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Abstract

This thesis addresses two closely related problems about ideals of powers of linear forms.

In the first chapter, we analyze a problem from spline theory, namely to compute the dimension of the

vector space of trivariate splines on a special class of tetrahedral complexes, using ideals of powers of linear

forms. By Macaulay’s inverse system, this class of ideals is closely related to ideals of fat points.

In the second chapter, we approach a conjecture of Postnikov and Shapiro concerning the minimal free

resolutions of a class of ideals of powers of linear forms in n variables which are constructed from complete

graphs on n + 1 vertices. This statement was also conjectured by Schenck in the special case of n = 3. We

provide two different approaches to his conjecture. We prove the conjecture of Postnikov and Shapiro under

the additional condition that certain modules are free.
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Chapter 1

Applications of ideals of powers of
linear forms to spline theory

In this chapter, we compute the dimension of the vector space of trivariate splines on a special class of

tetrahedral complexes. Our main result is stated in §1.3, after an introduction to spline theory in §1.1 and

a review of previous work in §1.2. The proof of the main theorem covers the rest of the chapter. The main

tools of proof are given in §1.4 to §1.6. In §1.7, we provide examples of computation using these tools. In

§1.8, we state again our main theorem and compare our results with results in the literature.

1.1 A short introduction to spline theory from the algebraic

point of view

In mathematics it is often useful to approximate a function f on a region by a “simpler” function. A natural

way to do this is to divide the region into simplices, and then approximate f on each simplex by a polynomial

function. A polynomial function on each simplex is smooth inside that region, but the polynomial functions

on two adjacent simplices should agree on the boundary to make the function f continuous on the whole

region. We may even require certain smoothness properties of these functions at the boundary of two regions.

Therefore, we are faced with the problem of constructing and analyzing these piecewise polynomial or

spline functions with a specified degree of smoothness on subdivisions of regions in Rn.

Two-variable functions of this sort are frequently used in computer-aided design to specify the shapes

of curved surfaces, and the degree of smoothness attainable in some specified class of piecewise polynomial

functions is an important design consideration. Uni- and multivariate splines are also used to interpolate

values or approximate other functions in numerical analysis, most notably in the finite element method for

deriving approximate solutions to partial differential equations. Here we give a simple example to illustrate

this idea.
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CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

1.1.1 One-dimensional spline theory

Consider a < c < b on R. A piecewise polynomial function is a function f such that

f(x) =


f1(x) if x ∈ [a, c]

f2(x) if x ∈ [c, b],

(1.1.1)

where f1, f2 are polynomials in R[x].

Observe that f is continuous if and only if f1(c) = f2(c), or more generally, f is Ck if and only if

f
(j)
1 (c) = f

(j)
2 (c), for 0 ≤ j ≤ k.

In that case, f1(x)−f2(x) is divisible by (x−c)k+1. Let 〈g1, · · · , gn〉 denote the ideal generated by g1, · · · , gn.

Then

f1 − f2 ∈ 〈(x− c)k+1〉. (1.1.2)

Therefore, we can represent a Cr spline function on [a, c] ∪ [c, b] by a pair (f1, f2) satisfying the above

condition (1.1.2). It is clear that the set of such spline functions form a vector subspace of R[x]2 under the

usual componentwise addition and scalar multiplication. If we restrict the degree of each component to be

at most k, and denote the resulting vector spaces of splines as V rk , we get a finite-dimensional space and a

natural question is to determine its dimension. The answer is given by the following simple formula:

dimV rk =


k + 1 if r + 1 > k

2k − r + 1 if r + 1 ≤ k.

This theory of spline functions on the intervals of R is easy. But the generalization of spline functions

to higher dimensional regions is more difficult. In the next subsection, we give precise definitions and some

examples.

1.1.2 Definitions and examples

Definition 1.1.1 (underlying complexes). 1. A polytope is the convex hull of a finite set in Rn.

2. A polyhedral complex ∆ ⊂ Rn is a finite collection of polytopes such that the faces of each element

2



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

of ∆ are elements of ∆. The k-dimensional elements of a complex ∆ are called k-cells.

3. A polyhedral complex ∆ ⊂ Rn is called pure n-dimensional if every maximal element of ∆(with re-

spective to inclusion) is an n-dimensional polyhedron.

4. Two n-dimensional polytopes in a complex ∆ are adjacent if they intersect along a common face of

dimension n− 1.

5. ∆ is hereditary if for every τ ∈ ∆, any two n-dimensional polytopes σ, σ′ that contain τ can be

connected by a sequence σ = σ1, σ2, · · · , σm = σ′ in ∆ such that each σi is n-dimensional, each σi

contains τ, and σi, σi+1 are adjacent for each i.

Having defined the underlying region where the spline functions are supported, we can define these

functions. In the following, we assume the polyhedral complex ∆ is pure n-dimensional in Rn. Let σ1, · · · , σm

be a given, fixed, ordering of the n-cells in ∆, and let R =
⋃m
i=1 σi.

Definition 1.1.2 (Splines). 1. For each r ≥ 0, we denote by Cr(∆) the collection of Cr functions f on

R such that for every δ ∈ ∆ ( including those of dimension < n), the restriction f |δ is a polynomial

function in R[x1, · · · , xn].

2. Crk(∆) is the subset of f ∈ Cr(∆) such that the restriction of f to each cell in ∆ is a polynomial

function of degree at most k.

Now we ask the central question in spline theory.

Question: what is the dimension of the vector space Crk(∆), in terms of k, r and the geometry of R?

Here is a simple example in two dimensions.

Example 1.1.3. The plane region R is divided into four triangles, labeled as σ1, σ2, σ3, σ4. A spline

f ∈ Cr(R) is given by a 4-tuple (f1, f2, f3, f4) with fi a polynomial in x, y on σi, for each i = 1, 2, 3, 4.

The intersection of σ1 ∩ σ2 is the interval defined by x = 0. Therefore, similar to equation (1.1.2), we

have

f1 − f2 ∈ 〈xr+1〉, equivalently, f1 − f2 = a1x
r+1, (1.1.3)

for some polynomial a1 ∈ R[x, y].

3



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

o H1,0L

H0,1LH-1,1L

H-1,-1L

Σ1

Σ2

Σ3

Σ4

Similarly, σ2 ∩ σ3 is the interval defined by x + y = 0, σ3 ∩ σ4 is defined by x − y = 0 and σ4 ∩ σ1 is

defined by y = 0. So we have the following equations

f1 − f2 = a1x
r+1 (1.1.4)

f2 − f3 = a2(x+ y)r+1 (1.1.5)

f3 − f4 = a3(x− y)r+1 (1.1.6)

f4 − f1 = a4y
r+1 (1.1.7)

for some polynomials a1, a2, a3, a4 ∈ R[x, y].

Adding these four equations gives

0 = a1x
r+1 + a2(x+ y)r+1 + a3(x− y)r+1 + a4y

r+1. (1.1.8)

This algebraic relation is called a syzygy in 〈xr+1, (x+y)r+1, (x−y)r+1, yr+1〉. We refer to Chapter 2 Section

1 for a more detailed introduction to syzygies. Therefore, a spline function f gives rise to a syzygy in

the 4 polynomials, which are powers of linear forms; each linear form defines the faces of intersection of

the 2-dimensional facets of the complex. Conversely, given such a syzygy, namely a 4-tuple (a1, a2, a3, a4)

satisfying the equation (1.1.8), we can solve say, f1, f2, f3 in terms of f4 and then give a formula for the

dimension of Crk(R).

