natural systems, 

like agricultural drainage systems, and their interconnected components in order to simulate and 

predict these phenomena (Black, 1991).  Better watershed and modeling techniques are 
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facilitating the deployment and application of tools, information, and decision-making in 

managing these watersheds for land-use and environmental integrity.  It is helpful to be able to 

forecast changes in the river flows, nutrient flux and the state of the catchment in order to 

determine beneficial watershed management schemes (Shaw, 1994).  The Soil and Water 

Assessment Tool (SWAT) is one particular model that has been broadly applied to characterize 

and forecast watershed processes.  SWAT model depends on data sources for topography, 

precipitation, land-use and management.  These models integrate ecology, economics, 

hydrology, and natural resources and environmental sciences. 

Watersheds are coupled human-natural systems where human decisions affect the 

environment (e.g., water quality, streamflow), and environmental outcomes affect human 

decision-making (e.g., resource quality, water availability). As a result, comprehensive modeling 

of such systems for planning, management and other purposes requires an approach that 

considers both the human and natural aspects (Ng et al., 2011).  In models characterizing the 

behavior of entities, an agent-based model (ABM) is one particular approach, and is most natural 

for describing and simulating a behavioral system (Bonabeau, 2002).  For coupled natural-human 

systems, integrating biophysical models like SWAT with these socioeconomic ABMôs is an area 

of expanding multi-disciplinary work to better inform decision-making, management, and 

optimal resource utilization in watersheds (Nejadhashemi et al., 2011).   

2.1.5  Overview 

This literature review is a summary of the body of research regarding the implementation and 

application of SWAT and other biophysical models, and their integration with socioeconomic 

models like agent-based modeling.  Applying watershed models, like SWAT with sufficient 

input data can accurately quantify nutrient and pollutant loads and crop yields for varied 



13 
 

management to identify appropriate conservation strategies.  Pairing these environmental models 

(natural models) with human models (economic, social) can help identify cost-effective 

management and policy initiatives, and provide decision-support for stakeholders.  This section 

summarizes the body of work supporting this proposal in the following sections: data sources, 

modeling and simulation, and decision support in human and natural systems modeling.   

For sources of input data, modeling and simulation, and decision support, each is arranged 

into an overview of the topic; then specifics on applications, usages, and considerations; and 

finally, conclusions on the methods, advantages, and shortcomings.  The data sources section 

outlines types of input data necessary to perform coupled human-natural systems modeling in 

watershed management.  There are example data sources, and considerations to make when 

selecting input data.  The modeling and simulation section presents examples, performance and 

applications of natural and human systems models independently, followed by coupled 

techniques.  Finally, the decision-support section presents types of tools and their use in 

watershed management. 
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2.2  Data Sources 

2.2.1  Data Sources Overview 

Data sources for coupled natural-human systems models can be categorized into five 

categories: 

¶ Physical,  

¶ Environmental,  

¶ Societal/institutional,  

¶ Economic, and 

¶ Behavioral. 

Both human and natural models incorporate societal/institutional information.  Natural models 

incorporate observed physical and environmental input data.  Human models rely on information 

describing economic and behavioral/adoption phenomenon.  There are two considerations to 

make when assessing input data needs: the scale/resolution of input data, and 

software/programming/formatting needs to utilize input data.  This review will highlight several 

publications to illustrate the types of data sources (Table 2.1) needed and the considerations in 

selecting input data. 

Sources of input data for coupled natural-human systems modeling for watershed 

management are generally available publicly and electronically (Table 2.1).  Sources for natural 

systems modeling are available through government agencies (national, state, county, local) and 

university extension or research centers.  Watershed management information is generally 

provided by national agencies or local agencies specific to the study area.  The diversity of 

geography, environment, and management techniques for watersheds require a diverse set of 

sources to model them.  The modeling goals, area, and modeling techniques for a study 
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determine input data requirements.  For example, in this study of an agricultural watershed 

spanning two counties in East-Central Illinois, the Illinois Agronomy Handbook (Hollinger & 

Angel, 2009) and Illinois State Water Survey (Illinois State Water Survey, 2012) provided 

information for weather, crops, fertilizers, drainage guidelines for the agricultural practices 

typified by the counties in the state of Illinois, while the USDA (USDA-NASS, 2012) provided 

county-level average crop yields for the entire United States.  Other necessary information 

typifies physical processes like nutrient uptake and radiation utilization in crops across 

agricultural watersheds.  Information may be specific for a model for Midwestern corn with tile 

drainage, or tillage types generalized for the entire Midwest.  These considerations demonstrate 

that scale, modeling outcomes, and model selection are determinants of selecting input data and 

source (Table 2.1 ï 2.2).  Tables 2.1 and 2.2 provide an overview of  data sources within the two 

domains of natural and human systems, with a description of the type of data source.  

 

 

 

 

 

 

 

 

 

 

 



16 
 

Table 2.1: Natural Systems Data Sources Overview 

Natural 

Systems 

Input Data 

Type 

Data Source Reference 

Physical Topography National Elevation 

Dataset and GIS Portal 

(USGS, 2012a) 

  Illinois Geospatial 

Clearinghouse 

(Illinois Natural 

Resources Geospatial 

Data Clearinghouse, 

Illinois Height 

Modernization: Digital 

Elevation Data) 

    

 Stream 

Network 

National Hydrography 

Dataset and GIS Portal 

(USGS, 2012b) 

    

 Land Cover National Land Cover 

Dataset GIS Portal 

(USGS-NLCD, 2012) 

    

 Soil Type 

and 

Properties 

National Soil Dataset GIS 

Portal  

SSURGO (USDA-NRCS, 

2012d) STATSGO2 

(USDA-NRCS, 2012d) 

    

Environmental Precipitation, 

Temperature, 

Water 

Balance 

National Climatic Data 

Center 

(NOAA, 2012) 

  Local weather databases 

 

Local research centers  

(Ohio Agricultural 

Research and 

Development Center, 

2012) (Illinois State Water 

Survey, 2012)(Winstanley 

et al., 2006) 

    

  Local water budget 

studies 

 

(Arnold, 1996) (Mitchell, 

Banasik, Hirschi, Cooke, 

& Kalita, 2001) 

   

 

 

 Streamflow National Water 

Information System  

(USGS, 2012c) 
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Table 2.1: Natural Systems Data Sources Overview (Cont.) 

Natural 

Systems 

Input Data 

Type 

Data Source Reference 

Environmental 

(Cont.) 

Water Quality 

(Nutrient 

Flux) 

National Water 

Information 

System  

 

(USGS, 2012c) 

  Local Agency 

Monitoring and 

Sampling 

 

(M. W. Gitau, Chaubey, Gbur, 

Pennington, & Gorham, 

2010)(Vendrell et al., 1997) 

(U.S. Environmental 

Protection Agency, 2009) 

 

 Nutrient 

Balance, 

Accumulation 

(Crop) 

University 

Extension  

Area Studies  

(Iowa Learning Farms & 

Practical Farmers of Iowa, 

June 2011) (McIsaac & Hu, 

2004b) 

Societal/ 

Institutional 

Point Source 

Impact 

National Agency 

Monitoring 

(Environmental Protection 

Agency, 2012a; Environmental 

Protection Agency, 2012b) 

    

 Crop Yield National and Local 

Surveys 

(USDA-NASS, 2012) 

   (UIUC-ACES, 2003-2012) 

    

 Agricultural 

Management 

BMP 

Modeling  

Research and 

University Reports  

(Vitosh, Johnson, & Mengel, 

1995)(Sustainable Agriculture 

Network, 2007)(CES 

(Cooperative Extension 

Service), 1987) 

  Industry Reports (Illinois Department of 

Agriculture, 2010) 

  Area Studies (David, Gentry, Starks, & 

Cooke, 2003)(Green, Tomer, 

Di Luzio, & Arnold, 

2006)(USDA-NRCS, 2012a; 

USDA, 2009)(M. W. Gitau et 

al., 2010)(St. John & Ogle, 

October 2008) 
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Table 2.2: Human Systems Data Sources Overview  

Human 

Systems 

Input Data 

Type 

Data Source Reference 

Economic Financial University 

Research Agency 

Extension  

 

 

(University of Illinois at Urbana-

Champaign (UIUC) College of 

Agricultural, Consumer and 

Environmental Sciences (ACES), 

2003-2012) 

  Professional 

Societies 

(Illinois Society of Professional 

Farm Managers and Rural 

Appraisers, 2012)(O'Brien & 

Duncan, 2011) 

 

  National Agency (USDA, 2009)(Economic 

Research Service, United States 

Department of Agriculture, 2007) 

 

Behavioral Management 

Decisions, 

Land Use, 

Adoption 

Survey Results / 

University 

Extension  

 

(Pennington et al., 2008)(Upper 

Salt Fork Status Update and 

Report, 2011)(Lant, Loftus, Kraft, 

& Bennett, 2001) (USDA, 2007; 

USDA - NRCS, 2011; USDA-

Farm Service Agency, 2004) 

 

 

  Government, 

National 

Reporting 

(Butler & Srivastava, 2007; 

Limnotech, 2007) (USDA, 2006) 

 

  Local Studies (Claasen, 2009; Lambert, 

Sullivan, Claassen, & Foreman, 

2006) 

    

Societal 

Institutional 

Policy, Tax, 

Regulation 

Government 

Agencies  

(USDA-NRCS, 2012a-c)(USDA-

FSA, 2013) 

 Farmer, Farm 

Demographics, 

Government 

Agencies 

 (USDA 2009) 

 Legal 

boundaries 

  (Champaign County GIS 

Consortium 2013) (USDA-FSA 

2013) 
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2.2.2 Data Sources in Natural Systems Modeling 

Natural systems modeling of hydrologic processes, nutrient transport, and crop growth for 

watershed management rely on physical, environmental, and societal/institutional input data.  

Physical input data include elevation, land use, soil properties, and crop growth and nutrient 

consumption.  Environmental data include weather, streamflow measurements, water balance 

estimates, flow partitioning and nutrient monitoring.  Institutional data include crop planting 

patterns and locations, crop yield statistics, agricultural management inputs, and point source 

loadings delivered to rivers and streams. All three categories of data are utilized for modeling the 

placement and effect of conservation strategies.  

Physical input data in natural systems models are comprised of static features within a study 

area: topography, location of streams, soils, and land cover.  The scale and resolution of data 

depends on the model objectives and availability.  Elevation data such as LiDAR (Light Imaging 

Detection and Radar) are available through local or statewide agencies such as Illinois Natural 

Resources Geospatial Clearinghouse (Illinois Natural Resources Geospatial Data Clearinghouse, 

2011).  LiDAR elevation data for Champaign County in Illinois have an average sampling rate of 

1.2 meters (Aero-Metric, 2008).  Lower resolutions of elevation data are available through 

agencies like the USGS National Elevation Dataset (USGS, 2012a).  The USGS compiles 

elevation data with resolutions of 10, 30, and 90 meters depending on availability for the United 

States (USGS, 2012d).   

Selecting the scale of data is study-area specific.  Natural systems modeling scales from a 

specific field to an entire watershed of a major river like the Mississippi River.  The hydrologic 

budget and crop yields for the Upper Mississippi River Basin (UMRB), approximately 491,665 

km2, were modeled using the Soil and Water Assessment Tool (SWAT)(Srinivasan et al., 2010).  
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The study tested using a 30 meter (1:24000) and a 90 meter (1:1000000) digital elevation map 

for the National Hydrography Dataset (NHD) (USGS, 2012b), land-use the study used data from 

USDA Cropland Data Layer (USDA-NASS, 2013) and the USGS National Land Cover Data 

(USGS-NLCD, 2012) processed in ArcGIS/ArcSWAT (Srinivasan, 2009).  The study did not 

find a substantial difference in their slope calculations and consequently their predictions of 

streamflow.  The larger resolution reduced the size of the input data files and expedited 

processing.   

While a low resolution map did not affect modeling performance in a large watershed, 

resolution of elevation data was a significant factor in modeling watershed size, runoff, and soil 

erosion in the 21.3 km2 Goodwin Creek watershed in Mississippi (Di Luzio et al., 2005).  In the 

18.9 km2 Moores Creek watershed in Arkansas, the effect of DEM resolution depended on model 

output variable of interest: resolution of elevation data varying between 100 meters to 200 meters 

produced streamflow, nitrate-nitrogen, and total phosphorus within a relative error of +10% 

(Chaubey et al., 2005).  An upper limit of 50 meters for resolution of elevation data was 

proposed for satisfactory modeling of streamflow, and soil map scale of 1:25000 for satisfactory 

modeling of sediment loading (Chaplot, 2005). 

In addition to terrain, physical features like land cover and soil properties determine the 

movement of water and nutrients through watersheds (Shaw, 1994).  The USGS Land Use and 

Land Change dataset (1:250000) and National Land Cover Dataset (30 meter resolution) (USGS-

NLCD, 2012) are commonly used in SWAT simulations.  While the resolution of elevation data 

is the most critical input for SWAT simulations, satisfactory streamflow modeling performance 

requires a maximum land use resolution of 300 meters (Cotter et al., 2003).  USDA-NRCS 

provides two soil databases for properties and types of soils.  SSURGO (The Soil Survey and 
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Geographic) (USDA - NRCS, Soil Survey Geographic (SSURGO) Database) has a resolution of 

1:24,000 and its predecessor STATSGO (The State Soil and Geographic) has a 1:250,000 scale.  

SWAT model output for Walnut Creek watershed in central Iowa was compared to measure the 

effects of using three resolutions of soil data: 1:25,000 SSURGO,1:250,000 STATSGO, and 

1:500,000 soil data derived from STATSGO (USDA-NRCS, 2013) (Chaplot, 2005).  Runoff was 

not significantly affected by resolution of soil data, but nitrogen and sediment load were 

significantly reduced for coarser scale of soil data.  Modeling performance for nitrogen and 

sediment was best with the finest resolution of SSURGO data. 

Physical data modeling needs depend on studies in tile-drained areas for observed flow 

partitioning between surface runoff, percolation, crop nutrient uptake and growth.  Three studies 

employed a GIS software, ArcGIS (ESRI, 2010), to manage, arrange, and format spatial data 

layers.  In addition, SWAT has been integrated into ArcGIS (Srinivasan, 2009) to facilitate 

managing data for the analysis. A simulation of fertilizer reduction strategies in an Illinois 

watershed (Hu et al., 2007; Mitchell et al., 2000) was calibrated by enforcing a minimum tile 

drainage water yield of 75% of total water yield based on area field studies (Mitchell et al., 

2000).  Using observed data for nitrogen content, fixation, uptake, and leeching in Midwestern 

watershed (McIsaac & Hu, 2004a), the study identified the need for a denitrification parameter in 

SWAT for calibration.  Similarly, a simulation of streamflow and water balance in the tile-

drained South Fork Watershed in Iowa (Moriasi et al., 2009) was initialized with drainage design 

parameters from Iowa State Extension (CES (Cooperative Extension Service), 1987) and 

calibrated the model to partition 76% of total flow as tile flow based on previous estimates 

(Green et al., 2006).  SWAT was applied to the Upper Big Walnut Creek in Ohio and utilized 

observations of tile drainage flow partitioning, observed corn and soybean biomass 
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accumulation, harvested nitrogen content, uptake, and fixation to model nitrogen flux and crop 

yield (Nair et al., 2011).   

Environmental and institutional input data needs are more common across studies and natural 

systems models.  Studies utilize daily precipitation, temperature, evapotranspiration data from 

agencies such as the National Climatic Data Center (NCDC) (National Climate Data Center, 

2012; NOAA, 2012), or local agencies relevant to the study area like the Ohio Agricultural 

Research and Development Center (Nair et al., 2011; Ohio Agricultural Research and 

Development Center, 2012) or the Illinois State Water Survey Climatologist (Hu et al., 2007; 

Illinois State Water Survey, 2012).  On the field-scale, on-site meteorological measurements for 

a 22-hectare plot in Iowa were used to model nitrate dynamics and hydrologic budgets using the 

field-scale natural systems models DRAINMOD-II (Skaggs, 1980) and RZWQM (Root Zone 

Water Quality Model) (Agricultural Systems Research Unit, 2009)(Thorp et al., 2009).  Crop 

yield information for grain weight and moisture content was obtained through a previous study 

for the study area (Colvin, 1990).  On the basin-scale, one study found that the effect of the 

number of precipitation stations for a modeling runoff and nitrogen flux in a 51 km2 watershed in 

Iowa and a 918 km2 watershed in Texas did not result in a significant decrease in model accuracy 

(Chaplot, 2005).  However, in a comparative analysis of precipitation station density, Moriasi & 

Starks (2009) found modeling conservation practice effectiveness should utilize the highest 

number of precipitation stations available.  In a separate watershed and study, Moriasi & Starks 

(2010) also recommended the finest resolution of precipitation stations and mix of STATSGO 

and SSURGO soil datasets for nutrient transport studies. 

Similarly, models utilize daily, monthly and annual streamflow measurements from national 

and local agencies like the USGS (USGS, 2012c), and county-level yearly crop yield statistics 
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from the USDA-NASS (USDA-NASS, 2013), or study-area specific data sources like UIUC 

FarmDoc (University of Illinois at Urbana-Champaign (UIUC) College of Agricultural, 

Consumer and Environmental Sciences (ACES), 2003-2012).  The Upper Mississippi River 

Basin study (Srinivasan et al., 2010) used streamflow measurements from 11 USGS stations 

(USGS, 2012c) to calibrate and validate SWAT simulations.  The chosen stations corresponded 

to the nearest subbasin outlet based on ArcSWATôs (Srinivasan, 2009) delineation of the 

hydrology of the watershed.  The study used USDA-NASS crop yield statistics (USDA-NASS, 

2012), which is available yearly county-by-county, and aggregated it into SWAT subbasins.  The 

analysis of the much smaller watershed in East-Central Illinois (Hu et al., 2007) incorporated one 

USGS (USGS, 2012c) streamflow gauge, and USDA-NASS (USDA-NASS, 2012) crop yields, 

which were weighted by the proportion of each county in the watershed. 

SWAT has built-in functionality to implement and simulate the effect of human activities 

(Neitsch et al., 2009).  For example, estimates from the Illinois Commercial Fertilizer Tonnage 

Reports from the Illinois Department of Agriculture (Illinois Department of Agriculture, 2010), 

the USDA-NASS (2012), and the Illinois Agronomy Handbook (Hollinger & Angel, 2009) were 

used to initialize existing SWAT cropping, fertilizer and tillage modeling routines to simulate the 

fertilizer reduction scenarios in the East-Central Illinois watershed study (Hu et al., 2007).  

