Managing Textile Collections

INTRODUCTION

A discussion of the care of textiles in a proceedings concerned primarily with library and archive collections may seem somewhat out of place. However, experience and observation show us that few collecting institutions have been able, historically, to stick to their specific acquisitions mission, even if that mission is stated rather than merely implied.

As the responsibilities of collections care have become more complex, it has been necessary to evolve management concepts that organize and prioritize activities related to collection preservation, security, and accessibility. The truly disastrous situations stemming from nonexistent collections management policies or improper use or maintenance of collection materials tend to be the cases which make national news. However, the simple neglect of collections held in the public trust, regardless of their real or perceived value, constitutes a direct attack to the foundation of those ideas and ideals which are embodied in terms like cultural patrimony.

Surely, the deterioration of a diary kept by a pioneer woman on the lonely, wind-swept plains of the early nineteenth-century American West does not threaten civilization. Certainly, greater menaces are an increasing lack of clean air and water, a deteriorating ozone layer, worldwide hunger, and economic and political instabilities. And yet, art, literature, and music are our humanity: the translation of the living to representation.

In his 1987 address, “The Moral Imperative of Conservation,” Librarian of Congress James H. Billington spoke eloquently of the absolute necessity to preserve the artifacts of civilization because they embody that civilization’s collective memory: “The authentically preserved artifact or text presents us with instructions about where we are
and where we might be going as well as where we have been” (Billington, 1987, p. 3). But it is the artifact, not the idea, that must be preserved. It is the artifact that makes possible the instruction.

How do textiles fit into such an existential interpretation of cultural patrimony? If existence and humanity can be defined in terms of Homer or Hemingway, textiles are at least a partial definition of humanness. To use clothing as a very simple example, textiles both create individuality and definition, as in a one-of-a-kind, designer evening gown; or supply anonymity and inclusion, as in a military uniform.

If the case has been made for the necessity of preserving textiles, a mechanism must be provided to support that goal. In order to develop a preservation strategy, the fundamental causes of the deterioration of those materials must be understood, as well as the techniques which are available for eliminating, or at the very least, slowing down the deterioration processes.

THE NATURE AND PROPERTIES OF TEXTILE FIBERS

The term textile requires a very broad definition. Even in those items made only from natural products, textiles can be found in forms as diverse as 200 yards of finely beaten bark to clothe a Fijian chief, or the meticulously embroidered and jeweled silks and velvets of Henry VIII. They are as humble and ordinary as the most simple quilt or as spectacular as a finely worked piece of lace.

The survival of any ancient textile is rather miraculous. Those which by luck of the draw have escaped destruction by ordinary use, and saved because of historical or sentimental attachment, have been subjected to other deteriorative forces including light, fluctuations of temperature and relative humidity, airborne pollutants, insect pests, the manufacturing process, or the inherent fragility of the materials themselves.

General Properties of Fibers

Fibers are the basic materials of which textile yarns and fabrics are created. While more and more examples of synthetic or man-made fibers can be found in collections which have special requirements for their preservation, natural fibers of plant and animal origin still compose the bulk of textile materials.

Textile fibers must have certain characteristics which make them suitable for manufacture into thread and eventually fabric. Fibers must have a sufficient length to allow them to be twisted about one another
(spun), flexibility, strength to withstand the spinning and weaving process, and a certain amount of resilience.

Cellulose, the basic material of *cotton* and *linen* textiles, is a linear polymer composed of thousands of units of the simple sugar glucose. The fiber is easily damaged by acids but has excellent resistance to alkaline solutions. In general, cellulose has poor elasticity and resilience, which explains its tendency to wrinkle easily. Cellulose is a readily absorbent fiber and so is readily attacked by fungi such as mildew. Neither cotton nor flax (linen), however, are attractive to insects, although insects such as moth and carpet beetle will chew through cellulosic fibers to get to woolens or silks nearby.