The upshot of this argument is, knowing all the syzygies enables us to find the dimension of Crk(R). Un-

derstanding syzygies of ideals is an important question in commutative algebra. Here, we see one application

of algebra to spline theory.

4



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

1.2 Previous work on splines

There have been two different approaches to splines. One is analytic, using Bernstein-Bezier coordinates.

The other is algebraic, which we follow in this thesis.

In the planar case, Alfeld and Schumaker [AS90] use Bezier-Bernstein techniques to give an explicit

formula for the dimension of Crk(∆) when k ≥ 3r + 1. In [Bil88], Billera constructed a complex of modules

where the spline module Cr(∆) appeared as the top homology. Combining this tool with a vanishing result

of Whiteley [Whi91] allowed him to prove a conjecture of Strang [Str73] on dimC1
k(∆), for generic complex

∆ (that is, complexes where all 2-cells are triangles whose edges are in sufficiently general position).

In [Sch97],[SS97], Schenck and Stillman introduced a chain complex different from that used by Billera.

The top homology of their complex also gives the spline module and the lower homologies have nicer prop-

erties. Using this tool, Geramita and Schenck [GS97] determined the dimension of planar (mixed) splines in

sufficiently high degrees. Another interesting aspect of [GS97] is the use of inverse system relating ideals in

R[x, y] generated by powers of homogeneous linear forms and ideals of fatpoints in P1.

In the case of trivariate splines, Alfeld, Schumaker and Whiteley [ASW93] determined the dimension of

C1 generic tetrahedral splines for degree d ≥ 8. But for r > 1, there is no general formula known. In [Alf96],

[AS08] Alfeld and Schumaker gave upper and lower bounds for dimCrk(∆).

It is natural to first consider some simple tetrahedral complexes, as a first step in understanding splines

on general tetrahedral complexes. In this chapter, for a tetrahedral complex ∆v which consists of several

tetrahedra sharing a single interior vertex v, we generalize the approach of Geramita and Schenck [GS97]

and find a lower bound for the dimCrk(∆), r = 1, 2. See §1.8 for a precise statement.

1.3 Statement of the result

For a tetrahedral complex ∆ = ∆v, denote the number of tetrahedra by f3, the number of 2-dimensional

interior faces passing through v by f2, the number of interior edges with he = 2, he = 3, and he ≥ 4,

respectively by f1,2, f1,3, and f1,4. Recall that he is the number of distinct hyperplanes incident to e. Let f1

be the number of interior edges, so f1 = f1,2 + f1,3 + f1,4.

In the following, the notation
(
a
k

)
denotes the binomial coefficients, with the standard convention that(

a
k

)
= 0, if a < k.

5



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

Theorem 1.3.1. The dimension of C1(∆)k, the vector space of splines of smoothness r = 1 of degree exactly

k, is given as follows:

dimC1(∆)k = h2,k + Ck,

where

h2,k = dimH2(R/J )k,

Ck =f3

(
k + 2

2

)
− f2

[(k + 2

2

)
−
(
k

2

)]
+ f1,2

[(k + 2

2

)
− 2

(
k

2

)
+

(
k − 2

2

)]
+ (f1,3 + f1,4)

[(k + 2

2

)
− 3

(
k

2

)
+ 2

(
k − 1

2

)]
− dim(R/J(v))k,

and dim(R/J(v))k is given by equations (1.5.4),(1.5.5) and (1.5.6), and explicitly computed using the method

of §1.6.

Proposition 1.3.2. dim(R/J(v))k in the following cases is given by

k 0 1 2 ≥ 3

4 hyperplanes 1 3 2 0

5 hyperplanes(∆1) 1 3 1 0

5 hyperplanes(∆2) 1 3 2 0

Clough-Tocher 1 3 0 0

Theorem 1.3.3. The dimension of C2(∆)k, the vector space of splines of smoothness r = 2 of degree exactly

k, is given as follows.

dimC2(∆)k = h2,k +Dk,

where

h2,k = dimH2(R/J )k,

6
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Dk =f3

(
k + 2

2

)
− f2

[(k + 2

2

)
−
(
k − 1

2

)]
+ f1,2

[(k + 2

2

)
− 2

(
k − 1

2

)
+

(
k − 4

2

)]
+ f1,3

[(k + 2

2

)
− 3

(
k − 1

2

)
+

(
k − 2

2

)
+

(
k − 3

2

)]
+ f1,4

[(k + 2

2

)
− 4

(
k − 1

2

)
+ 3

(
k − 2

2

)]
− dim(R/J(v))k,

and dim(R/J(v))k is explicitly computed using the method of §1.6.

Proposition 1.3.4. dim(R/J(v))k in the following cases are given by

k 0 1 2 3 4 5 ≥ 6

4 hyperplanes 1 3 6 6 4 1 0

5 hyperplanes(∆1) 1 3 6 5 3 0 0

5 hyperplanes(∆2) 1 3 6 5 2 0 0

Clough-Tocher 1 3 6 4 1 0 0

Our goal in this chapter is to prove the above result. In the following sections, we develop necessary tools

to analyze the tetrahedral splines. In §1.4, we define spline complexes, following [Sch97]. To understand

each component of the spline complex, we were led to analyze certain ideals of powers of linear forms

in §1.5; All the components are easy to deal with except one, for which we have to use tools from both

commutative algebra and algebraic geometry. In §1.6, §1.7, we completely determine the last component

and give examples.

1.4 Spline Complexes

Let R = R[x, y, z] be fixed throughout this chapter. Our tetrahedral complex ∆v, which we call a Cell,

consists of several tetrahedra sharing a single interior vertex v. Following Schenck [Sch97], we define the

spline complex for Cr(∆v), for any r ≥ 0.

In general, for a tetrahedral complex ∆, Cr(∆) is not a graded module over R and it is convenient to have

a graded module to compute the dimension of splines for each degree. Denote by ∆̂ the simplicial complex

obtained by embedding the simplicial complex ∆ ⊂ R3 in the plane {w = 1} ⊂ R4 and forming the cone

7



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

with the origin. Then the set of splines (of all degrees) on ∆̂ is a graded module Cr(∆̂) over a polynomial

ring S = R[x, y, z, w] and Cr(∆̂)k = Crk(∆).

In our situation, we don’t need to do the above cone construction and Cr(∆) is still a graded module over

R and Cr(∆)k will be the vector space of splines of smoothness r of degree exactly k, since there is a single

interior vertex v for our tetrahedral complex ∆v and we can put the vertex v at the origin O = (0, 0, 0) ∈ R3,

so every linear form defining a hyperplane passing through v will be homogeneous.

Let ∆ = ∆v in the rest of the paper, unless otherwise stated.

Fix an integer r ≥ 0. Define a complex of ideals of J on ∆ by

J(σ) = 0 for σ ∈ ∆3,

J(τ) = 〈lτ r+1〉 for τ ∈ ∆0
2,

J(e) = 〈lτ r+1〉e∈τ for e ∈ ∆0
1,

J(v) = 〈lτ r+1〉v∈τ for v ∈ ∆0
0.