County-level estimates from the Conservation Technology Information Center in Ohio, and the 

USDA Census of Agriculture (USDA-NASS, 2009) were used with SWAT routines for tillage 

practices and fertilizer applications in the Ohio crop yield calibration study (Nair et al., 2011).  

Similar built-in routines in SWAT have been modified and extended with study-area specific 

input data to assess varied management.  Using input data from the USDA-NRCS, the Texas 

State Soil and Water Conservation Board (TSSWCB), and the Irrigation Technology Center at 
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Texas A&M University, an analysis of different irrigation amounts, timings, and frequencies was 

performed in the intensively canal irrigated Arroyo Colorado Basin in Texas (Kannan et al., 

2011).  The study initialized SWAT routines for: point source inputs for municipal treatment 

plants and shrimp farms (Rains & Miranda, 2002); irrigation schedules for sorghum, cotton, and 

sugar cane (Texas Water Development Board (TWDB), 2005); and land leveling or water 

management irrigation BMPs (Texas Water Development Board (TWDB), 2005).  Similarly, 

data from the Texas Natural Resource Conservation Commission (McFarland & Hauck, 1995) 

on the location, size, herd size, and waste application management plans for dairy cow 

operations in the North Bosque River watershed in Texas were used to identify the effect of 

manure application on nitrate levels (Saleh et al., 2000).  Increasing availability and frequency of 

data have expanded modeling capabilities, and ways to calibrate and verify natural-systems 

models (Gassman et al., 2007). 

2.2.3 Data Sources in Human Systems Modeling 

While natural systems models produce accurate simulation of hydrologic process, adoption 

of BMPs in agricultural management is dependent on accurate modeling of hydrologic processes, 

but economic, social and institutional forces as well (Nowak & Korsching, 1998).  Studies 

regarding management in watershed and conservation strategy adoption rely on economic, 

behavioral and institutional data to characterize human influences on environmental outcomes.  

Institutional data sources are organizations that define considerations like laws, taxes, standards, 

and codes; they span both human and natural systems modeling (Section 2.2.2).  It is 

recommended to include empirical observations when available to relate the model in real-world 

outcomes (Robinson et al., 2007).  Economic and behavioral data sources are generally derived 

from local research agencies and surveying or government reporting like the USDA agricultural 
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census (USDA-NASS, 2009).  Similar to natural-systems data, scale and resolution must be 

considered.  Like precipitation, single point measurement may not be available, and input data 

need to be defined in terms of a region, which involves establishing a boundary that is 

meaningful but does not actually exist (McDonnell, 2008).  Moreover, surveying or voluntary 

participation in data collection, like the USDA Census, may not accurately represent behavior in 

a defined area. 

Modeling economic outcomes for human systems in agriculture draws on data related to 

prices, costs, profitability, and market performance.  Typical Central Illinois farmer balance 

sheets from University of Illinois extension (UIUC-ACES, 2003-2012), and carbon credit pricing 

from the Chicago Climate Exchange (InterContinental Exchange, 2013) was used to model 

planting decisions with respect to the adoption of the bioenergy crop Miscanthus (Ng et al., 

2011).  Empirical data on prices, costs of production, property law from government reports 

(Muchnik et al., 1996) in a Chilean watershed were used to model household adoption behavior 

with respect to government policy changes (Berger, 2001).  Using data from the European Farm 

Accountancy Data Network (FADN) (European Commision, 2013) on farm size, farmer 

demographics, costs, and labor utilization, an analysis was performed on policy changes on 

European farms with respect to rent, interest rates, and income (Happe et al., 2006).  The FADN 

data were used to define farmer behavior, socioeconomic status, and managerial ability and 

simulate policy outcomes.   

Decision-making in human-systems models has also incorporated empirical socioeconomic 

observations.  Le et al. (2008) identified one challenge in modeling land-use change in 

Vietnamese agriculture was developing an empirically grounded decision-making mechanism.  

Empirical typological Vietnamese farm data were used to define human, social, physical and 
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financial, along with natural constraints, to model agricultural policy adoption (Le et al., 

submitted for publication).  For a watershed in Southern Illinois, future adoption of BMPs and 

economic outcomes were forecasted (Sengupta et al., 2005) using used survey results (Lant et al., 

2001) regarding participation in the Conservation Reserve Program (CRP).  The survey polled 

235 area producers for possibility of adoption, age, experience in farming, income.  The study 

also used USDA-NASS (2013) spatial data defining farm acreage in CRP, and economic 

incentive rates from the Farm Service Agency (USDA-FSA, 2013).  Similarly, data for the cost 

of BMP implementation estimates were obtained from by the USDA-NRCS (2012c).   

In a similar approach to characterize adoption behavior and its impact, a broader-scale 

assessment of conservation practice effectiveness in the Upper Mississippi River Basin (USDA-

NRCS, 2012b), employed a 3-year USDA-NRCS survey (USDA-NRCS, 2007) of adoption and 

the 2007 Census of Agriculture (USDA-NASS, 2009) to typify farms in the area.  The NRI-

CEAP survey (USDA-NRCS, 2007) provided 3,703 survey points in the Upper Mississippi River 

Basin, which were used to designate areas and their associated farming practices.  The study 

extrapolated the survey data across subregions within the UMRB, and were deemed reliable 

reporting at that scale.  The extrapolation was used to target critical areas for adopting 

conservation practices. 

2.2.4 Data Sources Conclusions 

Data sources in paired human-natural systems can be categorized into five categories: 

physical, environmental, social, economic, and behavioral.  There are considerations of scale, 

resolution, processing time, and modeled area.  In general, lower resolutions and larger areas 

result in and less predictive power (Srinivasan et al., 2010).  Higher resolutions result in more 

processing time and are highly predictive (Gitau et al., 2011).  Precipitation and topography data 
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resolution has been identified as the most significant factor for the accuracy of hydrologic 

assessment (Moriasi et al., 2007). 

It is important to recognize that the necessary sources of input data are widely and freely 

available.  Data sources range from university extension agencies to government sources.  Data 

may not come ready to use out of the box.  There is processing required for different model input 

requirements.  Fortunately, advances in GISs have facilitated and expedited data processing for 

analysis.  Data management software is also necessary to process model output and input.   

Natural systems data range from the slope of a hill to the water to the nitrogen content of 

corn growing downstream.  Data are obtained from government, research agency, and related 

studies.  Human processes information is generally available through survey-based research and 

reporting through government initiatives by agencies like the USDA and NRCS or local surveys 

specific to the study area.  Extrapolating input data for areas where data are not available is 

necessary.  Further, it is important to recognize that some private production methods like 

fertilizer application rates and timing are generalized by industry or government reports for areas 

where input data are not available (Illinois Department of Agriculture, 2010).  Input data for 

modeling BMPs are derived from institutional data sources that measure their adoption, field 

studies on their effectiveness, and previous modeling studies where these strategies have been 

parameterized.  Further, GIS software facilitates a location-specific analysis of BMP 

installations.  BMP modeling data sources are at the nexus between human and natural systems 

modeling.  Finally, data describing human systems for economic, policy, and social factors are 

drawn from government agencies, surveys, and trade/industry organizations/publications.  

Grounding human-systems models with empirical data is an important consideration.  

Implementing a model for phenomena like land-use change should be informed and assessed 
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with observations of the real-world phenomenon when available and feasible.  Incorporating 

empirical observations, like survey results, is improving their usefulness in applications, 

reflecting realistic assumptions and practical outcomes (Matthews et al., 2007). 

2.3  Modeling and Simulation 

2.3.1  Introduction  

Modeling of coupled human-natural systems in agriculture is a useful tool for stakeholders 

where it is not practical or too expensive to perform long-term physically-based studies.  This is 

due to diverse production approaches, diffusive impact, and expansive geography in agriculture.  

Direct water monitoring and field studies are usually costly and labor intensive, and require 

many years of monitoring to sufficiently account for climatic fluctuations.  Acknowledging 

human interactions and accounting for their impact increases the complexity of the system but 

facilitates a more robust modeling outcome (McDonnell, 2008).   

Coupled human-natural systems models can be described and selected using the following 

considerations: known or available model inputs, desired scale, and desired model output. Inputs 

select from the various data sources discussed (Section 2.2): streamflow partitioning, plant 

growth, crop yields, conservation adoption rates, and financial benchmarks.  The availability of 

this input data informs model selection and facilitates verification of outputs like: scenario and 

sensitivity analysis, forecasting, and management recommendations.  This study summarizes 

some of the widely used hydrological/physical models used in agriculture and their applications 

in long-term coupled analyses.  The summary outlines the capabilities, performance and 

applications of these models with a focus on SWAT studies of BMP effectiveness and watershed 

management in Midwestern agriculture.  Of particular importance for this thesis are the 
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applications of SWAT to model hydrology, nutrient flux (specifically nitrate), tile drainage, and 

Midwestern corn and soybean BMPs. 

2.3.2  Natural -Systems Models 

This section will introduce commonly applied natural-system models in agricultural 

watersheds.  The reviewed models can be categorized by scale: field-scale and watershed scale.  

The discussion is divided into capabilities, performance, and applications of these models. 

2.3.2.1  Natural-systems models capabilities 

The Soil and Water Assessment Tool (SWAT) is a basin-watershed scale, continuousȤtime 

model that operates on a daily/monthly/yearly time step and is designed to predict the impact of 

management on water, sediment, and agricultural chemical yields in ungauged watersheds 

(Neitsch et al., 2011). 

As outlined in the SWAT Theoretical Documentation: ñSWAT conceptualizes watershed by 

dividing similar topographic, soil, and land-use areas into hydrologic response units (HRUs) 

which are connected by the stream network.  Published equations on soil water content, 

precipitation, surface runoff, evapotranspiration, percolation, and groundwater return (base) flow 

are employed to model daily water budgets.  Plant nutrient consumption, which is estimated by 

supply in the soil and cropping demands, and nutrient and sediment routing routines are 

documented as well.  The model is physically based, computationally efficient, and capable of 

continuous simulation over long time periods with built-in modeling of BMPs like tile-drainage, 

filter strips, animal grazing.ò  (Neitsch et al., 2011; Parajuli et al., 2008)  These routines are 

adaptable to diverse watersheds.  As a result, SWAT is a parameter-intensive model using 

physically based and empirical relationships. Sources of input data are readily available from 

government and local agencies (Section 2.2.2). 
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The Hydrological Simulation Program ī Fortran (HSPF) is a continuous watershed-scale 

model for simulating hydrology and water quality for a wide range of conventional and toxic 

organic pollutants (Bicknell et al., 2001).  The documentation for HSPF describes the capabilities 

and underlying design features: ñHSPF can be operated on an hourly time-scale, and BMPs can 

be simulated either through land use changes, or add-on modules.  HSPF conceptualizes 

watersheds as a collection of pervious and impervious subwatersheds routing to a stream 

segment or mixed-use reservoir.  Empirical equations govern the water budget and account for 

interception, infiltration, evapotranspiration, snowmelt, surface runoff, interflow, groundwater 

loss and recharge, and base flow.  Physical properties and published equations determine 

pervious land surface erosion and transport, in-stream sediment transport, and deposition.  HSPF 

employs subroutines of nutrient dynamics and calculates individual nutrient balances at a user-

specified time step.  HSPF allows for detailed inputs of field operations and fertilization rates 

(management activities) through its special actions module.  It simulates in-stream fate and 

transport of a wide variety of pollutants, such as nutrients, sediment, dissolved oxygen, 

biochemical oxygen demand, temperature, bacteria, and user-defined constituents, including 

pesticides.ò  (Bicknell et al., 2001)  Boreh et al. (Borah et al., 2006) concluded in a review of 

HSPF for TMDL applications that: HSPF is chosen for modeling because of its flexibility, ability 

to simulate a wide range of user-configurable inputs, modular structure that allows use of only 

those components needed for a specific application, and USEPA and USGS support.  Its 

limitations include large requirements of input data, the need for monitored data in order to 

perform calibration, and a steep learning curve (Borah et al., 2006).  Like SWAT, it is also a 

long-term model and is not suitable for single event simulation. 
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Both SWAT and HSPF are approved by the EPA to perform TMDL reporting requirements 

(Shoemaker et al., 2005).  Both are comprehensive watershed models with a focus on 

agricultural applications that model agricultural practices like irrigation, drainage, wetlands and 

BMPs (Borah et al., 2006).  In addition, HSPF and SWAT include modeling of atmospheric 

deposition, which is an important consideration in large watershed or estuaries (Gassman et al., 

2007).  Fertilizer and manure application are also included which is a significant factor in the 

nutrient cycle in many agriculturally oriented watersheds models (Gassman et al., 2007). 

Watershed-basin models provide a resolution of their smallest reporting unit.  SWAT 

assigns an HRU based on area, soil type, and slope, for example.  Field-scale models, on the 

other hand, have a resolution of the study area provided by the user.  The Root Zone Water 

Quality Model (RZWQM) is a ñfield scale, physical, biological, and chemical process model that 

simulates plant growth and movement of water, nutrients, and pesticides over and through the 

root zone at a representative area of an agricultural cropping system.  It is a one-dimensional, 

vertically into the soil profile, model designed to simulate conditions on a unit-area basis.  Built-

in agricultural management alternatives include evaluation of conservation tillage and residue 

cover versus conventional tillage, methods and timing of fertilizer and pesticide applications, 

manure and alternative chemical formulations, irrigation and drainage technology, methods and 

timing of water applications, and different crop rotations.ò  (Ma et al., 2001)  DRAINMOD is 

also a ñoneȤdimensional, fieldȤscale computer model designed to simulate the effects of artificial 

surface and subsurface drainage systems on the hydrology and nutrient flux of agricultural fields.  

DRAINMOD can simulate cropping decisions, fertilizer applications, tillage practices, and 

drainage system design.ò (Skaggs, 1980) 
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2.3.2.2  Natural-systems models performance 

A modelôs performance is usually assessed by its ability to model observed outcomes 

specific to modeling objectives.  In the context of watershed management, the hydrologic 

balance, the amount of precipitation, infiltration, runoff, and streamflow are usually described 

and compared to observed data where possible.  Assessing performance is done statistically, 

graphically, or by reporting validated results.  The two most common statistical measures are the 

regression coefficient, R-squared (R2), and the Nash-Sutcliffe model efficiency (NSE) (Nash & 

Sutcliffe, 1970) coefficient.  R-squared measures how close the modeled outcomeôs regression 

line matches the observed valuesô regression line.  A value of 1 for R-squared indicates perfectly 

correlated regression lines, and a value of zero indicates no correlation.  NSE measures how well 

simulated values versus observed data match the 1:1 line.  NSE ranges from negative infinity to 

1.  A value less than 0 indicates that the mean of the observed data is a better indicator than the 

model.  R-squared and NSE are, by far, the most widely used performance statistics used in 

SWAT model calibrations and validations (Gassman et al., 2007).  Percent bias is also used to 

categorize model accuracy for less sampled outcomes like crop yield, which is an annual event 

(Gassman et al., 2007). 

Moraisi et al. (2007) proposed a NSE greater than 0.5 (daily) and 0.65 (monthly) and percent 

bias within 25 percent (daily) and 10 percent (monthly) for hydrologic assessments, and percent 

bias within 70% for nitrogen in a review of performance criteria for SWAT and HPSF 

applications (Moriasi et al., 2007).  Gassman et al. (2007) compiled R-squared and NSE 

performance statistics for SWAT applications for 115 hydrologic assessments and 37 pollutant 

studies (Gassman et al., 2007).  Most studies with sufficient sources of input data exceeded 

Moriasiôs criteria (Arabi et al., 2008; Hu et al., 2007; Moriasi et al., 2012), with weaker results 
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for daily performance, inadequate input data (low precipitation resolution for large study areas), 

and simulations with uncalibrated parameters (Gassman et al., 2007). 

Experience and environmental analysis are important in initializing models to achieve 

satisfactory performance (Shoemaker et al., 2005).  Parameter-intensive models require some 

sort of calibration.  Calibration of parameters can be done by applying known values directly, 

manually testing combinations and values, or automating the selection.  Mixing the approaches 

can also improve performance and reduce uncertainty in the model.  Manual calibration involves 

changing parameters within a desired range and evaluating performance statistics, elements of 

the hydrograph, or chosen modeling objectives.  In cases where manual calibration is too 

laborious, automatic calibration in the form of an objective function and a range of parameters 

may be searched. 

Moriasi et al. (2007) recommended guidelines for watershed calibration procedures as well.  

To form a robust model, a calibration should include the full range of hydrologic events in a 

watershed.  Average, wet, and dry years should be included in a calibration (Bracmort et al., 

2006).  Calibration procedures should consider water balance components like peak flow, tile-

flow, surface runoff (Moriasi et al., 2007).  Observed values of the water balance like 

evapotranspiration should be verified along with reasonable estimates of plant growth and 

biomass production.  The calibration procedures with respect to these guidelines for relevant 

studies in this analysis will be covered in the application section. 

2.3.2.3  Natural-systems models applications 

This study focuses on modeling agricultural Midwestern watershed and the effectiveness of 

conservation strategies with respect to water quality and producer behavior.  To demonstrate the 

capabilities of the discussed models and provide a measure of their performance in this domain, a 
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few relevant applications will be presented in the following three categories with a concentration 

on SWAT: hydrologic assessments, crop yield and nutrient modeling, and BMP analyses. 

2.3.2.3.1 SWAT Hydrologic Assessments 

One of the first SWAT hydrologic assessments validated flow partitioning and 

evapotranspiration models over three years for three Illinois watersheds (Arnold, 1996), ranging 

in size from 122 to 246 km2.  SWAT was calibrated manually by adjusting the soil available 

water capacity and the surface runoff coefficient or curve number with an R-squared of between 

0.63 and 0.95 for the three gauges monthly total stream flow, and annual water balance 

components within 25% of observed values.  Both SWAT and HSPF were applied to the much 

larger Iroquois River Watershed (5568 km2) in Central Illinois by manually calibrating 5 SWAT 

parameters (surface runoff coefficient, plant evapotranspiration, tile drain depth, baseflow 

recession coefficient) and 14 HSPF parameters (describing soil infiltration rate, 

evapotranspiration rate, surface runoff rate) (Singh et al., 2005).  The study assessed 15-year 

model verification period and showed that both models performed with a NSE of 0.88 for 

monthly flow and 0.80 for daily flow.  The study noted that SWAT required considerably less 

effort to apply and may have resulted in better performance as a result of tile drainage 

capabilities (Singh et al., 2005).  The 2012 version of SWAT with DRAINMMOD tile drainage 

routines was calibrated manually and used to model streamflow and water balance spanning a 

three-year calibration and five-year validation period in the South Fork Watershed in Iowa 

(Moriasi et al., 2012).  By varying tile drainage design parameters, surface runoff and 

evapotranspiration parameters over fixed intervals within feasible regions, daily flows were 

modeled with NSE of 0.76 (0.85) and 0.5 (0.7) for daily (monthly) calibration and validation 

periods respectively.    
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2.3.2.3.2 SWAT Crop Yield and Nutrient Modeling 

Modeling nutrient flux and pollutant levels with respect to crop yields is of primary 

importance in agricultural watersheds for this analysis.  In an analysis of fertilizer reduction 

strategies East-Central Illinois Embarras watershed, SWAT modeled monthly streamflows with 

an NSE of 0.85 (0.69), monthly NO3 fluxes with an NSE of 0.2 (0.31) for calibration (validation) 

regions, along with corn and soybean yields within 10% for an 18 year period (Hu et al., 2007). 

