Evaluating Faculty and Student Use of Digital Resources for Teaching and Learning

Researchers (in alphabetical order)

Chuck Dziuban, University of Central Florida, charles.dziuban@ucf.edu
Flora McMartin, Broad-based Knowledge, flora.mcmartin@gmail.com
Glenda Morgan, University of Illinois Urbana, gmorgan@illinois.edu
Josh Morrill, University of Wisconsin at Madison, jmorrill@wisc.edu
Patsy Moskal, University of Central Florida, patsy.moskal@ucf.edu
Alan Wolf, University of Wisconsin at Madison, alanwolf@wisc.edu
A STUDY BEGINS … A STUDY EVOLVES

Faculty Baseline: Faculty use of Digital Resources (2006)

Faculty in Context: Physics, Social Science, Geoscience (2008-2011)

General Student Baseline (2012)
FOCUS GROUPS

Faculty Use of Digital Resources

Student Use of Digital Resources
Focus Group Findings

Research Questions

RQ1 - How do students use digital learning resources?
RQ2 - Why do students use these resources?
RQ3 - What is the impact of this use on students’ learning?
RQ4 - What are the barriers to their use?

Findings

- Very information literate (savvy)
- Used Web as supplement to class materials (text books still very important)
- Social networking important, but most worked alone
- Iterative use of Wikipedia - Google - friends - textbooks
Survey Administration

Student Use of Digital Resources
Survey Administration

Serendipity: We now have 3 useful groups to compare:

1) Current students (*full time part time, etc.*)

2) Past students / Alumni

3) Never students/ Never went to college.
Information Seeking Behavior Survey

- Seek out faculty and TAs
- Seek out friends
- Seek out a tutor or the learning center
- Post question on an Internet message board
- Text or IM friends
- Email experts not at your institution
- Consult textbooks
Information Seeking Behavior Survey

• Ask a librarian
• Consult supplemental readings
• View an online lecture
• Review relevant Wikipedia entries
• Review results from a Google search
• Use online library resources (e.g. online journals, e-reserves, or subject guides)
Some demographics…
Age (n=1711)

- 18-19: 22%
- 20-21: 19%
- 22-23: 18%
- 24-25: 17%
- 26+: 25%
Student status (n=1740)

- Full time college/university student: 53%
- Part-time college/university student: 9%
- Former college/university student: 31%
- Never a college/university student: 8%
STEM/Non-STEM major (n=1564)

<table>
<thead>
<tr>
<th>Percent</th>
<th>STEM major</th>
<th>Non-STEM major</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>69</td>
</tr>
</tbody>
</table>
Employment (n=1043)

- Not working: 41%
- Part-time: 69%
- Full-time: 9%
Academic standing (n=1041)
Most frequently taken course modalities

- **Entirely F2F**: 47% (STEM, n=346) vs. 44% (Non-STEM, n=656)
- **Minimal**: 37% (STEM) vs. 35% (Non-STEM)
- **Web**: 10% (STEM) vs. 13% (Non-STEM)
- **Equal mix**: 3% (STEM) vs. 2% (Non-STEM)
- **Extensive Web**: 2% (STEM) vs. 6% (Non-STEM)
- **Entirely online**: 2% (STEM) vs. 6% (Non-STEM)
Preferred class modalities

- **STEM (n=346)**
- **Non-STEM (n=654)**

<table>
<thead>
<tr>
<th>Class Modality</th>
<th>Percent</th>
<th>STEM</th>
<th>Non-STEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entirely F2F</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Minimal Web</td>
<td>34</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Equal mix</td>
<td></td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Extensive Web</td>
<td></td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Entirely online</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Technologies used in class

STEM (n=361) vs. Non-STEM (n=682)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Percent, STEM</th>
<th>Percent, Non-STEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video/audio</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>Wikis/blogs</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>E-books</td>
<td>4242</td>
<td>35</td>
</tr>
<tr>
<td>Sims/Animations</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Mobile apps</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>External websites</td>
<td>61</td>
<td>65</td>
</tr>
<tr>
<td>Social networks</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Online library resources</td>
<td>66</td>
<td>74</td>
</tr>
</tbody>
</table>
Technologies preferred frequently used in class