Here ∆0
i are the i-dimensional interior faces of ∆ and we consider all the tetrahedra ∆3 as interior. lτ is the

homogeneous linear form in R defining the affine hull of τ. We denote he and hv as the number of hyperplanes

incident to e and v respectively. Then J(e) is an ideal generated by he powers of linear forms, and similarly

J(v) is generated by hv powers of linear forms.

We also define the constant complex R on ∆ by R(σ) = R for each face σ ∈ ∆ with the boundary map

∂i the usual simplicial boundary map. We get the following quotient complex R/J :

0→
∑
σ∈∆3

R
∂3−→

∑
τ∈∆0

2

R/J(τ)
∂2−→

∑
e∈∆0

1

R/J(e)
∂1−→ R/J(v)→ 0. (1.4.1)

Lemma 1.4.1. H1(R/J ) = H0(R/J ) = 0, and H2(R/J ) is Artinian.

Proof. If we form the cone ∆̂, and define the constant complex S on ∆ by S(∆) = S for each face σ ∈ ∆,

we get the quotient complex S/J , see [Sch97]:

0→
∑
σ∈∆3

S
∂3−→

∑
τ∈∆0

2

S/J(τ)
∂2−→

∑
e∈∆0

1

S/J(e)
∂1−→ S/J(v)→ 0.

Since

S/J = R/J ⊗R R[w],

8
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we have

H1(S/J ) = H1(R/J )⊗R R[w],

H2(S/J ) = H2(R/J )⊗R R[w].

By Lemma 3.1 in [Sch97], dimH2(S/J ) ≤ 1, so we have

dimH2(R/J ) ≤ 0.

Similarly, dimH1(S/J ) ≤ 0 implies that

H1(R/J ) = H0(R/J ) = 0.

1.5 Dimension of graded components of the modules

It is well known that

dimRk =

(
k + 2

2

)
. (1.5.1)

Since J(τ) is a principal ideal generated by an element of degree r + 1, we also have

dim(R/J(τ))k =

(
k + 2

2

)
−
(
k − r + 1

2

)
. (1.5.2)

1.5.1 The case r = 1

To compute dim(R/J(e))k, we use the minimal free resolution of the ideal J(e).

Lemma 1.5.1. The minimal free resolution of J(e) is given by

0→ R(−4)→ R(−2)2 → R→ R/J(e)→ 0 if he = 2,

0→ R(−3)2 → R(−2)3 → R→ R/J(e)→ 0 if he ≥ 3.

9
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So we get

dim(R/J(e))k =


(
k+2

2

)
− 2
(
k
2

)
+
(
k−2

2

)
if he = 2,(

k+2
2

)
− 3
(
k
2

)
+ 2
(
k−1

2

)
if he ≥ 3.

(1.5.3)

Proof. If he = 2, then J(e) is a complete intersection, generated by two quadratics. If he ≥ 3, then

J(e) = 〈l21, l1l2, l22〉, the result follows.

Similarly, we can analyse the ideal J(v), which is generated by squares of the linear forms which define

the hyperplanes passing through v. Since the dimension of quadratic forms in R is 6, we only need to consider

the case hv ≤ 6. If hv ≥ 6, then J(v) = 〈x2, y2, z2, xy, xz, yz〉, so

dim(R/J(v))k =


1 if k = 0

3 if k = 1

0 if k ≥ 2

(1.5.4)

This case is actually the Clough-Tocher complex in Example 1.7.8.

At the other extreme, if hv = 3, then

J(v) = 〈x2, y2, z2〉,

and therefore,

k 0 1 2 3 ≥ 4

dim(R/J(v))k 1 3 3 1 0

We are thus left with the case hv = 4, or 5. If hv = 4, suppose the four hyperplanes passing through v

are defined by l1, l2, l3, l4, so the ideal J(v) = 〈l21, l22, l23, l24〉. After a change of variables,

J(v) = 〈x2, y2, z2, l2〉,

for some linear form l in x, y, z. This ideal is an example of almost complete intersection, whose Hilbert series

10
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are given by Iarrobino (Lemma C of [Iar97]), giving

dim(R/J(v))k =



1 if k = 0

3 if k = 1

2 if k = 2

0 if k ≥ 3

(1.5.5)

For hv = 5, there are more variations, depending on the five linear forms defining the hyperplanes passing

through v.After a change of variables, we may assume the linear forms are given by x, y, z, l1(x, y, z), l2(x, y, z).

If the linear forms l1, l2 only involve two variables, say x, y, (see Example 1.7.3), then

J(v) = 〈x2, y2, xy, z2〉,

and the dim(R/J(v))k is the same as Equation (1.5.5).

In the other cases, it is harder to analyze the ideal J(v), though we can still compute a Grobner basis

and find the dimension as given by

dim(R/J(v))k =



1 if k = 0

3 if k = 1

1 if k = 2

0 if k ≥ 3

(1.5.6)

We can also get the above formulas of dim(R/J(v))k using fatpoints as in §1.6.

1.5.2 The case r = 2.

Lemma 1.5.2. The minimal free resolution of J(e) is given by

0→ R(−6)→ R(−3)2 → R→ R/J(e)→ 0 if he = 2,

0→ R(−4)⊕R(−5)→ R(−3)3 → R→ R/J(e)→ 0 if he = 3,

0→ R(−4)3 → R(−3)4 → R→ R/J(e)→ 0 if he ≥ 4.

11
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So we get

dim(R/J(e))k =



(
k+2

2

)
− 2
(
k−1

2

)
+
(
k−4

2

)
if he = 2,(

k+2
2

)
− 3
(
k−1

2

)
+
(
k−2

2

)
+
(
k−3

2

)
if he = 3,(

k+2
2

)
− 4
(
k−1

2

)
+ 3
(
k−2

2

)
if he ≥ 4.

(1.5.7)

Proof. The ideal J(e) is of codimension 2 in R, so we can apply the Hilbert-Burch Theorem [Eis95]. There

are 3 cases:

Case 1: he = 2. It is similar to the case r = 1, but J(e) is a complete intersection of two cubics.

Case 2: he = 3. Suppose the linear forms are given by l1, l2 and l3 = al1 + bl2, then it is not hard to see the

linear syzygy of l31, l
3
2, l

3
3 is given by

−a3(al1 + 2bl2)l31 + b3(2al1 + bl2)l32 + (al1 − bl2)l33 = 0,

and the quadratic syzygy is given by

(a3l22)l31 + (2a2bl21 + 2ab2l1l2 + b3l22)l32 + (−l32)l33 = 0.

Then the minimal free resolution of J(e) is given by

0→ R(−4)⊕R(−5)
ϕ−→ R(−3)3 〈l

3
1,l

3
2,l

3
3〉−−−−−→ R→ R/J(e)→ 0,

where

ϕ =


−a3(al1 + 2bl2) a3l22

b3(2al1 + bl2) 2a2bl21 + 2ab2l1l2 + b3l22

al1 − bl2 −l32

 .
Case 3: he ≥ 4. Suppose the hyperplanes incident to e are given by l1, l2, · · · , ls, where li = ail1 + bil2 for

i ≥ 3, then it is easy to see the ideal J(e) = 〈l31, l21l2, l1l22, l32〉, so the minimal free resolution of J(e) is given

by

0→ R(−4)3 ψ−→ R(−3)4 〈l
3
1,l

2
1l2,l1l

2
2,l

3
2〉−−−−−−−−−→ R→ R/J(e)→ 0,

12
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where

ψ =



−l2 0 0

l1 −l2 0

0 l1 −l2

0 0 l1


.

