THE USE OF TRADITIONAL JAPANESE MUSIC AS AN INSPIRATION FOR MODERN SAXOPHONE COMPOSITIONS: AN INTERPRETIVE GUIDE TO JOJI YUASA’S _NOT I BUT THE WIND…_ AND MASAKAZU NATSUDA’S _WEST, OR EVENING SONG IN AUTUMN_

BY

CHRISTOPHER BRYANT ANDERSON

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Musical Arts in Music with a concentration in Performance and Literature in the Graduate College of the University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Debra Richtmeyer, Chair
Associate Professor Erik Lund, Director of Research
Professor Emeritus Bruno Nettl
Associate Professor J. David Harris
ABSTRACT

The use of non-Western music, particularly the traditional music of Japan, as the impetus for Western compositions has become increasingly common in music for saxophone since 1970. Many of the composers who have undertaken this fusion of styles are of Japanese nationality, but studied composition in Western conservatories and schools of music. Two composers who have become known for the use of elements from Japanese music within their compositions intended for Western instruments and performers are Joji Yuasa and Masakazu Natsuda. The aim of this study is to examine the manners in which these two composers approached the incorporation of Japanese musical aesthetics into their music for the saxophone.

The first part of the document examines Joji Yuasa’s Not I, but the wind…, which uses the shakuhachi flute as its stylistic inspiration. A history and description of the shakuhachi flute, as well as the techniques used to create its distinctive musical style are provided. This is followed by a detailed examination of the manner in which the composer utilizes these stylistic elements within the composition, and a performance guide that stipulates how these elements should be interpreted by saxophonists.

The second part of the document examines Masakazu Natsuda’s West, or Evening Song in Autumn, with a focus on the compositional elements of the piece that see their roots in the music of the gagaku court orchestra. The elements of form within the piece will be examined in detail, with a focus on the derivation of these structures from a typical piece written for the gagaku court orchestra. The impact that these structures have on interpretation will be examined in detail to provide performers with the information necessary to make educated interpretational decisions that are based on the aesthetic goals of gagaku.
ACKNOWLEDGEMENTS

There are many people without whose support and encouragement this document would never have been seen to fruition. I would first and foremost like to thank my wife Jennifer, who has served as a source of inspiration, and whose love and unyielding support have made the completion of this document possible. In addition, I would like to thank my parents, who have always supported my musical endeavors. Lastly, I would like to profusely thank Professors Debra Richtmeyer and Erik Lund for their patience and support throughout the writing process, and without whose encouragement I would have never finished this document.
TABLE OF CONTENTS

INTRODUCTION .. 1

CHAPTER 1: THE INFLUENCE OF THE SHAKUHACHI ON JOJI YUASA’S NOT I, BUT THE WIND... ... 6

CHAPTER 2: THE INFLUENCE OF GAGAKU ON MASUKAZU NATSUDA’S WEST, OR EVENING SONG IN AUTUMN... 54

CHAPTER 3: CONCLUSION ... 112

BIBLIOGRAPHY .. 115
INTRODUCTION

The increasing globalization of compositional source material and of the university music curriculum since World War II has led to a rapidly expanding repertoire of music for saxophone that incorporates elements from non-Western musical traditions. The musical traditions of many cultures have been explored by Western composers in the saxophone repertoire, but some of the most fruitful explorations of stylistic fusion between Western music and other musical cultures in the saxophone repertoire can be found in the Western-influenced art music of Japan.

This cross-pollination of musical styles began in earnest in Japan during the Meiji Restoration. The Meiji restoration, which lasted from 1868 to 1912, brought feudal rule to an end and reinstated imperial rule in Japan.¹ During this time, Japan emerged from a period of relative cultural isolation and began a large-scale integration of Western culture into the lives of Japanese citizens. Conservatories of music that taught Western-style composition were established in Japan and composers began to seek ways to integrate Western musical ideals into Japanese traditional music. This period of Western cultural importation was followed by a post-World War I nationalistic era where integration was still sought, but with an increased emphasis on retaining the character of the native music through the use of traditional instruments and scales within the context of the Western orchestra.² The integration of Japanese and Western music was accelerated following World War II. The reconstruction effort in Japan in the aftermath of the war, which was led by the United States, resulted in the establishment of American military

bases in Japan and a continued American military presence in Japan to the present day.\(^3\) The establishment of these military bases and the influx of Western personnel to maintain them resulted in a large increase in imported Western goods and culture to Japan for the purposes of subsistence and entertainment of Westerners taking up residence in Japan. The increased presence of Western culture in Japan had an undeniable impact on Japanese citizens by making it an unavoidable aspect of their lives. According to prominent Japanese composer Toru Takemitsu, one of the most important influences of his early career was his exposure to the music of Debussy and other 20\(^{th}\)-century modern composers through broadcasts of Western classical music on American radio stations in Japan during the reconstruction effort.\(^4\)

Following the composition and subsequent premiere of *November Steps* in 1967, Takemitsu eventually came to be the premiere example of Japanese and Western musical integration in the late 20\(^{th}\) century. This concept of musical integration became popular amongst many other Japanese composers active in the 1950’s and 1960’s, many of which sought out a Western-style musical education in Paris, Darmstadt, and other centers of the Western avant-garde.\(^5\) It was not until well after the integration of Western classical music with traditional Japanese music was made commonplace that the saxophone saw its first substantive use in the realm of Japanese music in the music of composer and saxophonist Ryo Noda.

Ryo Noda (b. 1948)\(^6\) studied saxophone and composition at the Osaka College of Music in Japan, the *Conservatoire National de Region de Bordeaux* in France, and at Northwestern University in the United States. His exposure to both Western and Japanese compositional

\(^4\) Takemitsu, *Confronting Silence*, p. 59.

methods early in his career led to a distinct approach to composition—particularly in his compositions for the saxophone. Noda’s writing for the saxophone showcases the variety of timbres possible on the instrument in an effort to recreate the aesthetic effect of music for the Japanese shakuhachi flute. The first of these pieces by Noda to utilize musical characteristics of the shakuhachi was his *Improvisation I*, which was composed in 1972 for Jean-Marie Londeix and premiered at the Third World Saxophone Congress in Toronto the same year.⁷

Improvisation I utilizes many of the non-Western performance techniques that will be discussed in further detail later in this document, such as: lack of a regular rhythmic pulse, portamenti, cutting tones (a term coined by Noda to refer to a technique widely used to end phrases in the traditional repertoire of the shakuhachi), multiphonics, and non-Western vibrato. Noda, whose compositions for the saxophone are numerous, can be counted among the most important composers for the instrument due to his contributions in the realm of non-Western influenced music for saxophone. His introduction of the techniques of non-Western music to the saxophone has had an immeasurable impact on the repertoire, and led to the growth of a large body of music that takes inspiration from the traditional music of other cultures, particularly that of Japan.

Noda’s groundbreaking *Improvisation* series of compositions quickly became standard works in the saxophone repertoire. The premieres and subsequent performances of these works established Noda as an important composer and performer of the instrument. As a result of Noda’s growing reputation as a performer, a large number of composers began to write new works for him. Many of the composers who wrote compositions for Noda sought to bring

⁷ Andy Wen, “*Improvisation I and Pulse + 72* by Ryo Noda: An Analytical and Interpretive Study” (DMA Thesis, University of Georgia, 1995), p. 39
together elements of Japanese and Western music in their works, much like Noda accomplished in his own compositions for saxophone. Among the composers who wrote pieces for Ryo Noda in this stylistic genre is Joji Yuasa, who in 1976 dedicated *Not I, but the wind...* to Noda.\(^8\)

Since Noda’s introduction of the traditional music of Japan to saxophonists, the globalization of the saxophone through its repertoire has expanded exponentially. This has led to a vastly expanded growth in the repertoire of music that shows the influence of non-Western music, and to recordings such as Claude Delangle’s “The Japanese Saxophone.” Many of the attempts at stylistic fusion resulted in pieces that were merely superficial imitations of Japanese traditional music, but there have been many successful endeavors by Japanese composers to imbue their works for Western instruments with the spirit and style of composition that is characteristic of traditional Japanese music. This level of stylistic integration within works for the saxophone makes it necessary for performers to have a true understanding of Japanese traditional music if they are to perform these works properly. Thus, a study which examines works from the saxophone repertoire and the Japanese musical elements that they incorporate has become a necessary resource for performers.

There are many ways in which composers have attempted to imbue their works with the spirit of Japanese traditional music, and an exhaustive examination of works of this nature is beyond the scope of this particular document. The goal of this document is to examine two of these genres of traditional Japanese music and each genre’s use as the musical impetus for a composition featuring the saxophone as a solo instrument. The genres of Japanese music and Western compositions that will be examined in this document are: the music of the *shakuhachi* and its use as the inspiration for *Not I, but the wind...* by Joji Yuasa, and *gagaku* court music and

its use as the inspiration for *West, of Evening Song in Autumn* by Masakazu Natsuda. A chapter devoted to each work will provide an explanation of the Japanese musical genre that served as the inspiration for the saxophone composition, followed by an explanation of the methods used to integrate the characteristics of that genre with Western music in the composition in question.
CHAPTER 1

THE INFLUENCE OF THE SHAKUHACHI ON JOJI YUASA’S NOT I, BUT THE WIND...

Joji Yuasa

Joji Yuasa was born in 1929 in Koriyama, Japan. Yuasa received lessons on the music and dance of the Nō theatre as a child, and it is this body of music more than any that would affect his later compositional style. The influence of this early training in traditional Japanese music manifests itself in his compositions through the incorporation of Japanese aesthetic ideals and performance techniques. His goal in the integration of the traditions of Japanese music into his own musical style is to go beyond the merely superficial imitation of Japanese music that he saw in the compositions of many Western composers.

To accomplish true integration of Japanese and Western music on a Western instrument, Yuasa’s music incorporates the musical aesthetics and inspirations of Japanese music into his own musical language, which is greatly influenced by Western modernism. Yuasa was largely self-educated in Western music, and familiarized himself with Western musical traditions by studying the musical scores of Western composers ranging from Baroque to 20th Century. Yuasa’s first major involvement in Western modernism came in 1951 when he and Takemitsu became involved in the formation of Jikken Kobo, which translates to “experimental workshop.” Jikken Kobo lasted from 1951–1957, and was comprised of Japanese composers who devoted themselves to the common interest of musical modernism and experimentation.

12 Kushida, “Noh Influences in the Piano Music of Joji Yuasa,” p. 1
consisted of artists from multiple artistic disciplines and focused on pre-war European and American avant-garde art music, with a particular affinity for the music of John Cage. The musical interaction and idea exchange that took place between the members of Jikken Kobo was Yuasa’s most notable exposure to Western modernism to that point, and it is during this time that he codified a compositional style that integrated elements from Japanese traditional music and Western modernism. It is this style that would come to characterize his compositional output for much of his career.

Since the dissolution of Jikken Kobo, Yuasa has received numerous commissions and held numerous teaching positions, including positions at the Tokyo College of Music and University of California, San Diego. From 1994 to present Yuasa has been professor at Nihon University in Tokyo, and as a guest professor he has also taught courses at numerous festivals worldwide, including IRCAM and the Berlin Artists Program.

Not I, but the wind…

In 1976, Yuasa composed *Not I, but the wind…* for solo alto saxophone with amplification. The saxophone is amplified by two microphones: one that is purely for amplification and another that is designated as an “echo chamber” by the composer. This work, which was his first for saxophone, was written for Japanese saxophonist Ryo Noda and inspired by a book by Frieda Lawrence bearing the same title. The book is a personal memoir of Frieda’s life, focusing on her romantic relationship with writer D.H. Lawrence. The book takes its title from the text of a pre-existing text by D.H. Lawrence titled “Song of a Man Who Has Come

13 Sam Thorne, Frieze [Web Site], "Jikken Kobo” (January-February 2012). Site address: http://www.frieze.com/issue/review/jikken-kobo/
Through.” It was written as a response by Frieda to the many speculative and unflattering documents that were written about the romantic relationship between D.H. and Frieda immediately following the death of D.H. in 1930.16

Perhaps the most constant element of the Lawrences’ life together following their marriage on July 13, 1914 is that much of it was spent as outsiders in the communities in which they lived.17 Frieda von Richthofen, who was German aristocracy by birth, was introduced to the lower class Englishman D.H. Lawrence in 1912, when he came to have lunch with her current husband to discuss the potential of D.H. being hired as faculty at a local university.18 The two very quickly showed a romantic interest in one another, and Frieda left her husband and children to travel with D.H., much to the chagrin of her family.19

D.H. and Frieda were the quintessential example of the popular saying “opposites attract.” The clashing of cultures that manifested itself in their relationship was exemplified in the manner in which they were treated in Cornwall during the years surrounding World War I. Despite D.H. Lawrence’s status as an English citizen, the English citizens of Cornwall treated him as an outcast because of his relationship with Frieda, who was the daughter of a German military officer. The couple was constantly suspected of being German spies. The suspicion became so intense that if a light was on at night in the coastal home that they were renting, they were suspected of attempting to signal the German military across the English Channel. The

17 Jackson, Frieda Lawrence: Including Not I, But the Wind, plate 5.
18 Jackson, Frieda Lawrence: Including Not I, But the Wind, p. 103.
19 Jackson, Frieda Lawrence: Including Not I, But the Wind, p. 106.
constant suspicion eventually led to the couple’s eviction and subsequent departure from Cornwall; an event that would leave Lawrence bitter for the rest of his life.20

Based on the vastly different backgrounds and personalities of D.H. and Frieda and how this was manifested in their life together, a piece that brings together two seemingly incompatible musical cultures is quite fitting. In this piece Yuasa brought together Japanese and Western music; two musical cultures that on the surface seem to be incompatible. The seeming incompatibility of the two styles has been explored by many composers in the 20th and 21st century, and is exemplified in the creative process that led to the composition of Toru Takemitsu’s \textit{November Steps}, which is one of the most well-known pieces in the Western orchestral repertoire to utilize stylistic fusion between Japanese and Western music. At the request of the New York Philharmonic, Takemitsu began to compose a piece in which the instruments of Japan and Western classical music were combined within the orchestra. Takemitsu eventually abandoned the piece in frustration with what he perceived to be the seemingly insurmountable task of combining two musical traditions that were worlds apart.21

Takemitsu later returned to the commission with a new approach in which he would not combine the two styles and associated instrumental sounds. In this new approach, the biwa and shakuhachi were kept musically separate from the Western orchestra; the soloists perform long unaccompanied cadenzas that alternate with sections played by the orchestra that are written in the style of European modernism.

Unlike Takemitsu’s \textit{November Steps}, which kept the two musical styles as distinct and separate units, Yuasa accomplishes a true integration of musical cultures in \textit{Not I, but the wind}...

20 Jackson, Frieda Lawrence: including \textit{Not I, But the Wind}, pp. 144-150.
through performance of the Japanese musical aesthetic on the saxophone. The remaining sections of this chapter will be devoted to analysis of the approach that Yuasa used to bring together elements of Japanese and Western musical traditions *Not I, but the wind*..., with an interpretive guide that will help Western performers interpret the non-Western techniques in this piece in a manner that pays homage to the Japanese music from which they come.

History of the Shakuhachi

Before addressing the application of the musical aesthetic of the *shakuhachi* to this particular piece, it is important to discuss the *shakuhachi* and its history. One of the most popular Japanese traditional instruments in modern Western cultures, the Japanese *shakuhachi* has a long and storied history that begins in ancient China. While the origin of the instrument is largely speculative, many scholars believe that the instrument’s roots can be found in a form of Chinese pitch pipe called the *paixiao*. The instrument is constructed of multiple tubes, much like the panpipe. It was eventually reduced to one pipe with five holes drilled into the tube to provide the capability of playing multiple notes on one tube. This eliminated the impracticality of playing technical passages and leaps on the *paixiao*. The resulting instrument, which is known in Japanese as the *dōshō*, is the closest relative to the *shakuhachi* of the early end-blown Japanese flutes.22

During the *Muramachi* period (1333–1573) the *hitoyogiri*, which is an early form of flute similar to the *shakuhachi*, rose to musical prominence in Japan. This particular precursor to the modern *shakuhachi* was the first Japanese vertical flute to make use of the oblique blowing edge that is typical of the modern day *shakuhachi*. The blowing edge on the *hitoyogiri*, like that of the

shakuhachi, was created from a notch that was cut on the outside edge of the tube (Image 1). This is in stark contrast to the Chinese pitch pipe, on which the performer would simply blow across the end of the tube.23 Air is blown across the sharp edge created by this notch on the hitoyogiri, splitting the air stream in half so that roughly half of the air enters the instrument. This manner of sound production gives the hitoyogiri and its relative the shakuhachi a unique timbre that includes the sound of blowing air as a consistent part of the sound. The ever-present airy sound is a result of the portion of the airstream which does not enter the instrument.

![Image 1. Blowing Edge of the Shakuhachi](image)

The hitoyogiri became the most prominent flute-like Japanese instrument of the period largely due to its early use by the Komuso monks, a group of monks easily recognized by the baskets that they wore on their head to conceal their identity.24 The Komuso monks of the 17th and 18th century were a group that increasingly consisted of many former samurai who became traveling Buddhist priests. The hitoyogiri, while very similar to the modern shakuhachi, was constructed using a thin tube of bamboo that was significantly more fragile than the modern

instrument. The Komuso, many of which were former warriors, adapted the hitoyogiri so that the instrument could also serve as a weapon for personal protection. The instrument was enlarged, using the large root end of the bamboo as is typically the case in the modern - day shakuhachi. This gave the instrument a large thick end which was similar to a club in shape, and the slightly curved instrument body that is still typical today (Image 2). As a result of these innovations, the Komuso monks are credited with popularizing the modern shakuhachi, and cementing its place in Japanese society as a Buddhist instrument through their performances. The term shakuhachi was adopted as an indication of the length of the flute, which was isshakuhassun, meaning “one shaku and eight sun”, or approximately 56 centimeters.