The calibration was performed in three stages for hydrology, nutrient flux, and finally crop yield 

using an automated trial-and-error search of parameter ranges.  Nutrient flux was calibrated 

using past estimates the nitrogen balance for past field studies (McIsaac & Hu, 2004b) in the 

region.  The nitrogen fixation in soybeans and harvested nitrogen was overestimated, and the 

study recommended additional parameterization in SWAT.  SWAT was calibrated using four-

stage iterative calibration procedure, by assessing model outcome performance after each step 

and repeating if insufficient, and applied to the Upper Big Walnut Creek (UBWC) watershed in 

central Ohio (Nair et al., 2011).  The four stages were: parameter selection, hydrology 

calibration, crop yield calibration, and nutrient loading calibration.  The parameter set included 

the surface runoff coefficient, evapotranspiration rates, crop nutrient uptake rates, nitrogen 

content in biomass, and leaf area indices.  The study modeled daily streamflow over a 10-year 

validation period with a NS of 0.5, monthly nitrogen flux with an NS of 0.66, and corn, soybean, 

and winter wheat yields all within 10 percent.  The harvested crop nitrogen was assessed for 

accuracy using the estimates same field studies (McIsaac & Hu, 2004a) as performed in Hu et al. 

(2007).  While the calibration procedure is significant and utilizing as much input data as 

possible is recommended, in an uncalibrated SWAT model applied to the Upper Mississippi 
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River Basin, crop yields were modeled within 25%, and monthly streamflows with an NS 

between -.10 and .8 across 11 subbasins (Srinivasan et al., 2010). 

2.3.2.3.3  SWAT BMP Analyses 

SWAT has built-in functionality for modeling several agricultural practices including 

changes in fertilizer and pesticide application, tillage operations, crop rotation, dams, wetlands, 

and ponds (Neitsch et al., 2011; Srinivasan et al., 2010). The model also has the capacity to 

represent many other commonly used management practices in agriculture.  SWAT was 

calibrated using a manual and automatic procedure across 39 SWAT parameters, and applied to a 

Central Illinois watershed to develop a coupled optimization-watershed model (Bekele et al., 

2011) for optimal selection and placement of best management practices.  Daily streamflow 

performance was NSE of 0.68, and annual sediment, phosphorus, nitrogen were all modeled 

within 6% error.  The BMPs incorporated in the coupled model were based on typical 

management in the study area: filter strips, grassed waterways, and constructed wetlands.  

SWAT directly simulated filter strips and constructed wetlands.  The built-in routines for grassed 

waterways are represented in the model using parameters governing channel processes such as 

channel roughness, cover, and erodibility factors (Bekele et al., 2011).  The study identified 

preferred placement locations or HRUs in the watershed for a particular BMP type linking 

pollutant reduction at the watershed outlet and minimizing BMP costs.   

SWAT was also applied to the Silver Creek watershed in Southwest Illinois to identify 

appropriate BMP placement (Kaini et al., 2012).  The calibration identified parameters and used 

an automated calibration routine to vary the parameters to minimize R-squared for 14 streamflow 

parameters first and then 4 sediment parameters.  Daily streamflow modeling performance over 

two years was NSE of 0.73, and sediment with a NSE of 0.76.  Grassed waterways, filter strips, 
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terracing, and stabilization structures were simulated using built-in SWAT implementations 

which modify parameters average slope length, erodibility, and runoff coefficients (Neitsch et 

al., 2011).  The study identified costs and optimized locations for 20%, 40%, and 60% reductions 

in sediment.  As part of USDA Conservation Effectiveness Assessment Program (CEAP), 

SWAT was applied to a 32 km2 watershed in Northwest Arkansas to model non-structural 

BMPs.  The study considered reduced poultry litter and commercial fertilizer application rates, 

application timing and chemical amendment to poultry litter, improved grazing and pasture 

management, and edge-of-field and riparian buffer zones.  The study included weather variations 

as well to assess BMP effectiveness across spatial and temporal scales.  The application required 

more than 43,000 runs of the SWAT model over 2 weeks using Condor, a free public domain 

software system for high throughput computing (Condor Team, 2013; TeraGrid, 2013).  SWAT 

output was processed for analysis using MATLAB.  The study concluded that N losses were 

greatest for fall fertilizer application for all grazing management and P losses were not sensitive 

to fertilizer application timing for no grazing and optimum grazing management.  The interaction 

effects between litter application timing and grazing management on P losses indicated that low-

intensity grazing management had greater impacts on P losses than litter application timing.   

2.3.2.3.4 Other Analyses 

A few applications of the other discussed models are presented to demonstrate their 

capabilities, calibration, and performance.  The Root Zone Water Quality Model (RZWQM) was 

applied to a field near Story City, Iowa to model tile flow, NO3 flux, and crop yields (Bakhsh et 

al., 2001).  Over a three year period the model simulated tile flow, NO3 losses in tile water, and 

yields by showing a percent difference of ï8%, 15%, and ï4%, respectively, between measured 

and simulated values.  The calibration was performed sequentially with the hydrologic 
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component first, then nutrients, and finally crop parameters (Bakhsh et al., 2001).  Drainable 

porosity and saturated hydraulic conductivity of the soils, nutrient transfer coefficients, and plant 

growth parameters were used.   

DRAINMOD was compared to SWAT for the Embarras watershed (Gentry et al., 2009) in 

East-Central Illinois discussed in the SWAT section to simulate the nitrogen budget.  

DRAINMOD was calibrated with evapotranspiration coefficients, crop rooting depths, physical 

soil parameters, and drainage system design.  DRAINMOD underperformed SWAT with a 

prediction efficiency of 0.80 and 0.53 for monthly streamflow and nitrate flux respectively, and 

over predicted crop yields by 5-8% for a 10 year period.  Itôs important to note that the 

comparisons were made on a representative unit area, as DRAINMOD is a field-scale model.   

Best management practices have also been modeled on a representative unit area basis 

(specific plot, or field scale modeling).  Nine plots in Minnesota, ranging from .6 to 2.4 ha, were 

assessed using DRAINMOD to show that shallow drainage and controlled drainage, two 

alternative drainage practices receiving much attention in the region, were both predicted to 

reduce annual drainage volumes and NO3-nitrogen losses, with the latter appearing to be the 

most effective (Luo et al., 2010).  Drainage design, crop nutrient uptake, denitrification, nutrient 

transport parameters were all manually calibrated first for physical properties of the area like the 

depth to the impermeable layer, then for hydrology, and then for nutrient flux.  Flow predictions 

ranged from 2 to 24 percent error across the 9 plots and 7 years.  Nutrient predictions ranged 

from 0 to 85 percent error, and crop yields were predicted within 5 percent error (Luo et al., 

2010).  36 one acre plots in Nashua, IA were studied (L. Ma et al., 2007) using the RZWQM to 

simulate the trends of tillage practices, crop rotation, and controlled drainage on yearly drain 

flow and yearly N loss in drain flow, their effects on corn yield were less adequately simulated.  
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The tillage practices, soil properties, and manure applications from one plot were used to 

calibrate the model.  Singer et al. (2011) used the RZWQM to demonstrate that N loads to tile 

drains can be reduced 19ï28% using winter annual cover crops in Midwestern maizeïmaizeï

soybean and maizeïsoybean rotations. 

2.3.2.4  Natural -Systems Models Conclusions 

Four natural systems models have been presented to demonstrate the capabilities and 

performance of modeling the hydrology, pollutant transport, and yield in Midwestern agricultural 

watersheds.  Criteria for sufficient modeling performance were presented to serve as benchmarks 

for applications.  The analysis shows that the SWAT is one model that can provide functionality 

and meet these criteria.  SWAT is a basin-scale model, provides a resolution for placement of 

structural and non-structural BMPs through a watershed, is accepted for TMDL analyses which 

serve as a plan for improving water quality, and is the most extensively applied model for 

Midwestern agricultural watersheds (Gassman et al., 2007). 

2.3.3  Human-Systems Models  

Integrating the human dimension in watershed management is important in determining both 

the effectiveness and efficiency of resource management programs.  Human dimensions of water 

and land use have been modeled for forecasting, planning, and conservation.  Modeling of the 

behavior of agricultural stakeholders and the economic tradeoffs posed by production have been 

utilized to improve outcomes.  In agricultural conservation, modeling of a farmerôs adoption or 

lack of adoption of a select practice and the reasons underlying that choice are critical 

dimensions for a comprehensive understanding of agricultural processes.  Government agencies 

and agricultural extension entities have developed decision-making models to assist producers 

and researchers for conservation planning.  This section summarizes specific human-systems 
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models in agricultural, along with broader approaches taken in modeling human systems along 

like agent-based modeling, with an overview of some of the efforts to model human-systems 

employed in agricultural watershed management, and descriptions of their capabilities, 

performance.  The reviewed models have coupled natural components.  As a result, the review of 

applications is presented in the context of coupled analyses.   

2.3.3.1 Overview of Models 

One model designed to capture farm decision-making is the Comprehensive Economic and 

Environmental Optimization Tool and the related Farm Economic Model (FEM) developed by 

the EPA (Keith et al., 2000; Osei et al., 2000).  The model operates on an annual time step and 

can be executed for extended periods of 30 years or more. Key sources of input data required to 

simulate a farm in FEM include type of livestock system, manure management methods, 

cropping systems, facilities and equipment, field characteristics and other external factors. 

Economic outputs generated by FEM include total revenue, components (crop and livestock, 

fertilizer, labor, etc.), total cost, net returns, costs of individual production, debt payment, and 

owner's equity (Osei et al., 2000). 

Another tool to model farm decision-making is the Integrated Farm System Model available 

through the USDA ï ARS (Rotz et al., 2012).  The model considers crop rotations, feeding 

strategies, equipment, facilities, among other management options that can be evaluated. The 

model requires considerable calibration because of the number of options available to the user.  

The farm model is designed to represent the performance and economics of a farm firm by 

considering all major production costs and income for products leaving a farm.  This assumption 

allows the measure of system performance to reflect one yearôs use of resources to produce that 

yearôs production. End-of-year crop inventories are sold and feed shortages are purchased to 
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maintain steady state accounting of resources (Rotz et al., 2012).  The ISFM was calibrated to 

predict farm yields for a 100 hectare pasture with four forage species for dairy cow production 

(Corson et al., 2007).  Along with calibrated parameters like forage growth rate, rooting depth, 

nutrient uptake, yields and pasturing parameters (Rotz et al., 2012) for economic yields were 

calibrated.  Net returns per cow for each species were simulated, with a correlation to yields of at 

least 0.92.   

ISFM and FEM are models that are designed to typify a single farm unit.  Modeling human 

decision-making on a larger-scale in communities and watersheds increases the complexity.  The 

dynamics of a watershed is influenced both by environmental factors and by actions of 

individuals and institutions.  Its behavior is characterized by interactions, emergence and non-

linearities. It is difficult to observe and recognize feedback loops and unpredictable 

consequences in social and biophysical systems.  ISFM and FEM provide results with a 

resolution of the study area only.  A broader scale model, SEAMLESS, conceptualizes typical 

agricultural actors, members of the production chain, government entities, and market forces for 

the European Union (van Ittersum et al., 2008).  The model requires a calibrated baseline with 

selected agro-technological options, and simulates economic and environmental outcomes over 

15 years.  SEAMLESS provides international, national and regional policies for simulation.  

SEAMLESS requires extensive calibration across components to account for diversity within the 

European Union. 

Two broad modeling approaches to human-systems that have been applied beyond 

agricultural watershed management to areas like urban land use, water demand and pricing, are 

cellular automation and agent-based modeling. These modeling approaches can be constructed 

for study-specific applications, and therefore do not have generic properties.  Each approach may 
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use a top-down or bottom-up approach (Matthews et al., 2007).  Top-down models define criteria 

or objectives to dictate how an area should be spatially structured.  Bottom-up models are 

developed with rules specifying interactions among individual decision-makers (e.g., residents, 

businesses, institutions, etc.) or, at a higher level of abstraction, interactions among individual 

land use parcels to simulate the emergence of land use patterns over time (Bone et al., 2011). 

Cellular automation conceptually divides a surface into cells and associates with each cell an 

automaton, an entity that independently executes its own state-transition rules, taking into 

account the nearby cells (Jantz et al., 2010).  In land use change, implementation of the model 

occurs in two general phases: calibration, where historic growth patterns are simulated; and 

prediction, where historic patterns of growth are projected into the future.  

Agent-based modeling is another technique used to describe human processes (Robinson et 

al., 2007).  Agent-based modeling facilitates forecasts, decision-making, and scenario analysis 

for large-scale, diverse, otherwise complex human processes like watershed management.  Such 

models can be valuable tools to identify potential mechanisms of resilience of specific social-

ecological systems.  In agent-based modeling, rules determine how autonomous entities behave 

and interaction with other entities in a modeled system.  The agents can be programmed and 

calibrated according to real-world observations but there is limited validation of agent-based 

modeling result because it is an abstraction of larger immeasurable system.  However, the 

abstraction can characterize systems beyond mathematical classification.  The ABM mindset 

consists of describing a system from the perspective of its constituent.  It has several advantages: 

ABM captures emergent phenomena, provides a natural description of a system, and is flexible.  

ABMs also have their disadvantages: human behavior is difficult to quantify, calibrate, and 

sometimes justify (Bonabeau, 2002). 
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2.3.3.2 Applications of Coupled Natural-Human Systems Models 

Because of the coupled nature of these analyses and the direction of this study, applications 

of human-systems models are summarized in a review of coupled studies.  The review focuses 

on agricultural management with respect to environmental and economic costs. 

The Farm Economic Model (FEM) with SWAT was used to evaluate the impacts of a late 

spring nitrate test (LSNT) and a fall and winter cover crop (rye) on the a Northern Iowa 

agricultural watershed (Saleh et al., 2007).  The simulation results were compared to a field test 

of a 25% reduction in NO3-N due to the LSNT scenario (Jaynes et al., 2004).  The FEM was 

used to generate several scenarios and relate environmental impacts to economic costs.  The 

application of LSNT resulted in a reduction (31%) of nitrate losses a cost of about $6/ha. Using 

rye as cover crop during fall and winter resulted in reduction of sediment and all nutrients at a 

cost of about $26/ha if planted after corn harvest only and about $34/ha if planted after both corn 

and soybean harvests.   

The Integrated Farm System Model (ISFM) was applied (Rotz et al., 2011) to evaluate 

methods for applying manure in Pennsylvania pastures.  The model predicted ammonia 

emissions, nitrate leaching, and phosphorus runoff losses similar to those measured over four 

years of field trials. Each application method was considered on three Pennsylvania farms over 

25 years.  The ISFM related farm profits to nutrient losses.  On a swine and cow-calf beef 

operation under grass production, shallow disk injection increased profit by $340 while reducing 

ammonia nitrogen and soluble phosphorus losses by 48% and 70%, respectively.  On a corn-and-

grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble 

P loss by 76% with little impact on farm profit.  Incorporation by tillage and band application 

with aeration provided less environmental benefit with a net decrease in farm profit.   On a large 



44 
 

corn-and-alfalfa-based dairy farm where manure nutrients were available in excess of crop 

needs, incorporation methods were not economically beneficial, but they provided environmental 

benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow 

disk injection provided the greatest environmental benefit at the least cost or greatest profit for 

the producer. 

An agent-based model was constructed to determine and assign BMP installations (filter 

strips, no-till, and permanent vegetation) in a Northern Kansas watershed management plan 

(Nejadhashemi et al., 2011).  The ABM used the cost of implementing each BMP using one-time 

and annual costs over a given time horizon for each BMP on each farm.  The price of targeted 

nutrient was calculated as the government budget for reducing that nutrient (per unit nutrient).  

Adoption would occur if BMP cost per reduction in the nutrient exceeded the government budget 

per unit nutrient.  The study coupled the ABM with SWAT and varied BMP costs and 

government budgets to find an optimal reduction strategy: government funds could be allocated 

up to $1 million on BMP implemention before allocating any funds for dredging to address 

sediment loading (Nejadhashemi et al., 2011). 

An agent-based model was built to simulate biofuel cropping and carbon credit adoption in a 

Central Illinois watershed (Ng et al., 2011).  The study formed the agent-based model defining 

initial perceptions of prices, costs, yields and the weather, and how they update those perceptions 

with time.  Agents were diverse in their land holdings, quality of land, economic advantage, 

yields, time discount rates, foresights, and risk aversions as well.  Farmer behavior adapted over 

time regarding initially unknown practices with respect to their neighbors and experience.  The 

ABM was coupled with SWAT.  The results of the study highlighted potential market 

instruments that would be more successful and nitrate mitigation strategies.  Ng et al. (2011) 
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identified the need for better ways to verify ABM conclusions and incorporate observations and 

empirical data in model formulation. 

Researchers performed a large-scale simulation of The Chesapeake Bay Watershed using a 

coupled natural-human agent-based model to identify stakeholders and policy initiatives to 

improve the ecological health of watershed (Learmonth et al., 2011).  The study conducted the 

University of Virginia Bay Game to simulated decision-making and calibrated the simulation to 

observed watershed health.  Results from the game showed a dramatic reduction in the nutrients 

flowing into the bay from the agriculture sector, and an increase in overall bay health and a 

sustainable fishing industry.  Watershed improvement positively affected farming sector 

profitability, suggesting an opportunity for policy incentives to support the transition to new 

practices (Learmonth et al., 2011).  

In land-use modeling, Zellner (2007) developed Water-Use Land-Use Model, an agent-

based model to simulated land-use changes in Southeast Michigan and the linkage to 

groundwater aquifer depletion.  The study defined hydrological processes using physical 

groundwater dynamics.  The model defined agents as residents, stone quarries, golf courses and 

farmers) based on empirical and survey-based attributes.  The conclusions identified zoning 

practices were the most important policy point in groundwater effects.   

