NONADIABATIC PHOTO-PROCESS INVOLVING THE $\pi \sigma^*$ STATE IN INTRAMOLECULAR CHARGE TRANSFER: A CONCERTED SPECTROSCOPIC AND COMPUTATIONAL STUDY ON 4-(DIMETHYLAMINO)BENZETHYNE AND 4-(DIMETHYLAMINO)BENZONITRILE.

TAKASHIGE FUJIWARA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA; JAVIER SEGARRA-MARTÍ, PEDRO B. COTO, Institut für Theoretische Physik Theoretische Festkörperphysik, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.

The ubiquitous nature of the low-lying $\pi \sigma^*$ state in the photo-excited aromatic molecules or biomolecules is widely recognized to play an important role in nonadiabatic photo-process such as photodissociation or intramolecular charge transfer (ICT). For instance, the O–H elimination channel in phenol is attributed to the state-cross of the repulsive $\pi \sigma^*$ state that exhibits a conical intersection with the lowest bright $\pi \pi^*$ state and with the ground state, leading to ultrafast electronic deactivation. A similar decay pathway has been found in the ICT formation of 4-(dialkylamino)benzonitriles in a polar environment, where an initially photoexcited Frank-Condon state bifurcates in the presence of a dark intermediate $\pi \sigma^*$ state that crosses the fluorescent $\pi \pi^*$ state, followed by a conical intersection with the twisted intramolecular charge transfer (TICT) state. We proposed such a two-fold decay mechanism that $\pi \sigma^*$-state highly mediates intramolecular charge transfer in 4-(dialkylamino)benzonitriles, which is supported from both our high-level ab initio calculations and ultrafast laser spectroscopies in the previous study.

4-(Dimethylamino)benzethyne (DMABE) is isoelectronic with 4-(dimethylamino)benzonitrile (DMABN), and the electronic structures and electronic spectra of the two molecules bear very close resemblance. However, DMABN does show the ICT formation in a polar environment, whereas DMABE does not. To probe the photophysical differences among the low-lying excited-state configurations, we performed concerted time-resolved laser spectroscopies and high level ab initio multireference perturbation theory quantum-chemical (CASPT2//CASSCF) computations on the two molecules. In this paper we demonstrate the importance of the bound excited-state of a $\pi \sigma^*$ configuration that induce highly $\pi \sigma^*$-state mediated intramolecular charge transfer in 4-(dialkylamino)benzonitriles.