Image 2. Shakuhachi Flute

26 Jeffrey Lependorf, “Contemporary Notation for the Shakuhachi: A Primer for Composers,” in Perspective of New Music (Summer 1989), p. 234.
The sect of *Komuso* monks known as the *Fukeshu*, which in many texts are referred to as the *Fuke*, established a lasting link between the *shakuhachi* and Buddhist music through the solicitation of alms from Japanese citizens by the means of musical performance of Buddhist music on the *shakuhachi*. It is the Buddhist musical repertoire performed by the *Fukeshu* that came to be referred to as *honkyoku*, or the classical music of the *shakuhachi*. Due to its association with Buddhist music through performances by the *Komuso* monks, the *shakuhachi* repertoire increasingly took on the rhythmically free characteristic common in modern *shakuhachi* music to musically match the aesthetic goals of Zen Buddhism.

The *Fukeshu* cemented the association of the *shakuhachi* with Buddhism in 1614, when members of the sect forged a government decree called the *Charter of 1614*, which forbade the performance of the *shakuhachi* in informal and ensemble settings and limited its use exclusively to the Buddhist music of the *Fukeshu*. Despite the legal monopoly that the *Fuke* (*Fukeshu*) sect and *Komuso* monks had on performance rights of the instrument, the popularity of the *shakuhachi* grew in the general populace, leading to its secret use in informal settings. In 1871 the *Fuke* sect was abolished and the *shakuhachi* was made available to the general public for use in a variety of musical contexts. This led to a wide expansion of the repertoire and the instrument’s rise in popularity for use in other genres. By the late 20th century the instrument became common in genres ranging from *honkyoku* to folk music.

Sawari

Perhaps no element better illustrates the differences between traditional Japanese instrumental music and Western music than the concept of sawari and its application in the music of Japan. Unlike Western classical music, which traditionally emphasizes the perfection of a characteristic and pure instrumental tone, the Japanese concept of sawari embraces the incorporation of extraneous noise within the timbre of traditional instruments. While this noise seems out of place and at times unpleasant to the Western ear, it is an integral part of the sound aesthetic of Japanese instrumental music.

It is important to note that the aesthetic goals in Japanese music are very different than Western music. In Western music the concert hall is seen as a “silent” venue where extraneous noises do not impede a musical performance, whereas the music of Japan is often driven by a desire to replicate or imitate sounds that would take place in nature. In nature there are very few instances of musical sounds existing in a vacuum with no extraneous noise. The song of a bird would typically be accompanied by a multitude of other natural sounds such as the wind blowing and leaves rustling. As a result, the Japanese came to embrace the concept of sound and music existing together on equal footing. This concept of extraneous noises filtering into musical sounds came to be called sawari.

Sawari is most often discussed in relation to its prominent use on the biwa and shamisen. These traditional Japanese stringed instruments are constructed in a manner that ensures that sympathetic vibrations and other noises will be a part of the characteristic sound of the instrument. The biwa is a pear-shaped lute whose neck and body are constructed from a single piece of wood (Image 3). The strings are attached to a peg box that sits perpendicular to the neck
of the instrument.33 The vibration that is a part of the sound is achieved by stretching the strings across a grooved plate on the neck of the instrument that sits where the neck meets the peg box. When the strings are plucked they vibrate within the grooves, creating a rattle-like sound in addition to the pitched tone created by the vibration of the string (Image 4).34

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image3.png}
\caption{Image 3. Biwa35}
\end{figure}

34 Takemitsu, \textit{Confronting Silence}, p. 64.
35 National Music Museum [Web site], “Images from the Beede Gallery” (September, 2010), Site Address: http://orgs.usd.edu/nmm/EasternAsia/1433JapaneseBiwa/Biwa1433.html
Sawari on the shamisen, which is a three-string lute with a smaller body than the biwa, is created by the sympathetic vibration of the lowest string on the instrument (Image 5). The top two strings are stretched across a plate in the bridge, while the lowest string sits in a small carved recess in the neck. This allows the string to vibrate against the edges of the recess, which creates a buzz when the string is plucked. When the two upper strings are played, the lowest string freely vibrates within the recess, enriching the sound of the instrument with sympathetic vibrations that create pitches within the harmonic series on the bottom string.37 This is much like the effect created at the beginning of Lilith for alto saxophone and piano by William Bolcom, in which the pianist depresses three keys and the sustain pedal, which allows the depressed strings to ring freely in reaction to the sound of the saxophone.

36 Ibid
Like the *biwa* and the *shamisen*, the presence of *sawari* on the *shakuhachi* is a result of instrument design. When the airstream of the *shakuhachi* is blown across the notch in the mouthpiece, the airstream is split roughly in half. Half of the air goes into the instrument to create the tone, and the other half blows across the top of the mouthpiece. The air noise that results from the air that does not enter the instrument contributes to the aesthetic goal of the instrument, which is to represent the sound that results from wind blowing across a bamboo grove. The “singing” of the bamboo due to the wind blowing across the tube would be accompanied by the audible sound of the wind itself.\(^\text{39}\)

The impure tone that results from the non-vibrated air that does not enter the instrument is enhanced by the overtone structure of the *shakuhachi* tone, which includes a very prominent first overtone.\(^\text{40}\) This overtone becomes increasingly audible at loud dynamics and with the use of strong attacks. As the performer blows more air across the mouthpiece, this overtone becomes

\(^{38}\) Japanese Traditional Music [Web Site], “Shamisen” (2002), Site Address: http://jtrad.columbia.jp/eng/i-shamisen.html

\(^{39}\) Takemitsu, *Confronting Silence*, p. 51.

\(^{40}\) Lependorf, “Contemporary Notation for the Shakuhachi: A Primer for Composers,” p. 234.
more prominent and leads to a more piercing tone quality, while in the softer dynamics its presence will be nearly inaudible and the instrument will have a dark and reedy tone quality.

The strength of the first overtone is very similar to the overtone structure of the saxophone, which is thought to have been invented in an attempt to create a clarinet-like instrument that overblows the octave rather than the twelfth.\(^1\) Yuasa uses the natural overtones of the saxophone to recreate the sawari of the shakuhachi. The performer is asked to adjust embouchure and air to overblow the fingered note to its first overtone, which is an octave higher. To achieve a sounding pitch that is an octave higher than the note being fingered without the aid of the octave key requires an alteration of the soft palette in the mouth combined with raising the back of the tongue to redirect the air in the same manner as a performer would do to play in the altissimo register. Slight alteration of vertical pressure on the mouthpiece from the lips/teeth can also achieve a similar effect, but results in a buzzing sound from the reed that would not be found in the tone quality of the shakuhachi. By altering the air speed and direction with the tongue and soft palette, the sounding pitch lacks the purity of sound of the traditional saxophone fingering that makes use of the octave key. The fuzzy sound that results is aesthetically very similar to the shakuhachi, which has a very prominent first overtone of an octave higher.\(^2\)

To indicate to the performer that they are to make use of the harmonics of the saxophone, the composer uses the notation shown in Example 1. The notation shows two vertically stacked notes an octave apart for each sounding melodic pitch. The bottom note is the note that is to be fingered by the performer on the saxophone, and the note an octave higher is the pitch that is to be sounded.

\(^2\) Lependorf, “Contemporary Notation for the Shakuhachi: A Primer for Composers,” p. 234.
Example 1. Notation Used by Yuasa to Indicate Harmonic Production and Unclear Articulation

Form

In Not I, but the wind... Yuasa created 25 melodic units, the boundaries of which are delineated by silence. For purposes of formal and pitch discussion within this work, I have assigned the numbers 1–25 to the melodic sections of the piece. Providing a numbering system became necessary for analysis purposes because there are no measure numbers or bar lines in the piece. This choice of numbering made logical sense because of the relationship between sound and silence in shakuhachi music, and the tendency in this repertoire and in Yuasa’s piece for melodic units to be separated by silence.

One of the primary differences between music for the shakuhachi and Western classical music is that the music of the shakuhachi does not utilize a harmony-based compositional system like that used in Western music. In place of Western functional harmony, Japanese music uses scales that are derived from trichords to organize pitch content in a given work. In Japanese music these trichords are instead referred to tetrachords. The term tetrachord in Japanese music refers to a collection of three pitches in which the two outer pitches (referred to as nuclear tones to indicate their importance as structural pitches) are a perfect fourth apart. The third pitch in each set of three pitches is a variable pitch that occurs between the two nuclear tones and
determines the particular scale in use for that piece. The nuclear tones from the two tetrachords will often be conjunct, such as E–A, B–E, or share a nuclear tone, such as G–C, C–F.43

It is important to note that scales and tetrachords do not fulfill the same role in Japanese music that they do in Western classical music. The role of a scale in Japanese music is not to imply a tonal center and harmonic framework as in Western music, but merely to provide source material and a pitch framework for a composition. The nuclear tones of the tetrachord often serve much like the tonic and dominant pitches in Western music in that they are considered stable pitches and melodic points of return, but without the harmonic connotations carried by those pitches in Western music. In the music of the Nō drama, which has had a very large influence on Yuasa’s compositional style, the nuclear tones of two tetrachords sharing a nuclear tone are generally arranged as high, middle, and low. In Nō drama, the register of a pitch is important to establishing its identity as a nuclear tone. Not all registers of that pitch will fulfill the role of nuclear tone. In this arrangement of high, middle, and low, the low nuclear tone generally serves as the final note of the piece, but on occasion the high nuclear tone may also fulfill this role.44

Three pitches are established as structurally important to Not I, but the wind... The three pitches are G–C–F, but unlike the music of Nō, Yuasa does not make register distinctions in the usage of these pitches. When stacked in ascending fourths these three pitches would be equivalent to the nuclear tones of two overlapping tetrachords: G–C and C–F. These pitches are integral in the establishment of form and pitch focus within the work, which can be divided into three sections based on the use of these structural pitches and the melodic material which surrounds them (Diagram 1). The three formal sections are: melodic segments 1–9 (labeled A),

melodic segments 10–18 (labeled B), and melodic segments 19–25 (labeled C). The A section focuses on the long-term melodic journey from C5–C6 in the course of the first nine melodic units of piece, while shifting between clear and unclear timbre. The B section is much more disjunct in regards to melodic content, using sudden register changes and increased timbre manipulation to fragment melodic ideas. In addition, the pitch focus in the B section will be on the alternation between C and G. The C section will eliminate the timbre manipulations of the A and B sections to focus on the pure tone of the saxophone, and the movement from C to the final F, which is the high nuclear tone of the two conjunct tetrachords.

![Diagram 1. Formal Scheme and Associated Pitch Focus in Not I, but the wind…](image)

Diagram 1. Formal Scheme and Associated Pitch Focus in Not I, but the wind…

Pitch Content

The pitch material of the *shakuhachi* is often oversimplified by Western composers that allude to the instrument in their own pieces. This is due to the broad association of the instrument and its repertoire with the pentatonic scale in Western culture. This Western association between the *shakuhachi* and the pentatonic scale is largely a result of instrument design. The modern-day *shakuhachi* has five holes which, when played using fully open or fully closed holes, results in
five pitches roughly equivalent to the Western minor pentatonic scale (Example 2).45 It is true that the pentatonic scale is often used in music written for the \textit{shakuhachi}, but it is also important to note that the entire Western chromatic scale and microtones in between those twelve notes can be produced, and are often used in the repertoire of the instrument.46

\begin{example}
\includegraphics[width=0.5\textwidth]{example.png}
\end{example}

\textbf{Example 2. Basic Notes of the \textit{Shakuhachi}}

The techniques used to create these chromatic pitches and microtones utilize half-hole fingerings combined with alterations of the head position, air speed, and instrument angle relative to the body to create microtonal inflections of the full-fingered pitches notated in the example above. The techniques are commonly referred to as \textit{meri} (lowering of pitch with partially covered holes and changes in instrument angle), \textit{chu-meri} (slight lowering of pitch with half-covered holes), and \textit{kari} (slight overblowing to raise pitch).47 Collectively, these techniques are referred to as \textit{meri-kari} in most texts regarding the \textit{shakuhachi} and its music. In addition to the increase in available pitches made possible by these techniques, the changes in the direction that the air stream enters the instrument results in large variations in timbre that will be discussed later.

45 Kishibe, \textit{The Traditional Music of Japan}, p. 80.
Due to the lack of harmonic, melodic, and rhythmic regularity, the music of the *shakuhachi* can often sound like a meandering free-improvisation. Yuasa recreates the tonal ambiguity and meandering melody of the *shakuhachi* in *Not I, but the wind...* by using motives built primarily of half-steps to avoid Western harmonic implication. The concept of melodic and harmonic development in the Western sense is foreign to the *shakuhachi* repertoire, and Yuasa instead utilizes motivic repetition and transformation to provide direction in the composition. Yuasa organizes motivic transformation in such a way that the long-term melodic goals that provide structure to the composition will be aurally unperceivable to the listener. The melody of the composition is primarily based on the minor and major second, and these intervals are generally used in a way that does not imply Western-style harmonic motion. In this composition, harmonic information is provided by the grace notes and other non-melodic pitches that will be discussed later in this document. The intervals of the major and minor second are firmly established in melodic segment two by the introduction of the 012 pitch class set that serves as the primary motivic building block for the composition. Intervals such as the perfect fourth, perfect fifth, and major third, are mostly avoided.

Yuasa does not focus on the progressive development of the 012 theme but on its transformation throughout the piece. The melody in the A section of the form is built from a series of 012 pitch class sets that are permutations of the primary set that is introduced in melodic segment two. This set is constructed from a central pitch that is established as a local tonic due to the double-neighbor figure that is constructed from the notes that are a half-step on either side of the central pitch. This basic set will be used in prime form, retrograde, inversion, retrograde inversion, as well as multiple transpositions of those forms (Example 3).
Example 3. Pitch Class Set Types in *Not I, but the wind*…

This double-neighbor figure in which the neighbor notes are a half step on either side of the local tonic serves to strengthen the pull to that tonic within each phrase while avoiding allusion to Western tonality (Example 4). Example 4 shows the introduction of the 012 motive in melodic section two. In this example C5 serves as the local tonic, which is reiterated 3 times to establish its prominence within this melodic segment. The B4 to C#5 that comes at the end of the melodic cell comprises a un-resolving double neighbor figure that is very important to the establishment of the open-ended phrases that are frequently used this piece.

Example 4. Double Neighbor Figure

The focus on a central pitch results in a sense of melodic/harmonic stasis in individual phrases. This is superseded; however, by a large-scale melodic motion within the A section of
the form. Individual 012 thematic germs primarily occur within each small musical idea or phrase, the boundaries of which are delineated by beaming, breath marks, and/or silence. In the A section the original 012 set will be seen exclusively in prime form and inversion. The melodic sets are arranged in a succession of sets with common pitches that move upward by half step. The result is that the local tonic (the second pitch of each normal order set shown in Example 6), undergoes an upward half step journey that begins on C5 in melodic segment two and concludes on the C6 in melodic segment nine before the fermata (Examples 5 and 6).

The gradual upward melodic motion of the 012 pitch sets is achieved by the use of pitch class sets in which there are two common pitches. The common pitches are the upper two pitches of the first set and the lower two of the second. These pitches will often be respelled enharmonically to indicate the intended resolution to the local tonic. This overlapping of sets adds to the desired tonal ambiguity by repurposing the tonic and upper neighbor of a set so that the upper neighbor that is used to create an open cadence in the first set becomes the tonic of the next set (Example 6). The two common pitches between consecutive sets and the resulting half-step motion of the local tonic results in long-term upward motion that is nearly unperceivable to the listener. After upward melodic motion is terminated with the arrival on C6 as a pitch center on page 3 line 3, the composer presents a G5, which provides a tonic–dominant relationship that ends this opening section on the harmonic equivalent of a Western half cadence.
The pitch relationship that is established in melodic segment nine between C and G will become the focus of the B section. This section makes use of a series of 012 pitch class sets to construct melodic material, but there will be more variety in the organization of the intervallic material of the 012 sets than was seen in the A section. In the B section, organization of pitches in the 012 set are often rearranged into consecutive ascending half steps, lacking the whole step between the two neighbor pitches that was present in the 012 of the A section (Example 7). These sets are placed around a series of returns to the C and G that were introduced at the
conclusion of the A section of the form. Because of the focus on sets that surround C and G, and the resulting register leaps between sets, the melodic continuity in the A section that was created by the use of overlapping pitch sets is largely lost. Instead, the composer utilizes large changes in tessitura between neighboring pitch class sets. This results in a disruption of melodic continuity that is enhanced by the use of multiphonics to interrupt the melodic material presented in the pure-tone pitches. Though the multiphonics used by the composer primarily serve as an interruption of melodic continuity, special care must be taken by the performer to ensure pitch accuracy. When multiphonics occur adjacent to one another, they are organized in a manner so that the upper pitches outline either a 012 or 013 pitch class set. In Example 8, the 012 set is outlined in the D, Eb, and E that occur as the top notes in the multiphonic set.