- Video/audio
- Wikis/blogs
- E-books
- Sims/Animations
- Mobile apps
- External websites
- Social networking

STEM (n=346)
Non-STEM (n=649)
Student information seeking behavior: Class vs. Interest
HOW STUDENTS SEE THEIR SEARCH ENVIRONMENT
Student Self-Perception Dimensions

Agency

Organization

Preparedness

Engagement

MSA = .82
Residual MSA = .59
Average r = .42
Difficulty in Class Dimensions

Seek Expertise

Internet Search

Course Related Resources

Friends, Social Networks

MSA = .71
Residual MSA = .54
Average r = .29
Seeking Information About a Topic of Interest Dimensions

Blended Resources

MSA = .82
Residual MSA = .51
Average r = .30

Friends, Social Network

Internet Search
Smallest Space Analysis of Student Self-Perception and Search Technique

Traits

Skills

Organization

Preparedness

Agency

Engagement

Experts

Blended Resources

Course Related Materials

Internet (I)

Friends (D)

Internet (D)

Friends (I)

Berry Picking

Structure
Dziuban, C., Moskal, P., Kramer, L., & Thompson, J. (2012). Student satisfaction with online learning in the presence of ambivalence: Looking for the will-o’-the-wisp. The Internet and Higher Education.
PERSONAS

Student Use of Digital Resources

Survey
How Were Personas Derived?

Started with the questions on learning / studying preferences (same questions used for factor development)

Conducted a Latent Class Analysis on these items

Found different, internally consistent subgroups. Developed “narratives” or personas to help explain these subgroups.
This segment addresses learning problems using a plan (at least they believe that they have a plan). But, mostly, they do not feel strongly about their learning. They are confident in their ability to find information, but do not enjoy studying nor do they have a need to learn. This is the largest learner segment from the sample.

Ambivalent Learners

48% of Sample

This segment exhibits a lot of characteristics of “ideal” learners (They solve problems with a plan, they are systematic, they set goals, they ask for help if they experience a problem, they enjoy studying and have a need to learn). A differentiator in this group is that there is more variance around setting specific times to study. For example, this could be a learner who studies in a hallway whenever they had some free time.

Adaptive Learners

26% of Sample

This group is not systematic in their learning, and do not solve problems with plans. But they are willing to change what they do when presented with new information (may speak to an experiential type of learner). This group also feels like they have a need to learn, but are among the least likely to set specific times to study, and least likely to ask for assistance with a problem. This is also the smallest learner segment.

Free Form Learners

13% of Sample

Time Sensitive Learners

11% of Sample
Persona Demographics

<table>
<thead>
<tr>
<th></th>
<th>Ambivalent Learners</th>
<th>Adaptive Learners</th>
<th>Free Form Learners</th>
<th>Time Sensitive Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>% full time student</td>
<td>54%</td>
<td>55%</td>
<td>39%</td>
<td>47%</td>
</tr>
<tr>
<td>% former students</td>
<td>30%</td>
<td>33%</td>
<td>44%</td>
<td>33%</td>
</tr>
<tr>
<td>School/ Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2 year/ community college</td>
<td>13%</td>
<td>15%</td>
<td>21%</td>
<td>28%</td>
</tr>
<tr>
<td>-4 year college/ university</td>
<td>72%</td>
<td>57%</td>
<td>51%</td>
<td>55%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-% White/ Caucasian</td>
<td>74%</td>
<td>75%</td>
<td>73%</td>
<td>48%</td>
</tr>
<tr>
<td>Is / Was Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Business, Marketing</td>
<td>17%</td>
<td>14%</td>
<td>17%</td>
<td>25%</td>
</tr>
<tr>
<td>-Humanities & Fine Arts</td>
<td>8%</td>
<td>11%</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>-Engineering</td>
<td>10%</td>
<td>13%</td>
<td>7%</td>
<td>10%</td>
</tr>
</tbody>
</table>
% within each persona desiring... *All face-to-face, half-and-half, or all online courses*