As in the case above, though the number of hyperplanes passing through v may be big, the dimension

of R/J(v) only depends on the ideal J(v). Since the dimension of cubic forms in R is 10, we only need to

consider the case hv ≤ 10.

Example 1.5.3. If hv ≥ 10, then J(v) = 〈x, y, z〉3 and

k 0 1 2 ≥ 3

dim(R/J(v))k 1 3 6 0

At the other extreme, if hv = 3, then J(v) = 〈x3, y3, z3〉, so

k 0 1 2 3 4 5 6 ≥ 7

dim(R/J(v))k 1 3 6 7 6 3 1 0

We are thus left to consider the possibilities for hv ∈ {4, 5, .., 9}. We use the inverse system dictionary

to translate this question into one about the Hilbert function of hv fatpoints on P2. There are two distinct

cases.

Case 1: hv ∈ {4, · · · , 8}. In this case, we can give a complete answer to the dimension of (R/J(v))k for

each degree k.

Case 2: hv = 9. Then there are two cases depending on whether the cone of numerically effective classes

of divisors on the surface obtained by blowup P2 at the 9 points is finitely generated or not. If the cone

is finitely generated, then Harbourne’s algorithm, which we will give below [1.6.2], still works and enables

us to compute the Hilbert function of fatpoints, thus dim(R/J(v))k, for each k. However, if the cone is not

finitely generated, it is a famous open problem in algebraic geometry (see Miranda’s survey article [Mir99])

to determine the Hilbert function of fatpoints, and therefore difficult to compute dim(R/J(v))k.

13
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1.6 Review of Inverse System and Fatpoints on P2

1.6.1 Inverse system

In [EI95], Emsalem and Iarrobino proved there is a close connection between ideals generated by powers of

linear forms and ideals of fatpoints. We use their results in the special case of ideals generated by powers of

linear forms in three variables and ideals of fatpoints in P2. See [Ger96], [GS97] for more information.

Let p1, · · · , pn ∈ P2 be a set of distinct points,

pi = [pi1 : pi2 : pi3],

I(pi) = ℘i ⊆ R′ = k[x′, y′, z′].

A fat point ideal is an ideal of the form

F =

n⋂
i=1

℘αi+1
i ⊂ R′. (1.6.1)

We define

Lpi = pi1x+ pi2y + pi3z ∈ R, for 1 ≤ i ≤ n. (1.6.2)

Define an action of R′ on R by partial differentiation:

p(x′, y′, z′) · q(x, y, z) = p(∂/∂x, ∂/∂y, ∂/∂z)q(x, y, z). (1.6.3)

Since F is a submodule of R′, it acts on R. The set of elements annihilated by the action of F is denoted

by F−1.

Theorem 1.6.1 (Emsalem and Iarrobino [EI95]). Let F be an ideal of fatpoints

F =

n⋂
i=1

℘αi+1
i ,

then

(F−1)j =


Rj for j ≤ max {αi},

Lj−α1
p1 Rα1

+ · · · , Lj−αn
pn Rαn

for j ≥ max{αi + 1}.
(1.6.4)

14
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and

dimk(F−1)j = dimk(R/F )j .

Corollary 1.6.2. In the case r = 1, 2, let

F = ℘j−r1 ∩ · · · ∩ ℘j−rn

be an ideal of fatpoints on P2. Then (F−1)j = 〈Lr+1
p1 , · · · , Lr+1

pn 〉j , and

dim(R/J(v))j =


(
j+2

2

)
for 0 ≤ j ≤ r,

dimFj for j ≥ r + 1.

(1.6.5)

Therefore, to obtain the dimension of (R/J(v))k, for each k, it is necessary to consider a corresponding

ideal of fatpoints on P2.

1.6.2 Blowing up points in P2

Here we will use some facts about rational surfaces obtained by blowing-up n points p1, · · · , pn on P2, see

Hartshorne [Har77]. We follow Harbourne [GHM09] and only state what is needed in this thesis.

There is a well-known correspondence between the graded pieces of an ideal of fat points F ⊂ R and the

global sections of a line bundle on the surface X which is the blowup of P2 at the points. Let Ei be the class

of the exceptional divisor over the point pi, and L the pullback of a line on P2. For the fatpoint ideal F in

corollary 1.6.2, define

Dj = jL− (j − r)(E1 + · · ·+ En). (1.6.6)

Then dim Jj = h0(Dj), thus we have

dim(R/J(v))j =


(
j+2

2

)
for 0 ≤ j ≤ r,

h0(Dj) for j ≥ r + 1.

(1.6.7)

Remark 1.6.3. This equation tells us that dim(R/J(v))j only depends on the divisor Dj , which only

depends on the configuration of the fatpoints, and thus only depends on the geometry of the hyperplanes

passing through v, See §1.7 for examples.
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On X, the divisor class group Cl(X) is a free abelian group with basis L,E1, · · · , En which has the

intersection product:

L2 = −E2
i = 1, L.Ei = Ej .Ei = 0, for j 6= i. (1.6.8)

The canonical class of X is

KX = −3L+ E1 + · · ·+ En.

We also define

An = (n− 2)L−KX .

A prime divisor is the class of a reduced irreducible curve on X and an effective divisor is a nonnegative

integer combination of prime divisors. We denote the set of effective divisors by EFF (X ). A divisor whose

intersection product with every effective divisor is ≥ 0 is called numerically effective(nef). We define Neg(X )

as the classes of prime divisors C with C2 < 0. In [GHM09] Proposition 3.1 and 4.1, Neg(X ) is explicitly

determined, which is the main point for the following algorithm of Geramita, Harbourne, and Migliore to

compute h0(F ) for any divisor F on X. To determine Neg(X), we first define a few classes of divisors on X.

1. Br = {E1, · · · , Er};

2. Lr = {L− Ei1 − · · · − Eij |2 ≤ j, 0 < i1 < · · · < ij ≤ r};

3. Qr = {2L− Ei1 − · · · − Eij |5 ≤ j ≤ r};

4. Cr = {3L− 2Ei1 − Ei2 − · · · − Eij |7 ≤ j ≤ 8, j ≤ r};

5. M8 = {4L − 2Ei1 − 2Ei2 − 2Ei3 − Ei4 − · · · − Ei8 , 5L − 2Ei1 − 2Ei2 − · · · − 2Ei6 − Ei7 − Ei8 , 6L −

2Ei1 − 2Ei2 − · · · − 2Ei8}.

Let Nr = Br ∪ Lr ∪Qr ∪ Cr ∪M8. Let X be obtained by blowing up 2 ≤ r ≤ 8 distinct points of P2, then

Neg(X) ⊂ Nr.

and

Neg(X) = neg(X) ∪ {C ∈ Nr|C2 = −1, C ·D ≥ 0, for all D ∈ neg(X)},

where neg(X) is the subset of Neg(X) of classes of those C with C2 = C · C < −1.
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Remark 1.6.4. In any given case, we can list the five classes of divisors on X and Neg(X) is the union of

the classes C with C2 < −1 and the classes C ′ with C ′2 = −1 and C ′ · D ≥ 0 for all D ∈ neg(X). Each

class in Lr is the pullback of a line passing through the points pi1 , · · · , pij if they are on a line; similarly,

each class in Qr is the pullback of a conic passing through the points pi1 , · · · , pij if they are on a conic; and

so on. The computation of C2 and C ·D just uses the intersection product, see Equation (1.6.8). See also

examples in §1.7.