Example 7. 012 Pitch Set of B Section

Example 8. Multiphonic Outline of 012 Pitch Set
In addition to the prominent use of multiphonics, other extended techniques are incorporated into the B section to an extent not seen in the rest of the piece. Included in these are key noise, timbre variation (Example 14), and portamenti. Portamenti will be indicated by a straight line, which will be drawn between the beginning and ending note of the portamento (Example 9). In this section portamenti will primarily used in the altissimo register, where the saxophone has much more pitch flexibility than in the normal range of the instrument. In the example below, the saxophonist is enhancing the tonal ambiguity of the 0123 pitch set below by undulated through the melodic pitches using portamenti. The effect is lost if the performer settles too long on each notated pitch, so as soon as the performer reaches each notated melodic pitch they must begin the next portamento.

Example 9. Portamenti in Not I, but the wind…

The disjunct nature of the B section melody is abandoned in the C section in favor of a more conjunct melody. Yuasa simplifies the timbre materials utilized in the final section by eliminating the extended techniques of the B section and the sawari used in the both the A and B sections. The focus will instead shift to the pure tone of the saxophone and a series of melodic cells that use C5 as a pitch of central focus. In the 24th melodic set a C5 is presented, which is followed by a C#5-B4 double neighbor figure that leaps up to G5. This is followed by a silence
and then the final pitch-F4 (Example 10). The result is a presentation of all three pitches of the primary trichord in the final two sets to conclude the piece.

Example 10. Final Two Melodic Cells in *Not I, but the wind*…

Articulation

The repertoire for the *shakuhachi* rarely uses tongued articulation as a means of note separation, and this Western technique is generally considered a special effect on the instrument.⁴⁸ Composers and performers in Japan instead utilize a multitude of other techniques to provide separation of pitches without using tongued articulation. Like the music from which *Not I, but the wind*… takes its inspiration, there are very few instances of clear tongue articulation in Yuasa’s work. With the exception of a few examples of repeated notes and passages that

include articulated grace notes, phrases are generally either slurred or performed “without clear articulation.” When unclear articulation is desired in *Not I, but the wind…*, the indication used is the same as that used to indicate the usage of harmonics in Example 1.

There is no indication as to what means are to be used by the performer to achieve the desired lack of articulation, particularly on repeated notes. Among the techniques that are typically used by *shakuhachi* composers and performers to provide pitch separation are: *osu/utsu, komi-buki*, and grace notes. These techniques can be applied quite effectively to this work so that note separation is provided with limited use of the tongue. In spots which these techniques cannot be applied, it is most appropriate for the saxophonist to utilize pulsations of the airstream to achieve the desired note separation. When this technique is utilized, changes in timbre at the beginning of the harmonics discussed above will be common as a result of the variations in air speed that occur at the beginning and end of air pulses. This timbre effect should not be avoided, as it is very common at the beginning of notes on the *shakuhachi*.

Osu and *utsu* (sometimes referred to as *oshi* and *uchi*) are two related techniques that are among the most common methods of providing articulation on the *shakuhachi*. *Osu* is a method used to provide articulation between two notes of the same pitch. Traditional performance practice determines the finger that is to be quickly lifted and then closed for each note on the instrument, which will be generally consistent throughout the repertoire. *Utsu* provides a very similar effect, but instead of opening a closed hole, the performer will quickly close an open hole of the instrument and then open the hole again.49 These two effects closely resemble the Western grace note, with the primary distinction that in *osu* and *utsu* the pitch used to provide note

separation will occur so quickly as to have no discernible pitch.50 The lack of defined pitch when using \textit{osu} or \textit{utsu} fingering points out the difference in function between these techniques and the Western mordent or grace note. Unlike the Western grace note and mordent, which embellish the pitch to which they are attached, the notes produced by these Japanese techniques are not melodic or harmonic embellishments, and will not necessarily be used to strengthen harmonic direction within the piece. These are gestural figures in which the actual pitch is relatively unimportant due to their primary role of providing separation between two melodic notes. Because these techniques use fingerings to provide note separation, they are generally referred to as finger-tonguing.

\textit{Osu} and \textit{Utsu} are very often paired with a rhythmic figure called \textit{sutebyoshi}.
51 \textit{Sutebyoshi} is the successive repetition of a single pitch, which will accelerate and then ritard in its repetition. Yuasa utilizes \textit{sutebyoshi} on the last line of page 3, with a series of repeated written B4’s. This figure utilizes key pops for articulation with the use of an airy tone quality (Example 11). The preferred finger to lift when applying this technique to the saxophone would be the first finger of the either hand, as it will provide the desired key noise without distorting the beginning of the pitch or creating a multiphonic in between each sounding B4.

\begin{example}
\includegraphics[width=0.5\textwidth]{Example11.png}
\end{example}

\textbf{Example 11. Sutebyoshi}

50 Tsukitani Tsuneko, “The Shakuhachi and its music,” p. 166.
Komi-buki is an articulation figure used to provide separation between reiterated pitches on the shakuhachi. The tempo and rhythm of this technique in the traditional repertoire is very similar to sutebyoshi, as it will start slow and speed up with a ritard at the end of the figure. In this case the rhythm of the figure is indicated to Western performers by the use of spatial notation that will be discussed later in this chapter. Breath articulation will be used between each note to provide separation, and at times it will resemble panting through the instrument. It provides very little separation between the notes and does not provide as much definition to the beginning of pitches as some of the other articulation techniques used on the shakuhachi.

Yuasa uses this technique on multiple occasions in the work and it is important to be able to identify komi-buki and distinguish it from the other similar articulation methods/patterns discussed in this chapter. It is presented as a rhythmic motive in which the repeated pitches start slow, speed up gradually and then slow down to complete the figure. The first time that the figure appears is on page one as a B♭₄ that is reiterated eight times, with the notational indication that each pitch is to be performed with no clear articulation (Example 12). In this instance Yuasa only chose to notate the dynamics over the first two notes in the figure, but the style that is established should be maintained on each note in the musical gesture.

Example 12. Komi-Buki

52 Lependorf, “Contemporary Notation for the Shakuhachi: a Primer for Composers,” p. 236.
54 Lependorf, “Contemporary Notation for the Shakuhachi: a Primer for Composers,” p. 236.
The performer should not rearticulate the notes in the example above with the tongue, but with the air. A key pop should not be used, and dynamic consistency from the beginning to the end of each pitch is unimportant. Rearticulating with the air rather than with the tongue gives a less defined articulation, and the natural change in air speed that occurs when starting or ending a note will create the desired crescendo at the beginning and decrescendo at the end of each note.

The treatment of the articulation associated with this figure varies throughout the course of the work. At times it is to be performed without clear articulation, as is specified in Example 12, while other instances call for legato articulation or timbre variations on each subsequent repeated note (Example 13 and Example 14).

Example 13. Komi-buki with Timbre Variations Created by Alternate Fingerings

Example 14. Komi-buki with Timbre Variations and Emphasized Pulsations of the Airstream
In addition to the articulation techniques already discussed, grace notes will also be used a great deal in the *shakuhachi* repertoire to separate pitches. These are to be distinguished from *osu/utsu* in that the grace notes will be clearly pitched, but are very similar to those techniques in that traditional performance practice determines the pitch or fingering that is to be used as the grace note for each melodic pitch.\(^{55}\) As such, throughout the repertoire the pairings between grace note and melodic note will remain fairly consistent. Yuasa maintains this traditional usage of consistent pitch associations between melodic pitch and grace note. In Table 1 below, the pairings between melodic pitch and grace note in *Not I, but the wind...* are indicated in the first two columns, and the interval between the pitches is recorded in the third column.

Table 1. Melodic Pitches and Associated Grace Notes\(^{56}\)

<table>
<thead>
<tr>
<th>Melodic Pitch</th>
<th>Grace Note Embellishments (# of occurrences)</th>
<th>Interval Between Melodic Pitch and Grace Note(^{57})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bb4</td>
<td>E5(1)</td>
<td>TT</td>
</tr>
<tr>
<td>B4</td>
<td>F5(2)</td>
<td>TT</td>
</tr>
<tr>
<td></td>
<td>F4(1)</td>
<td>TT</td>
</tr>
<tr>
<td>C5</td>
<td>F#5(4)</td>
<td>TT</td>
</tr>
</tbody>
</table>

\(^{56}\) Pitch octave designations refer to the transposed saxophone part, not to concert pitch.

\(^{57}\) Intervals are reduced to less than an octave where applicable.
Table 1. (cont.)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C#5</td>
<td>E5(2)</td>
<td>G5(1)</td>
<td>m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F#5(2)</td>
<td></td>
</tr>
<tr>
<td>Db5</td>
<td>Eb5(1)</td>
<td>G5(3)</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>D5</td>
<td>Eb5(1)</td>
<td>C5(1)</td>
<td>m2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
</tr>
<tr>
<td>Eb5</td>
<td>A5(1)</td>
<td>Ab5(1)</td>
<td>TT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P4</td>
</tr>
<tr>
<td>F5</td>
<td>B5(1)</td>
<td>E4(1)</td>
<td>TT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>m2</td>
</tr>
</tbody>
</table>
Table 1. (cont.)

<table>
<thead>
<tr>
<th>Interval</th>
<th>Note 1</th>
<th>Note 2</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>F#5</td>
<td>C6(2)</td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>G5</td>
<td>Bb5(1)</td>
<td></td>
<td>m3</td>
</tr>
<tr>
<td></td>
<td>G#4(2)</td>
<td></td>
<td>m2</td>
</tr>
<tr>
<td>G#5</td>
<td>F#5(2)</td>
<td></td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>A5(1)</td>
<td></td>
<td>m2</td>
</tr>
<tr>
<td>Ab5</td>
<td>Bb5(1)</td>
<td></td>
<td>M2</td>
</tr>
<tr>
<td>A5</td>
<td>Eb6(1)</td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>B5</td>
<td>F5(1)</td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>C6</td>
<td>B5(1)</td>
<td></td>
<td>m2</td>
</tr>
<tr>
<td>C#6</td>
<td>D6(1)</td>
<td></td>
<td>m2</td>
</tr>
<tr>
<td>G#6</td>
<td>A5</td>
<td></td>
<td>M7</td>
</tr>
</tbody>
</table>
Yuasa elevates the grace note beyond the role as an unpitched gestural figure used to separate notes in the traditional repertoire, to a note with significance of its own that provides harmonic implications to the piece. The interval between melodic pitch and grace note is particularly important in *Not I, but the wind…*, because of Yuasa’s use of the interval to provide harmonic implications within a melodic context that is otherwise non-harmonic. The importance of the grace note is further highlighted by the frequent placement of accents on the grace note or sudden dynamic changes to a louder dynamic on the grace note that provides more emphasis to the grace note than is given to the melodic note to which it is attached.

The prominent use of a tritone relationship between melodic pitches and grace notes, particularly in the A section of the form, works to strengthen the forward momentum created by the non-resolving double-neighbor figures previously discussed. The tritone is used to provide cadential implications within melodic cells similar to that of a half cadence in Western music. These cadential implications, which are emphasized by pitch overlap resulting from the use of the echo chamber microphone, would not be characteristic of traditional Japanese music. With the exception of the *shō*, which utilizes non-functional vertical sonorities, Japanese music would not contain or imply vertical harmonies.

The tritone relationship in Western tonal harmony is very often used to imply a dominant function harmony such as a V^7 or a vii^9. The strong implication of a dominant harmony is because in the Western major scale the only occurrence of a tritone is between scale degrees 7 and 4. When stacked vertically within a dominant harmony, these notes would typically resolve inward by half-step to scale degrees 1 and 3. In nearly every occurrence of a tritone relationship between grace note and melodic note in this work, Yuasa chooses to use the traditional Western resolution of the tritone, resolving the melodic pitch by half step in the direction implied by the
spelling of the tritone. The placement of the tritone intervals is unusual in regards to Western harmonic expectations, as Yuasa typically uses the local tonic note as a member of the tritone. This forces the resolution of the tritone to a note other than the local tonic. Typically the resolution note is a note of the double neighbor, creating an effect similar to a V7/V resolving to V in Western tonal harmony.

Example 15. Grace Note Resolution in Not I, but the wind…

Example 16. Implied Harmonic Resolution in Example 6

In Example 15, C5 is established as the local tonic through repetition. The F#5 grace note is used to separate the reiterations of C5 and to provide further harmonic information within this short phrase. The particular spelling of the tritone used in the example above would imply to the Western listener a viio6 (or first inversion V7) in G major because of the F#, which would be the leading tone in G major. The expected resolution in a Western musical context would be to
resolve the F# up to G and the C down to B (Example 16), and in this case Yuasa resolves the C5 downward by half-step to the expected B. This harmonic implication simultaneously serves to weaken the sense of C as tonic within the phrase by turning the tonic into the equivalent of a secondary dominant, while using these harmonic implications to musically push the phrase forward. To further destabilize harmonic implication within the phrase, Yuasa uses the resolution note (B4) as the first note of a non-resolving double neighbor figure around the local tonic of C. This open ended phrasing is used very similar to a Western half cadence to push the melodic material forward.

The Importance of Ma, or Silence, in Japanese Music

In the music of Japan, silence holds a place of high honor and is often equal in importance to the sounding pitches of a composition. This is largely due to the view that in Japanese music silence is not merely a lack of sound, but the antithesis of sound: sound and silence work in tandem to provide balance to a composition. According to Christopher Yohmei Blasdel, “Ma is a kind of negative space in the music which permeates and gives meaning to the tones that are played, like the blank spaces which surround and define the sparsely brushed ink strokes in sumi ink drawings.”

According to Yuasa, these instances of “substantial silence” should not be misinterpreted by the performer to be merely a lack of sound. They should be an organic part of the composition with as much musical potential as the sounds which surround them. The importance of silence in music is much like a dramatic pause in a theatrical work - it is an important part of the musical discourse that gives added meaning to the notes around it. In this conception of silence, no two

silences are equal. The length and treatment of a silence is largely determined by the dramatic elements of the particular work and the place the silence holds within the larger musical discourse. It is important to always consider the dramatic and musical importance of these silences within the musical narrative. From a duration standpoint they should be long enough to provide balance to the surrounding musical content, and should take into account the added reverberation that results from the use of the echo chamber microphone. As a result of the electronic element of the piece, it is important to provide extra space at rests to allow the sound to decay before moving on to the next musical segment.

The dramatic impact of these silences within the musical narrative is enhanced by the musical events that immediately precede them. Yuasa very often precedes these “substantial silences,” which are indicated by a rest with a fermata over it, with harmonically open-ended phrases that end with the unresolving double neighbor figure already discussed (Example 17). This method of leaving a phrase melodically open is inspired by the shakuhachi repertoire, in which phrases are often left open by ending on a downward moving grace note that moves away from the local tonic pitch. In this instance the silence serves the purpose of heightening tension, occurring in the place of the expected resolution back to the local tonic.

Example 17. Fermata Placement at the Completion of a Melodic Unit

Variations of Timbre

Unlike the Western instruction of the saxophone, which promotes the concept of timbre consistency throughout the dynamic and pitch range of the instrument, the timbre changes that naturally occur on the shakuhachi in tandem with dynamic and register changes are embraced as an important part of the repertoire. When playing the instrument at soft dynamics, it has a quite airy and reedy sound, but when played at the more forceful dynamics the sound becomes more clear and bright, due to a sound that is dominated by the upper overtones. The music of the shakuhachi makes use of constant fluctuation in dynamic levels, and this constant movement allows the performer to take advantage of the wide timbre possibilities of the instrument and results in a great deal of timbre fluctuation within phrases.

In addition to the timbre contrasts that are a natural to the shakuhachi as it grows louder or softer, a great deal of timbre change is achieved on the instrument due to the fingering and embouchure adjustments used to expand the available pitches beyond the basic pentatonic scale available to the instrument. The full-fingered notes will have a clear tone, while notes created by the meri-kari techniques previously discussed will have a timbre that can range from bright to dark and muffled based on the technique in use.

Meri fingerings are fingerings in which a hole is partially covered in combination with moving the instrument away from the body to lower the pitch up to 3 half steps. Due to the alteration in angle that the air enters the instrument and the partially covered holes, the pitches that are created in this manner tend to be very muffled when compared to the primary notes of

the instrument. *Meri* fingerings will very often be used as alternate fingerings—often as a means of executing a timbre trill by alternating with a full fingering of the same pitch.64

Yuasa also frequently utilizes alternate fingerings on the saxophone to provide timbre changes much like those possible on the *shakuhachi* when utilizing *meri* fingerings. *Meri* fingerings are very prominently used within phrases on the shakuhachi, where they will often serve as a neighboring pitch to a full-fingered pitch.65 The resulting effect would be one of a muffled pitch “resolving” to one of clear timbre. Alternate fingerings are not used by Yuasa to facilitate changes in timbre in the same manner that they would be on the *shakuhachi*. These alternate fingerings are only used by Yuasa on successive repetitions of the same pitch in combination with rhythmic figures such as *sutebyoshi* and *komi-buki*, which will be discussed in detail later. Generally speaking, Yuasa maintains timbre consistency within melodic cells, generally shifting from clear to unclear timbre at phrase divisions, which are indicated by beaming, rests, or breathe marks. The effect of going directly from a *meri* fingering to a full-fingering and the resulting timbre change within phrases is largely lost within this piece.

In passages that utilize successive repetitions of the same pitch with different fingerings to create variations in timbre, microtonal variations in pitch will be common as a result of the fingering changes. It is important that the performer not allow changes in pitch to accompany the changes in timbre. Variations in embouchure and airstream will be necessary to retain pitch consistency when changing fingerings. The variations in embouchure and air usage needed to remain consistent in pitch will result in large changes in timbre, especially on the repeated Bb’s on page 5 due to the drastic changes in tube length in consecutive fingerings (Example 18).

These timbre changes are not to be avoided, but enhanced as much as possible while still maintaining pitch integrity.

Example 18. Timbre Changes Using Alternate Fingerings

It is Yuasa’s belief that the most important aspect of timbre is its transformation throughout the course of a composition. In the music of the shakuhachi there is not the distinction between sound and noise that is seen in Western music - the two will exist as equally important musical events.\(^{66}\) It is important in *Not I, but the wind*... to embrace the shifts in timbre that would be common to the shakuhachi. Do not attempt to make the registers match, as the pitch and timbre would not match in the different octaves of the shakuhachi. Consistent timbre throughout the entire range of the instrument, largely a feature emphasized on Western instruments, is not possible on the shakuhachi. Unlike Western instrumental performers, a shakuhachi performer would not make the effort to adjust the timbre of the pitch so that it is uniform with the other notes of the instrument. The unique timbre identity of each note within a composition is embraced. Thus, attempts by the saxophonist to achieve uniform timbre would be contrary to the music that inspired the piece.

\(^{66}\) Yuasa, “Music as a Reflection of a Composer’s Cosmology,” p. 192.
Circular Time

The Western concepts of development and melodic return as a means of providing structure to a composition are not used by Yuasa in *Not I, but the wind*... Most often the pitch sets that return are not recognizable as motivic returns due to transposition, timbre changes, or rhythmic changes that transform the motivic ideas into something new. The *shakuhachi* and the concept of circular time that pervades its music are very influential on the structure and rhythm of this work. In traditional *shakuhachi* music ideas are continually reborn, rather than developed in a linear progression of time as in Western music. This idea of melodic transformation rather than Western-style development is exemplified in the treatment of the 012 sets in the 3 sections of the work. The basic motivic idea is the same, but the ordering of the set changes so that the 012 is repeatedly “reborn” in a new context.

In this circular conception of time the focus is not on a progression of events within a linear timeline (beginning, middle, end), but on the continuity of musical events. According to Yuasa, “in circular time there is no distinction between past, present, and future.” The result is a lack of temporal progression that when combined with the lack of melodic development shifts the focus to timbre and local melodic cells, with less focus on how these elements fit within the larger formal scheme.

To distort any sense of temporal progression within the piece, Yuasa makes use of non-metric time. Non-metric time, or the progression of time without a regular beat structure or meter, is accomplished through the notational methodology used for the piece. The piece noticeably lacks a meter signature or recurring regular beat structure, which leads to a sense of

unpredictable temporal motion throughout the piece. With no recurring beat structure to establish a pulse, the listener is left to focus on the timbre and dynamic of each individual pitch and the transformation of sounds/timbres that occur throughout the course of the composition.

Rhythm

Tempo in the *shakuhachi* repertoire is generally slow and introspective, reflecting the early purpose of the repertoire as religious music of the *komuso* monks. Most pieces will start slow and gradually accelerate until the end, and phrases will progressively add melodic activity throughout the course of the piece.\(^68\) Pieces from the *honkyoku* repertoire will generally be written in free rhythm.\(^69\) In a majority of cases there will be no notated meter and the creation of a regular pulse is to be avoided by the performer.\(^70\)

The regularity of time and the relationship between sound and silence in the music of the *shakuhachi* is based on the continuity of breathing, which means that melody and silence should exist in equality, much like the inhale and exhale of the breathing process.\(^71\) In practice, phrases will be played in one breath, while the silence should be lengthened or shortened to provide durational balance relative to the phrase that precedes it. In phrases with many notes, the notes will be played faster to occur within one breath, while phrases with fewer notes will have each note played with a longer duration to fill the space of one full breath.\(^72\) The end result is that regardless of the number of notes, phrases in the *shakuhachi* will all be nearly the same length.

\(^{68}\) Tsukitani Tsuneko, “The Shakuhachi and its music,” pp. 156-158.

\(^{70}\) Tsukitani Tsuneko, “The Shakuhachi and its music,” p. 156.

\(^{72}\) Tsukitani Tsuneko, “The Shakuhachi and its music,” pp. 156-158.
This understanding of the relationship between sound and silence and their impact on pacing in the music of the shakuhachi has a profound impact on tempo and rhythmic interpretation in Not I, but the wind... The melodic content of Not I, but the wind... is constructed from a series of relatively short phrases separated by “substantial silences” that are indicated by eighth or quarter rests with fermatas over them to convey the relative length of the silence. The short phrases should be primarily played in one breath just as they would on the shakuhachi, and should only be interrupted by a breath or silence when indicated by the composer. Though there are only a few types of rests in the piece, there will be much more variety to the rests than is indicated by the notation due to the lack of regularity in phrase length. The length of rests should be adjusted to proportionally relate to the length of the phrase which they follow so that the balance of the shakuhachi phrase/silence structure is maintained in Not I, but the wind...

Regularity of phrase length is not utilized by Yuasa in the same manner that it is in the shakuhachi repertoire. Yuasa’s phrases are more irregular in length due to the proportional rhythmic notation provided by the composer. In the middle of the piece some phrases will be significantly longer than the phrases that neighbor them. If phrase length was adjusted by the performer to match the durational length of other phrases of the composition, as would be common on the shakuhachi, it would require a blatant disregard of the rhythmic values notated by the composer. The composer does provide notated rhythms that are to be respected by the performer to a degree, but the ambiguity resulting from a lack of tempo and specificity regarding silences results in the possibility of vastly different interpretations of these elements. The individuality that this provides to each interpretation of the piece is important, and special care should be taken to not merely imitate recordings and previous performances.
Rhythmic values are grouped using beaming that in traditional Western notation would be used to indicate a rhythmic pulse, but this is not Yuasa’s intent. The notated rhythms, which are primarily limited to eighth notes and sixteenth notes, communicate length relative to the other notes in the composition: short versus long. The only occurrences of rhythms other than the two already mentioned is at moments of silence and at the tremolos that occur on pages 5 and 6. On five occasions Yuasa notates quarter rests with a fermata over them to indicate that these rests are to be played longer than the other rests in the piece, which are all eighth rests with fermatas over them.

Further information regarding the length of a note in relation to those around it is indicated to the performer by the use of spatial notation. The composer indicates fluctuations in the tempo by altering the spacing between notes in the score; short spacing between notes indicates faster movement and longer spacing indicates that a note is to be held longer. In the example below, an accelerando and subsequent ritard is indicated by notes that get progressively closer together to indicate the accelerando, followed by notes that are progressively farther apart to indicate the ritard (Example 19).

Example 19. Spatial Notation Used in Not I, but the wind… to Indicate Fluctuations in Rhythm and Tempo
Yuasa’s use of spatial notation is successful at providing the rhythmic flexibility of the shakuhachi repertoire within the Western notation system. This system is primarily used to indicate small fluctuations in time/tempo and generally does not account for notes that are significantly longer than others in the phrase. To remedy this problem, Yuasa provided specific timings above notes that are to be played a significant amount of time longer than the rhythmic value indicates (Example 20).

Example 20. Durational Timings Used by Yuasa to Indicate Durations That are to be Held Significantly Longer Than the Notated Rhythm

Vibrato

The vibrato of the shakuhachi is much more irregular in speed and amplitude than the typical vibrato of Western classical instruments. This irregularity is a result of the multitude of ways in which vibrato is created on the instrument. There are four primary means of producing vibrato on the shakuhachi, and each produces different degrees of amplitude and speed of the vibrato. Jaw vibrato, which is the most common vibrato type on the saxophone, is not utilized in the music of the shakuhachi. The four types of vibrato are differentiated by the method used to produce the vibrato. The four methods are:

1. Side to side head movement
2. Up and down movement of the performer's head
3. Circular head movement
4. Movement of the instrument itself.

The use of multiple types of vibrato on the *shakuhachi* gives the music a larger expressive palate than is typically used on the saxophone, which typically utilizes vibrato created by up and down motion of the jaw. The side to side swinging motion of the head, known as *tateyuri*, is the most common vibrato on the *shakuhachi*. This is largely due to the stability of pitch that is possible with this style. Up and down motion of the head or of the *shakuhachi* itself will not be used as frequently, as these methods produce a vibrato in which the pitch fluctuates significantly. Up and down head motion will also be used in combination with the *meri-kari* fingerings to alter the primary pentatonic scale to make the full chromatic scale available on the *shakuhachi*. Circular motion of the head is a hybrid of the two vibrato types, with a slightly more stable pitch than if only up and down motion of the head is used by the performer.\(^{74}\)

It has become common for many performers to use little or no vibrato when performing Western contemporary repertoire on the saxophone, but in repertoire influenced by the *shakuhachi* performers must familiarize themselves with the types of vibrato discussed above. Not all of these types of vibrato are feasible on the saxophone. Vibrato types in which the head swings side to side, or moves in a circular motion do not translate well to the saxophone. When the head moves side to side it will close off reed vibration on one side of the reed, causing a muffled tone quality with very little pitch change and a more pronounced buzz from the reed. To achieve the wide vibrato used in certain instances on the *shakuhachi*, movement of the tongue

can be used in combination with up and down motion of the jaw to achieve greater pitch change than when using the jaw alone. The success of this technique in producing large pitch changes largely depends on register; however, as lower notes will have less pitch flexibility on the saxophone than those in the upper registers of the instrument.

As sound intensity and volume grows, it is important for the amplitude of the vibrato to grow as well. Caution must be exercised however, when adding vibrato to the multiphonic on page five, where Yuasa specifically calls for vibrato (Example 21). Too much alteration of jaw pressure and air speed will affect stability of the multiphonic and well as the pitch of the upper notes in the multiphonics. A traditional jaw vibrato, but with less amplitude than previously used on other pitches, will thus be desirable on this effect to ensure that the intended interval content of the multiphonics is in tune. Some performers will be tempted to utilize diaphragm vibrato in this instance, because it is easier to maintain pitch stability on this type of vibrato. However, this is not recommended because the technique results in air pulsations without much pitch alteration.

Example 21. Multiphonic Vibrato
Dynamics

The expressivity of the shakuhachi is unmatched in the wide range of timbre effects available to the performer. The dynamic range on the instrument; however, is rather narrow as a result of the inability to produce a true forte. A forte will only be seen in the repertoire in an explosive air burst known as muraiki. This technique, which is generally seen as an extended technique or special effect, distorts the tone and significantly changes the pitch. Dynamic shifts in practice are generally very subtle, but are an important part of the shakuhachi repertoire. It is uncommon for a performer to remain stagnant on one dynamic level for an extended period, and constant dynamic flux has become a trademark of the instrument and its repertoire.75

The constant dynamic motion of the shakuhachi must be considered when approaching any piece that claims to use the shakuhachi as its inspiration. At first glance, Yuasa’s dynamics might seem to be over-notated, with at least one dynamic change or shift on nearly every note in the composition. It is in fact important to observe all of the dynamic changes notated by the composer. Due to the frequency of dynamic changes, tempo becomes important to the successful realization of these markings. If the performer does not observe the tempo comments offered earlier, and chooses to rush phrases, the dynamic changes do not have time to develop and sound jarring and abrupt. The timbre changes characteristic of the shakuhachi when shifting between soft and loud dynamics are not naturally occurring on the saxophone when using traditional fingerings and playing technique. As already discussed, the use of embouchure and air changes to create the second partial of the fingered pitch as called for by the composer creates a great deal of pitch and timbre instability on the saxophone. These fingerings naturally create greater

75 Malm, Traditional Japanese Music and Musical Instruments, p. 173.
variation in timbre between soft and loud dynamics, and allow the recreation of the timbre changes common to the *shakuhachi* in different dynamics and registers.

Electronics

Not I, but the wind... utilizes two microphones, one which is used to provide amplification of the saxophone sound, the other of which is an echo chamber microphone. The significance of microphone usage lies in the resulting spatial element in the music that gives the illusion of moving fluidly between the foreground and the background. The movement between foreground and background by switching microphones is indicated to the performer by the use of graphic notation.

A secondary stave is used solely for the indication of which microphone the performer is to utilize at any given moment, and is placed underneath the staff that provides the melodic and rhythmic notation. Yuasa draws a line that is used to indicate the movement of the saxophone between the two microphones (Example 22). If the line is at the top of the staff the performer uses the echo microphone, and if the line is at the bottom of the staff the performer is to utilize the ordinary microphone. In most cases movement between microphones will occur in longer notes, with a few exceptions where the movement of the saxophone between microphones mirrors the melodic motion.

![Example 22. Notation of Microphone Usage by Performer](image)

Example 22. Notation of Microphone Usage by Performer

52
As a result of the echo chamber, overlapping of pitches is created when moving quickly between notes, such as grace notes. The overlapping of pitches that is created by the use of the echo chamber subtly adds harmonic depth and intensifies the harmonic motion implied by the relationship between grace notes and melodic notes previously discussed. This is particularly true with the tritone interval and its implied dominant function sonority.
CHAPTER 2

THE INFLUENCE OF GAGAKU ON MASUKAZU NATSUDA’S
WEST, OR EVENING SONG IN AUTUMN

Masakazu Natsuda

Masakazu Natsuda was born in 1968 in Tokyo, Japan. He studied composition at the Tokyo University of Fine Arts, where he completed his undergraduate and graduate degrees. After completing his graduate studies in Tokyo, Natsuda continued his studies at the Conservatoire National Supérieur de Musique de Paris, where he received a unanimous premiere prize in composition.76

Since the completion of his graduate studies in music, Natsuda has had his music performed by many of the premier orchestras in world, including the Tokyo Symphony Orchestra and the Dutch Radio Symphony Orchestra. He currently serves on the composition faculty at the Tokyo National University of Fine Arts and Music, Toho-Gakuen University, Nihon University, and Kunitachi University of Music.77

West, or Evening Song in Autumn

French saxophonist Claude Delangle commissioned Masakazu Natsuda to write a piece for saxophone to be recorded on the album “The Japanese Saxophone,” with the stipulation that the piece was to be written in the style of Japanese traditional music. When presented with the commission, it was Natsuda’s belief that the inherent challenge in the commission was to write a piece with a cohesive formal design that incorporated the aesthetic philosophy of Japanese music that was requested by Professor Delangle, but used the Western compositional language with

76 Dan Albertson and Ron Hannah, ed., The Living Composers Project [Website], “Masakazu Natsuda” (15 Jan 2003), Site address: www.composers21.com/comdocs/natsuda.htm
77 Ibid
which he was familiar.78 The composition that emerged in 1996 from that commission was *West, or Evening Song in Autumn*.

In his discussion of the work for the liner notes of “The Japanese Saxophone”, Natsuda states that this was his most Asian-influenced work to date. He states that the piece shows a great deal in common with the court music of Asia, particularly that of Korea. Upon detailed examination of the work, however, it has become clear that *West, or Evening Song in Autumn* is heavily influenced by *gagaku*, particularly that part of the *gagaku* repertoire whose roots are in Korean music. It is these characteristics that will be examined in detail as a means of providing a performance guide to saxophonists that wish to perform this very demanding work.

The History and Instrumentation of Gagaku

Dating from the middle of the eighth century, *gagaku* is one of the world’s earliest and longest lasting forms of ensemble music. In the eighth century it was established as court music, where it has been maintained and preserved ever since by imperial court musicians.79 Early *gagaku* repertoire was imported from China and Korea, and in its early history it remained nearly unaltered from the original imported versions. It wasn’t until the 9th century that Japanese changes started to be incorporated into the *gagaku* repertoire to distinguish it from its Chinese and Korean counterparts.80

The *gagaku* repertoire can be divided into two distinct sub-genres: *togaku* (music of Chinese origin) and *komagaku* (music of Korean origin). In many texts these also referred to as

78 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.

80 Kishibe, *The Traditional Music of Japan*, p. 32.
music of the left (music of Chinese origin) and music of the right (music of Korean origin).

These two bodies of court music can be easily distinguished from one another based on instrumentation. Both genres of court music include wind, string, and percussion instruments that primarily perform as full sections, but the instruments used in those sections will differ in each genre. *Togaku* makes use of *shō*, *hichiriki*, *ryûteki*, *shoko*, *kakko*, *taiko* (the most common of which in *gagaku* is the *da-daiko*), as well as a variety of stringed instruments. While both forms originally included strings, modern *komagaku* will generally omit any use of stringed instruments.\(^81\) The *shō* will also be excluded from *komagaku* due to the instrument’s Chinese origin, which will eliminate vertical harmonies from *komagaku*. In addition, in *komagaku* the *kakko* will be replaced by the *san no tsuzumi* and the *ryûteki* will be replaced by a Korean flute called the *komabue*.\(^82\) Most of the surviving *gagaku* repertoire is from the *togaku* repertory, but many of the characteristics that will be talked about in this paper are common to both *togaku* and *komagaku*. When a musical characteristic is unique to either of the two repertoires, it will be indicated as such, otherwise characteristics common to both genres will be simply referred to as characteristics of *gagaku* as a whole.

The percussion instruments used within the *gagaku* orchestra each serve a unique musical purpose. The three instruments combine to create an eight-measure rhythmic cycle that is the foundation of *gagaku*. This eight-measure cycle is generally repeated verbatim throughout the duration of a *gagaku* composition.\(^83\) The manner in which each of the instruments fits into the construction of this eight-measure cycle will be discussed along with a description of the construction and playing techniques of the instrument on the following pages.