Additionally, there have been studies to incorporate empirical data from surveys and 

experiments for defining agent decision-making and verifying model behavior.  Gilli and Winker 

(2003) modeled the foreign currency exchange market using an ABM and validated their results 

with observed market data.  Castella et al. (2005) demonstrated that land-use scenarios in 

agricultural watersheds in Northern Vietnam could be validated using an ABM with observed 

data.  The model was initialized with data from village surveys on population, ethnicity, number 
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of buffaloes, and presence of reforestation or development projects.  Agent behavior was seeded 

with behavior rules for typical farmer resource profiles. 

2.3.3.3 Coupled Natural-Human Systems Models Conclusions 

Physical models like SWAT are highly predictive for water processes like flow and water 

quality.  They have capabilities for reliably simulating crop yields, management, and BMP 

installations.  Physical models found to be highly integrative, synthetic, and useful for local 

stakeholders and regional policy makers at the field and watershed scale.  Human systems 

models are helpful and necessary to form a more comprehensive description of an agricultural 

system, but difficult to verify because human behavior and decisions making is difficult to model 

and input data relies on unobservable outcomes over time.  Integrating the two biophysical 

processes and socioeconomic processes in agriculture, water use, land use is a necessary and 

emerging research area.  Increasing the use of empirical data is facilitating validation of paired 

physical-human models and making them more integrative.  They can lead to insights on 

achieving optimal watershed management strategies.  They provide policy makers with  

decision-making support for resource allocation, especially by taking into account the diversity 

of stakeholder trajectories and by eliciting the driving forces of land change and water use 

associated with each type of agro-ecosystem. 

2.4  Decision Support 

2.4.1  Decision Support Overview 

Coupled human-natural systems models are leading to conclusions on the hydrology, 

management, land use, nutrient transport, economic tradeoffs, and conservation practice adoption 

in agriculture  In practice, these models are meant to inform the stakeholders with information 

and analysis that would otherwise be too expensive or infeasible to obtain.  It is important to 
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model optimal placement of agricultural BMPs with respect to the trade-offs between multiple 

objectives can control diffuse pollution and lower costs for varied entities and across many 

scales.  The modeling has led to the development of decision-support tools in agricultural 

management.  Two important decision support tools, discussed in the following sections, are 

DSSAT and TMDL reporting. 

2.4.2  Decision Support Tool Overview 

The decision support system for agrotechnology transfer (DSSAT) is an approach to 

understand, predict and manage agricultural decisions.  DSSAT can simulate field-scale single 

crop production systems considering weather, crop genetics, soil water, soil carbon and nitrogen, 

and management in single or multiple seasons and in crop rotations and incorporate factors such 

as soil phosphorus and plant diseases (Jones et al., 2003).  DSSAT provides a platform that 

allows one to easily compare alternatives for specific inputs.  DSSAT provides a user interface 

for the user to specify parameters, management, season/time frame, and outputs. 

Total Maximum Daily Load (TMDLs ) specify the amount of pollutant that needs to be 

reduced to meet standards, allocates pollutant load reductions, and provides recommendations to 

achieve those reductions (Shoemaker et al., 2005).  A TMDL is the allowable load of any 

pollutant that a stream can receive and still achieve water quality standards and support its 

designated use.  A TMDL is comprised of loads from permitted point, diffused and natural 

background sources.  While a coupled human-natural systems modeling approach represents one 

option to meet reporting requirements, integrated models are important resources for decision-

makers to identify viable strategies.  Selecting the appropriate model is crucial in developing a 

feasible, defensible and equitable TMDL (Shoemaker et al., 2005).  Likely benefits and 

drawbacks associated with various loading alternatives are central to effective management. 
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Modeling analyses can be used to test multiple scenarios, with various allocations to nonpoint 

and point sources. For example, coupled SWAT models are being used in TMDL analyses to 

inform policy regulating discharges into waterbodies. 

2.4.3  Decision Support Tool Applications 

DSSAT was coupled with RZWQM to simulate subsurface drainage, nitrate concentration in 

flow, and crop yield under various nitrogen application rates with winter cover cropping in a 

cornȤsoybean system in central Iowa (Li et al., 2008).The model results suggest that cover 

cropping did not reduce main crop yield with nitrogen application rates above 61 kg/ha nitrogen. 

SWAT is being used in TMDL analyses to inform policy regulating discharges into 

waterbodies.  Rosenthal et al. (2001) conducted an analysis in the Arroyo Colorado River 

watershed in Texas as part of a TMDL study to determine the impacts of placing BMPs in 

different areas of the watershed. The watershed had a mixture of urban and agricultural lands and 

excessive sediment and nutrient loads in the waterways.  Sediment and nutrient loadings were 

simulated by SWAT for the outlet of the watershed. The SWAT model estimated an in-stream 

reduction of 50% for nitrate and phosphorus with a 50% reduction in fertilizer application rate.  

Saleh et al. (2007) studied the largest dairy producing area in Texas as part of a TMDL-related 

study.  It was suspected that manure application in the North Bosque River watershed was 

delivering excessive nutrients to the waterways.  The study utilized the Agricultural Practice 

Extender (APEX) to simulate the effect of buffer strips on the edge of field loadings of nutrients 

and sediment, and the output loadings were then input into the SWAT model to simulate 

transport and fate through the watershed.  The study evaluated various phosphorus control 

scenarios, removal of dairy cow manure from the watershed, reductions of phosphorus in dairy 

cow diets, and reduced manure application rates. 
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In addition, larger scale studies are utilizing coupled natural-human systems models to assess 

the effectiveness and direct future efforts of policy initiatives on agriculture management.  The 

USDA-NRCS utilized SWAT to analyze the Conservation Effect Assessment Project (CEAP) 

which funds conservation practices in U.S. farms (USDA-NRCS, 2011).  CEAP estimated 

conservation benefits for reporting at the national and regional levels and to establish the 

scientific understanding of the effects and benefits of conservation practices at the watershed 

scale.  Producers were able to install structural practices like terraces and filter strips, adopt 

nutrient management and retire land with assistance from the USDA.  The study assessed the 

options available to producers and most beneficial opportunities in the future using SWAT and 

APEX and found that conservation practices have reduced wind erosion by 64%, sediment losses 

by water erosion by 61%, surface nitrogen loss by 45% while subsurface nitrogen loss by 9%, 

phosphorus loss by 44%.  The study identified the most critical conservation needs in the future: 

sediment loss, nitrogen loss through surface and subsurface flow, and phosphorus loss.   In 

addition, the study identified nutrient management as the most effective way to improve 

environmental outcomes in the Upper Mississippi River Watershed (USDA - NRCS, 2011). 

2.4.4  Decision Support Conclusions  

Coupled natural-human systems are helpful for determining the effects and optimal 

placement of agricultural BMPs and the trade-offs between multiple objectives in order to cost-

effectively control diffuse pollution at varied scales (i.e. field and watershed scales).  These tools 

are assisting decision making for producers and institutions.  The use of these tools is limited 

with respect to physical and socio-economic data needs and usually requires advanced user skills 

to be successfully adjusted in various spatial scales and situations.  The tools are good for 
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researchers for simplified and generalized scenario analysis.  As recent studies indicate, the 

models are informing policy-makers and producers. 

2.5   Literature Review Conclusions 

Coupled human-natural models can accurately characterize and quantify processes in 

agricultural systems.  Data and modeling tools are widely available and largely free.  Depending 

on the scale (spatial and stakeholder) and modeled process (nutrient, crop, social), there are 

many approaches and tools to consider.  Natural systems models are more precise in quantifying 

verifiable data like flow and concentration.  Human systems models are less rigid and may not be 

verifiable.  Integrating both domains leads to more robust, practical conclusions.  The approach 

is being employed in watershed management and policy decision-making for all stakeholders.     

This study draws on the procedures, model selection, data requirements, and performance 

metrics to formulate a decision-making tool for an East-Central Illinois watershed.  The literature 

demonstrates that policy instruments and agricultural management decisions can be reliably 

modeled for testing and forming conclusions to improve environmental and economic outcomes. 

This study is guided by past coupled analysis in similar watersheds in geography and 

management.  The benchmarks and model development are informed by the discussed literature.  

These studies have established modeling performance benchmarks, recommended procedures, 

and BMP parameterizations to develop defensible and comprehensive models.  The studies have 

produced recommendations and insights for improving water quality that are informed by 

practical real-world outcomes, which are used to validate and compare the results of this study. 
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CHAPTER 3 

METHODS ï NATURAL SYSTEMS MODEL  

 

3.1 Introduction 

This study sought to answer the following question: how can agricultural stakeholders improve 

environmental outcomes while preserving economic gains.  The study took the following 

approach: model agricultural producer behavior and economic returns with respect to conservation 

strategy planning, environmental outcomes, and community/government policy.  To model these 

outcomes, this study coupled a natural systems model and a human systems model in an East-

Central Illinois watershed (Figure 3.1).   

 

Figure 3.1: Coupled Natural-Human Systems Model 

The metrics used to assess performance were water quality (nitrate and phosphorus levels), 

economic gains (yield, producer returns, government expenses/profit), and conservation practice 
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adoption.  Each model was calibrated to reflect observed environmental outcomes and producer 

behavior in the watershed.  Once a calibrated model was formed, the model was employed to test 

different design features of conservation strategies and proposed government subsidies and taxes 

to find potential cost-effective and beneficial ways to accomplish the research objective. 

The first part of the methodology is a presentation of the natural-systems model.  The Soil and 

Water Assessment Tool was used to deliver natural systems outcomes: water quality, crop yields, 

and BMP modeling.  The watershed description, calibration procedure and final SWAT model, 

and representation of conservation strategies are presented in Chapter 3.  Three best management 

practices currently being employed in the watershed by producers were considered in this study: 

nutrient management, drainage water management, and winter cover cropping.  Chapter 4 presents 

the human-systems model.  An agent-based model was calibrated for cropping decisions, 

economic returns, and adoption of conservation strategies in the watershed.  Finally, the coupling 

of the models, its interface, and the scenario analysis is presented.  The agent-based model directed 

SWAT to implement farm decisions, and SWAT generated environmental outcomes for the agent-

based model to consider in a feedback loop (Figure 3.2).   
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Figure 3.2: SWAT Agent-based Model 

The coupled model produced the metrics for analyzing BMP adoption, effectiveness, and 

expense.  The nexus of the coupled model are the management decisions: cropping and BMP 

decisions.  The natural-systems model delivers environmental outcomes to the human-systems 

model; the human-systems model determines management decisions and invokes the natural-

systems model in a feedback loop. 

3.2 SWAT MODEL DEVELOPMENT 

3.2.1 SWAT Model Overview 

The natural systems component of the coupled analysis provided measures of water quality, 

hydrology, and crop growth for model development.  SWAT was selected to model natural 

systems outcomes (water quality, crop growth, and hydrology).  SWAT has a successful 
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precedent of modeling these outcomes in Midwestern watersheds similar to the study area 

(Arnold, 1996; Bekele et al., 2011; Hu et al., 2007; Nair et al., 2011; Ng et al., 2010; Singh et al., 

2005).  This study focuses on four prior works that successfully utilized SWAT to model nitrate 

and phosphorus flux, hydrology, and crop yield in tile-drained Midwestern watersheds: Hu et al. 

(2007) studied the Upper Embarras River watershed in East-Central Illinois, Nair et al. (2011) 

studied the Upper Big Walnut Creek watershed in Central Ohio, Ng et al. (2010) studied the Salt 

Creek Watershed in Central Illinois, and Moriasi et al. (2012) modeled the water balance in the 

Salt Fork Watershed in Iowa.  The calibration and performance of SWAT is presented with 

respect to these studies and other selected studies.   

The SWAT model and software to initialize an analysis has changed over different version 

since SWATôs beginning in the 1990ôs.  All four studies used a version of the SWAT model and 

followed the procedures detailed in the Theoretical Documentation (Neitsch et al., 2009) and the 

ArcSWAT Manual (Srinivasan, 2009) using the AVSWAT-X interface.  This study employed 

the 2012 version of SWAT (Rev. 588) (Neitsch et al., 2009) and the ArcSWAT 10.1 (Srinivasan, 

2009) interface.  The watershed extent and hydrology are determined by the initialization 

procedure.  For that reason, the results of the initialization are presented after an introduction of 

the location, climate and data sources for modeling the study area using SWAT. 
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3.2.2 Study Location 

 

Figure 3.3: Upper Salt Fork Watershed 
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The Upper Salt Fork Basin is located in East-Central Illinois (Figure 3.3).  The watershed is 

located in Champaign and Vermillion counties.  The Upper Salt Fork Drainage Ditch and the 

Spoon River flow north to south and merge into the Salt Fork River.  The Upper Salt Fork Basin 

flows through a network of artificially constructed ditches and channelized streams.  The Upper 

Salt Fork Drainage Ditch was constructed with a 60-foot bottom width, tapering upstream to a 

20-foot bottom width near Rantoul (Singh et al., 1987).  The construction of these channels was 

to achieve the higher gradient for expedited flow.  The Salt Fork and Vermillion River are 

currently listed as impaired under 303(d) of the 1972 Clean Water Act (U.S. Environmental 

Protection Agency, 1972) for the following reasons: fish kills, ammonia (total), total suspended 

solids, pH, nitrogen (total), phosphorus (total), nitrate-nitrogen.  The Spoon River is listed as 

impaired for habitat assessment and dissolved oxygen (Limnotech, 2007). 

The climate is temperate, with four distinct seasons.  Based on the weather data for the 

Urbana weather station (Illinois State Water Survey, 2012), the mean annual precipitation was 

1006.5 mm for the years 1995-2012, and the mean annual snowfall was 539.6 mm.  Figure 3.4 

shows the seasonality of the precipitation for the Urbana weather station, 25% of the annual 

precipitation occurs in the months of May and June (Illinois State Water Survey, 2012).  Figure 

3.5 shows the monthly average temperature (Illinois State Water Survey, 2012). 
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Figure 3.4: Monthly Precipit ation for Upper Salt Fork watershed (1995-2012) (Illinois State 

Water Survey, 2012) 

 

 

Figure 3.5: Monthly Temperature for Upper Salt Fork watershed (1995-2012) (Illinois 

State Water Survey, 2012) 

 

3.2.3  Data Sources 

The SWAT initialization was performed in ArcGIS 10.1 (ESRI, 2012) per the instructions in 

the ArcSWAT manual (Srinivasan, 2009).  Data sources for this specific study incorporated: 
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elevation, soils, land cover, point source inputs, precipitation, temperature, wind speed, relative 

humidity, solar radiation, potential evapotranspiration, stream flow, nitrate-nitrogen, and 

dissolved reactive phosphorous.   

3.2.3.1  Elevation 

LiDAR (Light Detection and Ranging) digital elevation data were used for areas within 

Champaign County.  LiDAR data were acquired in 2008 by Aero-Metric for the USGS and 

accessed through the Illinois Natural Resources Geospatial Data Clearinghouse (Illinois Natural 

Resources Geospatial Data Clearinghouse, 2012) (available at: 

http://www.isgs.uiuc.edu/nsdihome/webdocs/ilhmp/county/champaign.html).  LiDAR data for 

Champaign County had an average sampling rate of 1.2 meters.  LiDAR data were used to form 

a 3-meter resolution raster, ensuring at least twice the sample rate (Crawford, 2008).  For areas in 

Vermillion County, digital elevation data with a resolution of 3 meters were merged with LiDAR 

data.  Vermillion County elevation data were derived from the USGS Seamless Server (USGS, 

2012b).   

3.2.3.2  Land Cover and Soils 

Land Cover data were derived from USGS Seamless Server 30-meter NLCD 2006 data and 

resampled to 3 meters (USGS, 2012b).  Soil type and properties were accessed through the 

SSURGO database built-in to the ArcSwat 10.1 interface (Sheshukov et al., 2009; USDA - 

NRCS, Soil Survey Geographic (SSURGO) Database).  SSURGO data for the area had a scale of 

1:12000. 
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3.2.3.3  Climate Data 

Daily precipitation and temperature data were obtained through the National Ocean AA for 

weather stations in Urbana (COOPID = 118740), Rantoul (COOPID = 117150), Ogden 

(COOPID = 116344) (National Climate Data Center, 2012).  Urbana data were used for years of 

missing data at Ogden.  Estimates of wind speed, relative humidity, solar radiation, and potential 

evapotranspiration were obtained through the Water and Atmospheric Resources and Monitoring 

Program (WARM) at the Illinois State Water Survey (Water and Atmospheric Resources 

Monitoring Program, 2013).  The closest station to the study area was located in Champaign, IL 

(available at http://www.isws.illinois.edu/warm/data/cdfs/cmiday.txt).  The Champaign station 

was used for wind speed, humidity, radiation, and potential evapotranspiration (PET) data for the 

entire study region.  WARM-ISWS potential evapotranspiration estimates were calculated using 

the Penman-Monteith method (Monteith, 1965); the monthly average estimates are shown in 

Figure 3.6.  Data collection began in 1989, and missing values were replaced with the average 

for that day over the 23 years.   
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Figure 3.6: Monthly PET  for Upper Salt Fork watershed (1989-2012) (Water and 

Atmospheric Resources Monitoring Program, 2013) 

 

3.2.3.4  Point source inputs 

Monthly effluent and nitrogen loads for the three sewage treatment plants were obtained 

from the Environmental Protection Agency Enforce & Compliance History Online (ECHO) for 

Rantoul Sewage Treatment Plant (STP) East (Source ID = IL0022128), Gifford STP (Source ID 

= ILG580214), and Royal Water Treatment Plant (WTP) (Source ID = ILG640131).  

(Environmental Protection Agency, 2012).  The daily averages for 2012 are shown in Table 3.1. 

0

20

40

60

80

100

120

140

160

P
o

te
n

tia
l E

va
p

o
tr

a
n

sp
ir
a

tio
n

 (
m

m
)



61 
 

Table 3.1: Point Sources ï Sewage Treatment Plants (Environmental Protection Agency, 

2012) 

 

Average Daily 

Flow (m3) 

Average Daily 

Nitrogen Load 

(kg NO2 +NH3) 

Average Daily 

Dissolved Oxygen 

Load (kg O2) 

Average Daily 

Dissolved 

Phosphorous Load 

(kg P) 

Rantoul 10874 90.3 88.86 25 

Gifford 138.12 n/a n/a n/a 

Royal 0.31 n/a n/a n/a 

 

3.2.3.5  Streamflow and Nutrient Data 

Daily streamflow data were obtained from the USGS for the station at St. Joseph (site no. 