Once we have determined Neg(X), we can use the following algorithm due to Geramita, Harbourne, and

Migliore [GHM09] to compute h0(F ) for any class F on X.

Algorithm :

Start with H = F , N = 0.

If H.C < 0 for some C ∈ Neg(X ), replace H by H−C and replace N by N+C. Eventually either H.An < 0

or H.C ≥ 0 for all C ∈ Neg(X).

In the first case, F is not effective, and h0(F ) = 0.

In the latter case, H is nef and effective and we have a Zariski decomposition

F = H +N,

with

h0(F ) = h0(H) = (H2 −H.KX)/2 + 1.

Remark 1.6.5. The above algorithm is based on Bezout Theorem. See Miranda [Mir99] for an elementary

exposition.

1.7 Examples of Fatpoint Computation

In this section, we will apply the above algorithm to compute dim(R/J(v))j , depending on the number of

hyperplanes hv passing through v, where hv ∈ {4, 5, 6, 7, 8}. We mainly consider the case r = 2 and indicate

the similar computation for r = 1 in remarks. We demonstrate the computation with examples of tetrahedral

complexes constructed from the standard octahedron ∆ by perturbing a vertex to get different numbers of

hyperplanes passing through O. A key point is to determine Neg(X ) in each case, where X as above, is the

blowup of P2 at the fatpoints corresponding to the linear forms defining hv hyperplanes. For concreteness,
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we give the coordinates of the vertices of ∆ as O = (0, 0, 0), P1 = (10, 0, 0), P2 = (0, 10, 0), P3 = (−10, 0, 0),

P4 = (0,−10, 0), P5 = (0, 0, 10), P6 = (0, 0,−10). As noted in Remark 1.6.3, the result does not depend on

the actual coordinates.

Example 1.7.1. [4 hyperplanes]

By perturbing one vertex along one of the edges, we get an example with 4 hyperplanes. For example,

move P1 along the edge P1P2 to get P ′1 = (7, 3, 0). Then there are 3 hyperplanes passing through the interior

edge OP5 with defining equations and the corresponding 3 points in P2 as follows.

l1 = x←→ Q1 = [1 : 0 : 0],

l2 = y ←→ Q2 = [0 : 1 : 0],

l3 = 3x− 7y ←→ Q3 = [3 : −7 : 0].

The points Q1, Q2, Q3 are collinear. The other hyperplane defined by

l4 = z ←→ Q4 = [0 : 0 : 1].

Q4 is not collinear with the other 3 points. So on the surface X, the divisor

C1 = L− E1 − E2 − E3 ∈ Neg(X ),

where L is the pullback of a line on P2 and Ei is the exceptional divisor corresponding to Qi for i = {1, 2, 3, 4}.

In fact,

Neg(X ) = {C1, L− E1 − E4, L− E2 − E4, L− E3 − E4, E1, E2, E3, E4}.

Define Dj as in equation (1.6.6),

Dj = jL− (j − 2)(E1 + E2 + E3 + E4).

Remark 1.7.2. In this example, Nr = Br ∪Lr. It seems that we should include L−E1 −E2, L−E1 −E3,
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L−E2−E3 in Neg(X). However, these classes are not in Neg(X), because they are not prime. For example,

L− E1 − E2 = (L− E1 − E2 − E3) + E3

is a sum of two prime divisors. The class L − E1 − E2 − E3 is prime because the points Q1, Q2, Q3 are

collinear. Moreover, neg(X) = ∅.

Let’s just show that h0(D4) = 4 as a sample of computation, using the intersection product. First,

D4 = 4L− 2(E1 + E2 + E3 + E4),

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3

= 4− 2− 2− 2 = −2 < 0.

So we take

D′4 = D4 − C1 = 3L− E1 − E2 − E3 − 2E4.

It is easy to check that

D′4 · C ≥ 0, for any C ∈ Neg(X ),

therefore, D′4 is nef and effective. So the Zariski decomposition of D4 is

D4 = D′4 + C1.

Using the intersection product (1.6.8) again, we have

D′24 = (3L)2 + E2
1 + E2

2 + E2
4 + (2E3)2

= 9− 1− 1− 1− 4

= 2
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Similarly,

KX = −3L+ E1 + E2 + E3 + E4,

D′4.KX = −(3L)2 − E2
1 − E2

2 − E2
4 − 2E2

3

= −9 + 1 + 1 + 1 + 2

= −4

So we get

h0(D4) = h0(D′4) = (D′24 −D′4.KX)/2 + 1 = 4.

A similar computation shows the Zariski decomposition of D5 is

D5 = D′5 + 2C1,

where

D′5 = 3L− E1 − E2 − E3 − 3E4,

and

h0(D5) = h0(D′5) = 1.

Summarizing, we have

dim(R/J(v))j = h0(Dj) =



6 for j = 3

4 for j = 4

1 for j = 5

0 for j ≥ 6

(1.7.1)

Example 1.7.3. [5 hyperplanes: ∆1]

By perturbing P2, P3 on the plane z = 0, there are 4 hyperplanes passing through the interior edge

OP5(or OP6), so there are 4 corresponding points Q1, Q2, Q3, Q4 on P2 which lie on a line l.

There is another point Q5 = [0 : 0 : 1] corresponding to the plane z = 0, not lying on l. On the surface
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X from blowup of the Q′is, as above, Ei corresponds to Qi, for 1 ≤ i ≤ 5, the divisor class

C1 = L− E1 − E2 − E3 − E4 ∈ Neg(X ).

In fact,

Neg(X ) = {C1, L− Ei − E5, Ei, E5, i ∈ {1, 2, 3, 4}}.

We also have

Dj = jL− (j − 2)(E1 + E2 + E3 + E4 + E5).

We analyse the case j = 4 in details, since it is similar for any j. First,

D4 = 4L− 2(E1 + E2 + E3 + E4 + E5),

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3 + 2E2

4

= 4− 2− 2− 2− 2

= −4 < 0.

So we take

D′4 = D4 − C1 = 3L− E1 − E2 − E3 − E4 − 2E5.

Moreover,

D′4.C1 = 3L2 + E2
1 + E2

2 + E2
3 + E2

4

= 3− 1− 1− 1− 1 = −1 < 0.

So we subtract C1 from D′4 to get

D′′4 = D′4 − C1 = 2L− 2E5.

Now, we can check

D′′4 .C1 = 2L2 = 2 > 0.
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In fact, D′′4 .C ≥ 0 for any C ∈ Neg(X ). Therefore, we have the Zariski Decomposation of D4 as

D4 = D′′4 + 2C1.

A similar computation will show that,

D′′24 = 0, D′′4 .KX = −4.

So we get

h0(D4) = h0(D′′4 ) = 3.

Summarizing, we have

dim(R/J(v))j = h0(Dj) =


5 for j = 3

3 for j = 4

0 for j ≥ 5

(1.7.2)

Remark 1.7.4. We have given the formula of dim(R/J(v))k in Equation (1.5.5) for the case r = 1, by

applying a result of Iarrobino [Iar97]. Here we reprove that formula using a similar computation as above.

Since r = 1, the divisor Dj is given by

Dj = jL− (j − 1)(E1 + · · ·+ E5).

