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Abstract

Lexical entailment is a requirement for success in the domains of Recognizing Textual
Entailment (RTE) as well as related tasks like Question-Answering and Information
Extraction. Previous approaches tend to fall into two camps - those that make use of
distributional models and those that make use of knowledge bases such as WordNet.
Interestingly, these methods make very different kinds of mistakes and so in this thesis,
we construct a new entailment measure by combining these two paradigms in such a
way that exploits their differences. We also experiment with including local context and
modify an existing approach to achieve the best unsupervised performance so far on
the Lexical Substitution task. Overall, we achieve a significant gain in performance on
three different evaluations and our approach is also faster than the other distributional
approaches we compare to as we are able to avoid fruitless comparisons. Furthermore,
we introduce a new approach to evaluate lexical entailment that avoids some of the
issues of wordlists - the current conventional way of evaluating lexical entailment,
and that can be additionally used to evaluate lexical entailment in context - a novel
task introduced in this paper. We also include experiments that show our new lexical
entailment model improves performance on the RTE task, the main goal of this work.
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Chapter 1

Introduction

Recognizing Textual Entailment (RTE) is an important task in Natural Language Pro-
cessing as it is used in many applications like Information Extraction and Question
Answering. The RTE problem is to automatically decide if one piece of text entails an-
other. That is if the first text is true, to determine if that means the second is also true.
The starting point for many RTE systems is to align the tokens between the hypothesis
and the text that have the same relationship. In general, there are many relationships
between the tokens that need to be understood and included in the alignment and often
separate tools are needed to identify these. For instance, it is important to have an en-
tailment measure for named entities, dates, and quantities. It also important to have an
entailment measure between words. Additionally, there are other relationships between
words that must be known as well, such as derivationally related words and relational
antonyms, but this is not the focus of this work.

The focus of this thesis is on lexical entailment. This can be viewed as RTE be-
tween tokens themselves. In other words, we would like to know when one word
implies another like dog implies animal. This was formally defined in [Zhitomirsky-
Geffet, 2009] and again in [Turney and Mohammad, 2013]. Lexical entailment was
also studied in [Kotlerman et al., 2010], [Baroni et al., 2012]. Just as in lexical simi-
larity, there are two main approaches. The first utilizes a knowledge base, most often
this is WordNet [Miller, 1995]. The second is a vector space model where each word is
represented as a vector. These vectors are often based on statistics from a large corpus.

Interestingly, these two different approaches compliment each other as they tend
to make different kinds of mistakes. Vector space models give high scores to words
that can often be found in the same contexts. They are thus capable of identifying syn-
onyms and hypernyms. However, they are also noisy as they cannot often keep from
giving high scores to other lexical relationships like antonyms and co-hyponyms be-
cause these often share the same contexts as well. WordNet based measures can make
mistakes primarily for three reasons. The first is that the relationship may not exist in
WordNet. WordNet has an extremely large vocabulary, but it is missing some useful re-
lationships between words. The second is that WordNet includes many senses for each
word. Some of these senses are very rare. For instance, person is a hypernym with
a distance of 2 synsets of computer, and turtle and sweater are synonyms. The third
issue is that the network in WordNet is not uniform - sometimes a hypernym that will
likely be useful is many synsets away in the hierarchy. These issues present challenges
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to lexical entailment measures using WordNet as they may identify relationships that
are technically correct but not needed in the current context or miss some relationships
altogether. One approach for addressing the former problem is to use word sense dis-
ambiguation. However, it has been difficult to obtain enough performance on this task
using the WordNet senses for this to be viable and even then, one would still have to
work with the other limitations of WordNet.

Given that distributional models measure contextual overlap and knowledge bases
give correct information about the relationships between words, it would seem that
these could be combined in a way to create more useful lexical entailment measures.
In this paper, we create an improved lexical entailment measure by using information
collected from a large corpus to score knowledge base information. We use synonyms,
antonyms and hypernyms from WordNet, and lexical relationships from the paraphrase
database [Ganitkevitch et al., 2013] as a source of knowledge and then create a new
entailment measure. We also are able to extend this approach to incorporate the local
contexts of a word pair. This model greatly reduces mistakes made due to mismatched
word sense with little additional computational cost.

We evaluate our new method and compare to other approaches on the RTE task.
We also evaluate on the wordlist dataset introduced in [Kotlerman et al., 2010]. Finally,
we introduce a new evaluation made up of examples of lexical entailment taken from
the MSR RTE2 alignment corpus [Brockett, 2007]. The conventional evaluation has
been to evaluate on applications or on wordlists. Evaluating on applications can make
error analysis difficult, and the problem with wordlists is that it is difficult to generate
negative examples that are sufficiently close to the margin. Additionally, there is a
chance that the examples are not natural in the sense that we are likely to encounter
them in a real world setting. Thus we used the alignment corpus to create an evaluation
that would not have these issues. Moreover, this evaluation can also be used to evaluate
lexical entailment in context - a new task we propose that is most similar to the sense
matching [Dagan et al., 2006] and lexical substitution [McCarthy and Navigli, 2007]
tasks.

Overall, our method significantly outperforms other entailment and similarity mea-
sures in the literature on all evaluations. It also has the additional benefit of being
significantly faster than purely vector space entailment approaches, allowing us to in-
clude local context without much additional cost, as our method is judicious on what
word comparisons to make.

2



Chapter 2

Literature Review

The literature on lexical entailment is fairly sparse and recent. However research tan-
gentially related on lexical similarity has been a topic of interest for decades. I will first
discuss lexical entailment and how it relates to similar research in word similarity and
relatedness. I will then discuss the two main paradigms to solving this important prob-
lem. The first is that of distributional methods which rely on using a large corpus to
create a vector representation of a word, and the second are knowledge bases methods
which can be either constructed manually by humans or constructed using automatic
techniques.

2.1 Lexical Entailment

2.1.1 Definitions

Lexical entailment has been defined in two different ways in the literature. The earliest
definition, in [Zhitomirsky-Geffet, 2009], defines lexical entailment based on substi-
tutability.

Definition Given words w and v, we say that w substitutability entails v if two con-
ditions hold. The first is that the meaning of a possible sense of w implies a possible
sense of v. The second is that w can substitute for v in some naturally occurring sen-
tence, such that the meaning of the modified sentence would entail the meaning of the
original one.