Both cotton and linen are damaged and yellowed by exposure to light, and gradually lose strength through light deterioration. Both fibers gain strength when wet, which makes their handling during cleaning processes easier than, for example, silk, which loses strength in water. Because of its cylindrical fiber shape, cotton has greater elasticity than flax, the fibers of which are flatter in cross-section. As they age, flax fibers that have been folded, either for storage or as part of the fabric construction or use, tend to break along crease lines.

Protein fibers are obtained from animal sources and fall into two groups: hair fibers (from sheep, goat, camel, llama, alpaca and vicuna), and the secretions obtained from the larvae of the silk worm (*bombyx mori*). The hair fibers have some properties in common with the silk fibers, but some characteristics are quite different.

Protein fibers are composed of high molecular weight polypeptide chains of amino acids. These fibers tend to have excellent moisture absorbency but become weak when wet. They are fairly resistant to attack by acids but easily damaged by alkalis and oxidizing agents such as chlorine bleaches. As with cellulosics, sunlight causes the embrittlement and yellowing of protein fibers.

Because of its molecular arrangement and natural crimp, *wool* fibers and yarns have tremendous elasticity. When new, this allows for a great ability to stretch and then return to the relaxed state. As the fibers age, however, the ability to return to the relaxed state lessens, and distortions become permanent. Wool fibers are also readily subject to damage by agitation or abrasion in combination with heat and moisture. This property allows for the making of felt but can as easily cause irreversible damage during the process of wet cleaning.

Silk is composed of the protein fibroin, which is characterized by a high degree of molecular orientation that accounts for its tremendous fiber strength. It has tremendous absorption properties which account for ease of dyeing, but also makes it easily stainable. The ability of silk to absorb materials is also responsible for its deterioration. During the
nineteenth-century in particular, a variety of bulking agents made primarily from metallic salts, were added to silk to give it both weight and a crisp hand. Because it was sold by the weight of the fabric, the bulking or "weighting" agents were added in the greatest amounts possible. Unfortunately, these materials, which are now chemically bonded to the fabrics, are the elements of their destruction. Weighted silk is commonly found in museum collections as costume and in many quilts. It is easily recognizable as it splits and powders of its own accord, quickly weakening and deteriorating under exhibition lights and breaking with even the most careful handling. All silks, and especially weighted silk, also are readily degraded by heat.

Because they are composed of proteins, hair fibers and silk are attractive food to insect pests. The most destructive are the clothes moth and carpet beetle. Both lay eggs within protein fabrics, and the larvae then eat their way to adulthood by consuming the fabric. If left unchecked, the insects will happily produce generation after generation until the textile is totally consumed.

THE EFFECTS OF THE ENVIRONMENT ON TEXTILE MATERIALS

Light

All materials of plant or animal origin (organic materials) can be damaged by light. Anyone who has stayed on the beach too long does not need to be convinced of the effects of overexposure to light. More and more, it is being convincingly demonstrated that the harm suffered from the exposure and burning of skin is an accumulated effect that eventually results in permanent, irreversible damage, like wrinkling or loss of skin tone. Light deterioration to most museum textiles may not be as quickly visible as a sunburn, but, like the effects on human skin, the accumulated damage will eventually appear as a change of color. The effects of light, however, are not confined to the fading of colors. The strength of textiles may also be affected by light, which acts to weaken and embrittle fibers.

The portion of the light spectrum that is of concern to the caretakers of textile collections includes ultraviolet, visible, and to a lesser degree, infrared radiation. These wavelengths of light can be found in greater or lesser amounts in natural daylight, and fluorescent and incandescent light bulbs. Only the visible portion of the light spectrum is critical to the perception of color in textiles. Clearly, then, there is much to be gained and nothing to be lost by eliminating the ultraviolet and infrared portions of the light spectrum.
Infrared radiation, or radiant heat, is controlled by the placement of lighting equipment at a sufficient distance from exhibited textiles so that the heat will be naturally dissipated into the surrounding air space. Likewise, lighting in display cases must be vented to prevent heat buildup.

