MEASUREMENT OF THE LOWEST MILLIMETER-WAVE TRANSITION FREQUENCY OF THE CH RADICAL

STEFAN TRUPPE, Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, United Kingdom; RICHARD JAMES HENDRICKS, Department of Physics, Imperial College London, London, United Kingdom; ED HINDS, MICHAEL TARBU TT, Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, United Kingdom.

The CH radical is an important constituent of stellar atmospheres, interstellar gas clouds and is of fundamental importance to interstellar chemistry. Furthermore, it offers a sensitive way to test the hypothesis that fundamental constants measured on earth may differ from those observed in other parts of the universe\(^a\). Here, we present a measurement of the lowest millimeter-wave transition of CH, near 535 GHz, with an accuracy of 0.6 kHz\(^b\), an improvement of nearly two orders of magnitude compared to the previous best rest frequencies. We drive the millimeter-wave transitions using the 54th harmonic of a frequency synthesizer phase-locked to a 10 MHz GPS frequency reference. Using ALMA this transition has recently been observed in the absorber PKS 1830-211 at a redshift of \(z = 0.89\)\(^c\). As pointed out by de Nijs et al.\(^d\) a very robust and sensitive means to search for variations in fundamental constants could be obtained by observing the lowest millimeter-wave transition of CH along with the two \(\Lambda\)-doublets at 3.3 and 0.7 GHz, all from the same interstellar gas cloud.

\(^a\)S. Truppe et al., *Nature Communications* 4, 2600, 2013
\(^c\)S. Muller, *private communication*, 2013
\(^d\)*de Nijs et al., *Physical Review A* 86, 032501, 2012