[Turney and Mohammad, 2013] critique this definition by building upon a com-
ment in [Zhitomirsky-Geffet, 2009] where the authors state that lexical entailment is
more complicated than a superset of known lexical relationships like synonymy, hy-
pernomy, and meronymy. Turney suggests using finer grained semantic relations and
so defines lexical entailment as a collection of semantic relations in Bejar’s taxonomy
[Bejar et al., 1991], which consists of 10 coarse categories that are further divided
giving 79 total classifications. Turney and a colleague then went through these rela-
tions and decided if they were indicative of entailment or not based on their relational
definition of entailment.

Definition Word w is said to relationally entail word v if there exists a pre-defined
semantic relation between w and v. Secondly, it should follow from the meaning of
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that relation that w entails v. Lastly, if two or more semantic relations are possibly
between w and v and they do not agree, then it is assumed that w does not entail v.

2.1.2 Criticism

Turney’s definition is more general than that in [Zhitomirsky-Geffet, 2009]. However
it has some major drawbacks. For one, it is a much more difficult definition to ap-
ply (based on lower inter-annotater agreement) and is entirely dependent on the set of
semantic relations that are being considered. Furthermore, it can be argued that the
definition is not as useful. One part of the 2012 Sem-Eval task was to order word
pairs by how strongly they exemplify one of these 79 relations given several gold pairs.
The best performing system [Mikolov et al., 2013c] though had very low Spearman’s
ρ with the gold scores (27.5), suggesting that classifying these relations with a high
enough degree of precision is currently not something that can be done. Turney was
simply concerned with identifying whether two words satisfy his relational entailment
definition. However, in order to be useful in an entailment system, I argue that we must
know exactly how the words are related, especially in an alignment model which was
one of the main motivations of these investigations into lexical alignment. Just know-
ing that they satisfy lexical entailment, according to Turney’s definition, is not useful
as there is a large difference from an inference point-of-view between rain |= wet

and tulip |= flower. While an alignment between tulip and flower would aid RTE
inference, the relationship between rain and wet would require a more sophisticated
inference than what is currently used by alignment models to make the correct entail-
ment decision.

We take the view that lexical entailment should be closely tied to the inference used
in RTE systems. Thus other lexical relationships are also of interest that are necessary
for the inference used in alignment-based RTE systems that fall outside of these two
definitions. These include words that are derivationally related like gain and growth as
well as relational antonyms like buy and sell and of course multi-word expressions like
take part and on the flip side. For this thesis though, we focus just on the substitutable
definition of entailment as it is the most commonly encountered in the RTE datasets and
is something that our current alignment algorithm [Chang et al., 2010] is built upon.

2.1.3 Relationship to Similarity and Relatedness

It is important to place lexical entailment in the context of the other major lexical rela-
tionships - similarity and relatedness. Lexical entailment can be seen as a directional
relationship that is a subset of the more broad category of lexical similarity. It is also
important to recognize the similarities and differences between these lexical relation-
ships as they each require their own approaches.

[Agirre et al., 2009] first made the distinction between similarity and relatedness.
Words were deemed to be related if they had a meronym-holonym or meronym-holonym
relationship or a high enough human similarity score (were seen as topically related)

4



without having a hypernym-hyponym, hyponym-hypernym, meronym-holonym, holonym-
meronym, antonym, or synonym relationship. There were related if they had a syn-
onym, antonym, hyponym-hypernym, hypernym-hyponym relationship.

Lexical entailment, therefore according to the substitution definition, can be seen
to roughly correspond to the subset of lexical similarity consisting of synonyms and
hyponym-hypernyms. This is an important observation as it tells us that ideas from
lexical similarity could be useful when creating lexical entailment approaches. An
example of this would be that it is better to use a target word’s syntactic dependencies
as features in our word representations over just the unigrams in a window around that
target word as the former favors similarity and the latter relatedness.

2.2 Distributional Methods

The motivation for distributional methods lies in the distributional hypothesis which
states that words with the same meaning tend to occur in the same contexts [Harris,
1954]. In practice, words are represented as vectors where the components of the
vectors are features indicating some context type.

2.2.1 Statistics Based Distributional Methods

The most popular and oldest techniques for creating word representations stem from
computing statistics from a large corpus. In general we require a weighting function f
and some definition of context c. Examples of weighting functions include the identity,
TF-IDF, Lin98a [Lin, 1998b], point-wise mutual information, TTest, and frequency.
Some are listed below.

PMI = log(
p(w, r, w′)

p(w, ∗, ∗)p(∗, r, w′)
) (2.1)

Lin98a = log(
|w, r, w′| · |∗, r, ∗|
|∗, r, w′| · |w, r, ∗|

) (2.2)

TTEST =
p(w, r, w′)− p(∗, r, w′)p(w, ∗, ∗)√

p(∗, r, w′)p(w, ∗, ∗)
(2.3)

Then to compute the similarity between words, we also require a similarity function
between vectors. Possible approaches here include the L1 or L2 norm, cosine (probably
the most commonly used), Lin [Lin, 1998b], Jacard, Dice measure, KL-Divergence,
and many others. The cosine function is shown in (2.4) and Lin in (2.5).

cos(u,v) =
u · v
|u| · |v|

(2.4)

Lin(w1,w2) =

∑
(r,w)∈w1∩w2

Lin98(w1, r, w) + Lin98(w2, r, w)∑
(r,w)∈w1

Lin98(w1, r, w) +
∑

(r,w)∈w2
Lin98(w2, r, w)

(2.5)
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The choice of weighting function and similarity function can have a significant
effect on performance. [Curran, 2003] evaluates these many different measures and
weighting functions by obtaining the top 200 most similar words for each measure and
then comparing the rankings of these with the union of entries in multiple thesauri.
He finds DICE and Jaccard to be the top performing similarity measures and TTest,
with point-wise mutual information close behind, to be the best performing weighting
functions.

Note that there are other approaches where the weights for all words in the vocab-
ulary are placed in a V × D matrix where W is the size of the vocabulary and D is
the size of the feature vectors. Then the dimensionality of this matrix is reduced by
mapping it into a V × d space where d << D. Singular Value Decomposition (SVD)
is often used to do this transformation [Landauer and Dutnais, 1997].