Ultraviolet radiation, the most damaging part of the light spectrum, can be completely eliminated by the use of filters which are available for windows and fluorescent light tubes. UF-3 plexiglass, manufactured by Rohm and Haas, is an example of a filtering material which eliminates the ultraviolet portion of the light spectrum. The filters, available as clear acrylic sheets, can be used as replacement window panes, the construction material for exhibition casework, or as coverings for fluorescent tubes. Filtering plexiglass is available from most plastics suppliers. Low uv-emitting fluorescent lights, available from Verilux, Inc. in Greenwich, Connecticut can also be substituted for regular fluorescent tubes.

While it is possible to lessen the effects of light deterioration by the elimination of the ultraviolet portion of the spectrum, prolonged exposure as well as the intensity of visible light will, in time, produce the same effects of fading and embrittlement as a shorter time of exposure to ultraviolet radiation. It is necessary, then, to control both the intensity or brightness of light and the amount of time of exposure. The international museum community has strongly recommended that extremely light-sensitive materials, such as textiles and costumes, paper materials (prints, drawings, manuscripts), watercolors, dyed leathers and most natural history specimens, including botanical materials, fur, and feathers, be displayed at a maximum illuminance of 50 lux, or approximately 5 foot candles (Thomson, 1978, p. 23).

The length of time a textile is exposed to light is much more problematic and is somewhat dependent upon the individual characteristics of various materials. Silk, for example, is more quickly degraded by light than cotton, and some modern synthetic dyes are more light-stable than certain natural dyes. The rule of thumb employed at The Textile Museum for exhibition planning is the following: the display period for textiles should be no longer than six months and as limited as six weeks for more delicate materials.

Light Monitoring Equipment

Appropriate levels of illumination cannot be determined without the aid of light meters. In addition, filters must be periodically checked to ensure that the ultraviolet filtering capabilities have not been exceeded. While the acrylic filters are very long-lasting, they are eventually
degraded by light and will have to be replaced. Both light-intensity meters and uv monitors are available in a range of styles and prices. Some research and investigation may be necessary to determine which monitors are appropriate for one's own institution. The Canadian Conservation Institute publication, Recommended Environmental Monitors for Museums, Archives and Art Galleries (Lafontaine, 1980) provides an excellent introduction to the topic, as well as a list of equipment suppliers in the United States and Canada.

Temperature and Relative Humidity

While temperature itself has less impact on textile preservation than relative humidity, excessively high temperatures contribute to fabric deterioration. Silk, for example, is readily degraded by heat, and the embrittlement of fibers is exacerbated by high temperatures. Biological activity also increases with heat. In terms of climate control, however, fluctuations of temperature impact levels of relative humidity. In general, as temperatures rise, relative humidity drops, and conversely, as temperatures drop, relative humidity rises.

While alive, plant and animal fibers are composed largely of water. While the amount of moisture is reduced when those fibers are no longer living, they retain the ability to absorb as well as lose moisture to the environment as humidity rises and falls. For textiles, the loss of moisture contributes to a loss of flexibility and, eventually, breakage. The absorption of moisture beyond the level of equilibrium that the manufactured textile has achieved results in dimensional change which often is visible as sagging and wrinkling.

Appropriate climate control is extremely difficult to achieve in the institutional setting. Volumes have been written about the subject, but the goal of maintaining specific levels of temperature and relative humidity with little or no fluctuation is nearly impossible or, at the very least, extremely expensive and generally impractical. In historic building in particular, the structures are not designed to withstand the effects of moderate levels of relative humidity (around 50 percent) during the winter season when natural levels of humidity reach levels of 15 or 20 percent with heating that is comfortable to both visitors and staff. Raising the humidity results in condensation on pipes and window glass, as well as within the fabric of the building structure, which may cause significant damage to the building itself.

