Indian Corn

Agriculture
B. S.
1903
INDIAN CORN
(Zea mays)

PRODUCTION, SELECTION, PRESERVATION, AND GERMINATION OF ITS SEED, AND GENERAL PRINCIPLES OF PLANTING

BY

GEORGE ASHLEY CROSTHWAIT

THESIS

FOR THE DEGREE OF BACHELOR OF SCIENCE

IN THE

COLLEGE OF AGRICULTURE

OF THE

UNIVERSITY OF ILLINOIS

1903
Table of Contents.

Introduction 3.

Part One. General 12.

Chapter I. Production of Seed Corn 12.

1. General Principles 12.
 (a) Planting 12.
 (b) Crossing 16.
 (c) Inbreeding 23.
 (d) Xenia 24.
 (e) Mendel's Law 25.

2. Improvement of Varieties 34.
 (a) Improvement of Physical Characteristics 34.
 (b) Improvement of Chemical Characteristics 35.

3. Breeding Plots 41.

Chapter II. Selection of Seed Corn 43.

1. Principles Controlling Selection 43.
2. Time of Selection 44.
3. Manner of Selection 45.
4. Seed from Different Parts of the Ear 48.
5. Seed from Other Localities 50.

Chapter III. Preservation of Seed Corn 52.

1. Methods of Drying 52.
2. Methods of Storing 54.
Chapter IV. Germination of Seed born
1. General Principles of Germination
2. Methods of Testing
3. Effect of Thickness of Planting
4. Effect of Age of Seed

Chapter V. General Principles of Planting
1. Preparation of the Soil
2. Time of Planting
3. Thickness of Planting
4. Depth of Planting

Part Two. Experimental Work
Introduction.

Chapter I. Meteorological Data
Precipitation at the Urbana Station

Chapter II. Effect on Yield of Thickness of Planting
1. Location of Experiment
2. Character of the Soil
3. Treatment of the Soil
4. Time and Manner of Planting
5. Time and Manner of Cultivating
6. Time and Manner of Harvesting
7. Table of Data
8. Conclusions

Chapter III. Effect on Germination of Depth of Planting

Bibliography
Photographs
Introduction.

Indian corn has long been the mainstay of Illinois agriculture and at no other time has its importance been so great as at the present. A yield of 372,436,446 bushels in 1902 shows that it is no mean factor in the wealth of the state. The manifold uses to which corn is put would require a large volume for their description. First in importance is its use as a stock food. The vast business carried on at the stock yards of our large cities is essentially a traffic in 'transformed corn.' As a product for human consumption, corn holds an important place, though in that respect it is subordinate to wheat. New processes of preparation, however, are bringing out products that bid fair to rival wheat, some of them being difficult to distinguish from.
wheat products. Only recently a new breakfast has appeared, made wholly of corn, which appears to be equal in every respect to the famous shelled wheat biscuit, which it resembles. Another very extensive use to which corn is put is the making of alcohol and whiskey. The distilleries of Peoria are famous for the vast amount of liquor made there. Many attempts have been made to manufacture paper from the corn plant, but the efforts were not commercially satisfactory until within the past few years. A plant has recently been located at Kankakee for the purpose of making paper from the stalk and leaves of corn on a large scale. Three grades of paper are made from the hard, outer part of the stalk, from the piths and from the husks. The grade made from the pith is nearly equal to a fine grade of linen paper. Mattresses, baskets, mats, and pipes are other products of the corn plant.
From the pith is made a packing material, which is used between the armor plates at and near the water line. If the hull is pierced, the water enters and causes the packing to swell up, thus stopping the leak. Several battle ships of the United States are protected in this way. Where coal and wood are high in price, and corn is low, the last mentioned is sometimes used as fuel. One hundred bushels of ear corn are considered equivalent to one cord of hard wood, and three tons of cobs are considered equivalent to one ton of hard coal. From the starchy part of the kernel is obtained corn starch and laundry starch. Syrup and sugar, also, are products of the starchy part. Corn oil is obtained from the germ and is used for illuminating purposes, for dressing wool, and for making soap.

Indian corn, or maize, botanically known as Zea mays, belongs
to the grass family, Graminaceae. In the grass family are found the grasses and cereals, and even the tall canes and bamboos.

The number of species in the grass family is uncertain because of the great number of synonyms, but Hackel in "The True Grasses," estimates that there are about 3,500 well-defined species. Grasses are found in every zone, the greater number of species being in the Torrid Zone and the greater number of individuals being in the Temperate Zones.

Several classifications have been proposed for Indian corn, Zea mays being of so general application that it is of no use in distinguishing the various kinds of corn. Dr. E. Lewis Sturtevant has proposed the following very satisfactory classification:

Zea tunicata, the primitive form.
Zea everta, the pop corns.
Zea indurata, the flint corns.
Zea indentata, the dent corns.
Zea amylacea, the soft corns.
Zea saccharata, the sweet corns.
Zea amyleasaccharata, the starchy sweet corns.

The more common classification is the following:
Dent corns.
Flint corns.
Soft corns.
Sweet corns.
Pop corns.

The origin of Indian corn is not certainly known, but it is generally admitted that it is a native of southern North America or of Central America. At the time of the discovery of North America, corn was cultivated from Maine to Chili. It is supposed by some that the peculiar coyote corn, which grows wild in tropical America, is the original corn plant. In general, the structure of this plant is similar to that of our common corn, but the ears are only about two inches long and contain but four rows.
of kernels. In addition to the outer husks, which envelope the entire ear, the individual kernels often have a separate covering similar to that on the kernels of our common pod corn. In ordinary field corn these secondary envelopes are undeveloped and constitute the chaff found at the bases of the kernels. Others think that they see in our common teosinte a more remote ancestor of the maize plant. Whether the original maize plant is still growing or not, it is certain that the corn of the present is very different from what it was in the early stages of its development. It was undoubtedly then a much-branched plant bearing little ears or clusters of kernels upon its many branches. Evidences of this primitive habit can be seen in the corn of today. The throwing out of suckers or tillers is simply a reversion toward the old habit of branching, while the development of kernels on e
ven of small ears, in the tassel or at the tips of the tillers, is a reversion towards the habit of leaving ears at the tips of the branches. On page 105 is a photograph of a corn plant found by the writer in one of the experiment plots of the Illinois Experiment Station in the summer of 1902. On the same photograph is shown a sucker ear with secondary ears at its nodes. On page 106 are shown the same specimens with the husks and leaves removed. The complete plant bore thirty-two ears in all, the greater number being small and undeveloped. The sucker ear bore six secondary ears on its shank, making seven ears borne at a single node of the parent plant. The ear itself is probably an aggregation of branches, each of which bore a two-ranked series of flowers. In the process of development, the small peduncles
Leaving the individual flowers would shorten, thus bringing the flowers closer to the common branch or rachis and forming a kind of spike. These spikes would, in turn, be brought closer together by the shortening of their internodes, and would coalesce, forming a central compound rachis, the cob. Around this would be crowded the individual flowers. In time, a division of labor would take place, some of the flowers producing the stamens or male organs, and others producing pistils or female organs. As the uppermost position was best suited to the dissemination of the pollen, the highest clusters of flowers would assume the function of producing pollen, and the others would produce the ovaries. Finally, we have the tassel, mounting the plant with a number of small ears at the nodes. By careful selection a plant is produced bearing but one or two ears and
yielding as much or more grain as the entire branched plant yielded.

