Introduction

RALPH R. SHAW

The papers in this issue show that there is a trend toward the application of scientific management to libraries—and indeed a rapid one. Such an issue would have been quite impossible twenty years ago, and even now some of the articles record directions of growth rather than achievements. It would be interesting to compare it with a similar one to be produced some ten years hence.

As construed in this number scientific management is something quite different from the common pictograms of “time and motion studies,” or “speedups,” which the term often conjures in the mind of the man who hears it. Going back to the originator of scientific management, it is obvious that the phrase was meant to include all of the concepts covered in the definition by Braum, Person, and Cooke, which read, “Scientific management exists primarily as a concept and a mental attitude toward achievement. It exercises a basic systematic technique for discovering and establishing objectives, plans, standards, methods, schedules, and controls of an enterprise, all within the laws of each situation and in an environment of high morale. It thereby exemplifies the best use of human and material energy.” 1, 2

In this sense, scientific management includes not only the arts of making two typewriter strokes grow where one grew before. It emphasizes Frederick Winslow Taylor’s application of the scientific method to the problems of policy and programs as well as to those of broad or narrow operations, an area which has recently been rediscovered as “operational research.”

It seems fitting, therefore, to start with Errett W. McDiarmid’s paper on the place of the scientific method in the formulation of policies and programs. The number then proceeds to broad surveys of the application of scientific management to public and research libraries; then on to the methods used, including time and motion studies,
charts, standardization, workload analysis in libraries of various types and in special types of library work, standards of performance, and controls; and finally to examples of the application of the philosophy and methods in mechanical aspects as well as in programs.

Stated in its most fundamental terms, scientific management is really little more than organized common sense. As is true of the scientific method itself, it follows the dictum that man's judgment cannot be better than the information upon which that judgment is based. It seeks, therefore, to establish the facts of any given situation, taking into consideration all of the factors which must or should influence opinion. It uses careful methodology to make certain that the facts are a reliable sample of the pertinent data, and then, wherever feasible, wherever the facts deduced are conclusive, it follows them to their logical conclusions.

While scientific management uses mechanical and statistical methods and measures in planning, it is not a mechanical process. Rarely—except where procedures and systems are paced by machines, which is almost never the case in libraries or offices—can the judgment resulting from the fact-finding be completely objective. So, at best, the method provides a firmer base for conclusions, and a basis for determining, both in advance and after an alteration has been made, whether or not a change is an improvement.

These characteristics of scientific management are amply attested in the papers in the present issue. In some they show conclusively that the "priceless ingredient" in scientific management is man.

References