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Protection is the mechanism employed by operating systems to control access to resources. 
Object encapsulation in object-based systems requires control of access to every object. The 
incremental definition of objects through inheritance and type hierarchies is an important aspect 
of object-oriented systems. This dissertation examines the relationship between protection and 
object-oriented hierarchies. Splitting object-oriented hierarchies across protection boundaries 
is particularly attractive for the purposes of providing a uniform programming model to object-
oriented applications and for implementing a minimal object-oriented kernel. 

After surveying current research and providing a background for discussion, this disserta­
tion presents a detailed analysis of the issues relating to splitting object-oriented hierarchies 
across protection boundaries. The analysis is independent of language, operating system, and 
protection model. The analysis reveals the precautions that must be taken to guard against 
protection violations. The analysis also shows that in the general case an object must be able 
to be split across the protection boundaries, and that the child portion of the object should 
delegate or forward unrecognized method calls to the parent portion of the object on the other 
side of the boundary. 

A practical implementation of object-oriented hierarchies across protection boundaries is 
presented. The implementation uses C++ and the Choices object-oriented operating system. 
The implementation is based on proxy objects and a partitioned rings of protection model. 
Proxy objects are automatically allocated, validated, and stripped off to provide an interface 
that is transparent to the programmer. A tool called Proxify++ assists in providing necessary 
information to the run-time system. Examples of the use of the implementation are provided, 
and experience gained by moving the filesystem hierarchy outside of the kernel is presented. 
Performance of the implementation is also evaluated, and calls to the kernel are found to 
be comparable to operating systems that are not object-oriented. Performance for calls to 
intermediate rings is found to be superior to calls to separate address spaces. 
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Chapter 1 

Introduction 

In the context of programming systems, protection is the mechanism used to control access of 

programs and users to resources, including data [PS85]. Protection is often introduced to ensure 

integrity, to prevent inappropriate use that would intentionally or unintentionally compromise a 

resource access policy that is beneficial to the users of a system. Protection may also be used to 

ensure security, but this is a broader topic than the issues addressed in this project. My research 

is concerned with protection and the design of an operating system that supports an object-

oriented interface to applications. This work examines the relationship between protection and 

object-oriented systems. 

Protection can be enforced by convention or agreement amongst the users of the system 

to program in a specific manner, by a compiler that statically checks protection rules are 

not violated or inserts run time checks to verify that the access rules are not violated at 

execution time, or by hardware that absolutely prevents violation of access rules at execution 

time. Protection by convention can easily be violated. Similarly, protection by compilers 

depends on the effectiveness and correctness of the compiler, the nature of the language, and 

whether multiple languages are used to build applications. Hardware-enforced protection offers 

more integrity for access policies and can be applied to more general access problems. 

In object-oriented systems, encapsulation [Nie89] is the major programming protection 

mechanism that restricts manipulation of objects defined in the representation of an abstract 

data type from being accessed except by a set of predefined methods or operations. Encap­

sulation is beneficial because it reduces coupling between modules, encouraging modification, 
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reuse, porting, and understanding. Encapsulation can be enforced in the same ways as general 

protection: by convention as in languages that do not have features that are object-oriented, 

by compiler as in Smalltalk [GR83, Gol84], or by hardware, as in various capability-based com­

puter architectures. Where capabilities are not built into a hardware architecture, hardware 

protection may also be provided by a combination of hardware and operating system primitives. 

For example, the supervisor/user state distinction or virtual memory mechanism may be used 

to provide hardware-enforced encapsulation. 

Encapsulation is, however, only one aspect of an object-oriented system. As denned by 

[Weg87], objects in object-oriented systems belong to classes and class hierarchies that can be 

incrementally denned by an inheritance mechanism. These hierarchies are an important aspect 

of object-oriented systems and greatly facilitate reuse through the development of frameworks 

[JR91]. This research examines extending these hierarchies across protection boundaries. 