In the following pages are brought together a few facts concerning seed corn and the planting of corn. A fairly representative bibliography is given, which will be helpful to those who may desire to make a study of the maize plant.
Part One:

General.

Chapter I.
Production of Seed Corn.
1. General Principles.—In the production of seed corn, it is of primary importance to produce seed of high germinating power and of absolute purity as regards variety. Given a start of good seed, it is possible not only to attain the above, but to greatly improve a variety, or even to originate a new strain. Several topics of general application in the raising of seed corn will now be discussed.

(a) Planting.—For the best results in seed production, the soil should be amply provided with plant food. If the soil is deficient in nitrogen, the plant will be stunted and will not possess the vigor
necessary to bring the seed to perfection. On the other hand, if the nitrogen is greatly in excess, particularly in comparison with the other elements of plant food, the growth will be too luxuriant, with a consequent weakening of the plant and a liability to disease.

There should be a sufficiency of phosphorus in the soil, as this element is essential to the formation of the seed. About one-fifth of the ash of the corn kernel is phosphorus.

Potassium is another essential element of plant food in which the soil is sometimes deficient, although this is less frequently the case than is the case with nitrogen and phosphorus. Potassium enters quite largely into the composition of the ash of the kernel, of which it is approximately one-fourth. Potassium constitutes about two-thirds of the ash.
of the stalk, and a deficiency of this element results in a much weakened stalk.

The three elements of plant food mentioned are the only ones of which there is likely to be a deficiency and are the ones that may have to be supplied by means of manures or artificial fertilizers. It is not considered good farm practice, however, to purchase commercial fertilizers for their nitrogen content, when nitrogen can be so much more economically supplied by legumes. Barnyard manure should be applied in the fall, winter, and early spring. If phosphorus is needed, part of it should be applied in a form immediately available to aid the plant in its early growth, but the remainder may be applied in one of the less available but cheaper forms, such as ground bone or tankage, which will become available for the later growth of the plant.
A more economical plan is to apply rock phosphate, which will become available gradually, requiring several years to become available. If this is done, it will soon be unnecessary to use the higher-priced phosphorus fertilizers. Potassium may be best applied as muriate of potash or as kainite.

With the soil well stocked with plant food, the next important thing is the preparation of the soil. If this is not properly done, the plant can not appropriate the food from the soil in sufficient quantity to make a good growth. The ground should be plowed when it is just moist enough to crumble nicely and should be worked until it is as fine as a garden bed. If the ground is plowed in the fall, the disk-harrow and the smoothing-harrow will put it in good condition in the spring. If it is plowed in the
spring, the smoothing narrow will be sufficient, if the soil is in condition when plowed. Whatever plan is followed, the seed-bed must be put into good condition, if the best results are to be attained. The corn should be carefully planted so as to obtain a good stand of two stalks to the hill. It is a good plan to plant more than the number wanted, and to thin to the desired number, taking out the weak plants. With careful and frequent cultivation, a large yield of excellent seed corn should be obtained.

(b) Crossing. Corn is a plant which is naturally fertilized by cross-pollination, that is, the nucleus of the egg cell and the endosperm nucleus in the female flower on one plant are made fertile by the generative nuclei from the pollen of another plant. This interesting process will now be briefly considered.
The staminate flowers, which constitute the inflorescence known as the tassel, bear a great number of pollen grains in their anthers. Each anther contains as many as 2500 pollen grains, and as each flower contains six anthers, there would be 15000 pollen grains in a single flower. The anther is morphologically double. Each lobe has a lateral pore at the free, downward pointing end, out of which the pollen falls when the anther is shaken. A light breeze is sufficient to shake out the pollen and to carry it to the silks protruding from the husks of neighboring plants. If the breeze is too light to carry the pollen to other plants, it is too light to shake it out of the anthers.

The pistillate flowers are clustered upon the cob and are protected by the husks. The long slender style grows out from the ovary and protrudes from the husks when ready to...
receive the pollen. Upon the inner face of the style are numerous hair-like processes, which are elongated epidermal cells. The entire style is morphologicallyovable and has two vascular bundles running its whole length. The ovary, while quite young, is enclosed in several leaf-like bodies, through which it bursts as it enlarges. While the ovary is in its early stage, a spherical mass of loose nutritive tissue begins to develop near its at the basal end. This is called the nucellus, from the Latin of the name, and it envelops the ovule. The inner end is called the ligament, and the outer is called the style. The nucellus and its coats constitute the ovule, which develops into the seed. At the free end of the ovule is a small opening, the foramen, where the coats have not completely covered the nucellus. This opening
becomes closed in the mature seed and is called the micropyly. Near the microcyllar end of the micellos a cell begins to enlarge. This is the archesporial cell, from which the embryo sac is developed. As this cell enlarges, its nucleus divides, and the resulting nuclei separate, one passing to one end of the embryo sac and the other to the opposite end. Each nucleus again divides making two nuclei at each end of the embryo sac; and this division is followed by a third whereby there are four nuclei at each end. One nucleus of each group of four then passes to the central part of the embryo sac. These two nuclei, the "polar nuclei", coalesce and form the endosperm nucleus or definitive nucleus. The three nuclei at the microcyllar end of the embryo sac become surrounded by cytoplasm, but no definite
cell walls are formed. The non-naked cells are called the "egg apparatus". Two of the cells are known as the synergidae or "helpers", and the other one is called the egg cell. The three nuclei at the opposite end of the embryo sac are organized into cells called the "antipodal cells". The development of the contents of the embryo sac now ceases until fertilization takes place.

When a pollen grain falls upon a receptive silk, it is held by the hair-like processes upon the silk and also by a sticky substance with which the silk is covered. The nucleus of the pollen divides, one of the new nuclei being called the vegetative nucleus. The other nucleus again divides into the generative nuclei. When the pollen becomes adherent to the silk, the vegetative nucleus initiates the development of the pollen tube, which enters the tissue
one of the cells and grows toward the ovary. While the ovule has been developing, it has gradually changed from its erect position in the ovary, by doubling upon itself until the foramen or micropyyle points outward and downward. When the pollen tube enters the ovary it passes down the anterior side of the inverted ovule, through the tissue of the testa or outer coat. Entering the foramen, it makes its way to the egg apparatus. In the meantime, the generative nuclei have proceeded down the pollen tube. They now break through the tip of the pollen tube and one of them unites with the nucleus of the egg cell, while the other passes on and unites with the endosperm nucleus. This is the process known as double fertilization. The fertilized egg cell now develops into the embryo, which differentiates
into the radicle or embryo root, pointing toward the micropylar end of the ovule, and the plumule or embryo shoot, pointing in the opposite direction. The fertilized endosperm nucleus develops into endosperm, which displaces the substance of the micelhus to such a degree that there is no part of it left but a very thin layer of compressed cells and the very thin tegmen or inner coat, the testa having disintegrated. The wall of the ovary is crowded to a thin transparent coat which closely adheres to the seed. The outer layer of the endosperm is called the aleurone layer and it is this layer that contains the coloring matter of the kernel.

The mode of pollination in corn, whereby one plant receives pollen from another plant, gives rise to many variations in the product of succeeding generations, as a result of the sexual...
minding of the characteristics of different individual plants. By careful selection, new varieties can be produced having the good characteristics of different individuals. In addition to the variations arising among the plants of the same variety, there is the possibility of originating new varieties by crossing individuals of different varieties, thus securing the good qualities of each.