By Corollary 1.6.2, we just need to compute dim(R/J(v))j , or equivalently h0(Dj) for j ≥ 2. For j = 2,

D2 = 2L− (E1 + · · ·+ E5). Since

D2 · C1 = 2L2 + E2
1 + · · ·+ E2

4 = 2− 4 = −2 < 0,

we get D′2 = D2 − C1 = L− E5, which is effective. Since

D′22 = 0, and D′2 ·KX = −3 + 1 = −2,
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we get

h0(D4) = h0(D′4) =
0− (−2)

2
+ 1 = 2.

The computation for j > 2 is completely similar.

Example 1.7.5. [5 hyperplanes: ∆2]

By perturbing one vertex along the interior of a face, we can get another example of 5 hyperplanes. For

example, if we perturb P5 = (0, 0, 10) to P ′5 = (1, 1, 8), then there are 3 hyperplanes passing through the

interior edge OP1(or OP3) with defining equations and the corresponding 3 points in P2 as follows.

l1 = z ←→ Q1 = [0 : 0 : 1],

l2 = y ←→ Q2 = [0 : 1 : 0],

l3 = 8y − z ←→ Q3 = [0 : 8 : −1].

The points Q1, Q2, Q3 are collinear in P2. Similarly, through the interior edge OP2(or OP4), there are 3

hyperplanes

l1 = z ←→ Q1 = [0 : 0 : 1],

l4 = x←→ Q4 = [1 : 0 : 0],

l5 = 8x− z ←→ Q5 = [8 : 0 : −1].

Similarly, Q1, Q4, Q5 are collinear and Q1 is the intersection of the two lines.

So, on the surface X, the two divisors

C1 = L− E1 − E2 − E3,

C2 = L− E1 − E4 − E5,

are in Neg(X ), where Ei is the exceptional divisor corresponding to Qi for i = {1, 2, 3, 4, 5}. In this case,

Neg(X ) given by

{C1, C2, L− E2 − E4, L− E2 − E5, L− E3 − E4, L− E3 − E5, Ei, i = {1, 2, 3, 4, 5}}.
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We also have

Dj = jL− (j − 2)(E1 + E2 + E3 + E4 + E5).

It is easy to check that D3 is nef , and a similar computation shows

D2
3 = 4, D3.KX = −4.

So

h0(D3) = 5.

For

D4 = 4L− 2(E1 + E2 + E3 + E4 + E5),

we have

D4.C1 = 4L2 + 2E2
1 + 2E2

2 + 2E2
3

= 4− 2− 2− 2 < 0.

So we take

D′4 = D4 − C1 = 3L− E1 − E2 − E3 − 2E4 − 2E5.

Since

D′4.C2 = 3L2 + E2
1 + 2E2

4 + 2E2
5

= 3− 1− 2− 2 < 0.

So we take

D′′4 = D′4 − C2 = 2L− E2 − E3 − E4 − E5.

It is easy to check D′′4 is nef , so we get the Zariski decomposition

D4 = D′′4 + C1 + C2.
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A similar computation will show that,

D′′24 = 0, D′′4 .KX = −2.

Thus,

h0(D4) = h0(D′4) = 2.

For j ≥ 5, Dj is not effective, so h0(Dj) = 0.

Summarizing, we have

dim(R/J(v))j = h0(Dj) =


5 for j = 3

2 for j = 4

0 for j ≥ 5

(1.7.3)

Remark 1.7.6. Comparing example 1.7.3 and example 1.7.5, the dim(R/J(v))j differ at j = 4, even though

in both examples, J(v) is an ideal generated by 5 powers of linear forms in x, y, z.

Remark 1.7.7. In Equation (1.5.6), we have given a formula of dim(R/J(v))k in the case r = 1. Here we

prove that formula using the same computation. For k = 2, we consider the divisor D2 = 2L−(E1+· · ·+E5).

Now

D2 · C1 = 2− 3 = −1 < 0,

so we get D′2 = D2 − C1 = L− E4 − E5. It is easy to check that D′2 ·D ≥ 0, for all D ∈ Neg(X), so D′2 is

nef. Since

D′22 = −1, and D′2 ·KX = −3 + 2 = −1,

we get

h0(D2) = h0(D′2) =
−1− (−1)

2
+ 1 = 1.

Example 1.7.8. [6 hyperplanes:Clough-Tocher(CT )]

This tetrahedral complex CT is constructed by putting an interior point O, which we put at the origin

(0, 0, 0), in the tetrahedron and decomposing the tetrahedron into four tetrahedra.

Through each interior edge of CT , there are 3 different hyperplanes, each corresponding to a point in

P2. So we have 4 lines in P2, with each line corresponding to an interior edge of CT , and on each line, there
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are exactly 3 points. Moreover, each point is the intersection of two lines. For example, through the interior

edge OP1, we have the planes OP1P2,OP1P3 and OP1P4, each corresponding to a point, say Q1,Q2 and Q3

in P2. Similarly, around OP2,OP3 and OP4, we have the following corresponding points.

OP2 OP3 OP4

OP2P1 ←→ Q1 OP3P1 ←→ Q4 OP4P1 ←→ Q5

OP2P3 ←→ Q4 OP3P2 ←→ Q2 OP4P2 ←→ Q3

OP2P4 ←→ Q5 OP3P4 ←→ Q6 OP4P3 ←→ Q6

The configuration of the 6 points on P2 is type 10 in the table of [GHM09].

So on the surface X obtained from the blowup the 6 points, we have the following class of divisors in

Neg(X ).

C1 = L− E1 − E2 − E3, C2 = L− E1 − E4 − E5,

C3 = L− E2 − E4 − E6, C4 = L− E3 − E5 − E6,

with Ei as the exceptional divisor from blowup of Qi, for 1 ≤ i ≤ 6.

In this case, D3 is nef , with

D2
3 = 3, D3.KX = −3.

So h0(D3) = 4. As for D4, the Zariski decomposition is

D4 = 0 + C1 + C2 + C3 + C4.

So h0(D4) = h0(0) = 1. Summarizing, we have

dim(R/J(v))j = h0(Dj) =


4 for j = 3

1 for j = 4

0 for j ≥ 5

(1.7.4)
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1.8 Main Result

1.8.1 Theorems

Now we have computed the dimension for each component of the complex R/J . Putting the results together,

we get our main result.

For a tetrahedral complex ∆ = ∆v, denote the number of tetrahedra by f3, the number of 2-dimensional

interior faces passing through v by f2, the number of interior edges with he = 2, he = 3, and he ≥ 4,

respectively by f1,2, f1,3, and f1,4. Recall that he is the number of hyperplanes incident to e. Let f1 be the

number of interior edges, so f1 = f1,2 + f1,3 + f1,4.

Theorem 1.8.1. The dimension of C1(∆)k, the vector space of splines of smoothness r = 1 of degree exactly

k, is given as follows.

dimC1(∆)k = h2,k + Ck,

where

h2,k = dimH2(R/J )k,

Ck =f3

(
k + 2

2

)
− f2

[(k + 2

2

)
−
(
k

2

)]
+ f1,2

[(k + 2

2

)
− 2

(
k

2

)
+

(
k − 2

2

)]
+ (f1,3 + f1,4)

[(k + 2

2

)
− 3

(
k

2

)
+ 2

(
k − 1

2

)]
− dim(R/J(v))k,

and dim(R/J(v))k is given by Equations (1.5.4),(1.5.5) and (1.5.6), and explicitly computed using the method

of §1.6.