The three traditional percussion instruments of the *gagaku* ensemble are as follows:

1. *Shoko*: The *shoko* is a small suspended bronze gong that is struck with wooden sticks using a single stroke, or a double stroke in which the two sticks strike the gong in quick succession.\(^\text{84}\)

 The sound of the *shoko* is more similar to a bell than a gong due to the dryness of its sound, which lacks the resonance of a gong.\(^\text{85}\) This is largely a result of playing technique, in which the performer will strike the gong in the center and immediate move the stick to rest on the edge of the gong.\(^\text{86}\) The result is a dampened sound that rings very little after the initial attack. The *shoko* is most commonly used singularly.\(^\text{87}\) The *shoko* generally outlines the downbeats of each measure within the rhythmic cycle.\(^\text{88}\)

\[\text{Image 6. *Shoko*}\(^\text{89}\)\]
2. *Taiko (Da-Daiko):* The *taiko* of *gagaku* is a large suspended bass drum with two skin drumheads that can be used in a variety of sizes.\(^90\) This instrument generally serves the purpose of demarcating the beginnings of the rhythmic cycle, typically with a two-stroke pattern of pick-up note and down beat.\(^91\) The pick-up note will generally be a left-hand strike of the drum at the *piano* dynamic level, while the down beat will be a right-hand strike of the drum at the *forte* dynamic level.\(^92\)

![Image 7. Taiko\(^93\)](https://ccrma.stanford.edu/groups/gagaku/percussion/taiko.html)

\(^90\) Malm, *Traditional Japanese Music and Musical Instruments*, pp. 103-104.

\(^93\) Jaroslaw Kapuscinski and François Rose, Orchestration in Gagaku Music [Website], “*Taiko.*” Photograph (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/percussion/taiko.html
3. *Kakko*: The *kakko* is a barrel-shaped drum with a skin head on each end. It is placed horizontally on a stand and struck using two sticks that strike opposite ends of the drum. The kakko is generally the primary time keeper of the ensemble and establishes the tempo of the piece through a series of singular attacks and rolling patterns. In *komagaku*, the *kakko* will be replaced with the *san no tsuzumi*, which is a barrel-shaped drum very similar in design to the *kakko* that will serve the same time marking function in the *komagaku* repertoire. The primary difference between the two is performance technique: the *san no tsuzumi* is only stuck on one of the two heads with the use of one stick. The result is that the music of the *san no tsuzumi* will lack the roll patterns that are common to the *kakko*.

98 Jaroslaw Kapuscinski and François Rose, Orchestration in *Gagaku* Music [Website], “Kakko.” Photograph (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/percussion/kakko.html
The wind instruments of the gagaku orchestra are:

1. **Hichiriki**: The hichiriki is a double-reed instrument with a wooden body and open finger holes that has a reedy and nasal quality of sound. Typically the winds of the gagaku orchestra provide the melodic material, and the hichiriki serves as the primary melodic instrument. The instrument will very rarely stay on any pitch for extended durations, instead embellishing melodic pitches extensively with micro-tonal pitch changes.

2. **Flutes of Gagaku**: There are a variety of flutes that have been used within the gagaku orchestra in its long history. The most common of these are two transverse bamboo flutes: the ryūteki, and the komabue. The ryūteki is the most commonly utilized flute in the large repertoire of togaku, while the komabue is the common flute of komagaku. Gagaku utilizes a primarily heterophonic texture in which the hichiriki provides the melody and the flutes simultaneously provide a slightly embellished variation of that melody. It is important to

101 Jaroslaw Kapuscinski and François Rose, *Orchestration in Gagaku Music* [Website], “Hichiriki-front.” Photograph (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/woodwinds/hichiriki.html
note that while two melodic instruments are included in *gagaku*, two-part writing in which the parts are independent of one another will be very rare.104

![Image](image.png)

*Image 10. Ryûteki (bottom) and Komabue (top)*105

3. *Shō*: Often referred to as the mouth organ, the *shō* provides harmony in *togaku*, but is omitted from *komagaku* due to Chinese origin of the instrument.106 It is constructed from a sound box with a series of thin bamboo tubes that emerge vertically from the top. Each tube has a finger hole that the performer covers in order to direct air into the tube and produce a pitch. Air will be blown into the sound box by the performer, which directs the air via a small reed on the end of each tube into the tubes whose holes are covered. The instrument is used to provide non-functional harmonies that are each comprised of 5-6 notes created by covering the finger holes on the corresponding tubes.107 The reed on the end of each bamboo tube is tuned by placing a small drop of wax directly on the reed. The instrument is placed on

104 Harich-Schneider, “The Present Condition of Japanese Court Music,” p. 56.
105 Jaroslaw Kapuscinski and François Rose, Orchestration in Gagaku Music [Website], “Kagurabue, ryûteki, and komabue.” Photograph (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/woodwinds/other- WW.html
106 Harich-Schneider, “The Present Condition of Japanese Court Music,” p. 54.
107 Kishibe, The Traditional Music of Japan, pp. 35-36.
a warming device during breaks in performance to dry the sound box and prevent water buildup on the reed that could affect intonation.108

![Image 11. Shō109]

Typically only included in \textit{togaku}, the \textit{shō} creates a series of slow-moving harmonies that are based on stacked fourths or fifths.110 These harmonies sound very much like tone-clusters to the Western ear because the stacked fourths and fifths of these five to six note sonorities are in most cases condensed to occur within a single octave, resulting in very prominent major and minor seconds. The harmonic changes of the \textit{shō} are generally very slow, with changes that only occur once every two or three measures in a non-functional manner that is determined by melodic content.111 These vertical sonorities will generally share a common tone with the melody, which in most cases is the lowest note of the sonority.

108 Enrico, \textit{Gagaku: the court music of Japan}, VHS.
109 Jaroslaw Kapuscinski and François Rose, Orchestration in \textit{Gagaku} Music [Website], “\textit{Shô}-back.” Photograph (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/woodwinds/sho.html
110 Harich-Schneider, \textit{The Rhythmic Patterns in Gagaku and Bugaku}, p. 2.
111 Harich-Schneider, “The Present Condition of Japanese Court Music,” p. 55.
As a result of the bottom note of each sonority moving roughly in unison with the melody, the texture is one in which the sonorities of the shō are generally in a higher register than the melody, unlike Western music, in which a melody and accompaniment texture will generally place the melody in a higher tessitura than the accompanying sonorities.\footnote{Kishibe, The Traditional Music of Japan, p. 39.}

Despite the changing harmonies of the shō, its use results in a feeling of relative harmonic stasis in gagaku due to the A4–B4 major second that is present in every harmony in the chord vocabulary of the shō. The presence of the same major second in every harmony produced by the shō results in an aural effect similar to the harmonic stasis created by a pedal tone in Western music.\footnote{Kishibe, The Traditional Music of Japan, p. 36.} This effect of stasis is enhanced by the unbroken nature of the harmonic line in a typical gagaku composition. Sound is produced on the shō by both inhale and exhale, which allows the performer to move from chord to chord within a composition without the need to stop sound production to breathe.\footnote{Harich-Schneider, “The Present Condition of Japanese Court Music,” pp. 54-55.}

Instrumentation in West, or Evening Song in Autumn

The instrumentation for this composition calls for solo soprano saxophone accompanied by percussion and pre-recorded drone pitches created by an unspecified medium. The pre-recorded drone of concert pitch F #3 (written G# for the saxophone) and concert pitch B3 (written C# for the saxophone) continues uninterrupted throughout the entire piece, fading in from niente ten seconds before the first note of the percussion and establishing a dynamic of ppp that will be maintained until the drones fade to niente at the entrance of the last melodic note in the saxophone part. The constant pitch and dynamic level of the drone pitches provides a static harmonic backdrop and point of melodic return for the saxophone part, but without the harmonic
complexity present in the changing harmonies of the *shō*. Due to the very soft dynamic used for the drone pitches, the drone is much less prominent than the *shō*, whose dynamic range in *gagaku* ranges from *piano* to *forte* and comes much closer to matching the dynamic range of the melodic instruments.\(^{115}\)

As previously discussed, the bottom note of each harmony of the *shō* in *gagaku* roughly follows the melodic line, with the rest of the harmony above the melodic line. In contrast, Natsuda utilizes a Western approach in which the melody is primarily higher than the accompanying harmonic line. In this composition, the saxophone never crosses below the concert B₃ drone (the highest drone pitch), and generally keeps a large intervalllic range between its sounding pitches and the drone pitches. The lowest note that is written for the saxophone is C#₄ (concert B₃). The result of writing the saxophone in a range significantly higher than the accompaniment is that the two function more separately than those used in *gagaku*, where the melody and accompaniment are in roughly the same range and function as a more cohesive unit.

The lack of a specified medium to produce the drone pitches is problematic for the performer, who must decide the most desirable method to produce the specified pitches. There are a variety of methods that could be used to provide the specified harmonic backdrop for the composition. While the use of the *shō* would be ideal in a piece of this nature, its use in this piece is impossible because the notated pitches are outside of the range of the instrument. There are two methods which I would recommend as practical methods to generate the necessary drone pitches. The first method is to use a compact disc recording of two sine waves broadcast through the speaker system in the hall. This method requires a second person in the hall to work a soundboard to control the fade-in at the beginning of the piece and the fade-out at the end of the piece.

piece. If this method of drone production is chosen, the performer must make sure that the recorded drones are long enough to take into account possible variations in performance length. The piece is roughly eleven minutes in length, so it is my recommendation that the CD recording be at least thirteen minutes in length to provide flexibility should the performer choose a drastically slower tempo in a concert setting.

The second option is to generate an interactive application through a program such as MaxMSP. This creates a more interactive performance option in which the saxophonist can control the fade in and fade out of the drone pitches via the click of a mouse or a foot pedal. This second option is the preferred one, as it will not require additional personnel to run a sound board, and takes into account the differing length of each performance and the need for the performer to be able to control the drone pitches based on discrepancies in performance timing. This is also a very practical option because the drones fade in and fade out while the saxophone is not playing, allowing the performer to easily control the fading without a disruption to the performance.

The percussion instruments that are called for by the composer are divided into two groups based on the construction of each instrument: the first group is comprised of drumhead percussion instruments, while the second group is comprised of two gongs. The first percussion group used by Natsuda includes the ōdaiko, the byo (rivets attaching the head of the ōdaiko), and three optional drumhead percussion instruments. The only specific stipulation set forth by the composer regarding the optional percussion is that the three instruments are to vary in pitch and size, and each instrument is to be struck by a hard stick. The composer provides suggestions in the score to indicate what Western instruments should be used by the performers to best produce
the desired differentiation of timbre and pitch. Natsuda suggests a small drum similar to the bongo, a medium drum similar to the conga, and a large drum similar to the bass tom-tom.

The substitution of the ōdaiko for the taiko of gagaku is notable in that the ōdaiko is a very large barrel drum with riveted heads that is placed horizontally on a stand, unlike the taiko used in gagaku, which is a suspended bass drum that is more flat in shape. If the performer uses the ōdaiko the result is a deeper and more resonant sound on the bass drum than that typically seen in gagaku. In addition, the playing technique of striking the rivet of the ōdaiko that is called for by Natsuda is used in some genres of Japanese music, but is not typical in gagaku, which only calls for the ōdaiko to be struck on the head in the two types of stroke previously discussed. Natsuda uses the strike on the rivet of the drum in this composition to take over the role of the san no tsuzumi or kakko, which typically have the function of marking time and indicating rhythm and meter within gagaku.

In the event that an ōdaiko is not available for performance, Natsuda suggests that the performer substitute a large bass drum for the ōdaiko, and a very small temple block or woodblock struck by a hard or wooden stick to replicate the sound of striking the rivet of the ōdaiko. The use of a woodblock will provide a drier sound that is more similar to striking on the byo than the use of a temple block. However, it is my recommendation that the performer make use of a wooden temple block, which is the more resonant of the instrument choices. The temple block is more desirable because its resonance creates a sound that is more similar to the use of the kakko or san no tsuzumi in gagaku. While temple blocks are available in both wood and synthetic varieties, wooden temple blocks provide a far superior sound that is more desirable for use in the performance of this piece. There are a variety of options when choosing sticks for a

temple block. If choosing to use wooden sticks as the composer suggests, a slightly thicker stick is preferable, otherwise a medium hard rubber mallet will be sufficient to give the desired sound. The wooden stick will provide more noise on the actual attack, while the rubber mallet will provide a less marked sound on the actual strike, with more resonance to the sound after the strike.

Two percussionists are recommended for performance of this piece, but the composer presents the option of performing the piece with one percussionist if necessary. To make the piece easier to perform with a single percussionist, Natsuda specifies that the small, medium, and large drumhead percussion instruments may be omitted from performance. Even if all optional instruments are omitted, there are attacks points at the downbeats of rehearsal numbers 1, 9, 17, and 25 in which both gongs and the ōdaiko will be struck in unison. This requires the percussionist to stand the gongs next to each other, and strike the two gongs simultaneously using two sticks held in the same hand, while using the other hand to strike the ōdaiko. This is a bit impractical if using the tam-tam suggested by the composer, because the size of the tam-tam results in so much distance between the ideal striking points of each gong. The result is that the performer ends up striking the tam-tam closer to the edge than is ideal, which gives it a less resonant sound than that typically found on the instrument. For this reason, it is recommended that one percussionist be utilized to strike a gong with each hand using soft sticks, and a second percussionist be used to play the drum-head percussion instruments from group one.

If the choice is made by the performer to omit the optional percussion instruments and attempt performance with only one percussionist, the attacks that were to be performed on the optional percussion instruments should be shifted to the byo; however, this is not specified in the score. This is necessary because if these attack points are completely omitted, the metrical
patterns that are integral to the construction and later deconstruction of the rhythmic cycle will be lost due to the omission of many of the downbeats in the composition. Also, because the *byo* takes over the time marking role in this piece typically reserved for the *kakko* or *san no tsuzumi* in *gagaku*, it is important for these attack points to be included, whether they are performed on the *byo* or the optional percussion.

Omission of the optional percussion and a subsequent transfer of their attack points to the *byo* would in fact be closer to the timbre aesthetic of a *gagaku* performance, which would not use multiple pitched percussion instruments to satisfy the role of the *kakko/san no tsuzumi*. Though multiple pitches are possible on the *kakko* through putting pressure on the strings that attach the two drumheads, this technique is very rarely seen in performance.\(^\text{117}\) Although the use of multiple pitched percussion instruments is not common to *gagaku*, it is not advisable to omit the optional percussion from performance, as these instruments are structurally important to the piece and are necessary to distinguish the downbeat and secondary attack points of each measure in the percussion part. This becomes increasingly important as the piece progresses and the alterations to the metrical cycle in the saxophone part make vertical alignment uncommon. If they are omitted, the metrical outline that is very important to the structure of the percussion cycle becomes lost within a seemingly endless continuum of strikes on the *byo* that have very little in the way of dynamic or timbre distinctions to differentiate downbeat from upbeat within a measure.

Natsuda changes the type of gong used and the role that the gong plays within the rhythmic cycle. In place of a singular *shoko*, or two of similar size in some cases, Natsuda calls for a medium gong and a large gong (specified by the composer as a tam-tam). The medium and

large gongs typically used by Western performers are louder, much more resonant, and typically have a less crisp articulation than that of the shoko. Traditionally, the shoko is used to mark the beginning of the individual measures within the rhythmic cycle, and the boundaries of the cycle are marked by two strikes of the taiko in a pickup to downbeat arrangement. The striking of the gong at the beginning of each measure is impractical in this piece because the gongs chosen by the composer to replace the shoko are too large and resonant to serve in this role. Due to the constantly changing time signatures and the resulting short duration between downbeats in the 3/8 and 3/16 measures, the use of the gong in this role would result in the gong continuing to ring when the next downbeat occurs unless performance technique is altered to dampen the sound after the initial attack. As a result, the very clearly defined attack with limited continuation that is achieved on the shoko to begin each measure in gagaku is lost in this composition by Natsuda.

To remedy this issue, which is a result of the chosen instrumentation, Natsuda instead uses attacks on the gongs in tandem with the ōdaiko to highlight the beginning of each rhythmic cycle and saxophone macro-cycle in tandem with the ōdaiko. Every eight measures the medium gong will be struck in unison with the ōdaiko to mark the beginning of each rhythmic cycle, while every eight cycles – at rehearsals [1, 9, 17], and 25 – both the medium and large gongs will be struck in unison with the ōdaiko to mark the beginning of each macro-cycle occurring in the saxophone. Special care must be taken by the percussionist to ensure that the repurposing of the gongs and the resulting unison attack with the ōdaiko does not cover up the ōdaiko and its role within the rhythmic cycle. All attacks by the gongs are marked at either a forte or mezzo-forte dynamic level and should be allowed to ring un-dampened after the initial attack. A forte dynamic is used when both gongs are struck at the beginning of each macro-cycle, while a mezzo forte dynamic is used for the attacks by a singular gong that mark the beginning of each
individual cycle. Depending on the particular instruments used and the acoustics of the performance venue, this may result in the need for the dynamics of the gongs to be lowered from their marked level to avoid poor balance between the gongs and ōdaiko.