(e) Inbreeding: Inbreeding in Indian corn is the fertilization of the female sex cells of a plant by the generative nuclei of its own pollen. This seldom occurs in nature, as the wind carries the pollen to other plants. Some work has been done in the inbreeding of corn by hand pollination, but the results have shown that it is not practicable as the variety rapidly deteriorates if the process is continued for several generations.
(d) Dizia. — Dizia, or the immediate parent of polka, has long puzzled our botanists. As it is evident in maize, and as it is in connection with maize, that a solution has recently been offered, a few words concerning the phenomenon may not be out of place in this connection.

When two varieties of corn are crossed, for example, when the pollen from a red variety fertilizes a white variety, there is a union of the characteristics of the two varieties. When the kernels containing the hybrid embryo are planted, they produce some red, some white, and some mixed grains, as would naturally be expected. What has so long been a mystery, however, is that in the same season that the crossing is done, red kernels or mixed kernels appear in the ear of white corn. It could not be understood how the fertilization of the egg cell could produce any effect outside of the embryo.
The discovery, in 1876, of the process of double fertilization afforded an explanation of the puzzling phenomenon. It has been explained that the endosperm nucleus is fertilized at the time the egg cell nucleus is fertilized; and further, that the endosperm develops at once, composing nearly the whole of the kernel. It has been mentioned also, that the aleurone layer contains the distinctive coloring matter of the kernel. The aleurone layer is very thin and practically transparent, so that the coloring matter of the aleurone layer is plainly visible. Any variation, then, that may occur in the endosperm will be evident, the same reason that the cross is made.

(v) Mendel's Law: Man, in his study of nature, finds that some of her secrets are easily discovered; some are yielded to him after much patient, taking effort.
In part, while still other were
over to clairvoyance, some put a
confidence to carry it out to them. In this last class may we
place the laws of heredity. From
the only results attending the efforts
of the many thoughtful men who have
tried to solve the problems of heredity
have been pieces of rubbish which
have obscured their own vision. With
the closing years of the nineteenth
century, however, a ray of light be-
gan to shine, and hope in the final
resolution of the vexing problem was
revived.

In the year 1900, Professor de Vries
published a short account of some
experiments he had been carrying
on in plant breeding for several years.
The results obtained were of great val-
ue, and the world of science was
at once intensely interested, and his
findings were almost immediately
 corroborated by Tschemak and Co-
rens. As the work of Haeckel was
carried on partly with prejudice,
the
subject is especially rich and in a
discussion of seed corn. What was
particularly surprising in de Vries'
article, however, was his statement
that his results were corroborative
of principles laid down thirty six
years before by Gregor Mendel, the
Abbott of Brünn. After years of care-
ful experimentation, Mendel had pub-
lished his conclusions in 1865, but, for
some inexplicable reason, his work
was not noticed and it had lain
hidden until rediscovered and an-
ounced by de Vries. Tandy's rec-
ognition has at last been awar-
ded the obscure investigator, in that
the principle of heredity discovered
by him is now called "Mendelii Law."
A brief consideration of the simpler
details of this law will now be giv-
en; but he who wishes to be fully
informed on the subject, must re-
sort to the works of the above men-
tioned investigators and of others
who have since taken up the sub-
ject.
Mendel's law may be stated as follows: in crosses where actual intermediates are rarely produced; that is, where there is no visible mingling of characters, the offspring arising by breeding these hybrids with each other, are broken up into the original parent forms according to a fixed numerical ratio. The more characters there are involved, the more difficult it is to trace out the numerical relation. For this reason, we shall consider a case in which but one pair of characters is involved. In the crosses to which Mendel's law applies, one of a pair of characters is always stronger than the other and prevails over it when the two are combined. This character Mendel called the dominant character, while the weaker one he called the recessive character. The following diagram illustrates the way in which the characters are distributed for an...
circulated generation. Ordinary field corn and sweet corn will be taken as examples. In dealing between these two varieties the clear
and abrupt character of the character of the sweet corn and the softer, the dominant character.

The distinction between the two is readily seen as the un
filled appearance of the sweet corn contrasts strongly with that of the field corn, especially if a tall variety is used. In the diagram

○ represents the dominant character of the field corn; ○ represents the recessive character of the sweet corn and ○ represents the union of the two characters, in which, however, only the dominant character is discernible. Five generations are shown.

1st Gen.

2nd

3rd

4th

5th
As shown in the diagram, the first generation resulting from the crossing of the two pure varieties is composed wholly of individuals possessing both the dominant and the recessive characters, but with the dominant prevailing; that is, with nothing in the appearance of the crop to distinguish it from the pure-bred field corn. If these hybrids are self-fertilized, a distinct breaking up is evident in the next generation, the second from the original crossing. One-fourth of the individuals are pure dominants, one-fourth are pure recessives, and one-half are dominant recessives, with the dominant character prevailing; that is, in this generation, three-fourths of the individuals can not be distinguished from the field corn, and one-fourth can not be distinguished from the sweet corn. If the individuals of this generation be self-fertilized, the individuals of the third generat-
tion will break up as shown above; that is, the pure dominants will produce pure dominants, and the pure recessives will produce pure recessives, but the dominant-recessives will break up as the dominant-recessives of the first generation did; namely, into pure dominants, one-fourth pure recessives, and one-half dominant-recessives. So long as self-fertilization takes place, this process will continue during succeeding generations, with the proportion of dominant-recessives of the entire generation gradually diminishing, but the manner in which each dominant-recessive breaks up in its offspring remaining the same. The practical thing in this discovery of Mendel's is that after the second generation pure recessives can be selected with certainty, and after the third generation pure dominants, as well, can be selected with
equal certainty. To obtain the exact numerical relations given above would require a very large number of individuals, as the problem is one of chance.

Now that a law has at last been stated and proved, efforts are being made to formulate a theory to explain the cause which results in the law. It is agreed by the investigators above mentioned, that in pollen grains and in egg-cells, a single individual germ cell bears but one of the alternative vari
tal characters; that is, that it is pure in respect to the pair of characters to which the law is applied. If this hypothesis be true, and if, on an average, the same number of pollen grains and of egg-cells transmit each of the characters of the pair considered, the results would be as are asserted by Mendel's law.

Let (σ) represent pollen grains.
containing dominant and recessive characters respectively and let (♀♂) represent egg-cells containing dominant and recessive characters respectively. Only the following combinations can occur in crossing:

\[
\begin{align*}
\text{♂ x ♀} &= \bullet, \\
\text{♂ x ♀} &= \circ, \\
\text{♂ x ♂} &= \circ, \\
\text{♂ x ♀} &= \bullet.
\end{align*}
\]

It is evident that such a theory will explain Mendel's law, but a careful study of the germ-cells is necessary to prove whether or not the theory is correct. Several American cytologists, in both botanical and zoological lines, have begun upon the problem and the reports of progress thus far made indicate that the proof of the correctness of the theory is likely to be obtained at no very distant day.
2. Improvement of Varieties.

(a) Improvement of Physical Characters.

The improvement of the physical characters of corn has been the aim of the corn-grower from time immemorial. The difference between the wild corn of Mexico and that cultivated by the Indians at the time of the discovery of America was greater than the difference between the latter and the best variety of the present day. How long this improvement had been going on, we have no means of determining.

