The Selection of Library Materials for Storage: A State of the Art

HERMAN L. TOTTEN

Although the outstripping of library facilities by ever-increasing collections is not a new problem, it is becoming increasingly serious in many libraries. Weeding of the collection is one solution, but it is much easier to decide what to acquire for a collection than what to throw away or select for storage. In research libraries, particularly those with implicit or explicit national subject responsibilities, it is not really possible to anticipate the research needs of the future. In his article, “Crisis in Our University Libraries,” Robert B. Downs states that the phenomenal growth of the book world is one of the many dilemmas facing university libraries.1

Science and technology are among the most prolific areas of research. The cumulative nature and the exponential growth rate of science are well known. According to Price, science grows by a factor of ten every fifty years.2 As the number of items published increases, so do prices. These increases in both volume and price inevitably have an impact on all library functions.

Academic libraries have traditionally considered their major function to be the collection and retention of materials with current or possible future value in support of the educational and research goals of their constituency. As a consequence of the explosive growth of print, there has been a corresponding mushrooming growth in the size of research library collections.

In dealing with the problem of growth, three types of solutions have emerged over the years: 1) development of on-campus facilities for storing materials beyond the scope of current interest (Iowa State University and the University of Michigan); 2) development of off-campus cooperative enterprises (Medical Library Center of New
YORK, CENTER FOR RESEARCH LIBRARIES, AND THE NEW ENGLAND DEPOSIT LIBRARY); AND 3) MICROFILMING.

The selection of the type of storage facility is part of a larger problem that Cox calls the "total storage decision problems." In his view, there are two basic questions: 1) How will the books be selected for storage? and 2) How will they be stored? 8

The determination of material to be stored has received considerable attention over the years, but the amount of attention given to this problem in the past decade emphasizes its critical state. The common assumption of people working in the field is that it is the least-used materials that should be stored; therefore, a method of arranging the collection in descending order of probable future use is sought. The basic question arises as to what are the alternatives for predicting the future use of currently held materials. Can systematic methods that consider objective characteristics such as language, date of publication, and past circulation history be devised, or should the decision on storage be based on the sole judgment of subject experts?

Because of the nature of science and scientific publishing, considerable attention has been paid to studying what scientists read, what their reading habits are, how they get their information, and what the relation is between usage and age of journals. Studies have shown that it is possible to determine empirically for each subject field, the most frequently used serials and the ages of these titles. Results demonstrate that the use of scientific periodicals in a given subject field, as well as in general, is concentrated on a small percentage of the total number of journals in that field. 4

Burton and Kebler defined the time that is required for the obsolescence of one-half of the currently published literature as "half-life." 5 This is equivalent to the time during which one-half of the currently active literature was published. Strain 6 and Cole 7 determined that a relationship exists between usage and age. Cole developed mathematical formulas for predicting economic retention periods that assure effective utilization of stack space; Strain, faced with the problem of a serious space shortage, conducted research to develop possible remedies. The analysis of serial circulation records showed the percentage of the collection used for a given year, as well as the most frequently requested titles and their age distribution. Her findings supported Cole's: 80 percent of all requests were published within the last five years. The first six years (current and previous five) contributed to
Selection of Library Materials

almost 84 percent of all requests. Based on these findings, a retirement policy was developed.

Both Fussler and Simon and Trueswell imply that more or less mechanical guidelines can be developed. Fussler and Simon made a frontal attack on the problem of the storage of little-used materials. The authors chose for a preliminary detailed survey of techniques, the collections of the University of Chicago Library in economics and Teutonic languages and literatures. They took a random sample from the shelflists of these collections, weighted it to avoid including too high a proportion of modern works, and examined the loan records of the titles chosen. They adopted the hypothesis that one in four titles had been selected for storage in 1953, used various formulas to decide which title would have been stored, and examined the success of each formula in turn by means of the records of actual issues in the following five years.

The simplest methods of selection depended on publication date, accession date, language of the text, as well as various combinations of these. None proved entirely satisfactory. When the library's records of past issues, over a period of five to twenty years, were combined with the previous data, the results improved considerably. A fair degree of correlation was found between the predictions for Chicago and those derived from Chicago data but applied to the collections of three other major universities in the United States. Rules similar to those for storing monographs were tested to see whether equally good predictions could be made about the future use of periodically published material. The most satisfactory rule was one which depended on the examination of each volume of a periodical title, starting from the earliest, until a specified amount of use appeared. It was pointed out, however, that such formulas were less useful than those for books.

