This map of the surface topography of Tazewell County illustrates the surface topography as measured in feet (above mean sea level). The highest point in the county is 1,012 feet above mean sea level and is approximately 0.5 miles south of the center of Washington. The lowest point, at 436 feet above mean sea level, is the Illinois River Plain at the southwestern edge of the county.

Elevation data for the map were compiled from United States Geological Survey (USGS) 7.5-minute topographic quadrangle maps. Digital Line Graph (DLG) files were available where topographic contours were displayed by DLG and from USGS Digital Raster Graphic (DRG) files (see Data Source inset). Topographic quadrangle maps were used where available, but where no DLGs were available, topographic contours were digitized by ISGS staff from USGS Digital Line Graph (DLG) files where available, and from USGS Digital Raster Graphic (DRG) files where data were available. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.

The water bodies shown on this and other maps in this series were compiled from the USGS 1:24,000 scale DLGs, USGS 1:100,000 scale DLGs were available, and USGS 1:100,000 scale DLGs available from USGS 1:24,000 scale DLGs at the topographic data. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.

The water bodies shown on this and other maps in this series were compiled from the USGS 1:24,000 scale DLGs, USGS 1:100,000 scale DLGs were available, and USGS 1:100,000 scale DLGs available from USGS 1:24,000 scale DLGs at the topographic data. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.

The water bodies shown on this and other maps in this series were compiled from the USGS 1:24,000 scale DLGs, USGS 1:100,000 scale DLGs were available, and USGS 1:100,000 scale DLGs available from USGS 1:24,000 scale DLGs at the topographic data. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.

The water bodies shown on this and other maps in this series were compiled from the USGS 1:24,000 scale DLGs, USGS 1:100,000 scale DLGs were available, and USGS 1:100,000 scale DLGs available from USGS 1:24,000 scale DLGs at the topographic data. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.

The water bodies shown on this and other maps in this series were compiled from the USGS 1:24,000 scale DLGs, USGS 1:100,000 scale DLGs were available, and USGS 1:100,000 scale DLGs available from USGS 1:24,000 scale DLGs at the topographic data. The interpretations are based on data that may vary with respect to accuracy of geographic location, the type and quantity of information, and the degree to which data are generalized. The interpretations were created using a grid-type elevation model with a grid spacing of 30 feet. The elevation model was then digitally contoured. The digital contours were hand edited to correct apparent topology, to remove confusing problems (such as depressions), and to correct other errors (such as non-contiguous contours). The contour lines were then further edited on-screen using USGS Digital Raster Graphic (DRG) files to resolve topology, or line continuity problems which arose from the automatic contouring algorithm. All of this work was verified or edited by the ISGS.