Every one who raised corn would naturally save for seed what he considered the best, and this would result in a gradual advance in quality and also in quantity per unit area. The size of the ears would very likely be the first character selected. A large ear is more easily harvested than several small ones. As the larger ear would be found on the plant
having the finest varieties of the
sown plant with great care would result until, finally, a multi-branched plant bearing some two large ears is produced. Probably the next character selected would be the position of the ear upon the stalk. If two ears were alike, but one was convenient to reach while the other was either too high or too low, the convenient ear would be selected. In this way one characteristic after another would be fixed. The corn plant is very responsive to selection, and the grower must have definitely in mind what he desires and must persevere until the desired character becomes permanent. Patience and firmness of purpose are essential to success in any line of plant breeding, but well directed and persevering effort will be amply rewarded.

6) Improvement of chemical characters - Not only among the physical char-
acters of corn be modified, but the chemical characters, as well, may be changed, to a greater or less degree, by careful selection. The problem in this case, however, is more complex than that just discussed. Here, it is the chemical constitution of the kernel that must be considered, and the skill of the chemist combined with the apparatus and chemicals of the laboratory are absolutely essential. While every corn grower engages more or less in the improvement of the physical characters of corn, comparatively few are engaged in the improvement of its chemical characters. Scarcely anything had been done in this line of plant breeding until within the last few years. However, careful investigators have taken up the work, and enough has already been accomplished to show that there are great possibilities in this line of experimentation.
Egg is so extensively used as a stock food that any change in its feeding qualities is of primary importance. Used alone it is not a perfect food on account of its protein content, the nutritive ratio ratio being about one to eight (1:8). It is evident that it is a great fat producer, and as such it is extensively used by stockmen, especially in the production of pork. However, the quantity of fat produced by an exclusive diet of corn is too great, in comparison to the quantity of lean meat produced, to make a wholesome food forms. It is necessary to combine with other food stuffs with it, having narrower nutritive ratio in order to balance the ration. Furthermore, the quality of the fat produced by corn alone is not of the best. American pork has been debarred from some foreign countries on account of its inferior quality, at least this was the reason alleged. Attempts have
been made, and are now being made to narrow the nutritive ratio of corn. Much has already been accomplished to encourage concentration in this line of work. By chemical analysis, the proximate composition of a large number of ears is determined, and those are selected for seed which show the highest protein content. From the product of these ears another selection is made and the best ears are again used for seed. By continuing this selective process for several generations, a marked improvement in the protein content is noticeable. The low-protein corn is gradually "weedled out" and that, only is preserved, in which variation is toward a higher protein content. It is confidently expected that, in this way, varieties of corn may be bred which will constitute balanced foods for the various needs of the stockman.

Not only will corn become a more satisfactory stock food, but
It will be observed that the corn for human consumption has a low protein content in the principal action to corn, but this can all be remedied by the breeding of high protein corn.

In a manner similar to the above process, low protein corn is also being bred. Low protein is correlated with high starch, which makes corn more valuable in the manufacture of starch and glucose. It is also of more value in the manufacture of alcohol because of the large amount of sugar obtainable from the starch.

The oil, which is found principally in the germ, may also be varied by selection. Corn oil has many uses today and it is a valuable by-product in the manufacture of starch, glucose, and alcohol. Considerable progress has been made in this direction, also.

It is very evident that a variety of corn may be culti-
in several directions until there are so great an effect of different variety names. This is already the case, with at least some variety. Sure White corn has been bred in four directions at the Illinois Agricultural Experiment Station and as a result four new varieties have been produced. They are known as Illinois High Protein, Illinois Low Protein, Illinois High Oil, and Illinois Low Oil. In this work, different correlated combinations may be made. For example, a variety may be bred for low protein and high oil. This would be valuable to the manufacturer because of the high starch content from which to derive the principle product, and because of the increased output of oil as a by-product. It is very probable that in a few years, new varieties of corn will be named in accordance with their chemical characters and for can raise the variety best suited...
to suit requirements.

3. Breeding Plots. — In order to successfully improve a variety of corn, some system of planting should be adopted, which is convenient and accurate in keeping a record of the particular ear planted. There are two general systems, the "block" system, in which an ear is planted in a small square, and the "row" system, in which an ear is planted in a row. The latter is the more desirable of the two systems as it is simple and convenient.

A diagram of the plot should be kept and a complete record of the ears planted should be made. It is thus possible, at any time, to look the record of the character and performance of any particular ear. If this record is properly kept, it will become valuable as a reference as time goes by.

A small plot should be kept in which the ten test ears are
The best of the remaining ears should be planted in a larger plot to raise seed for field use or for the seed commerce. The extent to which an acre of individual corn should be kept depends upon the extent to which the grower is going to enter into the seed corn business.

Every farmer should begin to raise his own seed corn, starting with a small quantity of the best seed he can obtain, selecting some standard variety that is adapted to his conditions. He can soon have an abundance of high-grade seed corn at but small expense of money or labor.
Chapter II.

Selection of Seed Corn.

1. Principles Controlling Selection: In the selection of seed, the essential of first importance is that each seed to choose must have sufficient vigor to germinate and to give the young plant a good growth, until it has thrown its roots out to the soil and is able to possess its substance; therefore, with this view, seed should not be selected from stunted or diseased plants. After all possible care has been taken, it often happens that the seed is not of the highest grade. The only way to be sure of the vigor of the seed, is to test its germinating qualities shortly before planting time.

A second essential is that the seed be pure or free from mixtures.
with other varieties. In a plant pollinated by corn, one must be very careful to avoid mixture of varieties. The minute pollen grains of corn can be carried a long distance, depending upon the dryness of the air and the velocity of the wind. In order to be safe, the field should be at least eighty to one hundred rods away from other varieties.

The breeder of standard varieties must have definitely in mind the exact thing for which he is seeking, and he must deviate from his ideal. Nothing will be accomplished by selecting several years for one character and then selecting for another and forgetting the first.

2. Time of Selection. The formation of the embryo begins quite early in the development of the seed, and it is fertilized and capable of germinating even if taken from the plant a considerable time before the seed is mature. Experiments have shown that the seeds of cereals go th
seed, before the stalk is formed, as while the juice of the kernel is thin and watery, will often germinate. It is evident, however, that the more immature the seed is, the less food will it have stored up for the nourishment of the germinating embryo. It has also been found that seeds not quite ripe germinate somewhat more quickly than those fully ripe. It is not probable, however, that the gain in time of germination will offset the loss of available food material stored up as starch. Some farmers make a practice of going through their fields before the ears of corn are mature and selecting their seed corn. This practice is not so common as it formerly was, and it is very doubtful if it is worth the trouble. The most satisfactory time to select seed corn is probably just after it has matured and before the elements have injured it in any way.

3. Manner of Selection. — In select-
ing. seed for the general crop, it is ordinarily sufficient to select the ears from the crib as the corn is being threshed, or it may be selected later if the corn is well protected from the elements. For careful breeding, however, more care must be taken. As the ear is but a part of the plant, the characters of the entire plant should be considered. The height and size of the stalk, the extent and character of the foliage, the character of the tassel, the position of the ear on the stalk, and even the character of the root-system should receive attention if the best results are to be obtained. None of these characters can be determined if the ears are selected from the crib. Two selections should be made: a preliminary one in the field and a final one in the seed house.

In the preliminary selection, full notes should be taken of all
stalls from which ears are selected, those ears only, being selected which a cursory examination points out as of probable value. Each ear should be tagged and numbered to correspond with the number of the description of the stalk from which it is taken. The ears selected should be stored in the seed house to await the final selection.

