Iron is an important element in the formation of solids in space. Spectroscopic observations of interstellar iron show that its atomic gas-phase abundance is strongly depleted with respect to that of hydrogen. In contrast, sulfur is mostly found in the gas phase in low-density regions of interstellar space, but is highly depleted in regions of star- and planet formation. Furthermore, the dominant source of sulfur in our solar system is solid FeS, as found in primitive meteorites, implying an efficient chemical pathway to convert sulfur or sulfur containing compounds into solid FeS during the (early phases of) the star formation process. We address the evolution of iron and sulfur in space on a molecular level by studying metal nanoclusters and their interaction with ligands using IR action spectroscopy. Clusters are formed through laser ablation of solid precursor materials and brought into a molecular beam environment. Complexes with ligands are obtained by directing the beam through a reaction channel containing low-pressure reactant gas. Mass-selected IR action spectra are recorded by irradiating the clusters using the Free Electron Laser for Infrared eXperiments (FELIX). Experimental spectra are then compared with DFT predictions which enables us to determine the structure of the selected cluster and its binding interactions with ligands. As part of this project, we here present IR action spectra of size-selected Fe clusters and the chemically closely related Co clusters, and their complexes with relevant ligands.