Window Based Word Contexts

Window based methods have several design choices in addition to which weighting
function f to use. One of these is the width of the window (how many words does the
window extend over). In general, the smaller the window, the more one is capturing
lexical similarity, and as it widens, we are capturing more of lexical relatedness (i.e.
words that are more topically related). Other decisions include the symmetry of the
window, which means where in the window will the target word be placed, and whether
the window is fixed regardless of boundaries due to paragraphs or page breaks. The
effect of these decisions was investigated by [Curran, 2003]. One last decision, with
this approach is on whether to filter out high frequency but uninformative words or very
rarely used words. This is often seen to be a good idea as it lowers the computational
cost and usually has no negative effect.

Furthermore, Window Based methods do not simply need to just define a context c
as a word. There are other choices as well such as including features like bigrams and
the direction (to right or left of the target).

Grammatical Relation Based Word Contexts

Instead of using every word in a context window, we can use only those words that
occur in a grammatical relation or dependency of the target word as [Hindle, 1990]
suggests. Now the feature space consists of a word and a relation. As full depen-
dency parsing is expensive, [Curran, 2003] investigates using a chunker and shallow
parser with the goal of more quickly extracting a smaller set of relations like subject,
direct object, and prepositional object of certain prepositional phrases. He compared
to using dependency parses and found not surprisingly, that the performance of these
approaches on his lexical similarity evaluations scales with the sophistication of lin-
guistic processing involved. Thus, those making use of dependency parse have the
highest performance. However he notes, that the difference diminishes as the size of
the corpus increases.
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2.2.2 Neural Network Word Embeddings

[Bengio et al., 2003] created the first neural network language model where word vector
representations are jointly learned with the language model. His was a feedforward
architecture that was trained in a supervised fashion on raw text where the goal was
to maximize the log-likelihood of the text. Thus, it required no training data. This
inspired more neural network language models like in [Collobert and Weston, 2008]
and [Mnih and Hinton, 2008].

In [Mikolov et al., 2010], the authors investigated using a recurrent neural network
architecture for language modeling. The representations created from this model were
shown to surpass other neural network word embeddings in [Mikolov et al., 2013b] on
various word similarity evaluations.

Most recently, [Mikolov et al., 2013b] and [Mikolov et al., 2013a] discuss a Skip-
gram model for learning word representations. To train, the input to the network is a
single word and the output is the nearby context words from some occurence of the
input word in a large corpus. This is different from other models where the input is
usually the context and the goal is to predict the word in the middle or end of that input
context. The training is efficient as it does not require dense matrix multiplications and
so the authors were able to train it on 100 billion words in a single day on a single
machine. The authors show these word representations outperform all otheres on the
word analogy task. 1.

2.2.3 Distributional Lexical Entailment

BalAPincs

This approach, described in [Kotlerman et al., 2010], aims to reward those situations
when the first context vector argument is a subset of the second. In other words, the
features of the first context vectors should be included in the second. This idea naturally
comes from the distributional inclusion hypothesis [Geffet, 2005], which states that if
word a occurs in a subset of the context of word b then a often entails b. The formula
for calculating balAPinc is below. Fi denotes the context vector where all nonzero
entries have been removed. In practice, this feature vector includes only the top 1000
or so features to prevent low occurring features from influencing the score and to also
increase the speed of the algorithm. The features are weighted by Lin98. In our work
we also found it useful to put a limit on the number of times a term occurs before
including it in the feature set. This is because, like PMI, Lin98 is sensitive to rare
terms having a disproportionate weight. We set this value to 150.

balAPinc(u, v) =
√

APinc(u, v) · Lin98a(u, v) (2.6)

APinc(u, v) =
∑|Fu|

r=1 |P (r, Fu, Fv) · rel(fur, Fv)|
|Fu|

(2.7)

1These 300 component word representations are available at https://code.google.com/p/word2vec/
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P(r, Fu, Fv) =
|inc(r, Fu, Fv)|

r
(2.8)

rel(f, Fw) =

1− rank(f,Fw)
|Fw|+1 if f ∈ Fw

0 otherwise
(2.9)

inc(r, Fu, Fv) = {f |rank(f, Fu) ≤ r, f ∈ (Fu ∩ Fv)} (2.10)

Supervised Approaches

Recently there has also been two additional distributional lexical entailment approaches
that use a supervised approach. The main draw back with these is that they are a
function of their training data.

The first of these, ConVecs [Baroni et al., 2012] (short for concatenated vectors)
operates under the hypothesis that the entailment of words a and b is a learnable func-
tion of the concatenation of their context vectors. The authors use SVD to reduce the
dimensionality of the context vectors and then use a SVM with a polynomial kernel to
learn this function. In order to obtain a score from this model, probability estimates
can be used and the probability for the positive class can be used as the score.

In [Turney and Mohammad, 2013], he introduces a measure called SimDiffs. This
operates under the hypothesis that the tendency of word w to entail word v is correlated
with some learnable function of the difference in their similarities to a set of reference
words. In SimDiffs, two matrices are created, a domain matrix D and a function matrix
F. The domain matrix was created by using nouns that occur near a given word as the
context, while the function matrix uses the verbs. D is designed to measure the domain
similarity between two words (similarity of topic), while F is designed to measure the
functional similarity (how the words are used). The matrices were decomposed using
SVD and PPMI (PMI that is thresholded below at 0) was used to weight the context
features. The features sets then for w |= v are the following where R is a set of
reference words:

S1 = {simd(w, r)− simd(v, r)|r ∈ R}

S2 = {simf (w, r)− simf (v, r)|r ∈ R}

S3 = {simd(w, r)− simf (v, r)|r ∈ R}

S4 = {simf (w, r)− simd(v, r)|r ∈ R}

The set of reference words he used for his experiments are the 2086 words in Og-
den’s Basic English. Cosine similarity was used as the similarity function, and the
model was trained using SVM with radial basis kernel.
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Criticism of Supervised Approaches

One issue with supervised approaches is that they are a function of their training data
which poses a difficulty as it hard to discern negative examples that are close to the
margin. Moreover, the experiments in [Turney and Mohammad, 2013] comparing bal-
APincs, Convecs, and SimDiffs give mixed results on the datasets motivated by the
substitutable definition of entailment.

2.3 Knowledge-Based Metrics

Knowledge based approaches make use of a knowledge base that contains information
about single words or phrases as well as relations between them. Among the knowledge
bases used, WordNet [Fellbaum, 1998] has been probably the most utilized and has
proven to be a useful resource. Others include dictionaries, thesauri, and automatically
constructed resources like the Paraphrase Database [Ganitkevitch et al., 2013].