1.1 Motivation 

An object-oriented operating system, like any object-oriented program, is made up of many 

object-oriented hierarchies. There are two important motivations to extend these object-

oriented hierarchies across the protection boundaries that an operating system places around 

itself: 

1. This extension will provide applications which are based on an object-oriented program­

ming paradigm with a uniform programming model as they interface with the operating 

system. It will enable the applications to interface with objects, methods, and inheritance 

rather than the traditional procedure call. 

2. The ability to split object-oriented hierarchies across protection boundaries is attractive 

as a mechanism to structure the operating system itself into more-privileged and less-

privileged portions. Keeping the most highly privileged kernel of an operating system to 

a minimum has been proven to be a good way to structure an operating system. Allowing 

object-oriented hierarchies to extend out of the protected kernel will make it easier to 

move portions out of or into the kernel. It will also make a uniform programming model 

as the portions of the operating system outside of the kernel interface with the kernel, 

and as the kernel interfaces with the rest of the system. 
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An object-oriented hierarchy can be split across a protection boundary by either allowing 

parent classes to operate on both sides of the boundary or splitting up the parent and child 

classes in the hierarchy so that they operate on different sides of the boundary. For example, a 

general purpose class such as a class that defines linked lists may be defined inside an operating 

system; if an application makes a subclass of that class it is simplist to copy the parent class 

so the parent operates directly in the application rather than requiring protection boundary 

crossings for inherited behavior. On the other hand, a class that implements an operating 

system service such as a semaphore must remain protected when an application makes a sub­

class because the service will need to have access to protected shared operating system data 

structures. This second kind of hierarchy split is a harder problem than the first. Both kinds 

are useful. 

Splitting object-oriented hierarchies across protection boundaries has not been significantly 

researched before this work. Protection systems in the past have either been designed using the 

function call paradigm as an interface or using the object-based paradigm with no inheritance 

hierarchies. Research is needed to discover the relationship between protection and object-

oriented hierarchies. 

1.2 Thesis 

The focus of this research is the development and study of a mechanism to support object-

oriented hierarchies across protection boundaries. The mechanism should strictly enforce pro­

tection and yet be as transparent as possible to the programmer to allow a uniform object-

oriented programming model. In addition, the mechanism must have adequate performance so 

as to not preclude its use. 

The mechanism that I designed and implemented fulfills these requirements. Applications 

not only can interface with system objects as if they are local objects, they can also incremen­

tally modify the behavior of the system objects for their own use through inheritance. The 

operating system can also take advantage of the inclusion polymorphism of type hierarchies 

to define interfaces through which it can call out to less-privileged subtypes. The mechanism 

automatically and transparently inserts and removes special objects called proxy objects which 

are used to cross a protection boundary and to invoke methods on individual objects on the 
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other side of the boundary. The performance of crossing protection boundaries is adequate: 

method invocations into the kernel with no parameters takes approximately the same amount 

of time as a Unix1 system call, and the extra time taken for allocation and removal of proxy 

objects for parameters and return values is not detrimental because those operations only oc­

cur on a relatively small percentage of calls in a typical application. My implementation also 

uses intermediate rings to support structuring of the operating system into kernel and non-

kernel portions; calls to the intermediate rings take more time than calls to the kernel, but 

they are faster than calls to separate address spaces because message passing is not required. 

The implementation is for the C++ object-oriented language [Str86, Jor90] and the Choices 

object-oriented operating system [CJR87, CRJ87, CJMR89, Rus91, RMC90]. 

The study of this mechanism has led to an analysis of the fundamental problems caused by 

splitting type hierarchies and inheritance hierarchies across protection boundaries. The analysis 

is independent of language, system, and protection model. The analysis reveals the precautions 

that must be taken to guard against protection violations in an object-oriented system with 

protection boundaries. The analysis also shows that in the general case an object must be 

able to be split across the protection boundaries, and that the portion of the object belonging 

to a child in an object-oriented hierarchy should delegate or preferably forward unrecognized 

method calls to the parent portion of the object on the other side of the boundary. 