The final selection is made
on the basis of the characters of the ear and of the entire plant. Each ear is carefully studied as a whole with reference to its size, shape, filling out of butt and tip, arrangement of kernels, color, and any other character which the breeder may wish to consider. A careful study is then made of the individual kernels, their shape, size, uniformity, and indentation. If the chemical characters also, are to be studied, an analysis of the kernels will be made in addition to the physical characters mentioned.
characters are carefully recorded, and the ear conforming most closely to the ideal in the mind of the breeder is selected as the best ear. Then the other ears are selected in the order of their excellence as compared with the ideal ear. When the ears so far differ from the standard as to prohibit their use as the best breeders, they are reserved for field use or for the trade. A full record of the ears selected for the breeding work and also of the plants from which they came is entered into the permanent record book, and the seed is stored away to await the next growing season.

4. Seed from Different Parts of the Ear. Quite a little discussion has taken place as to the relative effect of planting kernels from different parts of the ear. Some growers discard the kernels on the butts and on the tips, claiming that they make a poorer yield of corn than those from the rest of the ear. Others plant all of the kernels.
claiming that there is no appreciable difference in the results. Some of our Experiment Stations have taken to settle the question by experimenting for a series of years. The vary in different years and at different stations, but they were so little that the question may be considered settled. Averaged of tests for as many as nine years indicate that there is very little difference in the yields from seed selected from different parts of the ear; that is, from butte, middle, or tip. Apart from the question of yield, however, there is no good reason for discarding the kernels from the butte and tip in ordinary planting. Planting is usually done with a corn planter, which may be regulated to drop a certain number of kernels in each hill, provided the kernels are of fairly uniform size. The kernels from the butte and tip being small and irregular, cause
the planters tend to dig more deeply into the soil, and hence into water.

5. Seed from Other Localities. — The question is often raised as to the advisability of planting seed corn raised at a considerable distance from where it is to be planted. In this age of cheap and rapid transportation facilities it is a small matter to send seed across the continent. Here again experimenters have essayed an answer. It is found that it is not always best to plant seed raised at a distance, especially if raised in a different latitude. Corn that has been grown for years in the same neighborhood has become thoroughly adapted to the soil and climatic conditions of that place. A change in any of the conditions prevailing will produce a change in the corn plant, and the greater the change in the conditions, the greater the change in the plant. So soil conditions are apt to differ in
very small and they should be carefully considered. The climatic conditions are less variable than conditions prevailing over larger areas. Temperature is mainly dependent upon elevation and latitude. Moisture conditions are dependent upon elevation, the direction of the prevailing winds and the character of the soil. Under these conditions, a crop will not be taken account of a change of environment to succeed. There are thousands of scented corn growers engaged in the production of high grade and corn, that there is no necessity for sending another crop to mine for seed. In general, good yields of corn can be obtained which have been raised under conditions of soil and climate similar to those with which the grower has to contend.
Chapter III.

Preservation of Seed Corn.

1. Methods of Drying:—As the presence of moisture is one of the principal conditions requisite to the germination of seeds, so is the absence of moisture necessary to the preservation of seeds. Absolute dryness is not necessary but the seed must contain a minimum quantity of moisture. The problem for the seed corn grower to solve is to find the best means of securing and retaining the proper dryness. The drying of seed corn by artificial heat is practised by some seedsmen. The seed house should have tight walls, single or double, preferably the latter. Provision must be made for controlling ventilation. Heat may be provided in many convenient ways. A small stone
Some seed corn growers object to the curing of seed corn by artificial heat, claiming that the process is unnatural and weakens the seed. If artificial heat is not relied upon, the seed house should be so built as to allow an abundance of fresh air to be admitted on dry days, and to allow of being closed airtight on damp days. It is very probable that in damp falls at least a little artificial heat would be helpful.
2. Methods of Storing. - There is probably no more satisfactory way of keeping seed corn than in racks or tiers in the drying house as mentioned above. If this method is followed, the corn can be kept under nearly perfect conditions as to moisture and temperature. If the weather is damp or excessively cold, a little fire will correct these adverse conditions.

If a seed house of the above type is not at hand, the corn must at least be stored where it will not be subjected to too sudden and great changes in moisture and temperature. Corn can stand a wide range in the amount of moisture and the degree of heat, but it is probably weakened thereby. If the temperature suddenly falls far below zero, as it sometimes does, and if the corn contains considerable moisture, there is great danger that the vitality of the seed may be injured.
Chapter IV.

Germination of Seeds.

1. General Principles of Germination

There are three conditions absolutely essential to the germination of seeds: They are moisture, heat, and oxygen. The amount of each required varies in different plants; but each plant has its optimum. The minimum and maximum of these conditions are quite widely separated in plants.

It is essential that the tissues of the seed absorb water in order that the nutritive materials may be dissolved and cellular activity take place. The amount of water giving the best results in germination varies considerably for different species. The seeds of many aquatic plants germinate when immersed in water.
The seeds of most agricultural plants, however, germinate best with a moderate amount of moisture. If there is too much water present, the germination is retarded, and the seeds themselves are likely to rot. These bad effects are due mainly to the lowering of the temperature and an insufficient supply of oxygen. The moisture content of ordinary soil is about right when it is just dry enough to crumble when turned by the plow.

The practice of soaking seeds in water before planting them is sometimes resorted to for the purpose of hastening germination. This would seem to be a rational procedure, as the hard, outer coats of the seed would be quickly softened, and the embryo would receive sufficient moisture to cause it to begin developing at once.

Some investigators claim that the above course is beneficial, while others claim that it is not beneficial and may be injurious. The latter claim
that if, when seeds are put to soak, other seeds of the same lot are planted under favorable conditions, there will be no appreciable difference in the time of germination of the two lots. The question is not settled as yet, but it is likely that the difference arises from the fact that different kinds of seeds are used and that the length of time seeds are soaked is an important factor. If seeds are kept in the water too long, injury will result, the vitality of the seed being entirely destroyed in some instances.

The germination of seeds is dependent upon temperature, also. The range of temperature is quite wide for the seeds of different species, and even for the individual seeds of the same species. Some seeds will germinate at a temperature almost down to the freezing point, while others will germinate considerably above 100°F., the coconut germinating best at about 120°F. Our common agricultural plants will
rarely germinate below 40°F or above 115°F. Each species has its optimum temperature for germination. The seeds of plants native to temperate regions germinate at a lower temperature than do the seeds of plants introduced from tropical regions. The optimum varies in a like manner. Our northern cereals, wheat, rye, and oats germinate best at about 84°F, but corn germinates best at about 93°F. Whether germination more satisfactorily proceeds, when the temperature remains steadily at the optimum, or when it varies somewhat above and below the optimum with the average temperature the same as the optimum, is still a mooted question. Of one thing we can be positive; that is, that under natural conditions there is uniformity of temperature at some optimum. It is at the optimum temperature that cellular activity is most active in the embryo. As the temp
Temperature varies from the optimum either above or below; the activity of the protoplasm is retarded; and if the change in temperature is great enough, cold rigor or heat rigor occurs and all activity ceases. If this condition lasts too long, the tissues fail to revive and the result is death to the organism. If the change is not too great nor too long continued, cellular activity will be resumed on the return to favorable conditions. It is in this way that germination takes place.

The third requisite to normal germination is free oxygen. Germination will sometimes begin in the absence of free oxygen, but it is abnormal and soon ceases. Oxygen is necessary to the respiration process which is necessary to germination. Not until this process has begun, can the hydrolytic process begin whereby starches, fats, and insoluble albuminoids are transformed into prod-
acts which the developing shoot can use.