2.3.1 WordNet Similarity

A number of measures have been developed to quantify the lexical similarity or entail-
ment of two given words [Budanitsky and Hirst, 2006]; in the context of WordNet, for
example, these can often be thought of as related so some distance between the two
target words along a path in the Wordnet graph. Method vary on how the path is cho-
sen (e.g., which relations are taken into account) and how it is scaled [Wu and Palmer,
1994, Resnik, 1995, Lin, 1998a, Jiang and Conrath, 1997, Leacock and Chodorow,
1998, Hirst and St-Onge, 1998, Banerjee and Pedersen, 2002, Do et al., 2009].

The above metrics are a subset of the following variables when comparing words
w1 and w2: the length of the shortest path between w1 and w2 in WordNet, length of
the shortest path between one of w1 and w2 and the lowest common subsumer (LCS) -
which is the closest node in the network that both words descend from - of w1 and w2,
the length of the shortest path from the LCS to the global root, the maximum depth of
the hierarchy, probability of w1 or w2 as measured by a corpus, and the probability of
the LCS ofw1 orw2. Additionally, HSO also takes into account the number of changes
in path direction of the path connecting two words in the network. Of these seven
algorithms only HSO and Lesk are able to assign scores for words having different
parts of speech.

2.3.2 Paraphrase Database

The Paraphrase Database (PPDB) [Ganitkevitch et al., 2013] was constructed by ex-
tracting lexical, phrasal, and syntactic paraphrases from a large bilingual parallel cor-
pora. They used the idea that two English strings that translate to the same foreign
string can be assumed to have the same meaning. They can pivot over the foreign
string and map the English paraphrases to each other. They then were able to calculate
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the marginal probability of these phrase alignments by marginalizing over all shared
foreign-language translations.

One can obtain an entailment score from the paraphrase database by using the fol-
lowing formula where P (e|f, LHS) is the score in the PPDB that encodes the proba-
bility that f is a paraphrase of e:

1
P (e|f, LHS)

(2.11)

2.3.3 Other Recent Approaches

Recently there has been some new approaches which aim to enhance knowledge bases.
One of these is PILSA [Yih et al., 2012]. The aim of this work was to develop a vector
space representation in which synonyms and antonyms were on opposite ends of a
sphere lying in a continuous vector space. The advantage over a standard thesaurus is
that new synonyms and antonyms can be discovered and using information from a large
corpus, new words can be embedded into the subspace. The authors accomplished this
through a modification of LSA. The documents in the model are thesaurus entries for a
given word including synonyms and antonyms. Each row in the co-occurrence matrix is
a vector representation of a document whose components are the TF-IDF of the words
in its entry. To create the desired property of separating antonyms and synonyms, the
TF-IDF scores for the antonyms are negated. They then enhance the projection matrix,
created by LSA, through discriminative training using a neural network architecture
called an S2-Net.

Another approach that enhances a knowledge base, is an extension of PILSA that
makes use of tensor decomposition. In [Chang et al., ], the authors combine multiple
relations between words, like hypernymy, synonymy and antonymy, by constructing a
3-way tensor. Then instead of using LSA to decompose, as in the case of a matrix, they
decompose it using tensor decomposition. This allows them to include information
from multiple sources (Encarta dictionary and WordNet) and they can generalize to
cover relations not mentioned in these resources. The degree to which a word satisfies
a given relation can be obtained with just simple algebraic manipulations.

2.3.4 Knowledge Based Lexical Entailment

WNSim

WNSim was introduced in [Do et al., 2009] and is a WordNet similarity metric de-
signed to perform well on the RTE task.

WNSim(w1, w2) =



θl1+l2 if l1 + l2 ≤ k

θk if l1 + l2 ≤

α · depth of lcs(w1, w2)

0 if l1 + l2 ≤ k
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Where the parameter values used were θ = 0.3, k = 3, and α = 0.667, learned
through a grid search using Lexical Level Matching on some RTE data. li refers to
the distance from the synset of wi to the lcs. Note that this is a symmetric similarity
measure and does not give an entailment direction. In WNSim, stems (if they exist) are
chosen for each word from each part-of-speech. Then to compute the least-common-
subsumer, the synonymy-antonymy, hypernymy-hyponymy, are considered.
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Chapter 3

Evaluation of Lexical
Entailment

3.1 WordLists

The usual evaluation for lexical entailment, done in [Baroni et al., 2012], [Kotlerman
et al., 2010], [Turney and Mohammad, 2013], is to evaluate on lists of word pairs.
A threshold is learned on a held out portion of the data and then evaluation is done
on the remaining word pairs - some of which lexically entail each other and some do
not. A similar approach is also used in word similarity evaluation where wordlists like
those introduced in [Agirre et al., 2009], [Finkelstein et al., 2001], [Rubenstein and
Goodenough, 1965] are used and the task is to have the model produce scores for the
words that are correlated with human judgments. There are at least three issues with
this approach. The first is that it can be difficult to construct negative examples that are
near the margin. The second is that these word lists may not be very representative of
the word pairs that occur in natural text. Lastly, we cannot include the context into the
evaluation if we are just given a list of words. Additionally, for the cases where human
judgment is used, there is no guarantee that good correlation with human judgments
will manifest itself as good performance on NLP applications.

3.2 Recognizing Textual Entailment Alignments

Our main evaluation method, which also helped motivate the ideas in this paper, is the
dataset we constructed from the aligned RTE2 data from [Brockett, 2007]. This type
of evaluation was designed to avoid those three issues that affect wordlist evaluations.
To create the dataset, we processed the aligned corpus by first removing all alignments
between named entities, numbers, words that are exact matches or differ only up to
stemming, and stop words. This left us with 1041 alignments. These remaining align-
ments were then categorized into several different categories by two annotators. These
categories included lexical entailment, where we used the substitutable definition of
lexical entailment in [Zhitomirsky-Geffet, 2009], word pairs that would lexically entail
if they were the correct part of speech like grow and gains and derivationally related
words, relational antonyms like buy and sell, and finally multi-word expressions. The
task was then, given the aligned word in the hypothesis and a relation, to identify its
match in the text. The evaluation used 20-fold cross validation, where a threshold was
tuned on some held out set, and then use this threshold to calculate precision, recall,
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and F1 on a test set. This latter use case reflects how lexical entailment and word simi-
larity measures are often used in real systems. For this paper we only used 289 lexical
entailment examples for evaluation and leave the other relations for future work. For
lexical entailment, the kappa score was 74.9 indicating substantial agreement.