1.3 Motivating Examples 

In this section I propose a few motivating examples for the desire to split object-oriented hier­

archies across protection boundaries. While developing the Choices object-oriented operating 

system, other developers and I have encountered several categories of situations in which it 

would be helpful to extend the object-oriented hierarchies out of a protected kernel. 

1.3.1 Providing System Services 

The first category involves providing system services to object-oriented applications in an object-

oriented manner. For example, if the operating system provides a Process class to represent 

processes, user programs should be allowed to invoke methods on a Process object as easily as 

'Unix is a trademark of AT&T. 

4 



the kernel itself can. This example does not show an extension of an object-oriented hierarchy 

across a protection boundary, but it does show the use of an object across a boundary. 

1.3.2 Cus tomiz ing Services a t User Level 

The next category involves customizing operating system services at the user level. For example, 

there is an OutputStream type in Choices that has a writeQ method to send data to the stream 

and a flushQ method that is called when data is to be written out. We would like to be able to 

provide a BufFeredOutputStream in user space that overloads the write() and flushQ methods to 

save data in a local buffer and reduces the number of times that system calls need to be made. 

The BufFeredOutputStream should be a subtype of OutputStream so the user can treat it as an 

OutputStream through the inclusion polymorphism of the type hierarchy. This example also 

shows an extension of the implementation hierarchy in that BufFeredOutputStream inherits some 

methods from its parent OutputStream. The BufFeredOutputStream example is best implemented 

by copying the code for the parent OutputStream class into the application because the parent 

class code does not need to cause any side effects in the operating system. 

We would also like to be able to provide applications with the ability to make a subclass 

of a class that implements an operating system service and cannot be copied to an application 

because it needs to continue to cause side effects in the operating system. For example, the 

code for the Semaphore class cannot be copied into an application because it needs to be able 

to modify protected operating system data that is shared between applications. We would like 

to be able to provide a UserSemaphore subclass of Semaphore that redefines methods to avoid 

system calls if a resource is known to be free, and only calls the parent methods in the operating 

system when necessary. 

1.3.3 Cus tomiz ing Services a t an Intermediate Level 

Another category involves having a minimal kernel and moving many shared system services 

into an intermediate protection level. The kernel will be protected from the intermediate system 

services, and the intermediate system services will be protected from user programs. There are 

many advantages to a minimal kernel as will be discussed in section 2.5. 

When there are more than two levels of protection, there will be cases where a type is 

defined on one level, a subtype is defined on another level, and the type or subtype is used on 
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a third level. For example, there is a Timer type in Choices that defines start() and awaitQ 

methods. We want to define the Timer type at the minimal kernel level, define a subtype called 

TimeoutTimer at an intermediate level, and allow the user level to use the TimeoutTimer type 

and treat it as a Timer through inclusion polymorphism. 

1.3.4 Separating Policy from Mechanism 

The final category is that of providing a mechanism at a protected lower level and a policy at 

a less-protected higher level. For example, we want to allow higher levels to control the policy 

of handling page faults. The kernel will define an interface type called FaultHandler and define 

methods implementing the default policy for handling a page fault. User programs will be able 

to make a subtype of FaultHandler and request the kernel to invoke methods on the subtype 

through inclusion polymorphism. 

This same kind of feature could be provided without using subtypes, but using subtypes 

and polymorphism takes advantage of the object-oriented programming paradigm. 

1.4 Overview 

The remainder of this dissertation is organized as follows. Chapter 2 gives background and 

definitions for following discussions and explores related work. Chapter 3 presents the analysis 

of splitting object-oriented hierarchies across protection boundaries. Chapter 4 is a high-level 

description of the implementation of object-oriented hierarchies across protection boundaries 

in the Choices operating system. Chapter 5 presents simple examples of split hierarchies in 

this system. Chapter 6 discusses experience in moving the Choices filesystem out of the kernel. 