03336900) for 2005-2012 (USGS, 2012a) (available at 

http://waterdata.usgs.gov/usa/nwis/uv?site_no=03336900).  The site sampled average daily flow 

from 1952 ï 2012, with the exception of 1991 ï 2004, for which no flow data were available.  

Nitrate and phosphorous sampling was obtained through Urbana-Champaign Sanitary District 

(UCSD) and University of Illinois (UIUC) Department of Natural Resources & Environmental 

Sciences (NRES) Biochemistry Group (UCSD & UIUC-NRES Biochemistry Group, 2013) 

(available at: saltfork.nres.uiuc.edu/water_quality.html).  Samples were taken for a least a bi-

weekly basis for April 15, 2008 through December 28, 2012.  This resulted in a total of 242 total 

samples.  To calculate loads, a linear interpolation method was use to extrapolate nitrate and 

phosphorous concentrations when not available, multiplied by the USGS measured for that date 

as performed by Hu et al. (2007).  Figure 3.7 shows the monthly USGS flow values; Figure 3.8 

shows the total monthly nitrate loads using the USGS flow and nitrate concentrations; Figure 3.9 

shows the average monthly nitrate concentrations.  The nitrate loads and concentrations peak in 

during the wet spring months and diminish during the dry late summer months.  Figures 3.10 
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through 3.11 show the phosphorous loads and concentrations.  Phosphorous exhibits a similar 

seasonality, and consequently during the dry summer months, the Rantoul Sewage Treatment 

plant loading comprises a larger percentage of the total load. 

 

Figure 3.7: Average Monthly Flow Salt Fork River (USGS, 2012a) 
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Figure 3.8: Total Monthly Nitrate Load Salt Fork River, Linear Interpolation Method 

2008-2012 (UCSD & UIUC-NRES Biochemistry Group, 2013) 

 

 

Figure 3.9: Average Monthly Nitrate Concentration (2008-2012) (UCSD & UIUC-NRES 

Biochemistry Group, 2013) 
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Figure 3.10: Average Monthly Dissolved Reactive Phosphorous Load (2008-2012) (UCSD 

& UIUC -NRES Biochemistry Group, 2013) 

 

Figure 3.11: Average Monthly Dissolved Reactive Phosphorous Concentration (2008-2012) 

(UCSD & UIUC-NRES Biochemistry Group, 2013) 
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3.2.4  Watershed delineation 

All watershed processing and delineation was done using the data sources specified in 

section 3.2.3 with the AVSWAT-X plugin (Srinivasan, 2009) for ArcGIS (ESRI, 2010) 

according to the procedures in the ArcSWAT manual (Neitsch et al., 2013).  The watershed 

outlet was set to the USGS station at St. Joseph.  The threshold for stream definition was set to 

200 hectares as suggested by AVSWAT-X and performed in past studies (Hu et al., 2007; Nair et 

al., 2011).  This resulted in 119 subbasins which were defined by dominant soil type, land use, 

and slope.  The HRU definition was chosen to correspond to average farm size region as 

performed by Nair et al. (2011).  This corresponded to an HRU definition of at least 55% of an 

area dedicated to a single land use, at least 28% of the area composed of a single soil, and and at 

least 28% of an area exhibiting a uniform slope.  The agricultural HRU sizes ranged from 2 

hectares to 1022 hectares with an average size of 149 hectares (368 acres).  The USDA-NASS 

reported an average farm size for Champaign County of 160 hectares (USDA-NASS, 2009).   

The resultant watershed was 328 km2 is area.  88% of the watershed was row-cropped 

agriculture.  80% of the watershed was composed of poorly or moderately-poorly drained soils 

according to SSURGO soil data (USDA-NRCS, Soil Survey Geographic (SSURGO) Database).  

The dominant soil type was Drummer, which is poorly drained (Cooke, 2011).  The terrain was 

flat; 76% of the watershed had a slope less than 2%.  The distribution of soils in the resultant 

watershed and their drainage class are shown in Table 3.2.  The drainage classes are derived 

from the Illinois Drainage Guide (Cooke, 2011). 
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Table 3.2: Soil Type and Class (USDA - NRCS, Soil Survey Geographic (SSURGO) 

Database)(Cooke, 2011) 

Soil Name % Area 

Hydrologic 

Group Drainage Class 

Drummer silty clay loam, 0 to 2 

percent slopes 39.519 D Poorly drained 

Raub silt loam, 0 to 2 percent slopes 7.449 B 

Somewhat poorly 

drained 

Ashkum silty clay loam, 0 to 2 

percent slopes 6.682 D Poorly drained 

Elliott silty clay loam, 2 to 4 

percent slopes, eroded 6.099 C 

Somewhat poorly 

drained 

Brenton silt loam, 0 to 2 percent 

slopes 5.689 B 

Somewhat poorly 

drained 

Varna silt loam, 2 to 4 percent 

slopes, eroded 4.138 C 

Moderately well 

drained 

Flanagan silt loam, 0 to 2 percent 

slopes 3.685 B 

Somewhat poorly 

drained 

Dana silt loam, 2 to 5 percent slopes 2.421 B 

Moderately well 

drained 

Selma loam, 0 to 2 percent slopes 2.397 D Poorly drained 

 

3.2.5  Model Calibration  

SWAT provides default values for all the parameters necessary to run a simulation.  

However, according the SWAT manual (Neitsch et al., 2013), the default parameter values 

assigned by the interface are highly generic.  The interface does not vary input values based on 

watershed size or location in the world.  As a result, the model requires calibration.  The 

calibration procedure for SWAT was derived from Hu et al. (2007) and Nair et al. (2011), and 

performed in a similar step-wise fashion for hydrology, nutrient flux, crop growth: incorporating 
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meaningful physical parameters from past studies, and utilizing both manual and automated 

search procedures.   

3.2.5.1  Uncalibrated Initialization  

Some physical parameters were drawn from previous SWAT studies (Hu et al., 2007; Ng et 

al., 2010; J. Singh et al., 2005) were set and not considered for calibration.  Table 3.3 describes 

the parameters adopted from previous studies and not adjusted further.  The parameters were 

associated with climate and agricultural management typical of the area, so watersheds with 

similar characteristics from previous studies were selected (Hu et al., 2007; Ng et al., 2010; J. 

Singh et al., 2005; Nair et al., 2011).  

Table 3.3: Calibrated Initial Values From Previous Studies 

Parameter Description (units) Min. Max. Calibrated Source 

SFTMP 
Snowfall Temperature 

(OC) 
-3 5 0.5 

(Singh et al., 

2005) 

SMFMX 
The maximum snow melt 

factor (mm d-1  OC-1) 
1.4 6.9 6.5 

(Hu et al., 

2007; Ng et al., 

2010) 

SMFMN 
The minimum snow melt 

factor (mm d-1  OC-1) 
1.4 6.9 2.5 

(Hu et al., 

2007; Ng et al., 

2010) 

FFCB 

Initial soil water storage 

expressed as a fraction of 

field capacity water 

content 

0 1 .8 
(Nair et al., 

2011) 

FRT_LY1 

Fraction of fertilizer 

applied to top 10 mm of 

soil 

0 0.2 0.01 
(Hu et al., 

2007) 

 



68 
 

In addition to climate parameters, soil saturated hydraulic conductivity and soil available water 

capacity properties for selected soils in Champaign County were available through the USDA-

NRCS (USDA-NRCS, 2012) for the study area.  The soil survey gives a range of values.  In this 

study, the mean of the values provided in the survey were used and then calibrated around the 

mean within the range specified in the Champaign County survey.  Table 3.4 shows the mean 

values for the selected soils.  The depth of the deepest layer was not adjusted as shown in Table 

3.4.  The depth to the impermeable layer was calibrated in a separate SWAT parameter, 

DEP_IMP in the .ops file (Neitsch et al., 2013). 

Table 3.4: USDA-NRCS mean soil saturated hydraulic conductivity and soil available 

water capacity initial values [depth (mm); Ksat (mm/hr); Soil AWC (mm/mm)] (USDA-

NRCS, 2011b) 

 Layer 1 Layer 2 Layer 3 Layer 4 

Ashkum 250; 25; .17 380; 22.7; .16 580; 13.5; .16 810; 16; .13 

Drummer 180; 28.6; .22 480; 19.4; .23 810; 16.2; .23 990; 20.4; .23 

Elliot 360; 8.4; .22 910; 15.2; .16 5000; 5.8; .1  

Flannagan 460; 25.8; .23 580; 34.9; .23 970; 19.9; .2 1140; 17.3; .2 

Brenton 410;33;.24 890;33;.19 1350;33;.18 1830;83.8;.17 

Raub 460; 33; .23 810;33; .19 1270;33;.17 

Varna 300;33;.21 690;3.3;.15 990;10.1;.08 1520;3.3;.08 

Selma 410;33;.23 800;33;.22 1140;33;.18 2500:33:.17 

Kishwaukee 280;33;.23 1370;33;.17 3500;1524;.03 

Swygert 300;11;.2 460;11;.12 790;3;.12 5000;1.26;.08 

Wyanet 250;33;.23 690;33;.17 790;10.1;.12 2030;10.1;.08 

Ambraw 200;33;.16 990;33;.14 1270;33;.13 1520;33;.17 

Catlin 280;33;.25 1140;33;.19 1450;33;.17 1780;10;.08 

Camden 230;33;.23 360;33;.22 560;33;.21 890;33;.19 

Sawmill 250;33;.22 810;33;.22 1470;33;.2 1650;33;.16 
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Table 3.4 (cont.): USDA-NRCS mean soil saturated hydraulic conductivity and soil 

available water capacity initial values [depth (mm); Ksat (mm/hr); Soil AWC (mm/mm)] 

(USDA-NRCS, 2011b) 

 Layer 5 Layer 6 

Ashkum 1220; 26.25; .13 1520; 26.7; .13 

Drummer 1520; 76.8; .2  

Elliot   

Flannagan 1520; 83.4, .2  

Brenton   

Raub  

Varna   

Selma 5000;83.4;.09  

Kishwaukee   

Swygert   

Wyanet   

Ambraw   

Catlin   

Camden 1320;33;.16 2030;.14;83.4 

Sawmill   

   

  

SWAT requires farm management parameters like crop type, planting date, and fertilization 

beyond the generic setup.  The entire watershed was planted in a corn and soybean rotation as in 

Hu et al. (2007).  Half of the agricultural HRUôs were planted with corn then soybeans and half 

of the agricultural HRUôs were planted soybeans then corn.  Based on the Illinois Agronomy 

Handbook (Hollinger & Angel, 2009) and previous SWAT simulations the timing of planting, 

tillage, and heat units to maturity were set and not calibrated further.  Fertilizer inputs in the 

nearby Embarras watershed were modeled using a split fall and spring application at a rate of 

190 kg/ha nitrogen in previous studies (Hu et al., 2007; McIsaac & Hu, 2004).  For this study, 
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nitrogen was applied during the fall (December 2nd) prior to corn years at a rate of 224 kg/ha 

(200 lbs/ac) in the form of anhydrous ammonia.  David et al. (2008) estimated anhydrous 

ammonia application rates of between 150 to 225 kg/ha of nitrogen for typical Midwestern corn 

production.  Also, nitrogen inputs on the high end of the range and above Hu et al. (2007) were 

selected after a discussion with UIUC extension (Czapar, November 9, 2012) and fall application 

was chosen to facilitate an analysis between spring and fall application.  In addition, 

phosphorous was applied prior to soybean years in the form of monoammonium phosphate 

(MAP) at a rate of 126.6 kg/ha (Hollinger & Angel, 2009).  The rate and timing was derived 

from recommendation s in the Illinois Agronomy Handbook and generic conservation tillage was 

performed on April 20th, corn planting on April 27th, and harvest on October 15th.  For soybean 

years, generic conservation tillage occurred on May 14th, planting on May 21st, and harvest on 

October 15th (David et al., 1997; Hollinger & Angel, 2009).  The heat units until maturity were 

set according to results for corn (1400) and soybeans (1400) from the Potential Heat Units 

Program (Grassland Soil and Water Research Laboratory, 2013) (available at: 

http://swat.tamu.edu/software/potential-heat-unit-program/) 

3.2.5.2  Calibration Procedure 

Calibration was done with the following two objectives: ensure the model reflects observed 

watershed phenomenon like flow partitioning and nitrogen fixation, and then search other 

parameters to improve model performance.  The calibration followed a step-wise procedure 

similar to the Hu et al. (2007) and Nair et al. (2011), and incorporated their considerations of 

modeling watershed phenomenon.  Each step involved selecting a modeling outcome (first 

streamflow, then nutrient flux, finally crop yield) and parameters for calibrating that outcome.  

Previous SWAT studies informed which parameters and the range of values over which to 
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calibrate.  After each update to parameters, the performance of the previous outcome was 

assessed for any changes.    

3.2.5.3  Calibration Performance 

A measure of simulation performance was established to observe parameter sensitivity and 

assess the ability or inability of the simulation to model watershed events.  For this study, the 

statistical measures of R-squared (Equation 3.1) and Nash-Sutcliffe (Equation 3.2)(Nash & 

Sutcliffe, 1970) were used as in similar SWAT studies: 

Ὑ
Вὢ ὢ ὢ ὢ

Вὢ ὢ Вὢ ὢ
                                                 σȢρ 

ὔὛ ρ
Вὢ ὢ

Вὢ ὢ
                                                                             σȢς 

Where ὢ  and ὢ  are individual simulated and observed values, respectively; and ὢ  and 

ὢ  are average simulated and observed values.  Nash-Sutcliffe measures the relationship of 

observed and modeled data and a 1:1 line.  A value near 1 implies a close agreement.  A negative 

value implies that the mean of observed data would be a better predictor.  R-squared is a measure 

of the modelôs ability to predict the variation in observed data.  The dispersion of modeled and 

observed data is equal with R-squared is 1. 

In addition, percent bias (Equation 3.3) was used to express underestimation and 

overestimation. 

ὖ
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Model performance was compared to similar studies along with established benchmarks.  

Moriasi et al. (2007) conducted a review of hydrological studies and proposed the following 

recommendations for satisfactory modeling on a monthly timestep: streamflow (NS > .5, PBIAS 

< 25%), nitrate and phosphorous loads (PBIAS < 70%).  Statistics better than these thresholds 

were deemed ógoodô or óvery goodô.  Moriasi et al. (2007) also concluded that satisfactory 

modeling is dependent on the availability of data.  Ideal model setup should include 3-5 years of 

varied precipitation (wet, dry, average), use multiple evaluation techniques (visual inspection, 

manual calibration), and calibration of all constituents involved (all relevant nutrient 

parameters).  As a result, the óidealô model is study specific, and relevant studies guided 

acceptable modeling outcomes at each step.   

 

3.2.5.4  Selected Calibration Outcomes 

The calibration was performed in a step wise procedure adapted from Hu et al. (2007), Nair 

et al. (2011), Ng et al. (2010), Arnold (1996), and Moriasi et al. (2012).  Arnold (1996) and 

Moriasi et al. (2012) did not calibrate nutrient flux and crop yield, but the studies informed 

parameter selection and outcome ranges in this study.  Each modeling outcome was calibrated in 

stages: starting with hydrology, then nutrient flux, and finally crop yield.  For each modeling 

outcome the process was to: first select parameters for calibration and set others, vary the 

parameters, assess optimum, check previous outcome, and proceed to next outcome. 

Observed data were partitioned into years of flow data for calibrating, and years of flow data 

for validating.  The recent available flow data for the USGS gauge at St. Joseph span 2004 

through 2012 at the time of analysis.  Figure 3.12 shows the observed precipitation and flow data 

for 2005-2012. 
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The time-scale of the calibration was an important consideration.  In developing the natural-

systems model, the objective was to facilitate an analysis of environmental and crop production 

outcomes.  Crop production is determined on an annual basis: planting in the spring, harvest in 

the fall, with related seasonal field operations.  While environmental processes are constantly 

changing, the model was calibrated to best describe outcomes on the time-scale of annual crop 

production.  Finer time-scale (daily, monthly) data were utilized where available to improve 

modeling performance, but the goal of forecasting annual outcomes guided model development. 

  

Figure 3.12: Precipitation and Flow (NOAA, 2012; USGS, 2012a)  

A calibration period of observed data was used to vary SWAT parameters and assess their 

effect.  The parameters were varied to find a ñbest-fitò for the calibration period, and then that set 

of parameters was used, and not modified, for a different, independent period called the 

validation period.  The ñbest-fitò may not be the highest measure of statistical accuracy.  Rather, 

a ñbest-suitedò simulation may capture desired events or characteristics for a SWAT study.  For 
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this study, the a calibration period was set to 2007-2010 to incorporate a wet year following a 

wet year, a dry year following a wet year, and a wet year following a dry year.  The time period 

also includes high flow events, which indicate high tile flow.  This study concentrated on 

modeling high flow events.  The validation period was limited to remaining years of data, 2005-

2006, and 2011-2012. 

3.2.5.4.1  Hydrologic Calibration 

Hydrologic calibration was performed first as done in Hu et al. (2007) and Nair et al. (2011).  

The range and group of parameters selected for calibration were selected from multiple studies 

(Arnold, 1996; Hu et al., 2007; Moriasi et al., 2012; Nair et al., 2011).  Moriasi et al. (2007) 

recommended calibrating for all watershed processes intended for study.  Based on the previous 

work informing this study for tile-drained watersheds, the model was calibrated to model total 

water yield, tile drainage yield, surface runoff yield, evapotranspiration, and daily streamflow.  A 

manual calibration of the water budget was conducted first, followed by a manual and automatic 

calibration of streamflow. 

To start, this study sought to model annual water yield within 10% as set forth in Hu et al. 

(2007) and monthly streamflow with a NS greater than .5 for a monthly time step, which would 

exceed the recommendation for satisfactory modeling by Moriasi et al. (2007).  The calibration 

procedure for the water budget was performed manually by varying selected parameters to model 

observed USGS water yields. 

Modeling the tile drainage flow component of the water yield is an important consideration.  

The abundance of poorly-drained soils and flat terrain contributes to extensive tile-drainage for 

agricultural production.  Many watersheds in east-central Illinois have less than 1% surface 

gradient and poorly drained soils, yet subsurface drains have made these lands some of the most 
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productive farmland in the world.  Subsurface drainage enhances productivity and reduces 

sediment transport and phosphorous losses from fields; however, it increases nitrate delivery to 

the receiving water bodies (Kalita et al., 2007).  David et al. (1997) estimated that 75 to 80% of 

the fields have tile drainage in the nearby Embarras watershed which has similar topography and 

management. 