Trueswell suggests a possible aid to the librarian for thinning a library's stacks based on the criterion of user needs. The method employs the last circulation date of the book as a parameter of user circulation requirements. By design, the resulting stack collection would serve over 99 percent of the user circulation requirements and yet be of a minimum size. Early research suggests that the number of volumes in a library collection may be reduced by 60 to 70 percent and yet fill well over 99 percent of the user needs. This method may also possibly determine which books should have multiple copies to minimize user disappointment.

JANUARY, 1971 [343]
The selective book retirement program at Yale developed from the need to consider the economic and administrative problems of the rapid growth of the libraries. For most of its existence, the Yale University Library had operated on the principle that it should acquire everything it could afford or that was offered as a gift or an exchange. In the 1950s, the library recognized that it could never provide space to house or shelve or for staff to process and service such a collection, and that it must become more selective in its acquisitions. The library proposed to the Council on Library Resources, Inc., a three-year concentrated program, sufficiently well-guided and controlled so as to make it possible to secure valid data, which would be useful to the university and to other libraries. It also hoped to obtain data for improving the criteria of selection for compact storage to be applied to various types of material, both old and current.

The three-year study resulted in the formation of a policy for determining types of materials which are placed in storage collections. The types of materials included the following: out-of-date scientific and technological material, out-of-date travel guides unless there was no other edition at Yale, transfers from the undergraduate browsing collection which had not circulated in three years, books on highly specialized topics which were covered or duplicated in more extensive studies, books in uncommon languages on very specific topics and on general topics which would not be of special interest to Yale, Farmington acquisitions in German and Swiss dialects, Farmington acquisitions of a technical nature (how-to-do-it books), inspirational literature, juveniles, noncontemporary minor authors, elementary and secondary school textbooks, crank literature, and biographies of obscure persons. The study provided another category of types of material which should be considered for storage: personal narratives of war experiences, transfers from departmental libraries, early imprints not wanted in special collections, and out-of-date books in any field.

Pamphlets were usually not considered for storage; however, any pamphlet considered for storage had to be one considered essential to the library's permanent collection. Dissertations were assigned to storage with the following exceptions: a dissertation in a subject box which had a date due slip showing the volume to be frequently used would be retained in the stacks; a dissertation which seemed to be a major contribution to a subject field would be cataloged and classified as a monograph for the stacks; and a dissertation on an individual literary author would generally be classified with the author, particu-
Selection of Library Materials

larly if it were an author which Yale collects. In general, second copies which were no longer needed were not assigned to storage. If there were two or more editions of a work and the later editions were revised and expanded, the latest edition was kept in the stacks and earlier editions were considered for storage. Original language editions and English translation, if there was one, were assigned to storage. Translations of works originally published in English were assigned to storage if Yale had the English original.

An analysis of loans by date of publication showed that there was a fairly regular decline in the use of older books among all classes of users. If a book had been charged out on an average of once or more a year for the past five years, it would be considered “heavily used” material and would not be transferred to storage.

Rules given for monographs that were applicable to serials could be followed. Rules devised especially for serials included complete sets of titles which ceased publication and early volumes of long current serial sets (usually not less than fifty to sixty volumes). It was determined that incomplete serial sets or incomplete early files of current sets could be transferred if 10 percent or less of the titles were missing.

Cooper relates the application of the criteria for weeding and storage at Columbia University’s Chemistry Library. The Chemistry Library had been serving the departments of chemistry and chemical engineering for about fifty years; however, space problems and the erection of a new building complex for engineering disciplines dictated a transfer of part of the collection from the Chemistry Library. The move involved dividing the collection into two separate collections and physically moving numerous volumes. The Chemistry Library’s entire collection was reviewed in order to determine which materials were of single and which were of joint departmental interest, as well as to determine the extent of overlap in those areas of joint concern. It was also decided that concurrently with the collection’s assessment, a thorough weeding program would be started. The goal was to identify the extent of unused or little-used materials in the holdings, and then, based on the findings, to segregate the collection into levels of accessibility.