This dataset, we argue provides a better evaluation for lexical entailment than any
previous resource and resolves the problems with wordlist evaluation. Negative exam-
ples are the surrounding words in the sentences and so mistakes on these will correlate
well with mistakes on real NLP tasks. The aligned word pairs are also representative
of those that can be found in natural text. Lastly, we can evaluate lexical entailment
algorithms that do include context. If a system does well on our evaluation, it is making
the correct alignments which is often a crucial first step in RTE, thus success on our
task can be seen to be directly related to success on the goal task of RTE - this is harder
to justify for wordlist evaluations.

As previously mentioned, our dataset can be used to assess the performance of lex-
ical entailment in context, a novel task. There is related work in this area. For instance,
[Dagan et al., 2006] introduces a dataset that gives a pair of two synonymous words
and a set of sentences containing one of the words in this pair. The goal is to determine
whether the context in each of the sentences is expressing the sense illustrated by the
word pair. There is also the lexical substitution task [McCarthy and Navigli, 2007]
where the task is to find an alternative word for a target word in context. The gold
standard in the lexical substitution task are words proposed by human judges. In our
tasks, we are given two target words and two contexts, and the task is to determine if
the words lexically entail in these contexts. This more closely matches the real use case
in RTE as well in related tasks like Question-Answering and Information Extraction.

3.3 Recognizing Textual Entailment LLM

LLM is an evaluation in the context of an application. This was initially used to evalu-
ate lexical entailment in [Do et al., 2009].

This evaluation can be seen as taking, for each word in the hypothesis, the max-
imum score between this word and all words in the text. This is repeated for each
non-stop word in the hypothesis and the average of all these values is returned for the
score. It can be seen as scoring an alignment between the hypothesis and the text (3.1),
where si is the set of tokens in sentence i.

LLM(s1, s2) =

∑
v∈s2

maxu∈s1sim(u, v)
‖s2‖

(3.1)

In [Mihalcea et al., 2006], the author proposes a formula similar to the above in
order to compare different lexical measures on the MSR paraphrase corpus. The for-
mula is shown in (3.2) wheremaxSim(w, s) is the maximum similarity score between
word w and all words in text s. The advantage of this formulation over (3.1) is that it
takes word specificity into account by incorporating the idf of the words. Thus words
that are more rare have more weight in the final score - there is no need for a stop-word
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list as these naturally have very low idf.

sim(s1, s2) =
1
2

∑
w∈s1

maxSim(w, s2) · idf(w)∑
w∈s1

idf(w)
+

1
2

∑
w∈s2

maxSim(w, s1) · idf(w)∑
w∈s2

idf(w)

(3.2)

We modified this formula for use in RTE by just matching the hypothesis tokens
with those in the text. This gives the formula (3.3) used in our LLM experiments. This
formulation gives better results on our RTE experiments than that in (3.1). The idf val-
ues were calculated from the documents in the NYT segment of Annotated GigaWord
[Napoles et al., 2012].

newLLM(s1, s2) =

∑
w∈s2

maxSim(w, s1) · idf(w)∑
w∈T2

idf(w)
(3.3)

All of the examples in the RTE dataset are then assigned a score and an optimal
threshold is tuned on the development set. This threshold is used in evaluation on the
test set.

One difficulty with LLM is that each metric has its own range of scores and its
own distribution over this range. In order to solve this problem, we evaluate with the
binary version of LLM which is meant to make the metrics less reliant on the range and
distribution of the scores they give. For each metric, a threshold was learned through
grid search again on the development data. If the score of the metric surpassed the
threshold, a score of 1 was assigned to the word pair. Otherwise a score of 0 was
assigned.

For our experiments, we used the RTE set from SemEval 2014 Task 1. Parameters
were tuned on 500 sentence pairs in the development set and tested on the remaining
9500 pairs in the training and test sets. The dataset was chosen for its large number
of examples and the relative simplicity of the sentence pairs where lexical methods
can be expected to do fairly well. We report F1 as the dataset is not balanced (Posi-
tive examples are labeled Entailment while negative examples are labeled Neutral or
Contradiction).

14



Chapter 4

New Approaches to Lexical
Entailment

4.1 Analysis

As mentioned in the second chapter, two families of metrics have been used in the lit-
erature for computing lexical entailment and lexical similarity – metrics that are based
on knowledge bases, and those that are based on vector space representations of words
(also called distributional or corpus-based approaches) [Mihalcea et al., 2006].

While these two families have been used in a range of applications it is interesting
to observe that each family has some systematic deficiencies that result in characteristic
mistakes each family of methods is making.

Figure 4.2 exemplifies typical mistakes made by a successful WordNet-based mea-
sure, WNSim [Do et al., 2009]. It illustrates faulty alignments made for the word deal,
with make, release and billion. In this case, a sense of deal also contains words like
heap and pile. A hypernym of this synset is the concept of a large, indefinite quan-

tity, which is also a hypernym of billion, hence the co-hypernym based alignment. A
similar analysis explains the alignments made with make and release. While these
relationships are logically sound given the graph structure of WordNet, they result in
two types of common mistakes: first, paths that correspond to rare senses are being
followed and suggest similarities that are only appropriate in a very narrow set of con-
texts; second, highly polysemous words like make are prone to these mistakes as they
often have ties to a large collection of words - most of which would rarely, if ever, be
aligned in any “natural” context.

Figure 4.1: Characteristic mistakes of a Vector Space based measure: drugs[1] should
be aligned with remedies[3] but, instead, it is aligned homeopathic[2] and with medi-
cal[4], due to a large number of related contexts.

Figure 4.1 exemplifies typical mistakes made by a vector space measure; in this
case, one of the most widely cited vector space lexical entailment models, balAP-
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Figure 4.2: Characteristic mistakes of a WordNet-based measure: While deal[1] is
correctly determined to be entailed by agreement[4], it is also entailed by billion[3]
and make[2], a result of following paths in the WordNet graph that correspond to rare
senses (leading to billion) and highly polysemous words (make).

incs [Kotlerman et al., 2010]. In this case, the score for the gold alignment, drugs and
remedies falls below the threshold. However, the scores relating drugs and homeo-

pathic and, similarly, drugs and medical are higher. While these words are certainly
related to drugs as they share a common topic, they do not entail drugs. This is a
typical example, illustrating that vector space methods can often be biased to reflect
relatedness rather than entailment.