Hu et al. (2007) calibrated SWAT for the nearby Embarras River watershed to model 75% of 

the total water yield as tile-drained flow.  Similarly, Moriasi et al. (2012) estimated 71% of total 

water yield as tile drained, combined groundwater and lateral flow as 6%, and surface runoff at 

23%.  Mitchell et al. (2001) estimated that tile drainage comprised 80-90% of total flow across 

four East-Central Illinois watersheds.  This study sought to model greater than 75% of total flow 

as tile-drained. 

Cookeôs (2011) Illinois Drainage Guide informed the design specifications of tile-drainage 

systems throughout the watershed.  Cooke (2011) provides general recommendations for tile 

drainage systems in Illinois.  These typical installation specification were used to develop ranges 

of parameters for calibration.  The Drainage Guideôs recommendations for sizing drainage 

systems are generalized by soil type and rating by drain spacing, drainage coefficient, and mean 

drain depth as outlined Table 3.5.   
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Table 3.5: Illinois Drainage Guide General Recommendations (Cooke, 2011) 

Soil Type Permeability 

Drain Spacing (m)  

Fair Good Excellent 

Mean Drain 

Depth (mm) 

DC = 6.5 

mm 

DC = 9.5 

mm 

DC = 12.5 

mm 

Clay 

Loam 
Very Low 21.3 15.24 10.7 991 

      

Silty Clay 

Loam 
Low 29 19.8 13.7 1036 

      

Silt Loam 
Moderately 

Low 
39.6 30 18.3 1143 

      

Loam Moderate 61 42.7 29 1234 

      

Sandy 

Loam 

Moderately 

High 
91 64 45.7 1295 

 

As performed in Hu et al. (2007), Ng et al. (2010) and Moriasi et al. (2012) a single drainage 

system design was applied uniformly to the study area.  In this study, agricultural HRUs with a 

slope less than 2% were considered tile drained.  This resulted in treating 80% of the watershed 

as tile-drained.  Similar to Moriasi et al.ôs (2012) consideration of the Iowa Drainage Guide for 

establishing ranges for calibrating tile drainage parameters, this study considered ranges from the 

Illinois Drainage Guide.  The primary soil in the study area was Drummer, a silty clay loam, and 

ranges were selected as shown in Table 3.6.  The study also considered Moriasi et al.ôs (2012) 

calibrated values. 
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Table 3.6: Manual Tile Drainage Parameters Calibration (Hu et al., 2007; Moriasi et al., 

2012; Nair et al., 2011; Ng et al., 2010) 

Parameter Description (units) Min. Max. 

DDRAIN Depth to Drain (mm) 950 1200 

DEP_IMP Depth to impermeable layer (mm) 1550 2000 

RE_BSN Effective Radius of Drains (mm) 20 40 

SDRAIN_BSN Drain Spacing (m) 20 30 

DRAIN_CO_BSN Drainage Coefficient (mm) 5 20 

LATKSATF_BSN Lateral Ksat factor .5 1.5 

GDRAIN Tile drain lag time (hours) 0 100 

TDRAIN Time to drain soil to field capacity (hours) 10 50 

 

The other primary calibrated water budget component was evapotranspiration.  The Illinois 

State Water Survey estimated annual evapotranspiration varies across Champaign County 

between 610 and 685 mm.  Evapotranspiration was estimated between 610 and 635 mm by 

Arnold et al. (1996) and Winstanley et al. (2006) for nearby watersheds.   

The selection of parameters for calibrating the water budget and the considered ranges were 

derived from previous studies as detailed in Table 3.7.  These parameters were selected for 

manual calibration based on Moriasi et al.ôs (2012) identification of these parameters as 

significant in hydrologic calibration.  Further, these parameters were common across Hu et al. 

(2007), Ng et al. (2010), and Nair et al. (2011).  The considered range for this studyôs calibration 

bookended the calibrated value from all three studies. 
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Table 3.7: Manual Water Budget Parameters Calibration (Hu et al., 2007; Moriasi et al., 

2012; Nair et al., 2011; Ng et al., 2010) 

Parameter Description (units) Min. Max. 

CN2 Runoff curve number 60 80 

SOL_AWC Soil Available Water Capacity -10% +20% 

ESCO Soil Evaporation Compensation Factor .8 1 

EPCO Soil Evaporation Compensation Factor .5 1 

CNCOEF CN coefficient .1 1 

ICN Daily CN Calculation Method 0 1 

 

Although Moriasi et al. (2012) achieved óvery goodô model performance for the water budget 

and streamflow only considering the parameters in Table 3.7, the other three studies considered 

other SWAT parameters for calibrating streamflow.  While the parameters were not common 

across all three, this study incorporated those parameters for an automatic calibration of 

streamflow following the manual calibration of significant parameters.  Table 3.8 presents those 

parameters and the ranges.  Again, the considered range included the calibrated range from each 

study.   

Table 3.8: Automatic Streamflow Parameters Calibration (Hu et al., 2007; Moriasi et al., 

2012; Nair et al., 2011; Ng et al., 2010) 

Parameter Description (units) Min. Max. 

GW_REVAP Groundwater Revap Coefficient 0.02 0.1 

REVAPMN Threshold depth for revap (mm) 0 500 

GWQMN Threshold depth for baseflow (mm) 0 100 

ALPHA_BF Baseflow Alpha Factor 0 1 

RCHRG_DP Deep aquifer percolation factor 0 1 

GW_DELAY Groundwater delay time (days) 0 100 

CH_N1 Manning's N for tributary channels 0 0.3 

OV_N Manning's N for overland flow 0 0.3 

SURLAG Surface lag coefficient .1 4 

CANMX Maximum Canopy Storage (mm) 0 10 

CH_K1 Hydraulic Conductivity for tributary channels (mm/hr) 0 1 

 

The manual calibration was performed first by varying the selected parameters observing the 

resultant water yield.  After satisfactorily modeling evapotranspiration within the targeted range, 
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tile-drained flow greater than 75% of total yield, and total water yield within 10% of USGS 

observed levels for the calibration region, SWAT-CUP was used to perform the automatic 

calibration for streamflow.  SWAT-CUP is a standalone program that links to SWATôs output 

text files (Rouholahnejad et al., 2012) and applies algorithms to find a óbest-fitô.  SWAT-CUPôs 

SUFI-2 (Sequential Uncertainty Fitting) (Abbaspour et al., 2004) was applied to the parameter 

set.  SWAT-CUP and SUFI-2 have been applied to watersheds to search for an optimum SWAT 

parameter for hydrological processes (Zhou et al., 2012).  In this study, 1000 simulations were 

performed.  The parameter set values were narrowed according to SWAT-CUP suggested ranges 

and user judgment and rerun to assess for further modeling performance.  An optimum and the 

uncertainty of the fit was not the focus of this study, and the automated procedure served as a 

suggestion for parameter set.  The suggested parameter set was compared to the related studiesô 

calibrated values.  Finally, the óbest-fitô parameter set was checked with the manually calibrated 

parameter set.  Once a satisfactory hydrologic model was established, the calibration proceeded 

with the nitrogen calibration. 

3.2.5.4.2  Nutrient Calibration  

This study calibrated the SWAT model for annual nitrate loads observed at the outlet to 

quantify water quality outcomes.  For that purpose, the entire nitrogen cycle was considered in 

the calibration.  A similar procedure of manual and automatic calibration for the nitrogen budget 

first and then an automatic calibration of observed nitrate loads was performed.  The significant 

parameters for calibration were derived from Hu et al. (2007) and Nair et al. (2011).   

The target ranges of modeled outcomes for the nitrogen budget were derived from David et 

al. (2008) and Gentry et al. (2009).  David et al. (2008) modeled the nitrogen budget for the 

nearby Embarras River watershed using six models, including SWAT, and compared 
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performance.  Hu et al. (2007) and Nair et al. (2011) both incorporated the ranges for comparing 

the performance of their SWAT models as well.  Gentry et al. (2009) estimated field nitrogen 

budgets for the Big Ditch Watershed in East-Central Illinois.  The ranges for the modeled 

outcomes are shown in Table 3.9. 

Table 3.9: Estimated Annual Nitrogen Budget in Upper Embarras River Watershed (David 

et al., 2008; Hu et al., 2007) 

Nitrogen Process (units) Estimate 

Fertilizer (Corn) (kg N ha-1) 183 

Nitrate-N Load (kg N ha-1) 20-50 

 N2 Fixation (Soy) (kg N ha-1) 102-124 

Grain N Harvest (kg N ha-1) 116 

Denitrification (kg N ha-1) 15-23 

Mineralization (kg N ha-1) 77-90 

 

Model performance was assessed with respect to Moriasi et al.ôs (2007) recommendations 

and performance of Hu et al. (2007) and Nair et al. (2011).  Based on the studies, nitrogen budget 

performance was satisfactory when within 25% of target estimates (Hu et al., 2007), and monthly 

flux modeling performance with a NS greater than .5 and percent bias within 70%.  Model 

calibration prioritized annual load prediction over daily and monthly.  The annual load prediction 

was used as an input for the coupled analysis, and the nutrient budgets were used to ground the 

model in estimated ranges. 

Manual calibration focused on denitrification and mineralization along with parameters.  The 

parameters and ranges are shown in Table 3.10.  Calibrated values were informed by Ng et al. 

(2010), Hu et al. (2007), and Nair et al. (2011). 
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Table 3.10: Manual Denitrification Parameters Calibration  (Neitsch et al., 2009) 

Parameter Description (units) Min. Max. 

SDNCO Denitrification threshold water content 0.01 2 

CDN Denitrification exponential rate coefficient 0.001 3 

CMN Humus mineralization of active nutrients N/P 0.0001 .01 

 

Automatic calibration was used for nitrate load, soybean fixation, and grain nitrogen harvest.  

The parameters comprised of the union of nitrogen parameters considered in Hu et al. (2007), 

Nair et al. (2011), and Ng et al. (2010).  Table 3.11 shows the parameters and range of values 

considered.  The ranges were constrained based on the calibrated values in three studies. 

Table 3.11: Automatic Nitrogen Parameters Calibration (Hu et al., 2007; Nair et al., 2011; 

Ng et al., 2010)  

Parameter Description (units) Min. Max. 

N_UPDIS N uptake distribution parameter 1 70 

RSDCO Residue decomposition coefficient .03 .09 

NPERCO Nitrate Percolation Coefficient .01 1 

ANION_EXCL Fraction of porosity from which anions are excluded .1 .4 

CMN Humus mineralization of active nutrients N/P 0.0001 .01 

CNYLD (Corn) Fraction of N in harvested biomass [(kg N/kg seed)] 0.011 0.015 

BN1 (Corn) Fraction of N in plant at emergence [(kg N / kg biomass)] 0.011 0.015 

BN2 (Corn) Fraction of N in plant at .5 maturity [(kg N / kg biomass)] 0.03 0.07 

BN3 (Corn) Fraction of N in plant at maturity [(kg N / kg biomass)] 0.011 0.015 

CNYLD (Soy) Fraction of N in harvested biomass [(kg N/kg seed)] 0.04 0.07 

BN1 (Soy) Fraction of N in plant at emergence [(kg N / kg biomass)] 0.04 0.07 

BN2 (Soy) Fraction of N in plant at .5 maturity [(kg N / kg biomass)] 0.03 0.06 

BN3 (Soy) Fraction of N in plant at maturity [(kg N / kg biomass)] 0.01 0.03 

 

Automatic calibration was performed iteratively to maximize NS performance of modeling 

observed monthly nitrate loads (NS>.5) and minimize error in predicting total annual loads 

(<25%) using SWAT-CUP.  After each set of 1000 iterations, the nitrogen balance was checked 

and parameters adjusted to achieve budget estimates.   
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Once nitrogen modeling targets were reached, the similar SWAT nutrient parameters relevant 

for phosphorous (Neitsch et al., 2009) were selected and calibrated in the same manner.  The 

nutrient generic parameters RSDCO, ANION_EXCL, and CMN were not calibrated further. 

The target ranges of modeled outcomes for the phosphorous budget were derived from 

Mallarino et al. (2011) and Gentry et al. (2007).  David et al. (2008) measured the phosphorus 

loadings for the nearby tile-drained Embarras River watershed and two other Illinois watersheds.  

Mallarino et al. (2011) measured phosphorus removal in corn and soybean harvests across 11 

sites in Iowa.  Further, the Illinois Agronomy Handbook provided estimates for phosphorus 

removal (Hollinger & Angel, 2009).  The phosphorus budgets targets were derived from these 

three studies as shown in Table 3.12. 

Table 3.12: Estimated Annual Phosphorus Budget in Upper Embarras River Watershed 

(Hollinger & Angel, 2009; Mallarino et al., 2011; Gentry et al., 2007) 

Phosphorous Budget (units) Estimate 

Fertilizer (Biannual) (kg P ha-1) 64 

Dissolved Reactive P Load (kg N ha-1) .30-.80 

Grain P Harvest (kg N ha-1) 52 

 

 The related parameters for phosphorus as with nitrogen were considered in the automatic 

calibration.  The values were derived from the SWAT Theoretical Handbook as shown in Table 

3.13 (Neitsch, 2009). 



83 
 

Table 3.13: Automatic Phosphorus Parameters Calibration  (Neitsch, 2009) 

Parameter Description (units) Min. Max. 

P_UPDIS Phosphorus Uptake Distribution Parameter 0 100 

PHOSKD Phosphorus Soil Partitioning Coefficient 100 200 

PSP Phosphorus Sorption Coefficient 0 1 

PPERCO Phosphorus Percolation Coefficient 10 17.5 

CPYLD (Corn) Fraction of P in harvested biomass [(kg P/kg seed)] 0.003 0.004 

BP1 (Corn) Fraction of P in plant at emergence [(kg P / kg biomass)] 0.0035 0.006 

BP2 (Corn) Fraction of P in plant at .5 maturity [(kg P / kg biomass)] 0.0006 0.003 

BP3 (Corn) Fraction of P in plant at maturity [(kg P / kg biomass)] 0.0004 0.0028 

CPYLD (Soy) Fraction of P in harvested biomass [(kg P/kg seed)] 0.0062 0.0072 

BP1 (Soy) Fraction of P in plant at emergence [(kg P / kg biomass)] 0.006 0.009 

BP2 (Soy) Fraction of P in plant at .5 maturity [(kg P / kg biomass)] 0.0025 0.005 

BP3 (Soy) Fraction of P in plant at maturity [(kg P / kg biomass)] 0.0025 0.005 

 

3.2.5.4.3  Crop Yield Calibration 

Crop yield calibration was similarly informed by past studies.  Crop yields were calculated 

from SWAT output as performed in Srinivasan et al. (Srinivasan et al., 2010).  The leaf area 

index parameter for corn and soybean was set to according to Nair et al. (2011), Ng et al. (2010), 

and Hu et al. (2007) and not calibrated further as shown in Table 3.14. 

Table 3.14: Inputted Crop Yield Parameters (Hu et al., 2007; Nair et al., 2011) 

Parameter Description (units) Value 

BLAI (Corn) Leaf Area Index 5 

BLAI (Soy) Leaf Area Index 4 

 

Finally, only the harvest index (HI) and bioenergy utilization rate (BIO_E) parameter for 

corn and soybeans was used to manually calibrate crop yields within 10% of observed values as 

a performance target as shown in Table 3.15.  All  other parameters were set to the default in the 

SWAT Theoretical Documentation (Neitsch et al., 2009). 
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Table 3.15: Manually Calibrated Crop Yield Parameters (Hu et al., 2007; Nair et al., 2011) 

Parameter Description (units) Range 

HI (Corn) Harvest Index .48-.52 

HI (Soy) Harvest Index .28-.33 

BIO_E (Corn) Biomass/Energy Ratio ((kg ha-1)/(MJ/m2)) 35-45 

BIO_E (Soy) Biomass/Energy Ratio ((kg ha-1)/(MJ/m2)) 20-30 

 

3.2.6  Model Results 

Table 3.16 shows the parameter values from the calibration procedure.  Each environmental 

outcome modeling results and performance are presented in the section. 
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Table 3.16: Calibrated Parameter Values 

Hydrologic Parameters  Nutrient Parameters 

Parameter Value  Parameter Value 

CN2 70.1  SDNCO .95 

SOL_AWC -12.6%  CDN .013 

SOL_K -30.4%  N_UPDIS 29.9 

DEP_IMP 1724  NFIXMX  1.05 

ITDRN 1  RSDCO .20 

IWTDN 1  NPERCO 0.89 

DDRAIN 1072  ANION_EXCL .091 

TDRAIN 40.25  CMN .0005 

GDRAIN 1  P_UPDIS 20.20 

ESCO .9  PSP .048 

EPCO .71  PHOSKD 169.5 

CNCOEF .43  PPERCO 10.04 

ICN 1    

GW_REVAP .017  CNYLD (Corn) .0146 

REVAPMN 1  BN1 (Corn) .0405 

GWQMN 1  BN2 (Corn) .0151 

ALPHA_BF .684  BN3 (Corn) .0154 

RCHRG_DP .01  CNYLD (Soy) .064 

GW_DELAY 39  BN1 (Soy) .0319 

GW_SPYLD .01  BN2 (Soy) .0168 

CH_N1 .035  BN3 (Soy) .0166 

OV_N .101  CPYLD (Corn) 0016 

SURLAG 1  BP1 (Corn) .004 

CH_N2 .062  BP2 (Corn) .003 

IWQ 0  BP3 (Corn) .002 

RE_BSN 20  CPYLD (Soy) .0101 

SDRAIN_BSN 22000  BP1 (Soy) .007 

DRAIN_CO_BSN 10.75  BP2(Soy) .004 

LATKSATF_BSN .989  BP3(Soy) .003 

     

Crop Yield Parameters 

Parameter Value 

HI (Corn) .5 

HI (Soy) .31 

BIO_E (Corn) 39 

BIO_E (Soy) 22 

PHU (Corn) 1800 

PHU (Soy) 1800 
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3.2.6.1  Hydrologic Model Results 

Table 3.17 shows the model results for the water budget over the entire 8-year period (1995-

2012, 10 years of warm-up).  Tile-drained flow comprised 84% of total water yield, surface 

runoff 6%, and lateral and groundwater flow 10%.   

