The rotational spectra for hydrazoic acid (HN$_3$), its isotopologues, and its vibrational satellites have been reexamined using millimeter-wave rotational spectroscopy in the range of 240-360 GHz. Treating sodium azide (NaN$_3$) or the commercially available singly 15N-labeled NaN$_3$ with phosphoric acid or deuterated phosphoric acid yielded 6 different isotopologues. From these samples, we were also able to observe all of the isotopologues containing one additional 15N at natural abundance. In total, we assigned rotational transitions to 14 different species; only H15N$_3$ and D15N$_3$ were not accessible. With the large number of rotational constants determined for these isotopologues, an excellent equilibrium structure determination was performed with CFOUR’s xrefit routine. This structure shows a bent azide sub-unit, and is in excellent agreement with the geometry optimization performed at the CCSD(T)/ANO2 level of theory. The Coriolis perturbation of the ground and first two vibrationally excited states of HN$_3$ will also be discussed.