A comprehensive intensity study of the ν_4 torsional band of ethane

JALAL NOROOZ OLI AEE, NASSER MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada; IRVING OZIER, Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; KEEYOON SUNG, Jet Propulsion Laboratory, Science Division, California Institute of Technology, Pasadena, CA, USA; TIMOTHY J CRAWFORD, LINDA BROWN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; EDWARD H WISHNOW, Space Sciences Laboratory and Department of Physics, University of California, Berkeley, CA, USA; V. MALATHY DEVI, Department of Physics, College of William and Mary, Williamsburg, VA, USA.

The torsional spectrum of C$_2$H$_6$ has been investigated from 220 to 330 cm$^{-1}$ to measure the intensity of the fundamental and the first torsional hot band needed for atmospheric studies of Titan. Several spectra were measured at resolutions of 0.01 and 0.02 cm$^{-1}$ using the JPL Bruker IFS-125 coupled to a coolable multi-pass absorption cell originally developed at University of British Columbia.a Spectra were recorded at several temperatures from 293 K to 166 K, with the lower temperatures relevant to the stratosphere of Titan. Because this spectrum is very weak, a long absorption path of 52 m was used along with substantial sample pressures from 35 to 255 Torr. Intensities were analysed using a quantum mechanical model reported previously.b The torsional fundamental of C$_2$H$_6$ is observed in the CIRS spectra of Titan. Line parameters for the torsional bands are required for accurate characterization of spectral features of Titan’s far-infrared region. The current study should lead to a better understanding of the methane cycle in planetary atmospheres and permit the identification of the other molecular features in the CIRS data.c

cResearch described in this paper was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology under contracts and cooperative agreements with the NASA. The data were obtained using NASA’s OPR Grant awarded to the College of William and Mary. The research conducted at the University of Calgary is supported by the Canadian Space Agency.