Chapter 7 describes specific low-level details of the implementation, intended as a guide for 

those who desire to completely understand and modify the implementation. Chapter 8 discusses 

performance implications. Finally, chapter 9 draws conclusions from this work and proposes 

further research. 
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Chapter 2 

Background 

This chapter contains background information for the rest of this dissertation by describing the 

notation that I use, by defining terms, by discussing concepts of protection, operating systems, 

and object-oriented programming, and by exploring the similarities and differences between my 

research and related work. 

These are the purposes of this chapter: 

1. To provide background for understanding my analysis and implementation of object-

oriented hierarchies across protection boundaries. 

2. To show the previous work from which my research has benefitted. 

3. To show that research on the topic of object-oriented hierarchies across protection bound­

aries is needed because the topic has not been significantly researched before this work. 

2.1 Notation 

These are the fonts that will be used in this dissertation and their meanings: 

Italics - for defining terms and for the name Choices. 

Bold - for language keywords and access rights. 

Sans serif - for class, method, function, and variable names. Methods and functions are followed 

by a pair of parentheses (). 
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Teletype - for instances of the named class. 

CAPITALS - for macros and defines. Macros are followed by a pair of parentheses (). 

2.2 Object-Oriented Operating System Protection 

Protection in object-oriented operating systems is defined in terms of objects, subjects, protec­

tion domains, and processes [PS85]. 

object - A unit of data. In object-oriented systems, the term takes on additional meaning: 

objects are encapsulated such that only the classes that "own" them may manipulate 

them. Some people define objects in object-oriented systems to also include the operations 

(code) with which they are encapsulated, but for the purposes of discussing protection in 

this dissertation, operations will not be considered to be part of an object. 

subject - A unit of code. In object-oriented systems, the implementation of the operations 

(methods) of each class is a subject. 

protection domain - A list of access rights to objects. Each subject is associated with one 

protection domain that specifies the access rights that the subject has to objects. There 

can be more than one subject and/or object for each protection domain, and objects can 

be in one or more protection domains. Multiple access lists are often viewed together 

in matrix form; such a matrix is called an access matrix. In this work, the access rights 

that I am concerned with are the ability to modify objects (that is, both read and write 

access rights together) and the ability to execute methods on objects (the execute access 

right). 

process - A thread of control. Processes wind their way through different subjects. Subjects 

can do nothing without a process to activate them. Processes change protection domains 

as they change from one subject to another. Changing from one protection domain to 

another is called crossing a protection boundary. This occurs at the time a process calls a 

method on an object that belongs to a subject in a different protection domain from the 

one it was executing in, assuming that the process has the execute right on that object. 
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After the process crosses the protection boundary, its rights are amplified such that the 

new protection domain includes the right to modify the object. (The notion of ampli­

fication was first introduced in Hydra [Wul81].) The new protection domain may also 

contain new rights to other objects, but the called method receives a pointer to the object 

as a parameter so it can restrict itself to only modify that object. When the method 

is finished, the process returns back across the protection boundary and reverts to the 

protection domain without the amplified rights. 

At any given time, a process should be allowed to access only the objects that it needs to 

get its job done. This is called the need-to-know principle, and it is useful in limiting the 

amount of damage that flawed code can cause. 

2.3 Trust 

In an operating system environment, different kinds of trust relationships exist between subjects. 

For example, subjects in a kernel are more trusted than subjects in applications, and subjects 

in different applications do not usually trust each other. 

Figure 2.1: Trust Relationships 

Figure 2.1 illustrates the trust relationships that can exist between subjects. Circles repre­

sent subjects, boxes represent collections of objects, and arrows indicate read and write access 

rights to an object in the protection domain of a subject. Table 2.3 shows the same information 
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in the form of an access matrix for the protection domains; D12 is the protection domain of Si 

and S2, D3 is the domain of S3, D4 is the domain of S4, and D5 is the domain of S5. 