These examples illustrate the disparity in the types of mistakes made by these two
different paradigms for lexical entailment. The analysis suggests that these can be
combined: knowledge based methods can be used to constrain which relationships are
sensible, and a distributional method can be used to score the strength of a relationship
and thus guide a better selection of paths in the WordNet graph, for example. We next
suggest our algorithm for combining these two different approaches.

4.2 Combining Distributional and Knowledge Base
Approaches

The motivation for our method is that we wanted to create a framework where local
context could be included if available. We also wanted a very precise lexical entailment
metric that minimized the mistakes made by both vector space methods and knowledge
resources. The first step of both our methods is to check a knowledge base in order to
see if the entailment relation exists. Then if it does, we want to score the strength of this
relationship in such a way that the scores are indicative of the likelihood of entailment.

We present two main approaches each with several variations. The first approach
KBDist does not make use of local context. The second algorithm, C-KBDist , is an
extension of KBDist and incorporates local context.

In KBDist we check if there is a synonym or hypernym relationship in WordNet
or if the tokens were aligned in the paraphrase database. We used the XXL lexical
paraphrases from the database. If the relationship has been confirmed, we then simply
score with a distributional measure. Any knowledge base could be used and our method
could be extended to also use dictionaries or thesauri. Similarly any distributional
measure could be used to score the relationship.

We choose to use WordNet and the paraphrase database for two reasons. WordNet
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provides a vast network of hypernyms that are important for lexical entailment, but
it is very sparse when it comes to synonyms. Not to mention that its coverage can
be lacking. The paraphrase database, while not without errors, is a great supplement
to WordNet as it’s strength is a vast collection of what are mostly synonyms. Some
of these synonyms are words that are in WordNet, but the relationship is not. An
example would be person and people. It also contains many synonym pairs that are
not in WordNet like smoke-free and smokeless, not to mention it contains alternate
spellings of words and abbreviations that are not included in WordNet. Some of the
noise was removed from PPDB by first making sure that the words were not antonyms
in WordNet.

An extension of these algorithms has been proposed, but so far the results are not
nearly as good as the original version due to lots of erroneous information being inter-
jected into the knowledge base. This extension seeks to extend the word relationships
in the knowledge base. The idea is that we can improve the coverage of the WordNet
and PPDB database by stipulating that if PPDB aligns two words u and v and s is a
hyponym of u, then s is also a hyponym of v. An example of this being useful is that
people and person are in different synsets in WordNet and worker is a hyponym of
person, however if we are trying to align people and workers, the connection will not
be made. However, with this addition to the knowledge base, we will be able to deter-
mine workers |= people as people and person are aligned in the PPDB. The issue with
this approach is that PPDB occasionally aligns hyponyms-hypernyms and so we must
stop the search up the hypernym tree stop when it has reached a less specific concept.
For instance, it PPDB aligned people and entity, then we would be erroneously saying
any noun could entail people as all are hyponyms of entity. One way to measure this
specificity of a synset is the use of Information Content, which is used in the Resnik
WordNet similarity measure [Resnik, 1995]. Thus it seems natural that imposing some
constraint that we restrict our hypernym search to those synsets with less Information
Content than what we aim to align it to, possibly with some margin, we should be able
to alleviate this issue.

4.3 Contextualized Vector Representation

C-KBDist attempts to incorporate local context into making lexical entailment deci-
sions. Since our goal is a more precise entailment measure, having a way to score the
likelihood of entailment by taking the local context, and hence the sense, into account
should give a better estimate of this likelihood for the case of the actual sentences of
interest.

One task in the literature, related to this goal of using local context to determine
the lexical substitutably of words, is the Lexcial Substitution task from 2007 SemEval
[McCarthy and Navigli, 2007]. In this task, the goal is to pick the most likely substi-
tute for a given word in a sentence. It is related to the Word Sense Disambiguation
(WSD) task as they both aim to elucidate the meaning of the word. However one major
difference, is that this task is completely independent of a sense inventory and so it
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can overcome the issues of the granularity of sense distinctions. This is important for
lexical entailment as limiting ourselves to a sense inventory means that we can only
declare lexical entailment if we identify both words to belong to entailing senses and
so we are relying on the inventory being vast and complete, not to mention having a
reliable WSD algorithm which is hefty requirement as the best systems do not do much
better than beating the most frequent sense baseline [Navigli et al., 2007].

Extending the Lexical Substitution task to aid in lexical entailment is straightfor-
ward according to the substitutable definition of lexical entailment. We simply require
that for word w to entail v we must find that the terms entail using our knowledge base
just as in KBDist . If there is an entailment relationship, then we score it using a mod-
ification of the simple yet state-of-the-art unsupervised lexical substitution algorithm
introduced in [Thater et al., 2011].

4.3.1 Lexical Substitution

[Thater et al., 2011] introduced a lexical substitution scheme based on contextualized

word representations. This means that the dimensions of a word representation are
re-weighted by the context, in this case direct syntactic dependents. The simplest case
is just to retain those dimensions corresponding to just the syntactic neighbors. This
creates a very sparse vector with zeros for all but a few components. Performance can
be improved by not only maintaining the components corresponding to the syntactic
neighbors, but also by those words have the same dependent relationship with the target
word weighted by their semantic similarity.