Theorem 1.8.2. The dimension of C2(∆)k, the vector space of splines of smoothness r = 2 of degree exactly

k, is given as follows.

dimC2(∆)k = h2,k +Dk,

where

h2,k = dimH2(R/J )k,

27



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY

Dk =f3

(
k + 2

2

)
− f2

[(k + 2

2

)
−
(
k − 1

2

)]
+ f1,2

[(k + 2

2

)
− 2

(
k − 1

2

)
+

(
k − 4

2

)]
+ f1,3

[(k + 2

2

)
− 3

(
k − 1

2

)
+

(
k − 2

2

)
+

(
k − 3

2

)]
+ f1,4

[(k + 2

2

)
− 4

(
k − 1

2

)
+ 3

(
k − 2

2

)]
− dim(R/J(v))k,

and dim(R/J(v))k is explicitly computed using the method of §1.6.

In the above theorems, (
a

2

)
= 0, if a < 2.

of Theorems 1.8.1, 1.8.2. The Euler characteristic equation applied to the complex R/J is

χ(H(R/J )) = χ(R/J ).

Since C2(∆) ' H3(R/J ), this fact implies that

dimC2(∆)k = dim

3∑
i=0

(−1)i
⊕

β∈∆0
3−i

(R/J(β))k + dim

2∑
i=0

(−1)iH2−i(R/J )k

By equations (1.5.3), (1.5.7), we get dim(R/J(τ))k and dim(R/J(e))k. By Lemma 1.4.1, H1(R/J ) =

H0(R/J ) = 0. Also H2(R/J ) is Artinian, so its k-th graded component vanishes when k � 0.

Corollary 1.8.3. dimC1(∆)k ≥ Ck, and dimC2(∆)k ≥ Dk.

Remark 1.8.4. The two complexes R/J for r = 1 and r = 2 are different, so are the modules H2(R/J ).

Corollary 1.8.5. The dimension of C1
d(∆), the vector space of splines of smoothness r = 1 of degree at

most d, is bounded below as

dimC1
d(∆) ≥(f3 − f2 + f1)

(
d+ 3

3

)
+ (f2 − 2f1,2 − 3f1,3 − 3f1,4)

(
d+ 1

3

)
+ 2(f1,3 + f1,4)

(
d

3

)
+ f1,2

(
d− 1

3

)
−

d∑
k=0

dim(R/J(v))k.

(1.8.1)
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For d ≥ 4, the inequality simplifies to

dimC1
d(∆) ≥f3

6
d3 + (f3 − f2)d2 + (

11

6
f3 − 2f2 + 3f1 + f1,2)d

+ (f3 − f2 + f1,3 + f1,4)−
d∑
k=0

dim(R/J(v))k.

(1.8.2)

Corollary 1.8.6. The dimension of C2
d(∆), the vector space of splines of smoothness r = 2 of degree at

most d, is bounded below as

dimC2
d(∆) ≥(f3 − f2 + f1)

(
d+ 3

3

)
+ (f2 − 2f1,2 − 3f1,3 − 4f1,4)

(
d

3

)
+ (f1,3 + 3f1,4)

(
d− 1

3

)
+ f1,3

(
d− 2

3

)
+ f1,2

(
d− 3

3

)
−

d∑
k=0

dim(R/J(v))k.

(1.8.3)

For d ≥ 6, the inequality simplifies to

dimC2
d(∆) ≥f3

6
d3 + (f3 −

3

2
f2)d2 + (

11

6
f3 −

3

2
f2 + 6f1 + 3f1,2 + f1,3)d

+ (f3 − f2 − 9f1,2 − 4f1,3 − 2f1,4)−
d∑
k=0

dim(R/J(v))k.

(1.8.4)

For the extremal cases of exactly 3 or ≥ 10 hyperplanes, we work out dim(R/J(v))k in Example 1.5.3.

Here we put our results on the above examples of 4, 5 or 6 hyperplanes in one place for the readers’

convenience. We don’t claim these are all the cases of 4, 5 or 6 hyperplanes. Our point is to illustrate the

computation of dim(R/J(τ))k by the algorithm. All the remaining cases are similar but more complicated.

Proposition 1.8.7. In the case r = 2, dim(R/J(v))k for the following cases are given by

k 0 1 2 3 4 5 ≥ 6

4 hyperplanes 1 3 6 6 4 1 0

5 hyperplanes(∆1) 1 3 6 5 3 0 0

5 hyperplanes(∆2) 1 3 6 5 2 0 0

Clough-Tocher 1 3 6 4 1 0 0
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1.8.2 Comparison and Examples

In the case r = 1, Alfeld, Schumaker and Whiteley [ASW93] Theorem 54 also give a lower bound on

dimC1
d(∆)

dimC1
d(∆) ≥ d(d− 1)(d− 5)

6
T + 3(d− 1)VI + d(d− 1)VB + 1 + 5d− 2d2, for d ≥ 3,

where T, VB , VI are the number of tetrahedra, boundary vertices, and interior vertices, respectively.

In the setting of our paper, VI = 1. Using the relation VB = 2f3 − f2 + 2, their bound is given by

dimC1
d(∆) ≥ f3

6
d3 + (f3 − f2)d2 + (−7

6
f3 + f2 + 6)d− 2. (1.8.5)

Compare our bound in Equation (1.8.2) with their bound, the difference is

f1,2d+ (f3 − f2 + f1,3 + f1,4) + 2−
d∑
k=0

dim(R/J(v))k. (1.8.6)

It is clear that our bound is better if f1,2 > 0. If f1,2 = 0, the difference is only

−
d∑
k=2

dim(R/J(v))k.

For a tetrahedral partition ∆ of a simply connected polygonal region D ⊂ R3 and d > r, Lau [Lau06]

proved that, a lower bound of Crd(∆) is given by

dimCrd(∆) ≥
(
d+ 3

3

)
+ f2

(
d− r + 2

3

)
− f1[

(
d+ 3

3

)
−
(
r + 3

3

)
− (d− r)

(
r + 2

2

)
] + δ,

(1.8.7)

where

δ =

f1∑
k=1

d−r∑
l=1

l∑
j=1

(r + 1 + j − jek∗)+,

and ek∗ is the number of interior faces attached to the interior edge ek (k = 1, 2, · · · , f1) which lie on different

planes. Here, (x)+ = x, if x > 0. Otherwise, (x)+ = 0.
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The leading term of his formula is only

1− f1 + f2

6
d3 =

f3 − 1

6
d3,

thus is weaker than our bounds, especially when d is large.

Example 1.8.8. For the example of 4 hyperplanes, we have

f3 = 8, f2 = 12, f1,2 = 4, f1,3 = 2, f1,4 = 0.

For the two interior edges OP5 and OP6, there are three hyperplanes passing through each edge. For the

other four edges OP1, OP2, OP3, OP4, only two hyperplanes passing through each edge. The formula above

gives the following lower bound for dimC1
d(∆)

d 0 1 2 3

Bound 1 4 12 30

and

dimC1
d(∆) ≥ 4/3d3 − 4d2 + 38/3d− 8, for d ≥ 4.

In this case, the bound is actually exact and H2(R/J ) = 0.

In the case r = 2, we get the lower bound for dimC2
d(∆) as

d 0 1 2 3 4

Bound 1 4 10 22 44

and

dimC2
d(∆) ≥ 4/3d3 − 10d2 + 140/3d− 69, for d ≥ 6.