The effect of light upon germination varies in different species. Some seeds seem to germinate equally well in the light or in the dark. Such seems to be the case with the seeds of the majority of our agricultural plants. Some seeds germinate better if covered so as to exclude the light. A few seeds, of which the heaths are an example, germinate better when covered.

2. Methods of Testing. It is very desirable that a test be made of the germinating power of seeds before the time comes for putting in the crop. Some depends on the quality of the seed, that only that which is of a high grade should be used. The test should be made long enough before planting time to allow time to get other seed if necessary.
The one generally used for testing seed, either outdoor in the soil, and indoor in sand, or some other convenient material. As seed corn is usually tested during the winter months, the outdoor method is not feasible, and some indoor method must be adopted. This, however, is not a drawback, as the indoor method is more reliable, on account of the better control of the conditions favorable to germination. For the medium in which to place the seeds, soil, sand, or sawdust may be used. In testing seed corn an ordinary dinner plate filled with sand is very convenient. The sand is wet thoroughly and the plate is tilted several seconds to let the surplus water drained off. After the corn is put in, another plate is inverted over the sand to exclude the light and to prevent excessive evaporation. The Geneva germinator is a very sat...
satisfactory apparatus, both for giving good results and for convenience in handling. Where much testing is to be done, it is advisable to obtain one of these germinators.

The use of too small a number of seeds in germination tests should be guarded against where accuracy is desirable. The use of one hundred kernels of corn, as is sometimes recommended, may give a fair idea of the germinating power of the seed but it is not accurate. Extended experimentation by careful investigators has shown that when fewer than three hundred to four hundred seeds are tested, the "coefficient of error" is too great to admit of accurate results. Furthermore, the taking of but two or three kernels from a single ear is quite inadequate. Two entire rows, taken from opposite sides of the ear, will be much more satisfactory.

It is not expected, nor indeed is it desirable, that the time and
care required for accurate, scientific work, be taken when seed is to be tested for ordinary use. However, five to ten kernels should be taken from each ear, and a large number of ears should be taken. If, from ten bushels of seed corn, one hundred ears be selected and ten kernels be selected from each ear, the results ought to be satisfactory enough for ordinary purposes.

3. Effect of Thickness of Planting. The amount of space that is allowed for a stalk of corn to grow in affects the whole plant very materially. If the plant has plenty of room, it can the easier obtain the necessary plant food from the soil, and the broad green leaves will spread out in the sunshine to receive the carbon and oxygen from the atmosphere and the heat from the rays of sunlight. The whole plant is healthy and vigorous and the seed which it produces partakes of this vigor. On the other hand, if
The plants are crowded together, the roots interlace with each other, forming a dense mat, and are unable to obtain a sufficient amount of plant food. The shoots, also, are crowded, and as they are compelled to overreach each other in their struggle for light and air, they grow very tall and slender, while the lower leaves are overcome. The plant can not be vigorous under such conditions, but is a prey to insects and fungi, whose attacks it might otherwise withstand. The seed of such a plant is necessarily weakened, and if it germinates at all, it cannot produce strong, healthy plants.

Although better seed may be produced when plants are not too close, the mistake might be made of planting too far apart. The individual plants would produce excellent seed so far as health and vigor are concerned, but there is another factor to be considered. Corn, in common with other plants,
it is necessary to consider next, and adapt itself to the prevailing conditions. This process is slow, but it is constantly going on. If one should give his corn considerably more room than it usually given to it, it would become adapted to a large space and could not do so well when planted closer together. Seed corn should be produced under conditions similar to those under which it is to be planted.

4. Effect of Age of Seed:—If seed corn is properly dried as soon as mature, and is kept in this condition, it should preserve, for several years, its power to germinate. After two or three years, this power rapidly diminishes. The corn grower is interested in securing seeds having the greatest possible vigor, in order that he may run as little risk as possible in raising a crop. For this reason, one-year-old seed should be used if possible; unless, for some reason, that crop
was not so good as the preceding crop in which case the two-year-old seed should be used. It is not best to use seed corn over two years old.
Chapter V.

General Principles of Planting.

1. Preparation of the Soil: Upon the thorough preparation of the soil for the reception of the seed, depends to a great extent, the character of the crop produced. The condition of the soil affects the availability of the plant food and of the moisture content of the soil. A compact or a cloddy soil hinders the development of the roots, thus making it impossible for the roots have to come into contact with the soil particles to a degree sufficient to obtain enough plant food for the plant. The plant food which the roots alone absorb is held in solution in the films of water which surrounds the soil particles. If the soil is in a friable condition, the roots can easily penetrate it.
and the rain is brought into contact with a large grade of minute soil particles, around each of which is held a store of plant food. This condition of the soil is favorable to the reception of rainfall, where moisture is provided for the solution of the plant food in the soil and for a carrier in the tissues of the plant.

To secure the results mentioned above, a soil should never be plowed when it is too wet. If it turns over with a shining surface and does not crumble, it is too wet. If it is plowed at this time, the texture of the soil will be injured. If a soil does not get dry enough to plow in time for a corn crop, it had better lie fallow than to run the risk of being injured for several years.

After the soil is turned with the plow, it should be thoroughly pulverized, both disk and smoothing harrows being used, if necessary. If, on account of a
5. In many other cases, the soil is so loose that capillary action cannot proceed properly, compacting the soil with a heavy roller will be found beneficial. To prevent excessive surface evaporation the roller should be followed by a smoothing harrow, which will make a smooth and kinds the capillary action near the surface.

2. Time of Planting: The best time to plant corn varies considerably with the meteorological and soil conditions. As corn is of tropical origin, it still preserves, to a considerable extent, its love for warmth. It would not be best to plant corn before the spring sunshine had warmed the soil. As some springs are later than others, the proper temperature of the soil is consequently delayed. The character of the soil influences the rapidity with which the required temperature is attained.
light sandy soil will come to
much more quickly than a heav-
y clay soil. It is evident, then,
that the farmer must use his
judgment in determining the
proper time to plant. Experiments
in the corn belt near the fortieth
parallel, indicate that, in general,
in the average spring and on soil
well adapted to corn, the second week
in May gives the best results, although
corn planted any time in May will
usually do well. It is the usual
practice to plant a little earlier in
sod than in land that was tilled the
previous year. By this means the sav-
ages of the cut worms are not so great.
The average advance of the season is
about one fourth of a degree of latitude
daily. A variation from the time given above
should be made when corn is to be plant-
ed at a considerable distance from
the above parallel. One hundred miles
north would make a difference of about
one week, making the time about the third
week in May.
3. Effect of Thickness of Planting.

The quantity of seed which the corn-grower may most advantageously plant upon a given area depends upon several factors, namely, the character and treatment of the soil, the amount of moisture in the soil, and the purpose for which the crop is to be used.

The character of the soil is of prime importance, because in the soil is a part of the food material from which the plant is built up. The soil must either contain a sufficient amount of the needed plant foods, or what is common must be supplied in the form of manure or commercial fertilizers. On the character of the soil depends its capacity for holding water, and the degree to which it may be aerated. On the manner in which the seed-bed is prepared and in which the crop is cultivated, depends both the availability of the plant-food and the water-content of the soil.
The amount of moisture in the soil is originally dependent upon the rainfall, and over this the farmer has no control. This factor must therefore remain an uncertain quantity, so far as the rainfall of the crop season is concerned. The only thing that one can go by in this particular is the probable rainfall, judging from the weather records of the past. The amount of moisture already in the soil, however, can be conserved by proper tillage.