Formally we assume a set W of words and a set R of syntactic relations. The word
representations then lie in vector space, which is the span of the set of basis vectors
{er,w′ |r ∈ R,w′ ∈W}. We then define, the contextualized vector of the target with
respect to one syntactic dependent as in (4.1) where rc refers to the syntactic relation
of the target w with a word in its context, wc.

vrc,wc
(w) =

∑
w′∈W

sim(wc, w
′)lin98(rc, w, w′)erc,w′ (4.1)

The complete contextualization vector is just the sum of the contextualized vectors
for all n syntactic dependents of the target comprising context c.

vc(w) =
n∑

i=1

vrci
,wci

(w) (4.2)

Then to score the suitably of a candidate word with the target, the authors just take
the dot product of their respective contextualized vectors with respect to the context
of the target. If there are no syntactic dependents, the semantic similarity between the
target and the candidate words, as measured by the cosine measure, is used to do the
ranking.
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4.3.2 Modification for Lexical Entailment

One of the main issues with the contextualization approach in [Thater et al., 2011] is
that it can be expensive to compute as we are summing over all words in the vocabulary.
This also is hard to justify as a random pair of words usually have nonzero semantic
similarity due to the nature of the word representations, so the end score can be influ-
enced by words that have very little semantic relationship with the context word. This
is especially true for relatively common syntactic relations. Thus we created a the-
saurus by using the semantic similarity in [Lin, 1998b] which means we took all words
in our vocabulary and calculated their semantic similarity with all of the other words
in the vocabulary and ordered the scores. Thus we can investigate how many similar
words are necessary to use to achieve optimal performance on the lexical substitution
task as well as how much performance we are losing if less words are used. The results
are shown in Table 4.5.

The other issue with this approach is that it was designed for ranking a word in
context and thus the score is not normalized. Thus it is difficult to use in lexical entail-
ment as it is hard to elucidate a threshold that indicates substitutability since the score
is dependent on such factors as number of syntactic dependents a target word has. We
solve this issue by using the cosine which is normalized.

Lastly, to check if u entails v we need to check not only if u can substitute for v,
but we also should score how well v substitutes for u. If both scores are high, then it
is likely that the words have the same meaning in their respective contexts. This then
leads us to the formula in (4.3) for scoring the lexical entailment between u and v.

C −KBDist(u, v) = cos(vcu(u),vcu(v)) · cos(vcv(u),vcv(v)) (4.3)

4.3.3 Using a Language Model

We also experiment with using a similar idea but with a language model. For simplicity
we used a 5-gram model created using the SRILM package [Stolcke, 2002]. While
Recurrent neural networks have become state-of-the-art, they are difficult to train and to
train. Training an n-gram model can be done on a much larger corpus in a much shorter
time making it more convenient and possibly more accuract than an RNN trained on
less data.

We trained the language model on the NYT section of Annotated Gigaword [Napoles
et al., 2012]. The context in this case was an approximation to the probability of
the target word existing in its location in the sentence divided by its prior probabil-
ity. To add further components to our vector, we measured this value in a modified
context, where we swapped one its neighboring words with one that had high seman-
tic similarity with it using [Lin, 1998b]. We then weighted these probabilities by the
similarity between the original word and its replacement. We computed the proba-
bility of the word given the context divided by its prior using the (4.4) where both
probabilities in the numerator can be obtained by the language model. Pltarget =
p(wtarget|w0, ..., wtarget−1) is the probability of the word given the previous words
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and Prtarget = p(wtarget|wtarget+1, ..., wn) is the probability of the word given the
words to its right. The latter probability can be computed by training the language
model backwards. The prior probability wsa obtained by counting the occurrences of
the word in the corpus used to train the language model and normalizing by the total
number of words.

P (w|c) =
Pl + Pr

2 · P (w)
(4.4)

Thus by modifying the local words in the context, the Pf and Pr change and so we
can create a contextualized vector weighting these probabilities similar to the model
above. The advantage this model has over the dependency based model is that it can
be used when there are few or uninformative syntactic dependents to the target word.

4.4 Experiments

We used the collapsed Stanford dependencies from Annotated GigaWord [Napoles
et al., 2012] to create our word representations. These consisted of over 183 million
sentences. We lemmatized version of the words and kept only those dependency triples
occurring at least 3 times leaving us with about 70 million unique dependency triples.

For the recurrent neural network model, we used the 1600 component vectors ob-
tained from http://www.fit.vutbr.cz/ imikolov/rnnlm/.

We experimented with a wide variety of similarity and entailment measures using
the evaluations outlined in Chapter 3. We also evaluated the average time (in seconds)
per lexical comparison on the SemEval RTE data, and show the results of the depen-
dency and language model contextualized vectors on [McCarthy and Navigli, 2007].
The performance measure used for the latter evaluation is Generalized Average Pre-
cision (GAP) [Kishida, 2005], which ranges from 0.0 to 1.0 where 1.0 indicates all
correct items are ranked before all incorrect ones.

4.4.1 WordLists

Algorithm Accuracy Coverage
WNSim [Do et al., 2009] 62.7 92.8

Balapincs [Kotlerman et al., 2010] 57.3 99.4

Cosine (PPMI, Dependency) 62.4 99.4

Lin Distributional [Lin, 1998b] 61.8 99.4

RNN [Mikolov et al., 2013c] 57.6 90.7

Resnik [Resnik, 1995] 54.0 92.8

Lin [Lin, 1998a] 56.2 92.8

Paraphrase [Ganitkevitch et al., 2013] 68.2 100

KBDist (Cosine) 69.2 100

Table 4.1: Comparison of algorithms on wordlist in [Kotlerman et al., 2010]. Accuracy
was computed using 20 fold cross-validation.
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Table 4.1 shows the results of comparing the lexical measures on the entailment wordlist
in [Kotlerman et al., 2010]. WordLists for entailment were also used in [?] and [Turney
and Mohammad, 2013] but they were not used. The reason being, that the one used
in [?] is derived from WordNet which would give an advantage to entailment methods
using that resource and the wordlist in [Turney and Mohammad, 2013] uses the rela-
tional definition of entailment. The original wordlist contained 3772 examples, 1068
labeled entails and 2704 labeled does not entail. It also contained some multi-word
expressions. We balanced the dataset so that it contained 880 pairs of both classes
and we removed the multi-word phrases. 20 fold cross validation was used where a
threshold was tuned on the training set. Coverage refers to the percent of word pairs
that the resource was able to score. Only those that were covered were included in the
evaluation.

The experiment shows KBDist and Paraphrase well outperform the other methods
with KBDist having slightly better results. We used the simple cosine measure to score
the likelihood of entailment as it was the strongest distributional method tested.

