HALO NUCLEIC MOLECULES: MOLECULES FORMED FROM AT LEAST ONE ATOM WITH A HALO NUCLEUS. EMPHASIS ON 11,11Li$_2$ ALONG WITH OTHER EXOTIC ISOTOPOLOGUES.

NIKESH S. DATTANI, STASZEK WELSH, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, United Kingdom.

Atoms whose nuclei have an exotic number of nucleons can have a ‘core nucleus’ surrounded by a ‘halo’ formed by a nucleon orbiting the core nucleus. For example, due to the two halo neutrons orbiting the core nucleus of 11Li, its nucleus has a cross section that is roughly the same size as that of 208Pb. Halo nucleic atoms have been studied extensively both in theory and in experiments, however halo nucleic molecules have not been studied in either. We first show, using HeH$^+$, BeH, and MgH as examples, that with measurements of any two isotopologues of a molecule, we can determine crucial properties of a third isotopologue well within spectroscopic accuracy. We then use the extremely precise empirical information availablea,b,c,d for the low-lying states of 6,6Li$_2$, 6,7Li$_2$ and 7,7Li$_2$ to predict potentials and various properties of the halo nucleic molecule 11,11Li$_2$, along with isotopologues containing 3Li, 4Li, 5Li, 6Li, 7Li, 8Li, 10Li, and 12Li. We believe that our predictions of the ro-vibrational energies are reliable for experiments for the first detection of a halo nucleic molecule.