While the issue of climate control poses many more problems than solutions, minimum goals are the maintenance of temperature and humidity with a minimum of daily or weekly fluctuations.
Airborne Pollutants

The two classes of airborne pollutants that are of concern in textile collections are particulate (dust and dirt, textile fibers and skin fragments from visitors, and minute fragments of metals which are the residues of the burning of fuels), and gaseous materials.

Dust contains minute abrasive particles, such as silicates (sand) and salts which are abrasive and can cut into fibers, particularly as yarns move against each other when handled, or when levels of relative humidity rise or fall. In addition, dust is a hygroscopic material which attracts acidic pollutants from the atmosphere and holds them on the textile surface.

Skin fragments and other textile fibers deposited on the surface of textiles as components of dust are not necessarily harmful in and of themselves, but are attractive to insects. Metals, such as iron, are readily corroded by atmospheric moisture, and could cause staining if concentrated in the dust on the surface of a textile.

A specific problem of new buildings containing concrete is the dusting of extremely fine particles which are extremely alkaline (Thomson, 1978, pp. 126-128) and can damage dye stuffs and silk. Because it can take as much as two years for alkalinity levels to drop sufficiently in a new building, concrete must be sealed to prevent damage to textile collections.

There is a good deal of information in conservation literature about the deteriorating effects of sulfur dioxide, ozone, nitrogen oxides, and chlorides. The oxidation of atmospheric sulfur dioxide creates sulfuric acid, which attacks cellulosic materials. In the presence of high humidity, deterioration is more rapid. Protein materials, especially silk, are weakened by exposure to sulfur dioxide. Ozone is a strong oxidant which destroys almost all organic materials and is especially harmful to cellulose and certain dyes. Nitrogen dioxide deteriorates indigo dyes and other dye stuffs containing amine groups. Chlorides are a particular problem for textiles which have been embellished with metallic threads, as the salts exacerbate metallic corrosion.

More recently, conservators have become aware of the damaging effects of formaldehyde emissions from building materials, paints, and varnishes which are often used in storage and exhibition furniture (Hatchfield & Carpenter, 1978). While the most dramatic form of deterioration caused by the formation of formic acids takes place on lead-containing alloys, such as bronze, formaldehyde is known to be responsible for causing cross-linking in proteins. Formic acid can also affect the pH of cellulose, as well as the color of certain pigments.

Eliminating formaldehyde-containing materials from the museum
environment is extremely difficult, as they are contained in the adhesives of processed woods such as plywood and particle board, as well as coatings on paper-based laminates, and in certain paints and varnish coatings.

Insect Pests

As already stated, the clothes moth and carpet beetle are the most likely insects to cause damage in textile collections. As the long-term effects of insect repellent sprays are unknown, and since there is great concern about the health hazards of using poisons for the eradication of insect pests, more passive approaches to insect control are being investigated.

The best prevention of insect infestation is still proper maintenance. All textiles coming into an institution should be carefully inspected for evidence of damage, as well as eggs or other signs of infestation. As part of routine processing, textiles should be vacuumed front and back, and for costumes, even into seams and pockets to ensure that no live organisms or eggs are allowed to enter collection storage areas. While the brush attachment is useful for vacuuming carpets and other textiles with dense surfaces or pile, more fragile textiles should be vacuumed through plastic or fiberglass screen.

All institutions should have a pest-monitoring program in place as part of preservation strategy. For example, Integrated Pest Management (IPM) courses are available through the Workshop Series at the Smithsonian Institution’s Office of Museum Programs. Nonpoisonous sticky traps should be placed along baseboards and checked monthly for evidence of insect activity.