- **Time Sensitive**
 - Entirely Face-to-face: 60%
 - An equal mix (Online and face-to-face): 29%
 - Entirely Face-to-face: 11%

- **Free Form**
 - Entirely Face-to-face: 21%
 - An equal mix (Online and face-to-face): 29%
 - Entirely Face-to-face: 0%

- **Adaptive**
 - Entirely Face-to-face: 41%
 - An equal mix (Online and face-to-face): 14%
 - Entirely Face-to-face: 5%

- **Ambivalent**
 - Entirely Face-to-face: 39%
 - An equal mix (Online and face-to-face): 22%
 - Entirely Face-to-face: 5%
Personas And Technology

<table>
<thead>
<tr>
<th>Wikipedia</th>
<th>Ambivalent Learners</th>
<th>Adaptive Learners</th>
<th>Free Form Learners</th>
<th>Time Sensitive Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>% using Wikipedia (for school or work)</td>
<td>56%</td>
<td>57%</td>
<td>62%</td>
<td>47%</td>
</tr>
</tbody>
</table>

Technology Preferences

% wanting FREQUENT wiki or blog use in their classes	10%	13%	21%	26%
% wanting FREQUENT e-book or eText use in their classes	23%	40%	34%	45%
% wanting FREQUENT content from websites outside of campus used in their classes	24%	48%	53%	45%
% wanting FREQUENT social media (Facebook, Twitter, etc.) use in their classes	10%	18%	11%	32%
Personas, Support and Searching

<table>
<thead>
<tr>
<th></th>
<th>Ambivalent Learners</th>
<th>Adaptive Learners</th>
<th>Free Form Learners</th>
<th>Time Sensitive Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Difficulties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Very Likely to ask FRIENDS for help</td>
<td>46%</td>
<td>59%</td>
<td>45%</td>
<td>65%</td>
</tr>
<tr>
<td>% Very Likely to seek out a TUTOR</td>
<td>14%</td>
<td>18%</td>
<td>18%</td>
<td>54%</td>
</tr>
<tr>
<td>% Very Likely to seek out a LIBRARIAN</td>
<td>5%</td>
<td>17%</td>
<td>11%</td>
<td>42%</td>
</tr>
<tr>
<td>Resources/ Searching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% STRONGLY AGREE; "I prefer sites where others have determined the reliability/accuracy of content"</td>
<td>30%</td>
<td>47%</td>
<td>53%</td>
<td>78%</td>
</tr>
<tr>
<td>% STRONGLY AGREE; “I prefer searching for one large resource first when I do not know where to look”</td>
<td>24%</td>
<td>50%</td>
<td>42%</td>
<td>68%</td>
</tr>
</tbody>
</table>
NOW WHAT?

Survey

Student Use of Digital Resources

Factors & Personas
Where Do We Go Next?

Follow-ups with the Ambivalent Learners

- Who are they, ways that their ambivalence manifests itself etc
- How can we help overcome the ambivalence

Questions of all types of learners

- More about the types of digital resources they use
- The importance of brand
- More on the importance of curation and personal geographies of learning
- Use of resources in class and to help outside of class – what prompts it and how can we expand it? (Motivational triggers)
Implications of this Information

• **We have a more nuanced view of learners** *(Historically this is overly simplistic, and this is just the start of understanding learner behaviors)*

• **Student preferences for technology use and course mode** *(many guesses and suppositions out there)*

• **Expands the notion of digital fluency to include “learning to learn”**

• **Libraries**

• **Textbooks**

And that’s just the beginning
Questions and Comments

Glenda Morgan gmorgan@illinois.edu
@morganmundum

Or one of the other researchers on the project

Chuck Dziuban, University of Central Florida, charles.dziuban@ucf.edu
Flora McMartin, Broad-based Knowledge, Flora.McMartin@gmail.com
Josh Morrill, University of Wisconsin at Madison, jmorrill@wisc.edu
Patsy Moskal, University of Central Florida, patsy.moskal@ucf.edu
Alan Wolf, University of Wisconsin at Madison, alanwolf@wisc.edu

Support for this project was provided by the National Science Foundation DUE award no. 1049537 Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation