Oscillator Strengths and Predissociation Rates for $W - X$ Bands and the $4p5p$ Complex in $^{13}\text{C}^{16}\text{O}$ and $^{12}\text{C}^{18}\text{O}$

M. Eidelsberg, J.L. Lemaire (Obs. de Paris), S.R. Federman (U. of Toledo), G. Stark (Wellesley), A.N. Heays (Leiden), L. Gavilan (Obs. de Paris), J.R. Lyons (ASU), P.L. Smith (Retired), N. de Oliveira, and D. Joyeux (SOLEIL)

This research was supported by grants from NASA and CNRS-PCMI program
Outline

Background
New Results from SOLEIL
Summary
Background

• CO observed in many astronomical environments
 – Diffuse and dark, molecular interstellar clouds
 – Circumstellar shells of asymptotic giant branch stars and planetary nebulae
 – Circumstellar disks around newly formed stars
 – Comets and planetary atmospheres

• Experimental data for photochemical models, including those for the Solar Nebula
 – Electronic transitions (ultraviolet)
 – Oscillator strengths
 – Predissociation rates
SOLEIL Experiments

- DESIRS beamline with a VUV FTS at SOLEIL Synchrotron
SOLEIL Experiments

• The FTS (de Oliveira et al. 2009, Rev. Sci. Instru., 80, 043101; de Oliveira et al. 2011, Nature Photonics, 5, 149)
 – Resolving power as high as 750,000 (here we used 350,000)
 – Based on wave front division instead of amplitude division
 – Relies on modified bimirror configuration requiring only flat mirrors
 – Path difference scanning through translation of one reflector
SOLEIL Experiments

- Need calibration band: use $B - X (0,0)$
 - This band is isolated
 - For $^{12}\text{C}^{16}\text{O}$, its band f-value is well characterized (with weighted uncertainty of 7%)
 - For $^{13}\text{C}^{16}\text{O}$ and $^{12}\text{C}^{18}\text{O}$, close-coupling model of interaction between $B \, ^1\Sigma^+$ and $D' \, ^1\Sigma^+$ indicates f-value varies less than 1.7% among isotopologues (Stark et al. 2014, ApJ, 788, 67)

![Graph of B-X (0-0) band](image)

SOLEIL Experiments

- $W - X$ bands [see Alan Heay’s presentation on (1,0) bands]
SOLEIL Experiments

- $W - X$ bands (cont.)
 - f-values consistent with earlier determinations, regardless of spectral resolution, because predissociation rates large
 - Agreement found with earlier predissociation rates, but now see J-dependence
 - For (0,0) and (3,0) bands, also see differences for e- and f-parity levels
SOLEIL Experiments

- *W – X bands (cont.)*

<table>
<thead>
<tr>
<th>Isotopologue/Band</th>
<th>f-value ($\times 10^3$)</th>
<th>Predissociation Rates (10^{11} s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>e parity</td>
</tr>
<tr>
<td>12C$_{16}$O$_a$ (0,0)</td>
<td>14.3(1.1)</td>
<td>0.09(0.02)+0.019(0.001)x</td>
</tr>
<tr>
<td>13C$_{16}$O</td>
<td>12.67(0.82)</td>
<td>0.220(0.060)+0.011(0.001)x</td>
</tr>
<tr>
<td>12C$_{18}$O</td>
<td>13.94(0.86)</td>
<td>0.226(0.021)+0.0147(0.0004)x</td>
</tr>
<tr>
<td>12C$_{16}$O$_a$ (2,0)</td>
<td>28.9(2.1)</td>
<td>1.12(0.05)+0.010(0.001)x</td>
</tr>
<tr>
<td>13C$_{16}$O</td>
<td>27.14(1.72)</td>
<td>0.472(0.043)+0.0067(0.0011)x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+[9.4(0.6)]10^{-5}x2</td>
</tr>
<tr>
<td>12C$_{18}$O</td>
<td>26.40(1.63)</td>
<td>0.644(0.004)+0.00170(0.00087)x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+[5.27(0.35)]10^{-5}x2</td>
</tr>
<tr>
<td>12C$_{16}$O$_a$ (3,0)</td>
<td>19.2(1.4)</td>
<td>2.07(0.10)+0.046(0.002)x</td>
</tr>
<tr>
<td>13C$_{16}$O</td>
<td>15.92(1.02)</td>
<td>1.998(0.064)+0.1500(0.0028)x</td>
</tr>
<tr>
<td>12C$_{18}$O</td>
<td>18.10(1.12)</td>
<td>1.70(0.06)+0.164(0.004)x</td>
</tr>
</tbody>
</table>
SOLEIL Experiments

• Results for Rydberg Complexes
 – f-values and predissociation rates again similar to values in earlier work, largely because rates very large
 – See evidence for $\Pi^1\Pi (0,0)$ band as additional lines in the spectrum of the P branch for the $5p\pi^1\Pi (0,0)$ band
 – In R branch of the $5p\pi^1\Pi (0,0)$ band in $^{13}\text{C}^{16}\text{O}$ see additional lines attributed to $4p\sigma (2,0)$ band
 – Unlike $^{12}\text{C}^{16}\text{O}$, no continuum absorption seen
 – Sums of f-values among bands within $4p5p$ complex for the three isotopologues are comparable
SOLEIL Experiments

- Results for Rydberg Complexes (cont.)
Summary

- VUV FTS allows us to extract data on individual bands, including predissociation rates that vary with J
- Detailed analysis of $W – X$ (1,0) bands in next talk
- Summed oscillator strengths for $4p5p$ complex consistent with results on $^{12}\text{C}^{16}\text{O}$