If an infestation does occur, freezing has been found to be an extremely effective and safe method of insect eradication. Textiles should be placed in polyethylene “zip-top” type bags with as much air removed as possible and placed for forty-eight hours in a freezer which will reach a temperature of at least −2 to −4°F (Florian, 1986). To be absolutely certain of a 100 percent kill, the textile should be removed to a warm location for four days and then refrozen for an additional forty-eight hours. While there is little chance that the insect eggs will have survived the first freezing, the warming effect should be confusing enough to fool the growth process and allow the eggs to hatch. The second freezing then will complete the kill.

Exhibition

Because of the extremely deleterious effects of light on textiles, exhibition times should be kept to a minimum, light sources should be
filtered for ultraviolet emissions, and all daylight should be excluded. The other factor to consider for textile display is the method of hanging and support.

Textile mounts are a subject which requires a great deal of discussion. Each textile has to be evaluated in terms of its condition and structure for a mount type to be selected.

Few mounts can be constructed without the use of a needle and thread. Stitching a textile to a support fabric, or even the rather simple process of applying a hanging strip of velcro require an interventive kind of treatment that is best carried out by a trained conservator. Most textile conservators find it extremely difficult to successfully make this point unless a fabric is seriously degraded, because minimal sewing skills are easy to achieve and textiles are, for the most part, so much a part of the common experience that mounting appears to be a simple and straightforward process. In many cases, the process is very straightforward, but as with any hand skill, a certain amount of training and experience is necessary if the textile is to be safely and adequately supported.

Storage

The storage of textile collections presents a complex series of problems that are common to all types of collection materials. The function of storage is the preservation of specimens in a stable, accessible state so that they will be available for use at some point in the future.

There are three aspects of storage that need to be identified for each object: packaging materials, containers, and cabinetry. **Packaging materials** for textiles include padding, interleaving, and wrapping materials. The most commonly used packaging materials are other fabrics (such as muslin) and archival tissues (both buffered and unbuffered). In some instances, materials like polyethylene, mylar, and nonwoven synthetic fabrics (such as pelon, reemay or polypropylene) are used as dustcovers. The most important specifications for packaging materials are that they be stable, preferably neutral, or if not completely neutral, at least chemically compatible with the textiles they package.

The choice of acid-free archival paper products for textile storage should be carefully made. The presence of alkaline buffered paper in the marketplace has been sufficient to allow an assessment of its importance in protecting cellulosic materials from wood and other wood-pulp paper products, but the effects of that paper's alkalinity on degraded protein materials has not been thoroughly measured. The warnings issued by photographic conservators regarding the deleterious effects
of storing photographic prints in contact with alkaline-buffered materials should, however, suggest caution.

Textiles are not able to maintain their own shape and thus require some kind of support or container for storage. Even a flat textile, such as a sampler, requires some kind of container or support if it needs to be moved, since it is important to avoid any unnecessary flexing of aged or deteriorated fibers.

The best way to store flat textiles is in a flat state, supported by some auxiliary material, such as a mat or box, to facilitate movement. Textiles that are too large for one person to comfortably handle, or larger than cabinetry drawers or shelves, cannot be practically stored flat. Oversized textiles can often be stored in a rolled format. Carpets and tapestries, for example, may be rolled over an archival support tube, following the direction of the warp. Rolling should be neither tight (to prevent strain or stretching of the warp threads) nor loose (to prevent creasing or slipping of one layer against another), and the roll should be secured with soft ties made from a material such as white cotton twill tape.

Pile carpets should be rolled in the direction of the pile with the pile side in to prevent the knots from being spread apart and distorted. Any textile that has been lined should be rolled with the lining in, since it is virtually impossible to keep two or more layers perfectly registered. If creases must be formed, it is preferable for the creases to be located in the lining rather than the textile. Textiles with linings, embroideries, and other textiles with uneven or raised surfaces may need to be carefully padded, for example, with archival tissue, if they are to be rolled. Every attempt should be made to achieve an even, level surface in the roll to alleviate strain and creasing.