Natsuda’s choice of instrumentation is very effective at alluding to the ceremonial and court music that inspired the work, regardless of the already mentioned change in role that applies to many of the instrumental sounds used. This change extends as far as the order of instrumental entrances, which are very different than that used in most gagaku compositions. In a netori, which is the typical warm-up piece that precedes a formal gagaku performance, the order of entrance is shō, hichiriki, flute, kakko, and strings with only one player on each instrumental part. In bugaku, which is the only genre of gagaku to use the ōdaiko, the order of entrance is: flute, percussion shō, and hichiriki in full sections. One of the primary characteristics of the gagaku examples which I have observed is that instruments, whether solo or in sections, enter one instrument type at a time. The spacing between entrances is fairly wide, allowing for the establishment of each instrumental sound as part of the overall timbral canvas before the next instrument enters. The result of this establishment of each timbre/instrumental color is an overall timbral construct in which each instrumental timbre can be clearly identified at all times within the overall sound of the larger ensemble.

Natsuda utilizes this same approach to the construction of the ensemble sound within West, or Evening Song in Autumn. Each instrument is firmly established as part of the texture before the entrance of the next instrument, but the order of instrumental entrances is altered significantly from that of gagaku. The drone pitches, which most closely resemble the shō in

118 Jaroslaw Kapuscinski and François Rose, Orchestration in Gagaku Music [Website]. “Form” (October 2010), Site address: https://ccrma.stanford.edu/groups/gagaku/theory/form.html
119 Eugene Enrico, Gagaku: the Court Music of Japan, VHS.
function, enter first and are held for approximately ten seconds before the entrance of any other instrumental sounds. The drones are followed by an eight measure pattern in the percussion that will become the structural foundation of the piece, before the solo soprano saxophone enters with melodic material at rehearsal \[\text{[measure]} \], which begins at measure nine. This order of instrumental entrances and use of instruments that are solo rather than in sections is more similar to the netori than any other type of gagaku composition, with the exception that Natsuda excludes the heterophonic texture characteristic of gagaku by eliminating the interplay between the hichiriki and the flute by the use of only one melodic instrument.

Circular Time

The title of *West, or Evening Song in Autumn* was inspired by the circular time concept used in traditional Japanese music. As discussed in the previous chapter, the circular conception of time is that of a temporal cycle which is continually reborn. This is distinctly different from the forward-moving temporal continuum that is generally applied to Western classical music. West, Evening, and Autumn are combined by Natsuda in the title because of their identical placement on the compass/clock face of circular time (Diagram 2). According to Natsuda, West coincides to this point in time in Chinese philosophy, and is thus included in the title despite the general Asian character of the composition. Evening and Autumn are symbols that represent the same point in the circular time concept—that which comes before the restart of the cycle.\(^{120}\) In Diagram 2, the circular conception of time is perceived much like a clock face/compass. The top center, which corresponds to North, Night, and Winter, represents both the beginning and the end of the cycle, or the point of “rebirth” in the circular conception of time. The progression of time

\(^{120}\) Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
moves clockwise, and the dark circle in the nine o’clock position indicates the point of alignment between the different levels of circular time indicated in the title.

Diagram 2. Circular Time and its Relation to the Title of *West, or Evening Song in Autumn*

The imagery in the title is indicative of three levels of temporal structure that relate to one another from a micro versus macro standpoint. Evening represents the small-scale recurring temporal cycle of the single day, while Autumn represents the larger temporal cycle of the calendar year, and West represents an even larger philosophical time period.\(^{121}\) The temporal

\(^{121}\) Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
imagery of the title is manifested in the piece through the utilization of rhythmic cycles in the percussion and saxophone similar to those used in the music of the gagaku court orchestra.

The manifestation of these three temporal cycles within this composition by Natsuda can be seen at three temporal levels: a micro-structure of eight measures that constitutes one rhythmic cycle in the percussion, a macro-cycle of eight cycles (sixty-four measures) in the saxophone part in which each of the eight cycles are derived from the original percussion cycle, and an even larger macro-cycle in the percussion of sixteen cycles (one-hundred and twenty-eight measures) created by a process of attack point mobility that will be discussed shortly. This largest macro-cycle will be referred to as a macro-period for the purposes of this document to make a clear differentiation between it and the eight cycle macro-cycle easier for the reader. The manner in which these three levels of circular time relate to one another is used by Natsuda to provide structure to the composition, and determines the manner in which the percussion and solo instrument interact with one another from a temporal standpoint.

Construction and Application of the Rhythmic Cycle

The repeating eight measure metrical cycle in the percussion instruments that is used by Natsuda to provide the rhythmic and structural foundation of the piece is conceived with a complexity unlike anything that would be seen in gagaku, which would typically utilize verbatim repetitions of the cycle for the entirety of the composition. Instead of verbatim repetition, Natsuda utilizes a process of gradual transformation and reordering that adds a level of complexity to the cycle that is more similar to modern Western classical music than to the traditional music of Japan.

The most immediately evident differences between the construction of the *gagaku* cycle and that used by Natsuda are measure length and pulse consistency. Every measure in Natsuda’s composition is three beats in length. This is very unusual in *gagaku*, which generally uses measures that are either two or four beats in length.123 In addition, Natsuda’s creation of an irregular pulse by frequently changing the bottom number in the time signature is not seen in *gagaku*, which keeps a consistent time signature throughout the cycle. The succession of meters that are used in the first rhythmic cycle of the composition to create the irregular pulse can be seen in Example 23. The brackets above each meter signature in Example 23 are included below the percussion parts in the score to make the boundaries of each percussion measure clear to the performer.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example23}
\caption{Succession of Meter Signatures in the Percussion Rhythmic Cycle}
\end{figure}

Attack points within the cycle are organized in a manner that reflects the meter of each individual measure. This is accomplished by the placement of the only two attack points in each measure in a manner that follows the typical accent pattern of a triple meter in Western musical tradition. In meters that have three beats in Western music, the strongest beat of the measure occurs on beat one of the measure and beat three of the measure is considered a weak beat, which very often functions as a rhythmic pick-up beat to the following measure. This

organization results in a relationship in which the space between attack points in the rhythmic
cycle are initially structured in a 2:1 proportion, unlike the binary measure common to both
Western music and most gagaku compositions, which is structured in a 1:1 proportion of equally
divided beats and measures (Table 2).

Table 2. 2:1 Proportion Versus 1:1 Proportion

<table>
<thead>
<tr>
<th></th>
<th>2:1</th>
<th>1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⚪ ⚪</td>
<td>⚪ ⚪</td>
</tr>
</tbody>
</table>

The first percussion cycle is eight measures long with a total duration of eighty-one
sixteenth notes. The composer structurally divides the cycle into two halves of 4 measures each,
but these two halves are not of equal length. Due to the constantly changing time signature, they
have a 2:1 proportional relationship in which the first half is twice as long as the second. The
first half of the cycle is fifty-four sixteenth notes long, and the second half is twenty-seven
sixteenth notes long. Each four measure half of the original eight measure cycle is then divided
in the same manner: each four measure half is in turn divided in half, resulting in two measure
units. The fifty-four sixteenth notes of the first four measures are divided into two-measure
segments of thirty-six sixteenths and eighteen sixteenths, and the twenty-seven sixteenth notes of
the second four measures are divided into two two-measure segments of eighteen and nine
sixteenth notes.
Each two-measure unit can be further divided into two halves of one measure each, which maintain a 2:1 proportion as to the number of sixteenth notes in each half of the two measure group. The last 2:1 proportion subdivision occurs in each individual measure. Two articulations will occur in each measure, the first of which is two beats long, and the second of which is one beat long. The result is a downbeat to upbeat relationship dependent on the 2:1 proportion shown in Table 2. This organization of each individual measure is established in the first two full cycles, which are identical, before the composer begins the systematic changes to the cycle that will be discussed in detail later.

In Example 24, the composer has provided a diagram of the metrical structure of the cycle that is a result of this proportional division of the cycle. The intent of the composer is that the four two-measure segments created by the divisions of the cycle discussed above be treated as a four beat pulsation pattern similar to that of common time in Western music. In this treatment of the pattern, each two-measure segment in the percussion parts is equal to one beat in 4/4. The 2:1 relationship discussed above results in irregular beat lengths that are: thirty-six sixteenth notes (beat one), eighteen sixteenth notes (beat two), eighteen sixteenth notes (beat three), and nine sixteenth notes (beat four). The progressively shorter beats result in a sense of accelerando through the cycle, despite a tempo that remains constant.
Example 24. Rhythmic Structure of the Cycle as Indicated by the Composer

The strong versus weak beat groupings of 4/4 that are used as inspiration for the metrical groupings are more for structural purposes of the rhythm/melody than for perception by the listener. The lack of accents or other musical techniques to differentiate these beats in the percussion part until the optional percussion instruments enter in the cycle that begins at rehearsal 7 makes perception of the accent pattern by the listener quite unlikely. After the forte downbeat of the cycle, the rest of the attack points in the cycle will be on the same instrument at the same dynamic until rehearsal 7. If these optional instruments are omitted from performance, the result is a cycle that from a timbre and dynamic standpoint remains consistent in the percussion instruments from its beginning to its end for the entirety of the composition. The lack of any kind of regular accent or emphasis, combined with the irregularity of beat placement that

124 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
results from the time signature changes, results in a pulse that is very difficult to distinguish by the listener.

To aid the listener in the perception of meter and of the pulse within the piece, the percussionist should make the first attack within each measure, which occurs on the downbeat, slightly stronger than any other attacks that occur within the measure. This will make the pickup to downbeat relationship much more obvious and help the listener hear the changing meters of the cycle. If the optional percussion instruments are included, the metrical progression will become clearer as the piece progresses, due to the systematic replacement of the byo with the drum-head percussion on the downbeat of each measure.125

Placement of the two attack points in each measure is very important to the previously mentioned macro-period of West, or Evening Song in Autumn. In Natsuda’s writings regarding this piece, he emphasizes the importance of the immobile downbeat and the mobile second attack point of each measure to the establishment of large-scale structure in the composition. In the original rhythmic cycle, the second attack point in each measure is placed on the last beat of the measure to serve as a weak beat pick-up note to the next measure. In a 3/2 measure the second note will occur on the third half note, for a 3/4 measure the second note will occur on the third quarter note, for a 3/8 measure the second note will occur on the third eighth note, and for a 3/16 measure on the third sixteenth note (Table 3).

125 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
Table 3. Strong and Weak Beat Placement in Meter Signatures Included in the Original Rhythmic Cycle

<table>
<thead>
<tr>
<th>Time Signature</th>
<th>Strong Beat</th>
<th>Weak Beat</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2</td>
<td>☞</td>
<td>☛</td>
</tr>
<tr>
<td>3 4</td>
<td>☞</td>
<td>☛</td>
</tr>
<tr>
<td>3 8</td>
<td>☞</td>
<td>☛</td>
</tr>
<tr>
<td>3 16</td>
<td>☞</td>
<td>☛</td>
</tr>
</tbody>
</table>

After the establishment of the placement of each attack point in the first two cycles, the second percussion attack point in each measure undergoes a systematic process of movement in regards to its placement within the measure from one cycle to the next. Starting with the beginning of the third cycle at rehearsal 2, the second attack point in each measure is moved forward by one sixteenth-note per rhythmic cycle until the rhythm of the measure becomes a retrograde version of that measure as it was presented in the first rhythmic cycle. At the point that retrograde is reached, the process is reversed to move the attack point later in the measure at the same rate until a return of the original rhythmic makeup of the measure is achieved. The amount of cycles necessary for completion of this process is different for each time signature. In a 3/2 measure this sixteenth note by sixteenth note transformation will take eight cycles to reach retrograde, and another eight cycles to return to the original rhythmic makeup. For a 3/4 measure it will take four cycles to reach retrograde, and another four to return to the original rhythm. In a
3/8 measure it will take two cycles to reach retrograde, and another two to return to the original format of the measure, and for a 3/16 measure is will take one measure to reach retrograde and one to return to the original. The result of this mobility process is a sixteen cycle macro-period that lasts from rehearsal 1 through the end of rehearsal 16 (Example 25).

Example 25. Sixteen Cycle Macro-Period of the Percussion

126 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
The sixteen cycle macro-period will restart at rehearsal 17 and continue until the end of the cycle that begins at rehearsal 32. In addition to serving as the beginning of the second macro-period, rehearsal 17 marks the midpoint of the piece as well as the beginning of the most active individual cycle in the composition in regards to the number of attack points in the percussion instruments. This second macro-period is characterized by a subtractive process that gradually deconstructs the rhythmic cycle until only one attack point remains in the rhythmic cycle beginning at rehearsal 32. After the high point of percussion activity is reached in the cycle at rehearsal 17, there will be a net loss of attack points in every cycle until rehearsal 32. From rehearsal 18 to rehearsal 24, each cycle has a net subtraction of one attack point from the cycle that begins at rehearsal 17, maintaining a total of seventeen attack points in each of these rhythmic cycles.

Beginning at rehearsal 25, there is a net subtraction of two attack points in each cycle from the number of attack points in the cycle that preceded it. In the cycle that begins at rehearsal 24, there are a total of seventeen attack points, and at 25, Natsuda subtracts two attack points to bring the total number of attack points in that cycle to fifteen. In each of the remaining cycles, the subtraction of two attack points per cycle continues until there is only one single strike on the ōdaiko remaining at rehearsal 32.

Alteration of Percussion Pitch and Timbre Utilizing the Optional Percussion Instruments

At rehearsal 7, Natsuda begins a systematic process that alters the pitch and timbre of the original percussion cycle by substituting the optional percussion instruments for the byo. The original statement of the cycle includes four instruments: two gongs, ōdaiko, and byo. In that original cycle the byo, much like the kakko in gagaku, serves as the time-keeper of the ensemble.
by performing both attack points in each percussion measure. The sole exception is the first note of each cycle, which is performed in unison by the gongs and ődaiko. These instruments are used exclusively until the beginning of the eighth cycle at rehearsal 7. At rehearsal 7 the ęyo begins to be systematically supplanted in its role as the primary time-keeper of the piece by gradually replacing it with the optional percussion instruments. In each successive cycle, one downbeat attack point will be replaced by an attack on one of the optional percussion instruments until the downbeat of every measure of the cycle is performed on one of the optional percussion instruments in the cycle beginning at rehearsal 14.

When the process of transformation begins at rehearsal 7, the ęyo attack that marks the beginning of the fifth percussion measure of the cycle is exchanged for a strike on the small optional percussion instrument, which divides the cycle into two four-measure halves. In the cycle that begins at rehearsal 8 the attack that marks the beginning of the third measure is replaced by a strike on the small optional percussion, and in the cycle beginning at rehearsal 9 the attack that marks the beginning of the seventh measure is replaced by a strike on the small optional percussion instrument. The result is that the two four-measure halves of the cycle are each then divided into two-measure halves whose beginnings are marked by strikes on the optional percussion instruments. At rehearsal 11 the downbeat of the second measure is replaced with an attack on the small optional percussion. At rehearsal 12 the downbeat of the sixth measure is switched from the ęyo to the small optional percussion. At rehearsal 13 the downbeat of the fourth measure is replaced by an attack on the small optional percussion. At rehearsal 14 the downbeat of the eighth measure is switched from the ęyo to the small optional percussion.
Once the downbeat of the eighth measure of the cycle is replaced by a strike on the optional percussion in the cycle beginning at rehearsal 14, the downbeat of each measure of the percussion part has been replaced by a strike on one of the optional percussion instruments.127 The result is a very clear definition of downbeat versus upbeat in which the downbeats will all be indicated by the optional percussion, while the weak beats in each measure will be performed on the \textit{byo}. The optional percussion instruments will maintain their role as the markers of the downbeat of each measure until the cycle that begins at rehearsal 26. At this point, the downbeats will begin to be subtracted from the cycle at a rate of one downbeat subtracted per rhythmic cycle, along with a less systematic subtraction of the second attack point in each measure. This process continues until the rhythmic cycles that begin at rehearsals 32 and 33, where the sole remaining attack points are the downbeat on the \textit{ōdaiko} that marks the beginning of each cycle. The attack points are a single stroke on the \textit{ōdaiko} at rehearsal 32 and as a roll on the \textit{ōdaiko} at rehearsal 33 to complete the composition.

\textbf{Meter and Rhythm in the Saxophone Part}

\textit{Gagaku} is largely based on previous musical repertoires of court music that were imported from China and Korea. The \textit{netori}, which is believed to be a uniquely Japanese addition to the court music imported from China and Korea, is a short warm-up piece used in a performance of \textit{gagaku} whose placement immediately follows the tuning of the ensemble and precedes the formal performance. One of the hallmark characteristics of a \textit{netori} is a lack of

127 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
emphasis on metrical synchronization between the melodic line and the rhythmic cycle of the percussion.128

Both wind and percussion parts are strictly controlled and improvisation is not used in \textit{gagaku}, but due to the lack of vertical alignment in a \textit{netori}, the aesthetic in this type of piece is one in which the music of the wind instruments sounds like an unstable free improvisation that occurs over a stable repeating percussion part. This aesthetic is very difficult to recreate within the realm of Western art music, largely because the Western notation system was designed to be used within a repertoire that traditionally values vertical alignment.

Natsuda’s choice to utilize a very similar aesthetic to the \textit{netori}, in which the saxophone and percussion rarely line up vertically, presents problems when using Western notation. To recreate the aesthetic within the Western notation system, Natsuda has written the percussion and saxophone parts in different meters that only come into alignment at rehearsal numbers 1, 9, 17, 25, and 33. This polymetric writing, which would not be used in \textit{gagaku}, is not visually reflected in the meter signatures of the score, in which both parts reflect the meter of the saxophone part for ease of performance.