D12 
D3 
D4 
D5 

C12 

read-write 
C3 

read-write 
read-write 

C4 
read-write 

read-write 

C5a 
read-write 

read-write 

C5b 

read-write 

read-write 
read-write 

Table 2.1: Access Matrix for Trust Relationships 

These are the trust relationships between two subjects: 

more trusted - The more trusted subject is able to modify all objects belonging to the less 

trusted subject. The protection domain of the more trusted subject is a superset of 

the protection domain of the other subject. SI and S2 are more trusted than the other 

subjects in the figure. They could be two parts of the kernel of an operating system. 

less trusted - The converse of more trusted: the protection domain of the less trusted subject 

is a subset of the protection domain of the other subject. 

partially trusted - The partially trusted subject is able to modify some of the objects that 

belong to the other subject but not all. S5 partially trusts S4; S4 has access to C5b but 

not C5a. They could be two applications that are working together and have some shared 

virtual memory. 

mutually distrusted - Mutually distrusted subjects do not trust each other with any of the 

other's objects. S3 and S4 mutually distrust each other. They could be two independent 

applications. 

mutually trusted - Mutually trusted subjects trust each other with all of each other's objects. 

They both have the same protection domain. SI and S2 mutually trust each other with 

their collection of objects in C12. 

When any two subjects do not mutually trust each other, a protection boundary is placed 

between them so that when a process crosses from one subject to the other the process will 
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have the proper access rights (that is, the process will be in the proper protection domain). 

When one subject is more trusted than another subject, the protection boundary prevents the 

less trusted subject from modifying the objects belonging to the more trusted subject; with 

this kind of a trust relationship, the two subjects are at different protection levels because one 

is more protected than the other. 

Even though trusted subjects can modify the objects that belong to subjects that trust 

them, that does not mean they will modify the objects. Trust simply implies that one subject is 

willing to accept that the other subject will abide by any compile-time or run-time enforcement 

of object encapsulation. 

These trust relationships exist regardless of how fine-grained or coarse-grained the protection 

mechanism is. That is, whether the objects are individually protected through capability-based 

hardware or protected as a group through some other means, the analysis of chapter 3 still 

applies. 

2.4 Proxies 

My work makes extensive use of proxy objects. Proxy objects are objects that represent other 

objects. All interactions with objects that are not in the same protection domain or address 

space of the user go through proxy objects. The use of the term in object-oriented systems was 

first introduced in [Sha86] with the following "proxy principle": "In order to use some service, a 

potential client must first acquire a proxy for this service; the proxy is the only visible interface 

to the service." Proxies forward calls to the real objects and are indistinguishable from the real 

objects from the client's point of view. 

Proxies in Choices (first introduced in [Rus9l]) are a specialization of the general proxy 

concept. Proxies in the general case can represent any number of objects, and the objects 

can be distributed onto different machines. They can also be independently implemented for 

each different kind of server object. Systems that use these general proxies are SOS [SGM89], 

Comandos [MG89], and HCS [Not87]. In my work in Choices, proxies represent only one object 

on the same machine, and they are identically implemented no matter what kind of object they 

represent. 
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The proxy concept was extended by SOS to include a concept of Fragmented Objects 

[SGH+89]. In that system an individual logical object can be distributed across multiple 

machines, with a fragment of the logical object on each machine. My system also supports 

fragmenting a logical object into two or more parts: when a class is subclassed outside of the 

protection domain it is defined in, the portions of the object belonging to the parent and child in 

the different protection domains are fragmented into those different domains. SOS considers a 

proxy to be a fragment of the object that it represents, but in my system proxies are considered 

to be only the mechanism (along with inherited method stubs) that ties the fragments of the 

object together so they appear to the client to be a single object. 

2.5 Minimal Kernel 

A primary motivation for my research is to assist in creating a minimal kernel. A minimal 

kernel, or microkernel, contains only the essential system services necessary to convert bare 

hardware into a small number of abstractions. Any services that can be performed outside of the 

kernel without significantly degrading performance should not be a part of the kernel. Minimal 

kernels typically provide basic services such as process management, memory management, and 

inter-process communication. 