Table 3.17: Average Annual Water Balance SWAT Model (2005-2012) 

Average Annual Water Budget Component  Value (mm) 

Total Water Yield 365.6 

Tile-drained Water Yield 306.7 

Surface Runoff Yield 22.3 

Lateral and Groundwater Yield 36.5 

Average Evapotranspiration 650 

 

Figure 3.13 shows the calibration and validation region for the water balance.  The total 

water yield percent bias for the calibration and validation regions was +2%.  The percent bias for 

the calibration period achieved targeted performance (-8%), but resulted in over estimation of 

flows for the validation region (+12%).  The percent bias exceeded the target 10% because of the 

calibration region selection included the wet years of 2008 and 2009.  The calibration 

sufficiently modeled flows for the wet years, but established a bias for large flows that was 

evident in overprediction for dry and normal years in the validation region.  Over prediction was 

particularly evident in 2012, which was an extreme drought year.  According to Illinois State 

Water Survey, precipitation was 243 mm below the 1981-2010 average, and 30% of Illinois was 

in severe drought, and 36% of Illinois was in moderate drought (Illinois State Water Survey, 

2013).  Other water budget modeling targets were met: evapotranspiration, surface, and tile-

drained partitioning were modeled within 10% of targeted estimates. 
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Figure 3.13: Observed and Simulated total and tile-drained yield (NOAA, 2012; USGS, 

2012a) 

Figures 3.14 and 3.15 show improvement in model performance across daily and monthly 

time scales.  Infrequent large peak daily flows are persistently underestimated, while the more 

frequent medium and low flows are predicted well.  Modeled monthly flows were predicted well 

across seasons.  Table 3.18 provides the statistical improvement for modeling flow across time 

scales; the modeling objectives were met.  
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Figure 3.14: Modeled and observed daily flow (NOAA, 2012; USGS, 2012a) 

 

Figure 3.15: Modeled and observed monthly flow (NOAA, 2012; USGS, 2012a) 
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Table 3.18: Flow Model Performance 

Time Period Daily Monthly 

 NS R2 PBIAS NS R2 PBIAS 

Calibration 2007-2010 0.41 0.45 -2.40% 0.63 0.67 -2.60% 

Validation 2005-06, 2011-12 0.24 0.46 13.80% 0.69 0.74 14.50% 

 

Flow modeling was óvery goodô with respect to Moriasi et al. (2007), with monthly Nash 

Sutcliffe greater than .5.   The results are on par with Hu et al.ôs (2007) results (Monthly NS = 

.85 for validation and .69 for calibration).  Annual flow was predicted within a percent bias of 

10% across the entire simulation (+2%), with an overprediction in the validation region due the 

choice of two wet years in the calibration region.  Figures 3.16 and 3.17 show the relationship of 

observed and simulated daily flows with respect to the 1:1 line (perfect correlation).  The 

underestimation of large daily flows is evident, with an improvement on the monthly scale.   
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Figure 3.16: Modeled vs Observed Daily Flow Calibrat ion (NOAA, 2012; USGS, 2012a) 

 

Figure 3.17: Modeled vs Simulated Daily Flow Validation (NOAA, 2012; USGS, 2012a) 
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The calibrated model underpredicted infrequent daily peak flows, while overpredicting the 

more frequent low flows.  The overprediction of the model during the dry days is responsible for 

the bias below the 1:1 line.  With all other water budget benchmarks satisfied, this overprediction 

of more frequent low flows and underprediction of peak flows may be related to the tile drainage 

flow hydrograph as related to the uniform drainage system design.  Modeling higher daily peak 

flow during wet periods would lower flows for drier periods, bringing the correlation closer to 

alignment.  Also, the choice to calibrate solely on monthly and annual flow components pre-

selected away from modeling daily outcomes.  The broader time-scale was selected because it 

would be used in the coupled analysis, and therefore a priority was placed on monthly and 

annual prediction.  Figures 3.18 and 3.19 show the correlation of observed and simulated 

monthly flows and how the underprediction of peak flows and overprediction of low flows was 

less evident on a broader time-scale.   



92 
 

 

Figure 3.18: Observed vs Modeled Monthly Flow Calibration  (NOAA, 2012; USGS, 2012a) 

 

Figure 3.19: Observed vs Modeled Monthly Flow Validation (NOAA, 2012; USGS, 2012a) 
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Modeled flow outcomes in this study were contrary to Huôs (2007) overestimation of high 

flow events.  The selection of a tile drain depth of 1072 mm was shallower than comparable 

studies, in addition to the use of new tile drainage routines in the 2012 SWAT release.  A depth 

of 1072, spacing of 22 meters, and drainage coefficient of 10.75 mm would be classified between 

óaverage and good drainageô for Silty Clay and Silt Loams according to the Illinois Drainage 

Guide, and may not be uniformly true for the watershed.  The depth was shallower than the 

values in Hu et al. (2007) (1100 mm) and Ng et al. (2010) (two estimates of approx. 1200 mm).  

A deeper drain would deliver larger single event loads, leaving less water for low flow longer 

duration periods. 

3.2.6.2  Nitrate Model Results 

Table 3.19 shows the modeled annual nitrogen budget components.  Percent bias is reported 

were modeled values were outside of targeted ranges. 

Table 3.19: Average Nitrogen Balance SWAT Model (2005-2012) 

Average Annual Nitrogen Budget 

Component  

Value 

(kg N / ha) 

Estimate  

(kg N / ha) 

PBIAS 

Nitrate-N Load (total) 23.4 20-50 - 

Nitrate-N Load (surface) 1.7 - - 

Organic N 1.4  - 

Nitrate-N Load (sub-surface) 21.7 - - 

Mineralization 71 77-90 -8% 

N2 Fixation 96 84-104 - 

Grain N Harvest 123 116 6% 

Denitrification 16.6 15-23 - 

 

Nitrogen budgets were all modeled within 10% of targets.  Hu et al. (2007) reported 

overestimation of nitrogen fixation (176 kg N ha-1), although Hu et al. (2007) did not calibrate 

intermediate nitrogen uptake parameters, and did not employ the maximum nitrogen fixation 

parameter.  In addition, Hu et al. (2007) reported an overestimation of harvested nitrogen in 

yield.  This calibration focused on fixing nitrogen budget parameters and then searching other 
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parameters which resulted in a closer fit for the budgets.  Nitrate modeling results are shown on 

daily, monthly, and annual time scales in Figures 3.20 ï 3.23.  Performance statistics are shown 

in Table 3.20. 

 

Figure 3.20: Modeled and observed annual cumulative nitrate loads (UCSD & UIUC-

NRES Biochemistry Group, 2013) 
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Figure 3.21: Modeled and observed annual cumulative Nitrate-N loads (annual totals) 

(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

 

 

Figure 3.22: Modeled and observed monthly Nitrate-N loads (NOAA, 2012; UCSD & 

UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 
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Figure 3.23: Modeled and observed daily Nitrate-N loads (NOAA, 2012; UCSD & UIUC-

NRES Biochemistry Group, 2013; USGS, 2012a) 

Table 3.20: Nitrate-N Model Performance 

Time Period Daily Monthly Annual 

 NS R2 PBIAS NS R2 PBIAS PBIAS 

Calibration 2008-2010 0.24 0.56 -17.8% 0.73 0.80 -15.4% -14% 

Validation 2011-2012 0.55 0.87 18.0% 0.60 0.91 23.0% +16% 
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Figure 3.24: Correlation between modeled and observed monthly Nitrate-N loads 

(calibration)  (NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 

2012a) 

 

Figure 3.25: Correlation between modeled and observed monthly Nitrate-N loads 

(validation) UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

y = 1.0137x - 13852
R² = 0.7996

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 100000 200000 300000 400000 500000

S
im

u
la

te
d

 M
o

n
th

ly
 N

 L
o

a
d

 [
kg

]

Observed Monthly N Load [kg]

Sim vs. Obs (Cal)

1-to-1 Line

y = 1.4278x - 8920.7
R² = 0.913

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 100000 200000 300000 400000 500000

S
im

u
la

te
d

 M
o

n
th

ly
 N

 L
o

a
d

 [
kg

]

Observed Monthly N Load [kg]

Sim vs. Cal (Val)

1-to-1 Line

Linear (Sim vs. Cal
(Val))



98 
 

As figures 3.22 and 3.23 show there was an overestimation of high nitrate loads.  As with 

flow, the selection of the calibration region was a significant factor in performance.  There was a 

high flow, high load event in May 2009 that the calibration procedure consistently overpredicted.  

SWAT overestimated the nitrate load for that month by 20%.  It was determined during the 

calibration procedure that this load could not be modeled sufficiently while meeting overall 

nitrogen budgets and total annual load was prioritized for 2009 instead.  The overestimation 

could have been related to the assumption of universal fall application of fertilizer.  Some 

application of spring fertilizer in the watershed prior the high flow event would have contributed 

to less leaching in the spring months and more plant uptake.  It wasnôt possible to calibrate for 

the event and improve performance, and the modeling phenomenon persisted in the validation 

region, with further overpredictions of high nitrate loads.  This calibration decision to prioritize 

annual prediction was confirmed in the validation region with óvery goodô performance with 

respect to Moriasi et al. (2007): even daily performance met Moriasiôs monthly 

recommendations. 

Nitrate concentration was not incorporated into the calibration procedure because SWAT 

does not provide it as a direct output on a monthly or annual time step (Neitsch et al., 2009).  

Figures 3.26 and 3.27 show the results of the load divided by the volume of flow for that time 

period performed after the calibration. 
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Figure 3.26: Modeled and observed monthly Nitrate-N concentrations (NOAA, 2012; 

UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

 

 

Figure 3.27: Modeled and observed annual Nitrate-N concentrations (NOAA, 2012; UCSD 

& UIUC -NRES Biochemistry Group, 2013; USGS, 2012a) 
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Monthly concentrations were modeled with a percent bias of -3.4%, Nash-Sutcliffe of -.13, 

and R2 of .21.  Annual nitrate concentrations were modeled with a percent bias of +7%.  Annual 

concentrations are utilized in the coupled analysis as a measure of water quality. 

Table 3.21 shows the modeled annual phosphorus budget components.  Percent bias is 

reported where modeled values were outside of targeted ranges. 

Table 3.21: Average Dissolved Reactive Phosphorus Balance SWAT Model (2005-2012) 

Average Annual Phosphorus 

Budget Component  

Value 

(kg P / ha) 

Estimate  

(kg P / ha) 

PBIAS 

 P Load (total) .548 .5-1.1 - 

DRP Load  .354 .3-.8 - 

Grain P Yield 38 52 -27% 

 

Total phosphorus and dissolved reactive phosphorus budgets were all modeled within 10% of 

targets.  Harvested phosphorus in grain could not be raised sufficiently to meet the targets, while 

still meeting the targeted range of phosphorus at the outlet.  Figures 3.28 ï 3.31 show the daily, 

monthly, and annual modeled phosphorous loads.  Table 3.22 shows the modeling performance. 

   

Figure 3.28: Modeled and observed annual cumulative dissolved reactive phosphorus loads 

(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 
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Figure 3.29: Modeled and observed daily cumulative DRP loads (annual totals) (NOAA, 

2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

 

 

Figure 3.30: Modeled and observed monthly DRP loads (NOAA, 2012; UCSD & UIUC-

NRES Biochemistry Group, 2013; USGS, 2012a) 
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Figure 3.31: Modeled and observed daily DRP loads (NOAA, 2012; UCSD & UIUC-NRES 

Biochemistry Group, 2013; USGS, 2012a) 

Table 3.22: Phosphorus Model Performance 

Time Period Daily Monthly Annual 
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Daily and monthly phosphorus modeling performance did not meet targets.  Large monthly 

phosphorus loads were over predicted, and individual large day loads were missed or 

underpredicted.  While daily and monthly loads were not predicted well, annual loads were 

prioritized for modeling, meeting 25% percent bias targets.  Figures 3.32 and 3.33 show the 

correlation between observed and simulated loads.  

0

500

1000

1500

2000

2500

12/18/2008 8/25/2009 5/2/2010 1/7/2011 9/14/2011 5/21/2012 1/26/2013

D
R

P
 L

o
a

d
 [
kg

]

Date

Observed Daily DRP Load

SWAT Simulated Daily DRP Load



103 
 

 

Figure 3.32: Correlation between modeled and observed monthly DRP loads (calibration) 

(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

 

Figure 3.33: Correlation between modeled and observed monthly DRP loads (validation) 

(NOAA, 2012; UCSD & UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 
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As figures 3.30 and 3.31 show there was an overestimation of high phosphorus loads while 

underestimation of low phosphorus loads.  While, this could not be remedied in the calibration, 

the procedure instead prioritized annual loads (within 20%), after no further improvement could 

be achieved.  The under-performance may have been improved by calibrating phosphorus before 

nitrate and selecting for phosphorus targets, but nitrate was prioritized.  In addition, phosphorus 

loadings for the Rantoul Sewage Treatment plant were only available for 2012.  Incorporating 

measured loadings from the Rantoul plant may have improved performance for years outside of 

2012.  The tile drainage calibration also constrained the ability to improve phosphorous 

modeling performance.  Tile drainage was calibrated for water budgets and then not considered 

for phosphorous.  Increasing surface drainage tends to increase phosphorous loss (Skaggs, 1994).  

As a result, implementing drainage across 80% of the study area and partitioning 84% of flow 

into tile drainage would limit phosphorous loss, which is indicated by the modelôs persistent 

underestimation.  Further, the surface drainage parameters were only considered during the water 

budget calibration. 

As with nitrate concentration, phosphorus concentration was not incorporated into the 

calibration procedure because SWAT does not provide it as a direct output on a monthly or 

annual time step.  Figures 3.34 and 3.35 show the results of the load divided by the volume of 

flow for that time period performed after the calibration (Neitsch et al., 2009). 
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Figure 3.34: Modeled and observed monthly DRP concentrations (NOAA, 2012; UCSD & 

UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 

 

 

Figure 3.35: Modeled and observed annual DRP concentrations (NOAA, 2012; UCSD & 

UIUC-NRES Biochemistry Group, 2013; USGS, 2012a) 
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Monthly phosphorus concentrations were modeled with a percent bias of 70.6%, Nash-

Sutcliffe of -3.06, and R2 of .16.  Annual nitrate concentrations were modeled with a percent bias 

of -30%.  Annual concentrations are utilized in the coupled analysis as a measure of water 

quality. 

3.2.6.3  Crop Growth Model Results 

Figure 3.36 shows the crop yield model results.  Annual crop yields were modeled within 

10% percent bias: 3% for corn, and 1% for soybeans.  

 

Figure 3.36: Modeled and observed annual crop yields (USDA-NASS, 2012) 
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processes, but possibly adversely affecting the more frequently observed yields.  The decision 

was made to treat 2012 as an exception, and to prioritize the modeling of the other years. 

3.2.7  SWAT Model Conclusions 

SWAT model performance met or exceeded ósatisfactoryô benchmarks.  Underestimating 

low-flow periods during the summer and one high nutrient load in 2009 affected performance 

measures.  Calibration decisions including a deep drain to constrain tile-flow partitioning, and 

uniform fall fertilizer application may have affected performance.  Water budget, nutrient 

budgets, and crop yield model performance are met target benchmarks to facilitate a coupled 

analysis.  These model constraints accurately represented observed environmental outcomes and 

sufficiently characterized watershed phenomena with a few exceptions.  Notably, finer time-

scale modeling of phosphorous may have been undermined by the calibration procedure to 

address phosphorous last and lack of sewage loading data.  In addition, the extreme drought year 

of 2012 was modeled poorly and could not be accounted for in the calibration procedure without 

adversely affecting the performance of more frequent yield outcomes.   

3.3  Modeling Best Management Practices 

3.3.1  Overview 

While Illinois producers have a wide variety of management options and techniques to 

operate their businesses and improve land stewardship, this study focuses on three potential 

strategies for analysis: rye cover cropping, drainage water and nutrient management.  Research 

has shown that these conservation practices are suitable for the region and effective measures for 

improving water quality in Midwestern watersheds (Upper Salt Fork Project Report and Status 

Update, 2011).  The installation, effectiveness, and economics of these conservation strategies 
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are well documented in the region (Cooke et al., 2001; Li et al., 2008; Randall & Vetsch, 2005; 

St. John & Ogle, 2008).     

3.3.2  Rye cover cropping 

Cover crops are small grain or legume crops that are planted in early fall to protect and 

improve water quality during the winter months.  Planting cover crops has been shown to cut 

fertilizer costs, reduce the need for herbicides and other pesticides, improve yields by enhancing 

soil health, prevent soil erosion, conserve soil moisture, protect water quality, and help safeguard 

personal health (Sustainable Agriculture Network, 2007).  The use of fall-planted cover crops 

crops can affect the water balance, reduce the soil NO3ïN level, and provide residue cover on 

agricultural fields that are normally fallow between summer crops (Feyereisen et al., 2006; Li et 

al., 2008; Singer et al., 2011).  Studies show that the phosphorus and nitrate leaching reduction 

achieved by cover cropping ranges between 0% and 50% (Villamil et al., 2006; Logsdon et al., 

2002).  Cover cropping has been shown to not affect yield with nitrogen application rates above 

80 lbs/acre, but may decrease yields below that threshold (Li et al., 2008).  In Central Illinois 

potential cover crops are winter rye, winter wheat or hairy vetch.  A producer must invest 

additional time, resources, and labor to successfully achieve the benefits of cover cropping.  

3.3.3  Nutrient Management 

Timing of fertilizer application can have a significant impact on nitrate export and economic 

benefit.  Studies show that nitrogen utilization is greater, nitrate export is lower, and economic 

return is greater with spring application versus fall (Randall & Vetsch, 2005; Vetsch & Randall, 

2004).  Producers consider fall application because of equipment availability and lower input 

costs.  However, it has been demonstrated that more nitrogen is available for plant uptake, and 

there is less time for denitrification and leeching to occur the nearer fertilizer is applied to 
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planting (Fox et al., 1986).  Randall & Vetsch (2005) estimated the reduction in nitrate losses at 

17% in an 8 year study in Minnesota and increased yields by as much as 7%.   

3.3.4  Drainage Water Management 

Drainage water management is the use of a control structure to vary the depth of the drainage 

outlet.  The depth is raised following harvest to limit flow and nutrient leaching during the off-

season.  The depth is then lowered previous to spring operations, and then raised again to 

potentially store more water during the dry summer months.  Drainage water management 

(DWM) has been shown to reduce water flow and nitrate losses through drains by as much as 

50% on the long term (25 years) (Thorp et al, 2008).  Phosphorous reductions can be as much as 

35% (Skagss et al., 2010).  In addition, yields have been shown to increase by as much as 5% in 

Midwestern watersheds, when precipitation levels are sufficient and drains flow for a long time 

after planting (Frankenberger et al., 2006).  These watersheds would allow for greater water 

storage through management.   