The actual placement of bar lines in the percussion parts are indicated by brackets underneath the part for percussion group I (Example 26). As a result of the lack of metrical alignment in most of the piece due to the different meters of the saxophone and percussion, vertical alignment of attack points between the saxophone and percussion parts is uncommon. The primary exception to this occurs at points where the cycles of the saxophone and percussion come into alignment and both parts are briefly in the same meter, such as rehearsal 9 (Example

128 Harich-Schneider, “The Present Condition of Japanese Court Music,” p. 60.
Example 26 shows the first three measures of rehearsal 8, which marks the beginning of the second macro-cycle in the saxophone, as well as the first point in the composition after the original cycle that the meter signatures of the percussion and saxophone realign. As you can see in the example, five of the percussion attacks line up with the beginning of notes in the saxophone, which is exceedingly rare in this composition. As such, when the points of alignment do occur they should be emphasized by the performer.

Example 26. Indication of Percussion Bar Lines in the Score

The polymetric writing created by the differing time signatures of the saxophone and percussion is the result of a systematic reordering of the percussion cycle to create an eight measure macro-cycle in the saxophone part. To derive the reordered meters of the saxophone part, the succession of meters that makes up the original cycle in the percussion is treated much like a “row” in serial music, and is systematically reordered eight times to form an eight-cycle long macro-cycle that first occurs from rehearsal 1 through rehearsal 8. To form the macro-cycle, the primary “row” undergoes a process of meter exchange in which two measures in each

129 In all musical examples in this chapter fingering diagrams have been included above the pitches being examined when non-traditional fingerings or fingering techniques have been called for by the composer.
cycle will exchange places within the cycle. The process by which this is achieved is illustrated in Diagram 3.

In Diagram 3, the numbers on the left side of the diagram reflect the order of placement of each individual cycle within the macro-cycle of the saxophone. Each time signature in the cycle is represented in the diagram by a note duration that is equal to the length of one full measure in that time signature. The equivalencies between note duration and time signature are indicated in the key at the bottom of the diagram.

Cycle one in the diagram is the order of meters that was presented by the percussion in the first cycle of the composition, which is also the order of meters in the first cycle that includes the saxophone. The first metrical exchange occurs in the second cycle, in which the fourth and fifth meters of cycle one exchange their placement within the cycle to create cycle two. The third and sixth meters of cycle two are then exchanged to create cycle three. The second and seventh meters of cycle three are then exchanged to create cycle four. In cycle five the first and eighth meters of cycle four are exchanged to create a retrograde of cycle one. After the retrograde of the original cycle is reached in cycle five, the same process of exchange is undertaken in cycles six, seven, and eight to return to the original metrical ordering, which is indicated by the return of cycle one at the bottom of the diagram.
1. \(\circ \circ \circ \circ \circ \circ \circ \circ \) original cycle
2. \(\circ \circ \circ \circ \circ \circ \circ \) meters of diminishing length
3. \(\circ \circ \circ \circ \circ \circ \circ \) meters of alternating length
4. \(\circ \circ \circ \circ \circ \circ \circ \) meters of alternating length
5. \(\circ \circ \circ \circ \circ \circ \circ \) retrograde of cycle 1
6. \(\circ \circ \circ \circ \circ \circ \circ \) retrograde of cycle 2
7. \(\circ \circ \circ \circ \circ \circ \circ \) retrograde of cycle 3
8. \(\circ \circ \circ \circ \circ \circ \circ \) retrograde of cycle 4

Key

\(\circ \) is equal to one measure of 3/2 time
\(\circ \) is equal to one measure of 3/4 time
\(\circ \) is equal to one measure of 3/8 time
\(\circ \) is equal to one measure of 3/16 time

Diagram 3. Meter Exchange Within the Saxophone Part to Create an Eight-Cycle Macro-Cycle130

130 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
The eight-cycle metrical macro-cycle created in the saxophone part as a result of the process of exchange discussed above is repeated four times during the course of the piece, beginning at rehearsal numbers 1, 9, 17, and 25. The beginning of each macro-cycle is demarcated by a slight tempo change and by a stroke on both gongs and the ōdaiko, while the beginning of each individual rhythmic cycle within this macro-cycle will be marked by the striking of the ōdaiko and the smaller of the two gongs called for by the composer.

Once established, the metrical macro-cycle of the saxophone remains constant throughout the entire piece, with the exception of the third macro-cycle, which lasts from rehearsal 17 through the end of the cycle that begins at rehearsal 24. While the percussion parts remain metrically constant throughout this section, the meters of the saxophone cycle are systematically deconstructed by gradually breaking them down into smaller metrical units. This gradual deconstruction of the saxophone macro-cycle gives the effect of a gradual accelerando and increasing rhythmic activity that culminates at rehearsal 24, where all measures are reduced to the shortest measure length from the original cycle. This cycle consists of 27 measures of 3/16 with a consistent rhythm in the saxophone of ♫ in every measure of that cycle.

At rehearsal 25 there is a return to the original construction of the eight-measure cycle and eight-cycle macro-cycle of the saxophone part. Strict adherence to the metrical cycle and macro-cycle is maintained until rehearsal 30, where the composer reverses the process seen from rehearsal 17 to the downbeat of rehearsal 25, and gradually combines measures into larger metrical units with longer beats that gradually slows down the perceived progression of time to conclude the composition.
The metrical macro-cycle shown in Diagram 3 is highly unlikely to be perceived by the listener as such, but is even further obscured because the only cycle of each macro-cycle that starts at the beginning of the cycle is the first one. As is previously discussed, the saxophone part can be divided into four macro-cycles, and each of these macro-cycles uses a different process to determine the starting measure of each cycle within the macro-cycle. In Table 4, the composition has been divided into four separate tables, each of which represents one of the four macro-cycles. The left-most column of each table shows the rehearsal number that begins each individual cycle within the macro-cycle. The cycle from Diagram 3 that corresponds to each rehearsal number is shown in parenthesis in the left-most column immediately following the rehearsal number. When read from left to right, the other columns in the table indicate the measure numbers within the cycle and the reordering of those measures that has taken place within each macro-cycle.

The first macro-cycle, which lasts from rehearsal \[1\] to rehearsal \[9\], is characterized by a process in which the start of each individual cycle is shifted backward one measure from the cycle which it follows (Table 4). In the second macro cycle, which begins at rehearsal \[9\] and ends at rehearsal \[17\], the beginning of the cycle is shifted backward by three measures in each successive cycle. In the third macro-cycle, which begins at rehearsal \[17\] and ends at rehearsal \[25\], the beginning of the cycle is shifted five measures backward in each successive cycle. In the final macro-cycle, which lasts from rehearsal \[25\] to rehearsal \[33\], the beginning of each successive cycle will be shifted backward seven measures.

131 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
Table 4. Reordering of Macro-Cycle from Diagram 3

<table>
<thead>
<tr>
<th>Rehearsal (cycle 1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehearsal (cycle 2)</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Rehearsal (cycle 3)</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Rehearsal (cycle 4)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Rehearsal (cycle 5)</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rehearsal (cycle 6)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rehearsal (cycle 7)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rehearsal (cycle 8)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Rehearsal (cycle 1)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rehearsal (cycle 1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehearsal (cycle 2)</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Rehearsal (cycle 3)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rehearsal (cycle 4)</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Rehearsal (cycle 5)</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rehearsal (cycle 6)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Rehearsal (cycle 7)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 4. (cont.)

<table>
<thead>
<tr>
<th>Rehearsal (cycle 1)</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rehearsal (cycle 1)</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
The derivation of each individual rhythmic cycle from the original cycle and the subsequent reordering of each cycle is unlike anything seen in the traditional repertoire of gagaku, which will maintain a constant meter that is common to all instruments throughout. The process is in fact more similar to the pitch series rotations used by Karlheinz Stockhausen in Kruzspiel than to the structural organization of gagaku. By using a complex Western method of polymetric organization, however, Natsuda has arrived at the Japanese aesthetic of non-vertical alignment that is at the heart of the netori.

Tempo/Time

The importance of metrical structures within this piece has been discussed in great detail thus far, but the issue of how tempo fits into the larger structure of the piece has largely been ignored. The establishment and treatment of tempo is an integral part of compositions for the gagaku orchestra, and as such, the use of tempo by Natsuda must be addressed. Most pieces in the gagaku repertory utilize a temporal structure in which the tempo starts very slow and gradually speeds up throughout the composition with increased melodic activity to coincide with the increase in tempo. This plan of continuous accelerando does not hold true for the netori, which often abandons the general plan of accelerando throughout a piece.\(^{132}\) A netori is generally very slow, with fluctuating tempi and a rhythmic character in which less care is taken to create temporal alignment between the melodic instruments and the percussion instruments that accompany them.\(^ {133}\)

Neither of these temporal models are strictly utilized by Natsuda, who instead uses sudden tempo changes arranged in an arch shape in regard to temporal relationships. In this

\(^{132}\) Eugene Enrico, *Gagaku: the Court Music of Japan*, VHS.

\(^{133}\) Harich-Schneider, “The Present Condition of Japanese Court Music,” p. 60.
model, the composer utilizes sudden tempo changes at the start of every saxophone macro-cycle that get gradually faster until the midpoint of the piece. Once the midpoint is reached at rehearsal 17, which coincides with the beginning of macro-period two in the percussion, each subsequent tempo will be slightly slower than the one that preceded it (Diagram 5).

Like the very gradual accelerando of *gagaku*, the tempo changes in *West, or Evening Song in Autumn* are so small as to be nearly imperceptible to the listener. Natsuda begins the piece at a tempo marking of quarter note equals sixty beats a minute, then at rehearsal 9 suddenly speeds up to a tempo of quarter note equals sixty-nine beats a minute, followed at rehearsal 17 with a sudden change to a tempo of quarter note equals eighty beats a minute. These tempo changes that gradually accelerate to the midpoint of the piece are mirrored in the second half of the piece, which will use the same tempos in reverse order to slow down temporal motion until the conclusion of the piece. The final tempo change, which returns to a tempo of quarter note equals sixty beats a minute, is largely symbolic, as there is only one attack point in this cycle, which is a roll on the ōdaiko. This is the only time in the composition that a roll on the ōdaiko is utilized, and this is a technique that would not be common in *gagaku*.

![Diagram 5. Tempo Changes and Their Placement Within West, or Evening Song in Autumn](image-url)
Pitch Content

Yuasa’s *Not I, but the wind...*, which is one of the earlier works in the saxophone repertoire to incorporate musical characteristics from Japanese music, did so largely within the confines of the Western chromatic scale. In that piece, portamenti and pitches outside the chromatic scale were used sparingly. In the 1970’s the use of quarter-tones had not become a standard technique for saxophone performers, and this was significantly reflected in the repertoire, with certain exceptions such as Edison Denisov’s *Sonate for Alto Saxophone and Piano*. In the twenty-three years that passed between the composition of *Not I, but the wind...* and *West, or Evening Song in Autumn*, the use of quarter-tones and extended techniques became common-place techniques on the saxophone, and composers began to utilize quarter-tone inflections and other timbre effects on a regular basis. The similarities between the extended techniques now commonplace on the saxophone to the pitch manipulation techniques used on the *hichiriki* and various flutes of the *gagaku* orchestra have made it possible in recent years for composers to write pieces that utilize more obvious references to genres of traditional Japanese music that extensively utilize these types of effects.

It is important to note that there is a significant difference between the level of complexity of pitch material used by Natsuda in *West, or Evening Song in Autumn* and that used in *gagaku*. Microtonal inflections of pitch are very common in the music of *gagaku* as embellishments, but when a mode or scale is established in the introductory material of composition, usually within a *netori*, that mode will be maintained throughout the entire composition. Like *gagaku*, Natsuda uses extensive microtonal pitch embellishments and remains consistent in the use of the same pitch materials throughout the entire composition, but instead of a singular collection of pitches, Natsuda rotates through four unique pitch collections (Examples
29 and 30) that are all derived from the 24-pitch quarter-tone scale (Examples 27 and 28). For purposes of analysis of the derivation process within this paper, all scales will be discussed in concert pitch. In the accompanying diagrams, a version of each scale will also be provided that transposes the scales to B flat (written pitches of the saxophone part) to make it easier for performers to apply these concepts to the piece as they are preparing it.

The deriving process progressively condenses the pitch content of the twenty-four pitch quarter-tone scale to create an eleven-note scale, a nine-note scale, followed by a seven-note scale, and lastly a five note scale. All four scales retain the common tones of concert pitches B and F# (C# and G# in the transposed soprano saxophone part), which are also the drone pitches that are electronically sustained throughout the entirety of the work. The use of these two pitches as common tones within all four pitch collections provides a sense of cohesiveness to the scales, which will make the switches between scales unobtrusive to the listener. These pitches will generally be used as a melodic point of return throughout the work that provides a “tonic” without the establishment of a tonality or key, as well as a sense of harmonic “landing” when they come into unison or octave intervals with either of the drone pitches.

The eleven-note scale is exclusively utilized within 3/16 measures within the composition, and is labeled “false chromatic” by the composer due to its similarity to the chromatic scale in number of pitches and the intervals between those pitches. With the exception of two intervals of a three-quarter step, all intervals in this scale are half steps. The two intervals that are not a half-step occur between the first and second notes of the scale and the fifth and sixth notes of the scale. The result of the placement of these three-quarter steps is that the first half of the scale is primarily constructed of quarter-tone pitches, while the second half of the scale is made up of pitches from the Western chromatic scale (Example 29).
The nine-note scale is called *pelog* by the composer, which is a misnomer since the *pelog* scale used in the music of the *gamelan* is actually a seven-note scale.\(^\text{134}\) This nine-note scale used by Natsuda is derived from the eleven-note scale previously discussed, and will be applied exclusively to the 3/8 measures in the composition. Six pitches from the eleven-note scale will be retained as common pitches in the nine-note scale: B, C quarter-tone sharp, E quarter-tone sharp, F sharp, G, and A sharp. The remaining pitches of the scale are obtained by the simple act of condensing pitch material from the eleven-note scale. The D quarter-tone flat and the D quarter-tone sharp of the eleven-note scale are reduced to a single pitch, which is the D natural that equally splits the distance between the two notes. The D quarter-tone sharp and E quarter-tone flat will be reduced to D sharp in the same manner by evenly splitting the difference between the two pitches. The last remaining pitch of the scale is obtained by condensing the G sharp and A natural of the eleven-note scale to A quarter-tone flat, which evenly splits the intervallic distance between the two pitches (Example 29).

The seven-note scale, which is applied to every 3/4 measure in the composition, is labeled “false diatonic” by the composer as a result of its similarity to the Western diatonic scale in the inclusion of one pitch of each note name. This scale is created by reducing the pitch materials of the nine-note scale in the same manner that the eleven-note scale was reduced to create the nine-note scale. Three pitches will remain as common pitches between the nine and seven-note scales: B, C quarter-tone sharp, and F sharp. The D quarter-tone sharp of the seven-note scale is obtained by condensing the D natural to D sharp of the nine-note scale inward by a quarter-step. This same process is used to obtain both the G quarter-tone sharp and A quarter-tone sharp. The G quarter-tone sharp is created by condensing the G natural and A quarter-tone sharp.

flat of the nine-note scale inward, and the A quarter-tone sharp is created by condensing the A quarter-tone flat and A sharp inward. The only note that is not derived either by common tone or by condensing pitches from the nine-note scale is the E natural, which is created by the lowering of the E quarter-tone sharp from the nine-note scale by a quarter-step (Example 29).

The five-tone scale is applied to every 3/2 measure in the composition, and is referred to as slendro by Natsuda due to the similarity that the scale bears to the five-note slendro scale used in gamelan music. While the exact tuning of the slendro scale varies from ensemble to ensemble in gamelan135, the general intervallic content is very similar to that used by Natsuda. The five-note scale as used by Natsuda is derived from the seven-note scale in the same way in which that scale was derived from the nine-note scale. As can be seen in Example 30, the concert B and F\# as written in the saxophone part are retained from the seven-note scale. The D quarter-tone flat is derived from the seven-note scale by splitting the difference between the second and third notes of that scale. The A quarter-tone flat is derived in the same manner—evenly splitting the difference between the G quarter-tone sharp and A quarter-tone sharp that occur in the seven-note scale. The last note of this pentatonic-like five-note scale is E quarter-tone flat, which is arrived at by lowering the E natural from the seven-note scale by one quarter-tone (Example 29).

135 Malm, Music Cultures of the Pacific, the Near East, and Asia, pp. 54-55.
Example 27. Quarter-Tone Scale in Concert Pitch From Which all Four Scales Used in the Saxophone Part are Derived

Example 28. Example 27 Transposed to B flat

Example 29. Scales Used to Derive Pitch Materials of the Saxophone in Concert Pitch
Example 30. Scales Used to Derive Pitch Materials of the Saxophone transposed to B flat

Deviation from the scale assigned to each measure is rare on primary melodic pitches within this composition, only occurring in sixteen total instances. Eleven of those deviations occur on individual melodic pitches, while five of the deviations occur within multiphonics. Five of the deviations are notes that do not occur in any of the four scales used in the composition, and the other six deviations are taken from a closely related scale in Example 30 that is adjacent (either directly above or directly below) to the scale in use for the measure in which the multiphonic occurs.