4.4.2 RTE Alignments

Algorithm P R F1

WNSim [Do et al., 2009] 71.3 60.9 65.6

Balapincs [Kotlerman et al., 2010] 53.4 60.3 56.5

Cosine (PPMI, Dependency) 76.2 76.0 76.1

Lin Distributional [Lin, 1998b] 73.2 64.8 68.8

RNN [Mikolov et al., 2013c] 49.2 66.5 56.6

Resnik [Resnik, 1995] 50.2 38.4 43.5

Lin [Lin, 1998a] 46.4 37.0 41.2

Paraphrase [Ganitkevitch et al., 2013] 75.6 78.4 77.1

KBDist (Cosine) 78.2 77.7 78.0

C-KBDist (200) 84.5 77.9 81.1

Table 4.2: Comparison of algorithms on RTE alignment dataset. Precision, recall and
F1 were computed by 20 fold cross validation.

Table 4.2 shows the results on our substitutable lexical entailment dataset constructed
from the RTE2 Alignment corpus [Brockett, 2007]. 20 fold cross validation was used
where a threshold was tuned on the held out set. The results show that once again,
Paraphrase and KBDist have the best performance, with KBDist a slight edge. In-
corporating context using C-KBDist gives a significant improvement in precision and
overall F1. In this experiment, 200 of the most similar words to a given context word
were used in creating the contextualized vector.
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4.4.3 RTE LLM

Algorithm P R F1

WNSim [Do et al., 2009] 46.8 81.1 59.3

Balapincs [Kotlerman et al., 2010] NA NA NA

Cosine (PPMI, Dependency) 46.2 84.3 59.7

Lin Distributional [Lin, 1998b] 46.1 84.3 59.6

RNN [Mikolov et al., 2013c] 45.9 83.7 59.3

Resnik [Resnik, 1995] 47.2 77.5 58.7

Lin [Lin, 1998a] 49.5 71.5 58.5

Paraphrase [Ganitkevitch et al., 2013] 64.6 53.5 58.6

KBDist (Cosine) 53.1 81.1 64.1

C-KBDist (200) 40.6 80.5 58.7

Table 4.3: Comparison of Algorithms on RTE LLM. Precision, recall and F1 were
computed on the 9500 examples in the train and test set. Parameters were turned on
the dev set which consisted of 500 examples.

Table 4.3 shows the results of using LLM as described in Chapter 3. We used equation
(3.3). The results again show KBDist giving the best results by a significant margin.
This is particularly impressive as the RTE task is very difficult and even small improve-
ments are seen as important, not to mention large improvements, as seen in this table.
BalAPincs wasn’t evaluated due to its very slow speed. This is discussed further in the
next section.

4.4.4 Speed

Algorithm Time per Comparison (ms) Time per Example (ms)
WNSim [Do et al., 2009] 10 1269

Balapincs [Kotlerman et al., 2010] 2687 194828

Cosine (PPMI, Dependency) 15 1881

Lin Distributional [Lin, 1998b] 6 705

RNN [Mikolov et al., 2013c] 0.2 29

Resnik [Resnik, 1995] 4 547

Lin [Lin, 1998a] 5 602

Paraphrase [Ganitkevitch et al., 2013] 0.002 0.3

KBDist (Cosine) 2 313

C-KBDist (200) 25 3244

Table 4.4: Average time (in milliseconds) per lexical entailment comparison and ex-
ample on SemEval 2014 RTE data using LLM.

Table 4.4 shows the speed of the various entailment measures. We measured the aver-
age time per word comparison as well as the average time for evaluating (3.3) on an
example from the dataset. As can be seen, KBDist , is at least several times faster than
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any other distributional method. This is because it relies on accessing a knowledge
base, which can be done quickly, to avoid the costly cosine evaluation.

BalAPincs is very expensive to compute due to the quadratic complexity, that com-
bined with its weak performance in the evaluations make it not a very useful lexical
entailment measure. These experiments show that including a method that incorpo-
rates context, like contextualized vectors, is not prohibitively expensive.

4.4.5 Similarity in Context

Algorithm GAP
Random 29.3
Contextualized Vector (Dependency) (0) 46.7
Contextualized Vector (Dependency) (1) 47.0
Contextualized Vector (Dependency) (10) 47.6
Contextualized Vector (Dependency) (100) 49.6
Contextualized Vector (Dependency) (1000) 51.9
Contextualized Vector (Dependency) (2000) 51.8
Contextualized Vector (LM) (0) 44.4
[Thater et al., 2011] 51.7
[Dinu and Lapata, 2010] (LDA/ NMF) 42.9
[Séaghdha, 2010] (LDA) 49.5

Table 4.5: GAP on test set in [McCarthy and Navigli, 2007].

Table 4.5 compares our modified contextualized vector approach with others in
the literature. The models with Dependency in parenthesis used dependency features
and the models with LM in parenthesis used the language model features. The table
shows how the performance scales as the number of word replacements increases (the
number in parentheses). The results show that there is an optimum for this parameter
which was expected as there are only so many words that have a meaningful semantic
relationship with a given target word and only substituting these adds an additional
useful component to the contextualized vector.

Notice also how those methods that rely on much more sophisticated approaches-
like LDA, which also have scaling issues, do not do as well.

4.5 Future Work

One main avenue of future work is the extension to multi-word phrases. Since one
contribution of this work showed how the lexical paraphrases from the PPDB are useful
in lexical entailment, it seems likely that the multi-word phrases would be as well.
WordNet also includes multi-word phrases and so both PPDB and WordNet can provide
the knowledge-base backbone for this extension just as they did in this work.

Another avenue of future work is to improve the performance when using local
context. One issue with the current model is that there is an assumption about the
functional form that the components of the contextualized vector should have. Namely
the product of Lin98 and the semantic similarity of the replacement words, or in the
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case of the language model, the product of the probability of the target divided by its
prior and the semantic similarity of the replacement words. This is almost surely a non-
optimal functional form as there should be a step function in regards to the semantic
similarity since even two random words have a significant score compared to even two
synonyms, weakening the effect of strong replacement words. To alleviate this and also
at the same time provide a way to combine the two models discussed in this thesis and
allow for more flexibility to include additional information such as the specificity of
the word, a nonlinear function over these contextualized features should be learned. A
simple neural network could be used for this purpose and the model could be trained
to optimize pairwise rankings on the training data where we can use a hinge-loss on
the dot product of the contextualized vectors. The model would have a small parameter
space and so lack of training data shouldn’t be a problem and this approach should give
a significant gain in performance.

Lastly, with these improvements in lexical entailment and eventually phrasal en-
tailment, it is important to consider new RTE models that can make use of these new
tools to further push performance in the RTE task.
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