Different methods were used for serials and books in the weeding and separation programs. Books were reviewed according to subject fields as indicated by the Dewey class numbers, while serials were evaluated on a title-by-title basis. Lists of serials were drawn up and
circulated among faculty members seeking their suggestions as to the final disposition of the title. The following alternatives were suggested to the faculty: 1) title of no interest at all; 2) title of some interest, but not needed if available elsewhere in New York City; 3) title should probably be received, but not bound or stored (discard); 4) title not needed at Columbia if available anywhere in the United States on loan; and 5) title should be continued. The weeding policy adopted for books by all participating science and technology libraries was not to discard the following: 1) pre-1900 American imprints (unless a textbook) or pre-1820 European imprints; 2) books by Columbia University authors; 3) consecutive editions of more than three when the library has a copy of each; and 4) materials of intrinsic historical significance. The Trueswell technique was used to further weed the collections, and based on the findings it was decided to keep items in the active collection if they had been borrowed at least once during the previous five years. Other criteria, such as reference value, were also included in the final analysis so that circulation history was not the sole criterion.

Cornell University Library had over 22,000 (in 1961) infrequently used titles compactly shelved in storage areas where the only classification is by size. This arrangement results from one of a number of decisions made in the 1950s for the reorganization of libraries at Cornell. Badly overcrowded stacks dictated immediate transfer of some of the materials to other locations on campus. Back files of periodicals chosen first for relocation were those which could be moved without the need of changing catalog records or of changing many individual titles at the loan desk. Superseded editions and less-used monographs and pamphlets were next considered for storage. Some were discarded; others, though valuable enough to be retained, might only hamper the scholar consulting bookshelves in his discipline. It was decided to store these books in the most economical manner possible, while given direct approach through a minimum of cataloging apparatus.

The director for technical services, Felix Reichmann, devised a scheme called "area classification"—"area" referring to location in storage. In general, books are not chosen for compact storage if they require more than one subject approach, nor are titles worth retaining in duplicate sent to "area." Materials selected include the following: out-of-date textbooks; older editions of literary works in all languages if the library has modern and more legible editions available on the
Selection of Library Materials

shelves; many scientific, legal, theological, and medical publications bearing imprints before 1920; a large number of foreign dissertations, particularly medical ones; publications in the humanities and the social sciences issued prior to 1850; obsolete books in all fields which have been superseded by newer editions and monographs; and many bound, boarded, or boxed pamphlet volumes. Current accessions have been included in "area" from the beginning.

The plan of establishing separate storage libraries for books that are seldom used was first proposed by Charles Eliot, President of Harvard. He devised the method as a means of relieving the congestion in the Harvard College Library bookstacks. He had been haunted by the spectre of keeping a roof over the library during the forty years of his administration. As early as 1871, in his second annual report, he called attention to the urgent need for an addition to Gore Hall. Many piecemeal remedies were offered to alleviate the crowding in the library over the years.

However, in his report for 1898/99, he stated in general terms his idea of ways in which the problem of book storage at Harvard and other large libraries might be solved:

One who watches the rapid accumulation of books in any large library must long for some means of dividing the books that are used from those that are not used, and for a more compact mode. . . . Although the iron stack was a great improvement on any former method of shelving books in a large library, it still wastes much room, and access to the books that are wanted is made slower and more difficult by the presence on the shelves of a great number of books that are never wanted.

Eliot's remarks drew fire from his librarian, although he had not proposed discarding unused books, and Lane (the Harvard librarian) was quick to warn against such a policy. Lane stated: "It remains true nevertheless that every old library contains an increasing amount of what might be called 'dead wood,' which impedes the progress of the student . . . and it may well be that in time such dead wood will have to be thinned out and stored away at one side, making a library 'wood pile' which can be looked over and drawn upon when necessary."

President Eliot had been arguing for the setting aside of just such a "wood pile" to help remedy the crisis in the stacks at Harvard. In 1901 he returned to the problem and developed his idea in some detail. He inferred that there must be "a large mass of unused, or
very little used books in the Gore Hall collection of 367,000 volumes" if only 63,673 books had been borrowed from the library during the current year. He further suggested that the economy and safety of modern methods of communication made it unnecessary for libraries to undertake storing books "by the million." He also proposed that the Harvard stacks be examined every five or ten years, and those which had not been loaned be stored in a more compact manner somewhere else.

