ANALYSIS OF THE ROTATIONAL STRUCTURE IN THE HIGH-RESOLUTION IR SPECTRUM OF trans-
HEXATRIENE-3-d1

NORMAN C. CRAIG, YIHUI CHEN, Department of Chemistry and Biochemistry, Oberlin College, Ober-
lin, OH, USA; THOMAS BLAKE, Chemical Physics, Pacific Northwest National Laboratory, Richland, WA,
USA.

For use in determining the semiexperimental structure of trans-hexatriene, its 3-d1 isotopologue has been synthesized and the high-resolution (0.0015 cm-1) IR spectrum has been recorded. The rotational structure in four C-type bands has been analyzed. These bands are for ν_{26} at 997.4, ν_{28} at 908.8, ν_{29} at 902.2, and ν_{32} at 678.6 cm-1, which are all out-of-plane modes. Ground state rotational constants are $A_0 = 0.7952226(8)$, $B_0 = 0.0446149(7)$, and $C_0 = 0.0422661(4)$ cm-1. The inertial defect is –0.2009 amu Å2, which confirms planarity for this molecular species. The ultimate intent of this investigation is to evaluate the degree to which the “=C” bonds are lengthened and the sp2–sp2 “C–C” bonds are shortened in comparison with localized bonds and with butadiene.