The farmer determines for himself the purpose for which the crop is grown. Whether he desires a maximum of grain without regard to the quantity of stover, or a maximum of stover with little grain, or a crop in which both grain and stover are desired, is for him to decide.

Let it be granted that the soil is naturally well adapted to the raising of corn, the necessary plant food being supplied if lacking.
that the soil is put into proper condition for the reception of the seed and is properly cultivated; and that the moisture content of the soil is sufficient for a maximum crop. It will seldom, if ever, be the case that all these conditions are found at the same time, but the results of a series of experiments no doubt point in the right direction.

If a maximum yield of grain is desired, the area per plant must be less than is usually allowed. Corn is usually planted in rows three and one-half feet apart, with the hills three to three and one-half feet apart in the rows. The average number of kernels per hill is about three. This allows three to four square feet per stalk. Careful tests have shown that about two square feet to the stalk produces the most grain. If the rows are three and one-half feet apart, the hills must be about six inches apart with one kernel in each, or twelve inches apart with two kernels in each.
If the hills are equidistant from each other in two directions, the best results seem to be given when the hills are from two to two and one-half feet apart. When corn is planted so closely as this, however, the ears are rather small. If the crop is to be fed as fodder, small ears are rather an advantage than otherwise; but if it is to be husked, the increase in expense of handling will offset the increase in yield. It would probably pay, in the majority of cases, to plant the hills three feet apart each way, and to plant two to three kernels to the hill. If a large quantity of stover is desired, the hills should be quite close, allowing about one and one-half square feet to the hill, with three kernels to each hill. This will make a large quantity of material for the silo. There is a fair quantity of grain, but the ears are very small. The stalks are small in diameter and are difficult to handle without a corn harvester. If the hills are planted eighteen to twenty-four inches apart, it is
three to four inches in each furrow. If the size of both ears and stalks can be increased, while the total yield is very little, if any, reduced.

4. Depth of Planting.—The depth to which corn should be planted is important, but here, also, the judgment of the farmer must determine the procedure. The kernels must be deep enough to obtain moisture sufficient for germination; but if it is in the presence of too great an amount of moisture, germination will be hindered because of insufficient supply of oxygen. It is at once evident that much depends upon the character and condition of the soil and upon the prevailing meteorological conditions. If the soil is quite porous and the water readily drains out, the required moisture will be farther below the surface than in a heavy or drained soil. If the soil is not well subsoiled, lint is left in
cloddy condition, the moist content is very scant in the surface soil. Finally, if the spring is dry and windy, the moisture will be present in the surface soil in very limited quantities. It is evident that where one or more of the above conditions prevails, the kernels must be planted deeper than is ordinarily necessary. On the table lands of the upper Colorado, it is necessary to bury the kernels twelve to fourteen inches deep, as the soil is sandy and rain seldom falls. Under conditions favorable to corn growing, a depth of two to three inches has given the best results, as a rule. If the spring is wet, one inch, or even less, is deep enough, but the chief difficulty in planting so shallow is the covering of the kernels under the work is done by hand, which is impracticable when corn is grown on a large scale. Corn
should not be planted deeper than three inches unless it is necessary on account of scarcity of moisture. The theory that deep planting gives the stalks a firmer hold has support in the fact that if a kernel is planted one inch deep, it will throw its primary root downward and send out secondary roots nearly horizontally. If it is planted six inches deep, the same thing, approximately, occurs. The shoot, however, must struggle upward through six inches of soil before it reaches the light. Then, from one to two inches below the surface, a whorl of secondary roots is thrown out at one of the nodes, and in a short time the part of the plant below that point sloughs off. The result is that the plant is fixed no more firmly than when planting is one inch deep, while both time and energy have been lost in its struggle to reach the surface.
Part Two:

Experimental Work.

Introduction.

Under the supervision of the Department of Agronomy in the College of Agriculture of the University of Illinois, the writer carried on a field experiment, during the summer of 1902, in methods of planting Indian corn, the special problem being to determine what effect the thickness of planting has upon the yield. The writer believed that, in general, more space was allowed to each plant than was necessary to attain the best results, considering the improved methods employed in the tillage of corn. This was the principal line of work carried on, but a subordinate line was carried on early in the
reason in conjunction with a fellow student, F.E. Sabben. This was a test to determine the effect of the depth of planting upon the germination of corn and several other common grains.

In the Department of Botany in the College of Science, the greater part of the University year has been spent in the microscopical study of the corn kernel. This was undertaken for the purpose of demonstrating the anatomical structure, and the process of double fertilization. This work has not yet been completed, but a large quantity of material is still on hand for examination. For this reason, but little data from this work has been incorporated into this thesis.
Chapter I.

Meteorological Data.

Precipitation at the Urbana Station

<table>
<thead>
<tr>
<th></th>
<th>Average by Annual Months</th>
<th>1902 by Months</th>
<th>Wettest Months</th>
<th>Driest Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1890</td>
<td>30.3</td>
<td>Jan. 1.87</td>
<td>Jan. 8.62</td>
<td>Jan. 1895</td>
</tr>
<tr>
<td>1891</td>
<td>26.7</td>
<td>Feb. 2.06</td>
<td>Feb. 1.48</td>
<td>Feb. 1893</td>
</tr>
<tr>
<td>1892</td>
<td>39.0</td>
<td>Mar. 2.73</td>
<td>Mar. 1.67</td>
<td>Mar. 1898</td>
</tr>
<tr>
<td>1893</td>
<td>32.3</td>
<td>Apr. 2.95</td>
<td>Apr. 2.11</td>
<td>Apr. 1893</td>
</tr>
<tr>
<td>1894</td>
<td>25.7</td>
<td>May 4.05</td>
<td>May 2.61</td>
<td>May 1892</td>
</tr>
<tr>
<td>1895</td>
<td>29.1</td>
<td>June 4.21</td>
<td>June 10.95</td>
<td>June 1892</td>
</tr>
<tr>
<td>1896</td>
<td>35.9</td>
<td>July 3.23</td>
<td>July 4.07</td>
<td>July 1896</td>
</tr>
<tr>
<td>1897</td>
<td>33.5</td>
<td>Aug. 2.84</td>
<td>Aug. 9.80</td>
<td>Aug. 1892</td>
</tr>
<tr>
<td>1898</td>
<td>48.7</td>
<td>Sept. 2.63</td>
<td>Sept. 4.80</td>
<td>Sept. 1896</td>
</tr>
<tr>
<td>1899</td>
<td>29.6</td>
<td>Oct. 2.01</td>
<td>Oct. 2.10</td>
<td>Oct. 1899</td>
</tr>
<tr>
<td>1900</td>
<td>34.0</td>
<td>Nov. 3.15</td>
<td>Nov. 8.55</td>
<td>Nov. 1891</td>
</tr>
<tr>
<td>1901</td>
<td>28.6</td>
<td>Dec. 1.91</td>
<td>Dec. 10.95</td>
<td>Dec. 1890</td>
</tr>
<tr>
<td>Av.</td>
<td>32.6</td>
<td>Total</td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
Chapter II.

Effect on Yield of Thickness of Planting.

1. Location of Experiment:—The experiment in thickness of planting was conducted on the experiment grounds of the University of Illinois, about half way between the astronomical observatory and the horse barn. It was located on a knoll and had very good drainage. The entire area covered by the experiment was about seventeen rods from east to west by about eight rods from north to south.