Rolled textiles should be covered with some kind of protective material before the ties are added to prevent the transfer of acidic hand oils and to protect the textile from dust, and possibly from light. Washed muslin fabric, archival tissue, nonwovens (such as reemay), mylar, and polyethylene have all been successfully used for covers. The choice of a covering material depends on the nature and properties of the textile materials themselves; their condition, the requirements for visibility and identification of the rolled textile, and the levels of environmental controls for both relative humidity and particulate. For example, mylar might be an appropriate choice if a slightly rigid covering over the textile is desired. However, that material can develop a static charge which would attract dust, especially if humidity levels are low and the heating and air conditioning system does not have sufficient particulate filters.

It is sometimes more appropriate to fold multilayered textiles.
Quilts are an example of a multilayered fabric that can be folded and then placed in an archival storage box or placed in a fabric wrapping for storage (Green, 1985). While folding a quilt helps to alleviate the crushing of heavily stuffed areas and strain on the quilting stitches that would occur if the piece were rolled, crease lines may develop if the folds are insufficiently padded. Crumpled archival tissue can be placed in the folds to increase the curve. Ideally, folded textiles should be inspected at least annually and the folds reoriented so that creases do not set in. Because of the need to handle this kind of textile routinely as part of its maintenance, only dimensional textiles in very sturdy condition should be handled in this way.

As with all storage decisions, the condition of the textile will dictate the proper storage method. For example, a carpet with a weakened foundation may be rolled pile out, or a quilt with tears may be more safely rolled than folded. Costumes present other sorts of problems, but like all other textiles, their condition will dictate the proper method of storage (Wolf, 1984). There has been a good deal of discussion over the years as to whether costumes should be laid flat or hung. The fact is that neither method is ideal, but both have specific and legitimate applications.

Knitted items, bias-cut clothing, and heavily beaded costumes are among the kinds of costume that should be stored flat in drawers, or in archival boxes designed to house costumes. (Costume boxes are generally sized at 30" x 18" x 6" and are available from a variety of archival product suppliers, including but not limited to: University Products, P.O. Box 101, S. Canal Street, Holyoke, MA 01041; Process Materials Corporation, 301 Veterans Blvd., Rutherford, NJ 07070; Conservation Materials Ltd., Box 2884, 240 Freeport Blvd., Sparks, NV 89431.) The reason for this choice of storage format is that these items might stretch or tear under their own weight if hung. However, since these textiles are created as three-dimensional objects lacking internal supports, they must be padded to prevent creasing wherever a fold is introduced. And, as with all textiles stored flat, costumes should be placed on some kind of auxiliary material, such as a sheet of archival mat board, so that they will be supported when they are moved.

Hanging is often the preferred method of storing costume collections when space is at a premium. In addition, bulky or unusually constructed clothing, such as dresses with large bustles, can be most efficiently stored by hanging. The most important factor to consider with this storage method is that the entire weight of a garment will be supported by a relatively small area across the shoulder; consequently, only sturdy garments in good condition should be hung. Other considerations for a hanging cabinet or closet are placement of the bar high
enough so that all garments clear the floor, and sufficient spacing between hangers so that the garments are neither compressed, creased, nor allowed to abrade each other when removed from the cabinet. Padded hangers should be used in hanging a garment. Padding should be resilient so that it does not compress under the weight of the garment, and bulky enough to increase the width of the hanging surface and reduce the stress on the shoulder seam without distorting the shape of the garment.

COLLECTIONS MANAGEMENT

The term collections management is about ten years old within the museum profession (Green & Denton, 1987). Like much of the conservation terminology, there is an implication that the definitions are universally understood. In fact, collections management has been defined and redefined in terms of each registrar's individual institutional situation, leaving little of the substance that originally defined the need for this specific approach to collections care. As a result, most of the writings on the subject tend to reduce the broad implications of management to isolated tasks like data entry or labeling specimens. While there is no need to redefine the term, it is useful to restate the goals of collections management in terms of their fundamental purposes: to provide a comprehensive and integrated approach whereby planning and implementation of management processes are applied to museum or other kinds of collections.