A minimal kernel has several advantages over a large, monolithic kernel: 

1. Since a minimal kernel is smaller, it is easier to develop, debug, and maintain. Debugging 

a kernel can be very difficult because all of the code executes at the highest privilege level, 

and errors often crash the entire system. The more complex the kernel, the more chance 

that serious errors will occur. 

2. A minimal kernel encourages the separation of policy and mechanism. Separation of policy 

and mechanism is very important to achieve modularity and flexibility in an operating 

system [WCC+74]. The kernel provides the mechanism, and the policies are implemented 

outside of the kernel. 

3. Since most of the operating system services are implemented outside of a minimal kernel, 

those services can easily be updated or new services can be added without the need to 
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recompile the kernel or reboot the system and without jeopardizing the integrity of the 

entire system. This is especially valuable for embedded systems that require high uptime. 

4. A minimal kernel makes it possible to run variations of the same operating system or 

totally unrelated operating systems on the same machine. This is especially valuable for 

a research environment where the operating system changes often and different program­

mers have their own versions of the operating system. 

Many other modern operating systems incorporate the minimal kernel concept; examples 

include Mach [R+89], V [CZ83], Amoeba [TM86, MvRT+90], and a kernel for Clouds called Ra 

[B A+89]. None of these systems are object-oriented, but the advantages of a minimal kernel are 

still applicable to object-oriented systems. Mach, V, and Amoeba are message-based systems. 

Even though the Ra kernel is written in C++, it is only object-based outside of the kernel, not 

object-oriented. 

2.6 Protection Model 

My implementation uses a combination of a rings of protection model and a capabilities model. 

Both of these models have been widely used in other systems. The combination of the two 

models fits well with introducing protection boundaries into object-oriented languages that are 

based on one large shared address space. 

2.6.1 P r o t e c t i o n Rings 

In a system that incorporates protection rings, each process executes in a protection ring that 

determines which objects it can access. The innermost ring has the greatest access rights. Each 

successive ring restricts access further. A process can only enter into further-in rings through 

controlled access points. 

MULTICS [Org80] was the first system to use protection rings. MULTICS employs a large 

number of protection rings (32) and assigns specific services to each ring. The disadvantage 

of a large number of rings is that it becomes difficult to hierarchically order services; the 

interdependencies between services can get in the way. My implementation can accommodate 

any number of rings, but I anticipate that only a very small number will be used, perhaps three 
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or four. The most essential portions will remain in the kernel ring and the remainder will be 

placed in one or two rings outside of that with applications in the outermost ring. 

VAX/VMS [KB84] does not use the ring terminology, but it employs four protection levels 

which are essentially the same as rings. In addition, the kernel address space is shared between 

all applications. My system also shares address space; the address space of each inner ring is 

shared with all further-out rings. The address space of further-in rings is shared but is not 

accessible to the further-out rings. The advantage of the sharing is that, when a process crosses 

into a further-in ring, then the address space of the ring that the process came from is directly 

accessible for manipulation by the inner ring. 

My system also includes the ability to partition any ring other than the kernel into separate 

independent address spaces. It is common practice to be able to partition the outermost 

(application) ring into separate address spaces, but the ability to flexibly partition inner rings 

is novel to this work. 

2.6.2 Capabi l i t ies 

Capabilities [Lev84, BS88, Dei84] are protected pointers that provide rights to access individual 

objects. A proxy in my system is a capability that provides a partition of one ring the right to 

invoke methods on an individual object in another ring. 

Capability-based systems typically use fine-grained protection and require every access to 

every object to go through a capability. The problem with that is that the management of 

the capabilities becomes far too complex, and special-purpose hardware is required for efficient 

implementation. Even with special-purpose hardware there is overhead to check the protection 

on every access. My implementation avoids much of that overhead by grouping collections of 

objects together into a partition of a ring using conventional virtual memory hardware. Once 

a process has gained access to an object in another partition of another ring through a proxy, 

the process may then go on to access any other object in that partition without going through 

another proxy. 