3.4   BMP Representation in SWAT 

3.4.1  Overview 

Section 3.2 details how SWAT was initialized to model and predict the hydrology, nutrient 

loads, and crop yields for the watershed.  This study sought to employ this model facilitate an 

analysis of management decisions in the watershed.  Management decisions chosen for the 

analysis included: performing winter cover cropping, and switching fertilizer application to the 

spring, and managing the water table depth.  The set of management decisions to include was 

based on SWATôs built-in functionalities, methods to extend them, and survey results of 

producersô adoption of these strategies in the watershed (Upper Salt Fork Project Report and 

Status Update, 2011).  SWAT provides an extensive and customizable set of configuration files 
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for simulating many different agricultural management practices.  Drainage water management, 

fertilizer applications and timing, and cropping decisions are provided through existing SWAT 

functionality (Neitsch et al., 2013). 

3.4.2  Rye Cover Cropping 

Incorporating a winter cover crop has been shown to reduce nitrate leeching in Midwestern 

cropping systems (Li et al., 2008; Singer et al., 2011).  Winter cover cropping ties up nitrogen 

during times of the year when corn and soybeans are not growing and taking up nutrients and 

water (Kaspar et al., 2007).  The SWAT management (.mgt) file was used to add rye cover 

cropping operations.  Rye cover cropping was implemented in SWAT by moving up 

corn/soybean harvest operations and inserting a rye planting operation by October 15th to comply 

with NRCS conservation practices requirements (Iowa Learning Farms & Practical Farmers of 

Iowa, 2011).  The following spring, a kill operation was used two weeks before the next cropsô 

planting as outlined in rye cover cropping operation manuals (Sustainable Agriculture Network, 

2007).  The management file was also used to apply a user-inputted fertilizer reduction for a 

cover cropping year.  The user-inputted fertilizer reduction amount was based on cover cropping 

manuals estimate that cereal rye can add 60 lbs/acre of nitrogen to a field (Sustainable 

Agriculture Network, 2007). 

3.4.3  Nutrient Management 

The management (.mgt) file was also used to switch fall application to spring.  Application 

date was at least two weeks before corn planting, centered around April 1st as in Hu et al. (2007).   
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3.4.4  Drainage Water Management 

The operations (.ops) file was used to raise and lower the depth to the tile drain by entering a 

new operation for each depth change.  To implement drainage water management for any year, 

the depth of the drain was raised from the default 1072 mm to 152.4 mm on November 30th in 

the preceding year.  The tile was lowered to the default 1072 mm on March 21st, raised to 304.8 

mm on June 1st, and then returned to 1072 on September 15th.  This configuration ensured that all 

field operations (planting, tillage, fertilizer) were performed with the drain at default depth.  The 

protocol was adapted from university extension and previous studies (Ale et al., 2009; 

Frankenberger et al., 2006; Thorp et al., 2008) 

. 
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CHAPTER 4 

METHODS ï HUMAN SYSTEMS MODEL  

 

4.1 Introduction 

This study interfaced a natural and human systems model to assess environmental outcomes 

with respect to economic performance and agricultural stakeholder decision-making.  Chapter 3 

documented the natural-systems model implementation in the Soil and Water Assessment Tool 

(SWAT).  The modeling of environmental outcomes including crop yield, nitrate-N, and 

dissolved reactive phosphorous along with a suite of three Best Management Practices (BMPs) 

were presented in Chapter 3.   

Modeling of environmental outcomes alone is not sufficient for identifying cost-effective and 

impactful conservation strategies (Nejadhashemi et al., 2011).  Any analysis must consider the 

motivation and behavior of human entities to form useful conclusions.  An analysis must also 

address societal, economic motivations of stakeholders to assess the adoption and effectiveness 

of conservation (Nowak & Korsching, 1998).  This study formulated a model to incorporate 

these considerations.  The output from SWAT in Chapter 3 was coupled with a human-systems 

model to form conclusions about the adoption of the BMPs, conservation policy initiatives, 

environmental and economic impact (Figure 4.1). 
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Figure 4.1: Coupled Natural -Human Systems Model (Chapter 3) 

This chapter details the development of the human-systems model: the procedure, algorithm, 

calibration, and scenario test design.  The model was implemented using the technique of agent-

based modeling.  First, the approach of agent-based modeling is discussed.  The chapter proceeds 

with the parameterization of the model and presents its development using guidelines from past 

studies for agent-based.  Then the logic and progression of the model is presented.  Following the 

outlining of model logic, the rationale for initial model parameters values and then the 

calibration procedure is presented.  The calibrated baseline results are presented along with the 

formulation of default input values for performing an analysis of different model scenarios.  

Finally, the calibrated model is used to perform a scenario analysis to answer the questions about 

environmental impacts related to economic outcomes and policy instruments.  
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4.2 Agent-based modeling 

4.2.1 Introduction  

Agent-based modeling (ABM) simulates the behavior of actors (agents) in a population and 

the interactions among actors within a specific environment (Gilbert, 2007).  In an agent-based 

model, behavioral rules of individual agents and their interactions are established and enacted 

within the environment (Kanta & Zechman, 2010).  The system evolves according to agent 

behavior.  The model can be tested to form conclusions and better understand the relationship 

between agents and their role in the environment.  The applications are broad and span many 

disciplines; ABMs have been used to model predator-prey relationships (Mock & Testa, 2007), 

electricity markets (Cirillo, 2006), and agricultural practice adoption (Ng et al., 2011) as 

discussed in Chapter 2.  With the diversity of applications, there is a great flexibility in ABM 

modeling.   

4.2.2 Agent-based model development 

Macal and North (2010) characterized the development of agent-based models and their 

conclusions provided the framework for the ABM in this study.  This study adopted Macal and 

Northôs (2010) general steps for model development, outlined as: 

1. Identify the agents and get a theory of agent behavior 

2. Identify the agent relationships and get a theory of agent interaction 

3. Get the requisite agent-related data, initialize agents 

4. Validate the agent behavior models (in addition to the model as a whole) 

5. Run the model and analyze the output from the standpoint of linking the micro-scale 

behaviors on the agents to the macro-scale behaviors of the system. 
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The resultant Macal and North (2010) model had three elements: agents, environment, and 

relationships.  Agents were self-contained, autonomous, social, adaptive, and goal-oriented.  The 

environment defined information about the placement and surroundings of agents.  Relationships 

governed the behavior of agents with their environment and each other.  Macal and Northôs 

(2010) general model development steps and model components form the structure of this 

chapter.  In addition to Macal and Northôs (2010) general guidelines, two types of data were 

necessary for development as described by Kanta & Zechman (2010): top-down, and bottom-up 

data.  Top-down data described the overall performance of the system and bottom-up data 

governed the behavior of individual agents.  In this study, top-down data types (macro) included: 

nitrogen at the outlet, phosphorous at the outlet, average crop yields, and crop prices.  Bottom-up 

data types in this study included: farmer acreage, soil productivity, and the amount of BMP costs 

shared by the community.   

4.3 Agent-based model development 

4.3.1 Agents 

Macal and North (2010) recommend first identifying agents and data in the development of 

an agent-based model.  The ABM in this study defined two agents: a farmer agent and a 

community agent.  The farmer and community agent exist in the watershed study area.  The 

farmer agent represented a typical agricultural producer in the watershed.  The community agent 

conceptually represented societal and government institutions.  The next step in developing the 

agent-based model was to establish a theory of behavior for the agents and a method to 

parameterize that theory.  Each agentôs theory of behavior is presented in this section along with 

the model parameters used to govern their behavior. 
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4.3.1.1 Farmer Agent 

The theory of farmer behavior in this study was based on studies of farmer priorities and 

motivations.  Each farmer makes decisions about the operations of the farm.  The farmerôs 

behavioral theory is to operate to maximize their goals.  A farmersô primary goal is to remain on 

their land and continue the farming way of life (Ohlmer et al., 1998).   This primary goal 

encompasses motivations and priorities: economic profitability, environmental stewardship, 

social achievement (Brodt et al., 2006; Walter, 1997).  Walter (1997) describes these values in 

four images of the successful Illinois farmer: sustainer of land resources, analytical operator, 

long-term business manager, and exemplary agrarian life-style member.  Similarly, Brodt (2006) 

formed three categories of the motivations of farmers: environmental stewardship, production 

maximization, and networking entrepreneurship.  These common themes of economic 

awareness, social responsibility, and environmental stewardship form the basis for the farmer 

agent.  In addition, farmer behavior is dependent on their time engaged with a piece of land 

(Brodt 2006).  Producers make different economic investments and decisions based on the 

duration farming one piece of land and their anticipated time continuing to farm that land (Hoag 

et al., 2012).  The farmer agent was parameterized to reflect these motivations: sociability, 

environmental awareness, economic awareness, and farming time horizon.  To incorporate these 

themes into the development of the ABM, each farmer agent was parameterized with measures 

of these motivations (Table 4.1).  A farmerôs social network consisted of nearby producers 

within a specified distance.  The list of neighbors was based on that user-inputted geographic 

distance.  All neighbors that were located within a user-defined distance were added to the list.  

The farmer agent parameters were initialized according to Section 4.3.4 to include diverse farmer 

behavior across the watershed.  The calculations for anticipated crop yields and BMP opinions 
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used for making management decisions are documented in Section 4.3.2.  The feasible ranges of 

S, E, and M, were established to adjust a random variable that tested the likelihood of 

management decisions, as detailed in Section 4.3.2.  These parameters were employed to weigh 

outcomes and facilitated increasing or decreasing the likelihood of making one management 

decision or another.     

Table 4.1: Farmer Agent parameterization 

Parameter Description (units) Range 

3 3ÏÃÉÁÂÉÌÉÔÙ  ρ ρ 

% %ÎÖÉÒÏÎÍÅÎÔÁÌ !×ÁÒÅÎÅÓÓ  ρ ρ 

- %ÃÏÎÏÍÉÃ !×ÁÒÅÎÅÓÓ  ρ ρ 

Ô &ÁÒÍÅÒ 4ÉÍÅ (ÏÒÉÚÏÎ ÙÅÁÒÓ π 

$ &ÁÒÍÅÒ .ÅÉÇÈÂÏÒÈÏÏÄ $ÉÓÔÁÎÃÅ ËÍ π 

 

The model parameterization was not necessarily a metric by which to make judgments about 

typical East-Central Illinois producers, but a means to facilitate and affect distinct agent behavior 

and, as outlined in Macal and North (2010) for defining agents.  Farm decision-making may 

involve many different strategies and combinations of these priorities, and these parameters were 

used to express that diversity in agents, not as a commentary on the personalities of area 

producers. 

Macal and North (2010) recommended locating and incorporating practical data in 

parameterizing agents.  In this study, farmer agent parameterization with respect to economic 

behavior was derived from studies on the financial structure and performance of typical Illinois 

farms.  The economics of each farmer agent were represented by annual net return basis for corn 

and soybean production in Central Illinois as reported in the Illinois Farm Management 

Handbook (Table 4.2) (UIUC-ACES, 2012).   
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Table 4.2: Central Illinois Farm Returns 2005-2012 (UIUC - ACES, 2003-2012) 

 High Productivity Low Productivity 

Year Corn Net Return 

($/acre)  

Soy Net 

Return 

($/acre)  

 Corn Net Return 

($/acre) 

Soy Net 

Return 

($/acre) 
2005 15 -9 -33 -22 

2006 86 3 79 -3 

2007 298 161 253 142 

2008 158 52 139 66 

2009 -90 1 -54 15 

2010 201 144 121 118 

2011 241 81 175 98 

2012 174 79 144 102 

 

The Handbook provided estimates for all costs, revenues, and returns for high and low 

productivity farms.  The ABM grouped the cost data (fertilizers, grain handling, machinery, 

labor, interest on debt, power, repairs, disaster insurance) and revenue data (crop, government 

payments, off-farm, investments, insurance) from the Handbook into an annual performance (net 

return).  In this manner, the ABM abstracted costs like labor and insurance to facilitate an 

analysis of returns with respect to BMP installations. 

Farmer agent net returns were implemented in the ABM with a forecast at the beginning of 

the year for planning, and then calculating actual returns at the end of a year (Table 4.3).   
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Table 4.3: Farmer Agent Economic Parameterization 

Parameter Description [units] 

i year 

9É Farmer Observed Yields (year) [bu/ac] 

9 É Farmer Neighborsô Observed Yields (year) [bu/ac] 

&9É Farmer Forecasted Yields (year) [bu/ac] 

0É Farmer Observed Revenue Per Yield (year) [$ / bu/ac] 

&0É Farmer Forecasted Revenue Per Yield (year) [$ / 

bu/ac] 
#É Farmer Observed Cost Per Yield (year) [$ / bu/ac] 

&#É Farmer Forecasted Cost Per Yield (year) [$ / bu/ac] 

)É Farmer Observed Revenue (year) [$] 

&)É Farmer Forecasted Revenue (year)  [$] 

 

Returns were calculated by multiplying by the revenue per unit yield less the cost per unit yield 

by the yield, less BMP and policy costs (Equation 4.1), which are introduced in 4.3.3.  

)É  9Éᶻ0É  #É ὄὓὖ ὅέίὸίὖέὰὭὧώ ὅέίὸί (4.1) 

Farmer adoption of BMPs was similarly driven by economics, sociability, and environmental 

awareness.  The USDA-NRCS multi-year study of the CEAP (Conservation Effectiveness 

Assessment Program) in Upper Mississippi River Basin discussed in Chapter 2 provided 

important conclusions on why and what was driving conservation practice adoption (Hoag et al., 

2012; USDA - NRCS, 2011).  This model incorporated those conclusions in the logic for farmer 

BMP adoption.  The CEAP assessment found that producers adopt first and foremost if practices 

increase profits.  Producers also adopt if there are observable benefits such as reduced erosion, 

whereas nutrient management where benefits are abstracted are less likely to be adopted.  

Receiving a positive recommendation from a trusted source like an agricultural supplier or 
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neighbor also drives adoption.  Also, some producers are simply more interested in 

implementing conservation practices.  In addition, producers with a strong network of peers to 

discuss changing management and the finances reflect higher adoption rates (Hoag et al., 2012).  

These factors driving adoption were parameterized in a BMP opinion that would decide the 

likelihood of adoption for each farmer along with their neighborsô opinions (Table 4.4).  Farmer 

agent BMP opinions were the result of logic detailed in Section 4.2.3 and similar to farmer agent 

characteristic parameters, served as the likelihood of adoption (0-1).  In addition, as farmer 

agents adopted practices, they tabulated their perceived reduction of nutrient loads for assessing 

BMP performance later.  Perceived reduction was represented as a fraction of load delivered to 

the farmerôs outlet (0-1). 

Table 4.4: Farmer BMP Opinions 

Parameter Description Range 

ὄ  Ὥ Initial Farmer BMP Opinion (year) 0 - 1 

ὄȟ  Ὥ Neighborsô Average BMP Opinion (year)  0 - 1 

Ὁ Ὥ Farmer Nitrate Reduction from BMPs (year) 0 - 1 

Ὁ Ὥ Farmer Phosphorous Reduction from BMPs (year) 0 - 1 

 

 Each farmersô BMP opinion was updated annually using a BMP scoring system (Table 4.5).  

The BMP scoring system measured a farmersô perception of the effectiveness of a BMP, their 

neighborsô perceptions, their general environmental awareness, and influence of the community.  

How the score was updated annually, along with its effect on opinions, and assessing the costs 

and benefits of a BMP is described in detail in the ABM logic section (Section 4.3.2).  Each 

score was a measure of the four motivations (effectiveness, neighborsô perceptions, 
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environmental awareness, and community) and used to form an updated BMP opinion (range of 

0-1). 

Table 4.5: BMP Score 

Parameter Description Range 

Ὑ Ὥ BMP Score (year) 0 - 1 

 

The parameters governing the behavior of farmer agents have been presented in this section.  

The community agent is presented next, and then logic of the model follows. 

4.3.1.2 Community Agent 

The community agent represented a hypothetical institution that at the very least reveals top-

down data for the watershed to farmer agents.  If specified by the user, the community agent 

could also apply regulatory or incentive measures.  The core community agent was initialized 

with average yield data, average revenue and costs for corn and soybeans, and a community 

policy time horizon (Table 4.6). 

Table 4.6: Community Agent parameterization 

Parameter Description (units) Range 

9 É !ÖÅÒÁÇÅ #ÏÍÍÕÎÉÔÙ 9ÉÅÌÄ  ÂÕ ȾÁÃÒÅ > 0 

# É  Average Farmer Costs (year) [$ / acre] > 0 

0É Average Farmer Crop Revenue (year) [$ / bushel] > 0 

Ô #ÏÍÍÕÎÉÔÙ 4ÉÍÅ (ÏÒÉÚÏÎ ÙÅÁÒÓ > 0 

 

The community agent also incorporated user inputted parameters for water quality thresholds, 

incentives and BMP cost shares, and tax levies (Table 4.7).    The community policy time 

horizon was used to enforce policy instruments.  For example, if an incentive for BMP 
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installations was available, it was available for farmers for the community time horizon.  With 

respect to an East-Central Illinois, these functions (taxes, incentives, cost-shares) and data (crop 

yield, average price received) originate from a group of organizations in the area.  The 

community agent could be conceived as serving functions of the local/state/federal government, 

extension agencies like the USDA and NRCS, and university research and extension.  For 

example, the USDA-NRCS EQIP program implements a cost-sharing agreement for a BMP like 

winter cover crop (USDA-NRCS, 2012a), the University of Illinois disseminates annual financial 

performance metrics and crop yields in conjunction with the USDA (UIUC-ACES, 2012), and a 

potential incentive scheme could be implemented by local government.  The community agent 

housed and revealed top-down data to farmer agents as the simulation evolved.  Water quality at 

the outlet was also recorded by the community agent.  Nitrogen and phosphorous levels are 

monitored by University of Illinois and the Urbana-Champaign Sanitary District (UCSD & 

UIUC, 2013) in the Upper Salt Fork watershed (Table 4.7).  In addition, the averaged crop yields 

for the watershed were tabulated by the community agent and disseminated to farmer agents.  

The ranges for policy initiatives were derived from observed concentrations for nutrient 

thresholds and rates that would result in initiatives that would affect farmersô revenues so that an 

analysis could be performed.  Nutrient concentrations were used as the measure of water quality 

because of the availability of direct measurements by UCSD & UIUC.  In addition, nutrient 

concentration reflects both the nutrient load and water flow, providing a consistent measure 

across wet and dry years.  As discussed in Chapter 3, monthly nutrients ranged from .07 to 1 

mg/L for phosphorous and 0 to 12 mg/L for nitrogen.  The ranges for policy initiatives were 

designed to facilitate an analysis of scenarios with minimal impact to excessive.  For example, a 

high tax rate of $3,000,000 with a low threshold of 5 mg/L would result in a tax of $6,000,000 