It is important to recognize that these functional areas do not exist in a vacuum, but are integral to all institutional activities. To reach the level of organization where collections management is functional within an institution, several policies and plans must be in place. The most important are a mission statement, a long-range plan, and a collections policy. Depending on the function and mission, an exhibitions policy may also be necessary.

The management aspects for collections are the mechanisms enabling specific functions to be accomplished. These functions are determined by the allocation and organization of institutional resources integral to the mission of the museum in interpretation and research. The five specific functional areas of collections management are planning, information systems, accessibility, physical environment, and monitoring & evaluation. While each of these areas is defined in terms of the tasks associated with its functions, on the management level they are highly interdependent, essential concerns of collections care. Looking at the various levels, the concerns of collections management might be
listed as follows: *planning*—policies, manuals, and short & long-term goals and objectives; *Information Systems*—documentation, records, and research; *accessibility*—organization of collections, housing, and use; *physical environment*—security and safety, climate control, and pest management; and *monitoring & evaluation*—maintenance; and survey and inventory. (It is essential to eliminate the concept of collections maintenance from the primary definition of collections management function. Maintenance implies the preservation of the status quo rather than activities aimed at improving a situation. As such, maintenance is an area of monitoring and evaluation; it is a task rather than a function.)

The physical condition of collections has in large measure established the need for collections management. As such, the conservator has made an impact on the role of the collections manager in several ways. Because of work done by conservators and scientists to analyze the relationship between the products used in contact with objects and the various materials of collection specimens, ideal specifications have been developed for nearly every aspect of exhibitions and storage. The definitions of ideal climate control and pest management also evolving from conservation literature have become integral tasks of the management of the physical environment of collections.

While providing specification and definition to many of the roles of the collections manager, the principle tasks of the conservator are allied, rather than intertwined, with the tasks of the collections manager. The role of the conservator remains one principally of treatment, with an important component of providing the justifications as well as the specifications for certain aspects of collections care.

Depending upon the size of the institution and the training and capabilities of the staff, the tasks of collections management may reside with a variety of individuals. Regardless of who carries out these tasks, and regardless of the kind of collection, the overriding purpose of any collections management program is the preservation of the collection, embodied not only in the artifacts themselves, but in the products of planning (policies and manuals) and information systems (records, documentation and research), the consequences of physical environment (security and safety, climate control and pest management) and accessibility (organization of collections, use and housing), and the impact and benefits of monitoring and evaluation (maintenance, survey and inventory).

CONCLUSION

The materials a civilization collects—the books and manuscripts, paintings, musical scores and tapestries—are reflections of what that
civilization is. These artifacts embody ideas and values, but they are much more than mere representations. Having read the following passage that a quilter's great-granddaughter quoted, one could hardly fail to understand the reasons for collecting and maintaining an otherwise anonymous textile:

It took me more than twenty years, nearly twenty-five, I reckon, in the evenings after supper when the children were all put to bed. My whole life is in that quilt. It scares me sometimes when I look at it. All my joys and all my sorrows are stitched into those little pieces. When I was proud of the boys and when I was downright provoked and angry with them. When the girls annoyed me or when they gave me a warm feeling around my heart. And John, too. He was stitched into that quilt and all the thirty years we were married. Sometimes I loved him and sometimes I sat there hating him as I pieced the patches together. So they are all in that quilt, my hopes and fears, my joys and sorrows, my loves and hates. I tremble sometimes when I remember what that quilt knows about me. (Bank, 1979, p. 94)

REFERENCES

Green, S. W., & Denton, P. L. (1987, September). Unpublished presentation to the faculty of the Pilot Training Program in Collections Care for History Museums, Panhandle-Plains Museum, Canyon, TX.