2. The Character of the Soil:—The soil is the ordinary black loam of the Wisconsin Glaciation. The sub-soil, found sixteen to eighteen inches below the surface, is a yellow clay containing sand and gravel. The soil is very well adapted to corn.
3. The Treatment of the Soil. The ground had been broken in the fall of 1861. Preparatory to planting, it was thoroughly pulverized with a disk-harrow. No record has been kept of the manure that has been applied in the past, but it has received little, if any, treatment in this respect.

4. Time and Manner of Planting. The planting was begun May 22nd and finished May 29th. It was done by hand, hoes being the only implements used. The kernels were covered with about two inches of dirt. There were fifty varieties in all, requiring fifty plots. Each plot was one rod wide by two rods long. The plots were arranged in three east-and-west rows. Passages four feet wide were left between the rows of plots.

5. Time and Manner of Cultivating. The implements used in cultivating the corn were a one-horse
under some inconvenience, a
few hand-hoes, and a two
three cultivators. The weeder and
the harrow were used while the
corn was small, and the cul-
tivators were used later. The cul-
tivation was rather shallow. The
ground was cultivated as often
as was necessary to keep down the
weeds and to keep the soil in
good condition. From June 13 th
to July 12th the plots were gone over
five times, including the work done
with the weeder and the harrow.

6. Time and Manner of Harvesting: The
first part of the fourth week in Octo-
ber, the corn was cut and shocked
by hand. After a month and a
half, the corn was husked out
and the weights of stover and
grain were taken.

7. Table of Data:

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Inches between Hills</th>
<th>Bushel. per Hill</th>
<th>interns per Plant</th>
<th>Stover.</th>
<th>Ears</th>
<th>Yield from Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>48 x 48</td>
<td>16</td>
<td>6</td>
<td>4lbs.</td>
<td>51bs.</td>
<td>61 lbs. 60 lbs.</td>
</tr>
<tr>
<td>2.</td>
<td>50</td>
<td>5</td>
<td>5</td>
<td>5lbs.</td>
<td>62 lbs.</td>
<td>70 lbs. 82 lbs.</td>
</tr>
<tr>
<td>3.</td>
<td>40</td>
<td>4</td>
<td>4</td>
<td>4lbs.</td>
<td>52 lbs.</td>
<td>42 lbs. 63 lbs.</td>
</tr>
<tr>
<td></td>
<td>48 x 48</td>
<td>45 x 45</td>
<td>42 x 42</td>
<td>39 x 39</td>
<td>36 x 36</td>
<td>33 x 33</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>14</td>
<td>12½</td>
<td>10½</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
</tr>
<tr>
<td>9</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>3½</td>
<td>3½</td>
<td>3½</td>
<td>3½</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
<td>6½</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>7½</td>
<td>7½</td>
<td>7½</td>
<td>7½</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>7½</td>
<td>7½</td>
<td>7½</td>
<td>7½</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>8½</td>
<td>8½</td>
<td>8½</td>
<td>8½</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>8½</td>
<td>8½</td>
<td>8½</td>
<td>8½</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>9½</td>
<td>9½</td>
<td>9½</td>
<td>9½</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>10½</td>
<td>10½</td>
<td>10½</td>
<td>10½</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>11½</td>
<td>11½</td>
<td>11½</td>
<td>11½</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>12½</td>
<td>12½</td>
<td>12½</td>
<td>12½</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>13½</td>
<td>13½</td>
<td>13½</td>
<td>13½</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>14½</td>
<td>14½</td>
<td>14½</td>
<td>14½</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
8. Conclusions drawn from the above data:

(a) Corn can, with profit, be more closely planted than it is usually planted, provided the conditions are similar to those under which...
therefore it was concluded that in this experiment, the yield of corn corn was produced on plot 33, where the hills were 12 inches apart, and where 3 grains were planted in each hill. The distance between hills would probably have to be increased somewhat in the ordinary year, as the rainfall during the growing period was greater than in previous years (1902) than is ordinarily the case. Probably 15 to 18 inches would be about right.

(c) The highest yield of corn was from plot 46, where the hills were 15 inches apart with 3 grains planted to the hill. This plot also gave the highest total yield of starch.
Chapter III.

Effect on Germination
of Depth of Planting.

The experiment to test the effect of different depths of planting on germination was conducted several rods north of the experiment on the third course of planting. The soil was similar to that described above but lay a little lower. The seeds were planted at depths varying from one-half inch to twelve inches as shown in the table below. It must be remembered that there was an abundance of moisture in the soil, so that shallow planted seeds would have a better chance to germinate than if they were dry; while very deep planted seeds would be more like
The following table gives the results with the corn only. It was planted May 14th. Twenty seeds were planted in each row.

<table>
<thead>
<tr>
<th></th>
<th>1/2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Horizontal row of numbers represents height in inches.

† *Vertical row of numbers represent the number of plants coming up each day.*
Bibliography.

The works listed below constitute a very small part of the literature bearing upon the subject treated in this thesis. It is hoped that it is typical of the literature that may be found; however, in the United States. No attempt has been made to include any of the great mass of foreign works.

2. How Crops Feed.- Johnson.
4. The Fertility of the Land.- Roberts.
5. Fertilizers.- Voorhees.
7. Indian Corn Culture.- Plumb.
9. A Revolution in Agriculture. [Uses of Corn Stalks.]
15. Improvement of Indian Corn.- Stanek.
(a) A Study of Indian Corn. - Keith.
(b) A Summer's Work on the Sibley Farm. - Dalby.
(c) The Illinois Agriculturist, Vol. VI. 1902.
(a) Breeding Corn for Improvement in Composition. - Allison.
(b) Corn Cultivation to Conserve Moisture. - Woodman.
(c) Corn Stovers. - Lloyd.
(d) History of Indian Corn. - Shank.
(c) Improvement of Farm Crops. - Bulle.
(f) Experiments with Farm Crops. - Center.
16. Year Book of the United States Department of Agriculture, 1894:
(a) Soils in Their Relation to Crop Production.
(b) Water as a Factor in the Growth of Plants.
(c) Pure Seed Investigation.
17. Year Book of the U.S. Dept. of Agriculture, 1895
(a) Reasons for Cultivating the Soil.
(b) Manures in its Relation to Soil Fertility.
(c) Testing Seeds at Home.
(a) Seed Production and Seed Saving.
(b) The Superior Value of Large, Heavy Seeds.
(c) The Feeding Value of Corn Stovers.
(a) Every Farm and Experiment Station.
(b) Additional Notes on Seed Testing.
20. Year Book of the U.S. Dept. of Agriculture 1773
a. Improvement of Plants by Selection.
b. The Movement and Retention of Water in Soils.
21. Year Book of the U.S. Dept. of Agriculture 1777
a. Progress of Plant Breeding in the U.S.
b. Seed Selling, Seed Growing, and Seed Testing.
22. Year Book of the U.S. Dept. of Agriculture 1791
23. Bulletin of the Illinois Experiment Station
b. Experiments with Corn, Bulletin 42, 46.
d. Cost of Production of Corn, Bulletin 52.
e. The Chemistry of the Corn Kernel, Bul. 53.
g. Corn Experiments in Illinois, Circular 60.
h. Investigation of Illinois Soils, Circular 64.
i. Methods of Maintaining the Productive Capacity of Illinois Soils, Circular 68.

The majority of our experiment stations have publications on Indian corn. A number of these in the "Corn Belt" have a large amount of published matter. The list is too long to reproduce here. The entire list may be found in the...