136 Masakazu Natsuda, email of August 4, 2011 to Christopher Bryant Anderson in response to questions posed to the composer regarding the principles of construction utilized in the piece. The original document is unpublished and a copy is in the present writer’s collection.
When multiphonics appear in the composition, Natsuda has constructed them primarily using notes from the source scale for that measure, but in five instances there is one pitch of the multiphonic that does not belong to the source scale in use for that measure. When a note from outside the scale assigned to that measure is used as part of the multiphonic, in every instance except one it is the top note of the multiphonic that does not belong to the scale associated with that measure. In these cases, the note in question does not belong to any of the four scales used in the composition. The single exception is measure seven of page thirteen (Example 31). In this example, the multiphonic is part of a 3/4 bar, and the A sharp used as the bottom note of the multiphonic is the note taken from outside of the scale assigned to that measure. This note is instead borrowed from the eleven-note scale used for the 3/16 bars.

![Example 31. Scale Use Within Multiphonics](image)

Example 31. Scale Use Within Multiphonics

The switch between scales is largely imperceptible to the listener, unlike a key change in Western music. This is due to the fact that in many cases only two notes of each scale are presented in any one measure, which does not present enough pitch material to firmly establish a predominant scale or key. When this lack of pitch material in each individual measure is combined with the frequent meter changes that result in a change of scale in nearly every measure, the result is a piece in which no one scale is aurally established as the predominant

All musical examples in this chapter in which no clef is included utilize the treble clef unless otherwise indicated.
source of pitch material. As such, the listener’s focus is instead drawn to the shifting timbres of the saxophone and the use of the drone pitches as a melodic point of return rather than the tonal harmony based melodic system seen in Western music.

Pitch Inflections

The use of *meri-kari* (“down-up”) fingerings in *gagaku* is very common, just as it is in the music of the *shakuhachi* that was discussed in chapter 1.\(^{138}\) The technique of slowly raising or lowering the fingers has a profound effect on pitch on both the *hichiriki* and the *ryûteki*, which makes the use of changes in instrument angle like those used on the *shakuhachi* less important to the creation of microtones, portamenti, and other pitch inflections on these instruments. Natsuda asks the performer to utilize this approach of using fingerings to create microtones, but changes in embouchure and airstream will be necessary to create portamenti.

In *West, or Evening Song in Autumn*, the role of a pitch as an embellishment or structural melodic pitch is indicated by the font size used for that note in the score. Melodic pitches are indicated with a standard-sized font, while embellishment pitches such as portamenti and grace notes are indicated by the use of a smaller font similar to that used to notate grace notes in Western music. The performer should be careful not to change dynamics and de-emphasize these pitches when they occur, as they are no less important to the aesthetic of the piece than the melodic notes to which they are attached. Melodic notes and the pitch inflections that embellish them are combined into melodic gestures whose boundaries are indicated by slurs that function as phrase marks. The composer indicates that both melodic and embellishment pitches grouped

under these slurs are to be performed as if they are one note, with articulation that only occurs on the first note of each gesture.

There are two types of pitch embellishments that are utilized in the score. The first of these embellishments is similar to the Western grace note in many respects, and should be treated as an embellishment of the note to which it is linked by slur. Like the Western grace note, these notes predominantly approach or depart the melodic pitch to which they are attached in a stepwise manner from above or below and should be played smoothly without a break in the sound. Grace notes that precede the melodic pitch to which they are attached should be placed before the beat so that the melodic note occurs at the point in the measure indicated by the notated rhythm. In Example 32, the G#4 is embellished by a pair of grace notes that depart the melodic pitch. The second grace note figure used in this example is a single grace note figure which is comprised of a D quarter-tone sharp that approaches C# from above.

![Example 32. Grace Note Pitch Embellishments](image)

Pitch materials for the grace notes in the 3/8 and 3/16 measures are exclusively drawn from the scales that are assigned to those time signatures, with the only exception coming in the 3/8 measure that is the second measure of rehearsal 18, or third measure of page eleven. In this
measure, an E and D# are used as embellishments of the D quarter-tone sharp tied over from the previous measure (Example 33). This usage of D# is highly unusual within the composition because D# is one of the few notes not used in any of the four scales used as source material.

Unlike the 3/8 and 3/16 time signatures, the 3/2 and 3/4 time signatures have a great deal of grace notes that deviate from the scale assigned to those time signatures. Generally, these notes will be taken from the scales listed in Examples 29 and 30 that contain more pitches than the scale assigned to that particular measure. For example: when pitch materials in a 3/2 measure do not conform to the scale associated with that time signature, the additional pitch materials are drawn from the scales associated with the 3/4, 3/8, and 3/16 time signatures, whereas the 3/4 measures will generally draw their additional content from scales assigned to the 3/8 and 3/16 measures. Until the final three percussion cycles, the grace note pitches that are taken from outside the scale assigned to a given measure are only taken from the Western chromatic scale, instead of from the quarter-tone scale that is the source of melodic pitch content.

Example 33. Grace Notes Taken From Outside of the Scale Assigned to a Given Time Signature
Grace notes in this composition generally move by second or third to and from the note to which they are attached, and there are very few examples that deviate from this rule. The exceptions to this rule use the intervals of a fourth, fifth, and sixth between the grace notes and melodic notes to which they are attached. In all of these examples within the piece, the grace note is either a duplication of the note that precedes it or a neighbor tone to the note that precedes it (Example 34). In Example 34, the C grace note is paired with an E quarter-tone flat a sixth away. In this instance the C is a duplication of the final melodic pitch in the previous 3/16 measure.

In the final three cycles, the intervals between the grace notes and melodic notes increase exponentially as Natsuda utilizes octave displacement of the grace notes to transform the smaller intervals of the second and the third into the large leaps that occur between the grace notes and the melodic notes of the saxophone part (Example 35). In Example 35, the D quarter-tone sharp is paired with the F quarter-tone sharp. When reduced within a single octave, these two notes are only a third apart, like many of the previous grace note figures in the composition. The octave displacement that is used in this figure, and in many more like it in the last few rehearsal numbers, is used to further the effect of melodic deconstruction that occurs in the second half of the composition as a result of the gradual elimination of melodic material and the increasing importance that silence plays in the second half of the piece. Not only is material being eliminated, but the cohesiveness of that remaining material is largely eliminated by the disjunct melodic character created by the octave displacement used not just in the grace note figures, but also between neighboring melodic units, which will often be in different registers (Example 36).
The second type of pitch inflection used in this piece is the portamento. In many ways, this technique is more important to the successful recreation of the musical characteristics of gagaku melody than the grace note figures previously discussed. This is because the gagaku
flutes frequently use portamenti to embellish the melodic line that is presented by the *hichiriki* to create the heterophonic texture common to *gagaku*. While the duo element has been eliminated from this piece due to the solo nature of the work, the portamenti do not lose their importance as embellishments of the melody. They are very successful at reproducing the melodic characteristics of *gagaku*, and when the saxophone comes into close proximity to the drone pitches they serve as a source of dissonance similar to that produced by the heterophonic embellishments of the *gagaku* flute. These portamenti are indicated by Natsuda in a manner similar to the way that they would be in Western music. The composer uses a straight line to connect the beginning and ending note of the portamento. Like the grace notes previously discussed, the composer uses two different font sizes: a larger font to indicate melodic pitches and a smaller font to indicate pitches that function in an embellishing capacity.

There are two treatments of the portamento within this piece. The first is a portamento that moves in the same direction as the next melodic pitch. This type of portamento should be played as a single gesture and as smooth as possible between the starting and ending pitch (Example 37). The second type of portamento is one in which the portamento moves in the opposite direction of the next melodic pitch (Example 38). This type of portamento results in a leap from the end of the portamento to the next melodic pitch. When this is the case, the performer should not attempt a smooth transition between the two melodic pitches. The end of the portamento should be cut off abruptly in a manner similar to the cutting tones used in the works of Ryo Noda, which will create space between the end of the portamento and the next pitch.

In a large number of the portamenti used in this piece, including those shown in Examples 37 and 38, the distance covered between the two notes of the portamento are as small
as a quarter-tone. In instances such as this, when such a small distance is covered by a portamento, the performer must be very careful in the treatment of their vibrato, both before and after the portamento. If the performer is making use of a non-Western vibrato with wide amplitude such as that suggested by the composer, the result is that the portamento can be obscured by the vibrato. To ensure that the integrity of the portamento is not compromised by the vibrato, the performer should either narrow the amplitude of the vibrato or end the vibrato far enough before the execution of the portamento that there is a clear distinction between the vibrato and portamento.

Example 37. Portamento Moving to a Melodic Pitch

Example 38. Portamento Moving in Opposite Direction of Next Melodic Pitch

As previously discussed, the dissonances that are very common to *gagaku* as a result of the imperfect unisons between the *hichiriki* and various flutes are largely lost as a result of the
solo nature of the work. Dissonances are noticeable between the saxophone and drone pitches in instances when the saxophone is holding dissonant intervals, but these are most evident when the saxophone solo line comes into close proximity to the drone pitches as a half-step or quarter-step. Due to the importance that the imperfect unisons or octaves play in the music of gagaku, the saxophonist should emphasize these small interval dissonances when they occur, particularly as part of a portamento such as that shown in Example 38 between the C# and D quarter-tone sharp. To emphasize these dissonances, it is important that the portamenti are made as long as possible while still respecting the notated rhythms, despite the fact that in most cases the portamenti generally move by very small intervals. There are only five intervals that are connected via portamenti in this piece: the quarter-step, half-step, three quarter-step, whole-step, and a step and a quarter. There are 239 portamenti used in this composition, and the composer primarily uses the quarter step and three quarter step. One hundred and forty six of the portamenti were a quarter-step or less, and fifty three are a three quarter-step. The use of these intervals to form the portamenti in most cases results in the movement from a Western chromatic note to a note from the quarter-tone scale, and generally avoids the half-step based pitch system used in Western music.

The purity of tone on the soprano saxophone is often lost in the creation of a portamento due to the changes in embouchure and air pressure needed to produce the effect. This is particularly true in the middle to lower range of the instrument, and many performers might prefer to execute a quick portamento at the conclusion of the note because these are easier to control than a slow portamento. This is contrary to the manner in which portamenti and pitch bends would be performed in the music of gagaku, where the portamenti would be musically accentuated by drawing them out longer from a durational standpoint.
The fingerings that are used to create the microtonal shadings of pitch on the hichiriki and various flutes create changes in timbre, just as they do on the shakuhachi. As such, when these changes happen on the saxophone when using non-traditional fingerings, they should be embraced by the performer, who should not concern themselves with consistency of timbre in the manner that they would in the standard repertoire for the instrument. These changes in timbre on the saxophone are often accompanied by increased resistance that changes the dynamic of the note. Dynamic change in the process of using non-traditional fingerings is not the intent of the composer, and adjustments should be made by the performer in regards to airstream to compensate for the changes in dynamic that may result from these fingerings so that there is not a disruption to the continuity of the melodic line. In most cases, the composer has indicated if embouchure alterations are necessary for the creation of a particular note or effect by the use of the notational symbols shown in Example 39. The notations shown in Example 39 indicate three combinations of embouchure and airstream alteration that the composer has deemed necessary to the creation of certain microtones and portamenti. Symbol number one in Example 39 indicates when alteration of embouchure alone is necessary to create the desired portamento. The shape of the symbol indicates the manner in which the saxophonist is to alter their embouchure to create the desired effect. When the two slur markings are close together at the beginning of the notation it represents the normal embouchure of the saxophonist, which then loosens in the middle of the portamento while the performer begins to slowly change to the fingering of the next note, before returning to a normal embouchure when the performer arrives at the fingering of the next pitch. The arrows in notation symbols two and three indicate when changes in airstream are required. When the arrow is pointing forward in the music, as in symbol two, the performer is to increase the air pressure to avoid losing the continuity of sound on a portamento as the instrument
becomes more resistant to sound production with certain fingerings. When the arrow is pointing backward, as in symbol three, the performer is to reduce air pressure to prevent the pitch at the end of the portamento from popping out of the texture.

Example 39. Notational Symbols Used to Indicate When Embouchure Alteration is Necessary to Create a Pitch or Portamento

Dynamics

Perhaps the most important aspect to take into consideration when performing this work is the use of dynamics in a manner that would be consistent with gagaku. In traditional court music, like that of the shakuhachi, very little information regarding dynamics is communicated to the performer through notation. This is not to imply that the music is void of dynamic contrast. In fact, one of the primary characteristics of gagaku is constant dynamic motion. As such, notes in West, or Evening Song in Autumn should never be allowed to stagnate dynamically. Constant dynamic motion should be the ideal striven for by the performer.

Natsuda has taken a traditional approach to dynamics and not included much in the way of notation to indicate dynamics to the performer, but has indicated in the notes preceding the score that dynamics should be added to supplement those indicated by the composer. While dynamic motion is constant within the music of gagaku, large dynamic changes that occur suddenly were not observed by the present author in the study of that repertoire. As such, when applying non-notated dynamic changes to the piece, the performer should keep any changes
subtle enough that they do not detract from the overall atmosphere of the piece or detract from the ensemble cohesiveness that should always be present between the saxophone, drone, and percussion. There are instances where sudden large dynamic changes are called for by the composer, and these will become more frequent as the piece progresses and will generally be linked to the large leaps in tessitura that occur as the melodic line becomes more fragmented.

Phrasing

Phrasing in a piece of this manner, which does not draw its inspiration from the Western concepts of phrase structure presents a great deal of problems for the Western performer. In a typical *gagaku* composition, Eta Harich-Schneider states that the music moves in long regular phrases that subsequently increase in rhythmic intensity as the piece progresses.\(^{139}\) While the composer has kept the rhythmic cycle regular in length as it would be in *gagaku*, the musical phrases in the saxophone part do not retain the same regularity. In fact, phrase length will seem largely unpredictable to the listener, and at times phrases will be so long as to require circular breathing from the performer. The composer has provided breath marks in the score that reflect the phrasing and help establish melodic continuity by linking together related musical ideas. The performer should observe these breath marks, and generally not breathe within slurs, as the notes within these slurs are to be treated as if they are one gesture musical gesture. Most phrases or musical ideas will include one or more of the drone pitches, either at the midpoint of the phrase or at the end points of the phrase indicated by the breath marks. When this is the case, the performer should treat these as goal points within the phrase, which will give the listener an aural “anchor” to prevent them from getting lost in the long, irregular melodies presented by the composer.

CHAPTER 3
CONCLUSION

While this document is not an exhaustive study of the ever-increasing body of music that incorporates Japanese musical aesthetics into the saxophone repertoire, the preceding chapters provide saxophonists with a performer’s guide to two of the more important works within this body of music. The aesthetic concepts that have been examined in connection with those compositions can be universally applied to other works that use the music of gagaku and shakuhachi as their impetus, and provides saxophonists a reference resource to utilize in the performance of compositions influenced by the traditional music of Japan.

The incorporation of Japanese musical aesthetics into Western art music has been undertaken in a variety of forms since the early 1970’s. As previously discussed, some of these were merely superficial imitations that did not truly make a significant contribution to the efforts to bring the two musical traditions together. Many composers, such as Joji Yuasa and Masakazu Natsuda, made a concerted effort to integrate the two musical traditions so that the Japanese elements are obvious to the observer, but enough of the Western compositional style is maintained that the pieces are easily understood by Western audiences. One of the primary ways in which this was done in both pieces examined in this document was through the concept of pitch centricity. Both composers used the idea of a “tonic” or central pitch, whether it be local or global, to give the listener an aural anchor and point of reference to aid them in their comprehension of the work.

While the two composers examined in this work undertook the transfer of Japanese characteristics to the Western concert repertoire in two very different ways, their success in doing so is undeniable. Yuasa’s application of the meandering melodic character of honkyoku
made the influence of the *shakuhachi* obvious despite the lack of many of the microtones and portamenti that are characteristic features of that repertoire, and opened the door for later composers, who would make use of these extended techniques extensively as they became more common on the saxophone.

Natsuda, on the other hand, brought a level of pitch and structural complexity to *West, or Evening Song in Autumn* unlike that ever seen in the repertoire which he was using as inspiration, but in so doing arrived at an aesthetic that is at the very heart of *gagaku*. His use of an eight-measure cycle and the timbral and pitch manipulations common to *gagaku* makes his references to that genre obvious, but the metric complexity and virtuosity of the work make the work appealing to even the most progressive of Western concert audiences.

As can be seen in the previous chapters, a great deal of the success of these works can be attributed to the choice by the composer to utilize the saxophone as the solo instrument. The tonal flexibility of the saxophone is unlike that of most Western instruments, and has made it a staple in music ranging from classical to rock and roll. The ease of pitch and timbre manipulation, as well as the familiarity of modern saxophonists with extended technique production has made the transition into compositions influenced by non-Western music an easy one. This is largely due to the saxophone’s ability to reproduce most of the timbral and pitch manipulations common to the flutes and reed instruments of Japanese music in a way that no other Western instrument is able to do. The saxophone is capable of producing timbres ranging from the pure sound sometimes used on the *shakuhachi* and other Japanese flutes to the nasal and reedy tone quality that is characteristic of the *hichiriki*, and can produce effects like hole slaps, slap tongues, and portamenti with ease. The comfort that many saxophonists feel in this repertoire ensures the continued expansion of the repertoire of pieces that incorporate traits of
non-Western music into Western concert music. As such, a future all-encompassing study beyond the scope of the current document will be necessary to provide saxophonists with an encyclopedic source of how to approach music of this nature.
BIBLIOGRAPHY

