DIRECT OBSERVATION OF b_2 VIBRATIONAL LEVELS IN THE $^1B_2 \tilde{C}$ STATE OF SO$_2$: PRECISE MEASUREMENT OF ν_3 LEVEL STAGGERINGS

BARRATT PARK, JUN JIANG, CARRIE WOMACK, PETER RICHTER, ROBERT W FIELD, Department of Chemistry, MIT, Cambridge, MA, USA; ANDREW RICHARD WHITEHILL, SHUHEI ONO, Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA, USA.

The $^1B_2 \tilde{C}$ STATE OF SO$_2$ has been the subject of extensive investigation because it is important in the atmospheric photodissociation of SO$_2$. The state has a double-minimum potential in the dissociation coordinate, ν_3, arising from vibronic interactions, leading to a staggering of vibrational levels with ν_3 odd vs. even. We report the first direct observations of the ν_3 fundamental and of other levels with b_2 vibrational symmetry (odd ν_3). Our work has made use of LIF, IR-UV double resonance, and coherent MODR techniques. Implications of the precision measurement of ν_3 staggerings to the determination of double-minimum potential barrier and to vibronic coupling will be discussed.