Eliot later had an opportunity to address two groups of librarians in order to answer the criticisms of his proposals. He addressed the Massachusetts Library Club in the spring of 1902, and the speech is chiefly remarkable for containing Eliot's first concrete proposal for achieving the more economical means of the storage for little-used books—the erection of a separate storage building in which "all the books should be sorted by sizes, serially numbered, and arranged in double rows, if need be." Eliot gave fuller treatment to his ideas about "dead" books in his address before the American Library Association in June of 1901. The problem of the storing of "dead" books as a means of solving space problems came to an end with the building of Widener Library in 1915—but the problem was merely postponed for a generation. Eliot's dream of a storage library came to fruition in the New England Deposit Library.

In the 1940s, Harvard again was faced with a crisis in space, and the ghost of Eliot's recommendations of 1901 haunted Harvard's libraries. The 1901 suggestions, though seriously considered, died a natural death with the construction of larger facilities at Harvard. The need for space in the Boston area led to the organization in 1941 of the New England Deposit Library Corporation, and in 1942 a storage warehouse for books was opened. The material stored or in the storage classification has been drawn from certain classes, transferred in toto to storage from materials weeded from other classes, and from current acquisitions of the library. The policy of decentralization of collection is an accepted one at Harvard, and the question of any individual unit outgrowing its available space is in a sense an individual problem.

An appreciable proportion of current acquisitions is sent directly to storage as is material selected by the catalog department and the department of resources and acquisitions. Early efforts at weeding collections have shown that removal of duplicate copies and multiple editions will release a great deal of space. Because of the different
Selection of Library Materials

characteristics inherent in the various disciplines, there can be no basic and all-encompassing rules for selection. One general rule has been to move out large sets of volumes—items which would clear the most stack space for the least recataloging cost.

Velva J. Osborn, a former staff member of the Midwest Inter-Library Center (MILC) (now the Center for Research Libraries), at the behest of the Board of Cataloging Policy and Research of ALA’s Division of Cataloging and Classification, described the early development of the center. The study was a firsthand account of the beginnings of the center, and the author was afforded the opportunity of observing the truckloads of books, periodicals and newspapers as they arrived at the center’s loading dock and were placed upon the shelves. She was intimately associated at the receiving end with the mechanics of deposit transfers.

At its inception, MILC proposed a two-point program of cooperation for its library participants: 1) cooperative housing of little-used material, and 2) coordination of collection policies. The actual mechanics of selection of materials to be stored varied widely from member to member, but in essence all plans, no matter how detailed or impromptu, were motivated largely by two factors: 1) the kinds of materials which center librarians had generally regarded as appropriate, and 2) those materials which for one reason or another (lack of space, time, or ability to continue as an organized resource) the member library felt strong compulsion to turn over to MILC in hope of gaining better service. Materials selected for storage included both processed and unprocessed materials. The state of processing did not seem to have much influence on the types of materials selected. Members sent state documents, “collections,” books, textbooks, periodicals, college materials (catalogs, administrative bulletins, alumni and fraternity publications), foreign dissertations, foreign language or other special newspapers, manufacturers’ catalogs, war crime documents, trade union papers, miscellaneous books and periodicals, and serial publications. Some of the member libraries stated that references to circulation records, or to the experience of the circulation staff determined whether materials could be withdrawn from the library for deposit at MILC; others indicated that they made no use of studies.

Lister discovered that criteria for weeding should be based on the current (or immediate past) rate of usage. This was found to be superior to the age criterion or to other subjective rules. Intellectual
weeding policies which require judgment and are based upon somewhat intangible variables usually turn out to be time-consuming and expensive.

It continues to be true that many books in a large research library are seldom used, that being the nature of the "beast." It is now possible to use sophisticated methods for selecting little-used materials from a large library stack and storing them elsewhere without disrupting a statistically significant percentage of library users—in some fields of knowledge.

References

15. Ibid., p. 301.
16. Ibid., p. 305.
17. Harrer, Gustav A. "Relocation, Storage and Rejection of Materials in the
Selection of Library Materials

ADDITIONAL REFERENCES

JANUARY, 1971

[351]