ROTATIONAL SPECTRUM OF \(\text{SO}_3 \) AND THEORETICAL EVIDENCE FOR THE FORMATION OF ROTATIONAL ENERGY LEVEL CLUSTERS IN ITS VIBRATIONAL GROUND STATE

DANIEL S UNDERWOOD, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom; SERGEI N. YURCHENKO, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom; JONATHAN TEN-NYSON, Department of Physics and Astronomy, University College London, London, IX, United Kingdom; PER JENSEN, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.

The structure of the purely rotational spectrum of sulphur trioxide \(\text{SO}_3 \) is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an \textit{ab initio} dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called rotational energy clusters at high rotational excitation are investigated. The \(\text{SO}_3 \) molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S–O bonds. This behaviour is characterized theoretically in the \(J \) range from 100 through 250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.