Many systems have been developed that incorporate the capabilities concept of protecting 

objects separately. Many of them provide a separate address space for every object using 

conventional virtual memory hardware. Examples include Amoeba [TM86], Clouds [DLA88, 

PD88], COOL [HM90] (based on Chorus) and Eden [ABLN85]. Using conventional virtual 
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memory hardware to protect each object individually is not well suited for small variably-sized 

objects because every object must take up a multiple of a fixed page size. Also, separate page 

tables need to be maintained for every object. Eden goes further and uses active objects, where 

each object has a process associated with it as well as an address space; communication is done 

via message passing. My system uses passive objects that are manipulated through method 

calls by independent processes. 

BiiN [PJC + 90, PKD+90] is a modern system that incorporated capability-based hardware. 

In the BiiN architecture, the capabilities implemented by the hardware are called access de­

scriptors. Objects can be of any size from 64 bytes to 4 gigabytes, and up to 22 6 objects can 

be actively addressed by a process. This hardware virtually eliminates the problems of wasted 

space and time that plague systems that protect individual objects with conventional hardware. 

However, funding was removed from BiiN in late 1989 and interest in capability-based hardware 

has been fading since. 

None of these systems are truly object-oriented, they are all object-based. In other words, 

they do not incorporate inheritance and class hierarchies. If they were to extend their systems 

to incorporate inheritance, they would have to deal with most of the same issues that I address 

in my research. 

2.7 Extending Object-Oriented Operating Systems 

There are two systems in the literature that extend object-oriented hierarchies beyond an 

object-oriented operating system. 

Comandos [MG89, GM89] is one such system. A major goal of Comandos is to provide 

an integrated computational model for programmers of object-oriented applications as they 

interact with the operating system. The designers of Comandos intend to provide support 

for multiple object-oriented programming languages. Inheritance is supported by having an 

implementation contain only the subset of operations defined by a type, and by keeping the 

operations defined by the type's supertype in a different implementation object. My system does 

this also. Few details of how Comandos does the split are provided in the literature, however. 

Work has proceeded in the development of a language called OSCAR that transparently takes 

advantage of the Comandos inheritance structure; Guide [KMV+90] is a language that is an 

15 



exploratory implementation of some of the OSCAR features. Comandos is not a self-contained 

system, it runs on top of other systems: a minimal kernel called IK, and Unix. 

Muse [YTT89, YTM+9l] is the other system. Muse has a reflective architecture that is 

designed to be easily modifiable and optimizable for the needs of applications. Muse is based 

on a meta-object hierarchy initially with three levels: the object level is the equivalent of 

application level, the meta-object level is an intermediate level, and the meta-meta-object level 

is the equivalent of kernel level. Each object is active (that is, has its own process) and is rather 

large-grained in its own address space. A delegation mechanism implements an object-oriented 

hierarchy between the objects, but few details are provided and examples only show delegation 

between objects in the meta-object layer. 

Both of these systems have only briefly addressed the problems of object-oriented hierarchies 

across protection boundaries. These systems show that there is interest in the topic, but more 

research is needed. 

2.8 Extending C + + 

Several systems in the literature extend the C++ language to support more than a single, large, 

statically compiled address space. 

Extended C++ [Sel90] supports remote procedure calls in C++. It is implemented as a 

translator that translates a superset of C++ into ordinary C++ on top of Unix. It adds a 

remotable keyword to mark methods that can be called remotely. This is analogous to the 

proxiable keyword in my system which marks methods that can be called from outside of a 

compiled module. Extended C++ extends the language further to bundle together parameters 

to be sent along with the remote procedure call, including hand-written encoders and decoders 

for parameters that have a complex structure. That is not necessary in my system because 

called methods have direct access to the address space of the caller if the caller trusts the called 

method. 

The SOS system [SGM89] permits migration of objects from one machine to another in 

a distributed system. SOS is implemented with a modified C++ compiler and runs on top of 

Unix. The modified C++ compiler supports a dynamic keyword that is used to instantiate an 

object that can migrate across address spaces. Rather than having hand-written encoders and 
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