In this case, the bound is actually also exact and therefore H2(R/J ) = 0.

Example 1.8.9. For the Clough-Tocher, we have

f3 = 4, f2 = 6, f1,2 = f1,4 = 0, f1,3 = 4.
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The lower bound for dimC2
d(∆) is given by

dimC2
d(∆) ≥ 2

(
d+ 3

3

)
− 6

(
d

3

)
+ 4

(
d− 1

3

)
+ 4

(
d− 2

3

)
−

d∑
k=0

dim(R/J(v))k.

The right hand side is equal to 1, 4, 10, 20, 35 for d = 0, 1, 2, 3, 4 and

2/3d3 − 5d2 + 79/3d− 33, for d ≥ 5.

For example, when d = 17, this formula gives 2245, agrees with the computation in [ASS92].

Similarly, the lower bound for dimC1
d(∆) is given by

dimC1
d(∆) ≥ 2

(
d+ 3

3

)
− 6

(
d+ 1

3

)
+ 8

(
d

3

)
−

d∑
k=0

dim(R/J(v))k.

Example 1.8.10. For the example of 5 hyperplanes, Example 1.7.3, we have

f3 = 8, f2 = 12, f1,2 = 4, f1,3 = 0, f1,4 = 2.

For the example of 5 hyperplanes, Example 1.7.5, we have

f3 = 8, f2 = 12, f1,2 = 1, f1,3 = 4, f1,4 = 1.

We can also get lower bounds in the same way as in Examples 1.8.8 and 1.8.9.

Remark 1.8.11. Using Macaulay2, we found that C2(∆) is a free module over R for the above examples of

4 hyperplanes and Clough-Tocher. By Schenck’s Theorem in [Sch97], this observation implies H2(R/J ) = 0

and dimC2(∆)k = Ck, so our bound in corollary 1.8.3 is tight. In any case, corollary 1.8.3 agrees with

Macaulay2’s output, thus provids strong supports of our theorem.

Remark 1.8.12. To compute the homology H2(R/J ), one way is to program in the appropriate maps and

have Macaulay 2 compute the homology.

Remark 1.8.13. For any given tetrahedral complex ∆v, we can find the configuration of the fatpoints

corresponding to the hyperplanes passing through v. The classification of all configurations of fatpoints up
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to 8 points is given in [GHM09], though some configurations do not correspond to a tetrahedral complex

∆v.
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Chapter 2

The Postnikov-Shapiro Conjecture

In this chapter, we give one approach to the Postnikov-Shapiro conjecture, including Schenck’s conjecture

as a special case, about the minimal free resolutions of a particular class of ideals of powers of linear forms.

The conjecture is stated in §2.2.6. In §2.1, we give a short introduction to syzygies and resolutions of

general homogeneous ideals. In §2.2, we give an overview on how the particular class of ideals arise. Our

analysis of Schenck’s conjecture, is given in §2.5 to §2.12, after introducing the basic tool of the Hilbert-Burch

Theorem. In this part of analysis, we provide two different approaches to Schenck’s conjecture. One of our

main results is Theorem 2.8.2 in §2.8. In §2.13, we provide a proof of Postnikov-Shapiro conjecture in the case

of four variables under an additional hypothesis. In §2.14, we gave an inductive proof of Postnikov-Shapiro

conjecture for any number of variables, under additional hypotheses.

2.1 A short introduction to syzygies

In algebraic geometry, the ideal-variety correspondence enables us to study the geometric properties of a

projective variety X ⊂ Pn from its homogeneous ideal I. Fix a field K of characteristic 0 throughout this

chapter. The homogeneous coordinate ring of Pn is S = K[x0, · · · , xn]. It turns out that to study ideals

effectively we also need to study graded modules over S; the primary example is the homogeneous coordinate

ring of X, given by S(X) = S/I.

Let M = ⊕d∈ZMd be a finitely generated graded S-module with d-th graded component Md. Because M

is finitely generated, each Md is a finite-dimensional vector space, and the Hilbert function of M is defined

by

HM (d) = dimKMd.
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The Hilbert series of M is the generating function, defined by

HSM (t) =
∑
d≥0

HM (d)td.

Hilbert had the idea of computing HM (d) by comparing M with free modules, using a free resolution. For

any graded module M, denote by M(a) the module M shifted by a,

M(a)d = Ma+d

For instance, the free S-module of rank 1 generated by an element of degree a is S(−a). Given homogeneous

elements mi ∈ M of degree ai that generate M as an S-module, we may define a degree-preserving map

from the graded free module F0 = ⊕iS(−ai) onto M by sending the i-th generator to mi. Let M1 ⊂ F0 be

the kernel of this map. By the Hilbert Basis Theorem, M1 is also a finitely generated module. The elements

of M1 are called syzygies on the generators mi. Choosing finitely many homogeneous syzygies that generate

M1, we may define a map from a graded free module F1 to F0 with image M1. Continuing in this way we

construct a sequence of maps of graded free modules, called a graded free resolution of M :

· · · → F2
φ2−→ F1

φ1−→ F0
φ0−→M → 0.

Then Hilbert Syzygy Theorem says that every finitely generated graded S-module has a finite graded resolu-

tion of length at most n+ 1. We say the above resolution is minimal if for each l ≥ 0, all the nonzero entries

of the matrix of φl are in the maximal ideal of S. Then a finitely graded module M has a unique minimal

resolution up to isomorphism.

If the graded S-module M has a finite free resolution

F : 0→ Fm
φm−−→ Fm−1 → · · ·F1

φ1−→ F0

with each Fi a finitely generated free module Fi = ⊕jS(−ai,j), then

HM (d) =

m∑
i=0

(−1)i
∑
j

(
n+ d− ai,j

n

)
.

35



CHAPTER 2. THE POSTNIKOV-SHAPIRO CONJECTURE

There is a unique polynomial HPM , called the Hilbert polynomial, such that

HM (d) = HPM (d)

when d is sufficiently large. The Hilbert polynomial contains interesting geometric information. For example,

1. The degree of the Hilbert polynomial HPS(X) is the dimension of the variety X.

2. If dimX = d, then the degree of X, defined as the number of points where X intersects a generic

(n− d)-dimensional linear subspace of Pn, is d! times the leading coefficient of HPS(X).

Since the Hilbert function of M is determined by the ai,j in the minimal free resolution of M, they are

finer invariants than the Hilbert function. We use a compact way to display them, called a Betti diagram. If

Fi = ⊕jS(−j)βi,j ;

that is, Fi requires βi,j minimal generators of degree j, then the Betti diagram of F is

0 1 · · · s

i β0,i β0,i+1 · · · βs,i+s

i+ 1 β0,i+1 β0,i+2 · · · βs,i+1+s

· · · · · · · · · · · · · · ·

j β0,j β0,j+1 · · · βs,j+s

Example 2.1.1. [Three points in P2] There are two cases, depending on whether or not the points are

collinear. First, if they are not collinear, we may take them to be the points X = {[0, 0, 1], [0, 1, 0], [1, 0, 0]}.

It is easy to see the ideal of X is

I = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉,

which is generated by the quadratic monomials

F1 = xy, F2 = xz, and F3 = yz.
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The relations among these three are easy to find; they are given by

−z · F1 + y · F2 = 0

−y · F2 + x · F3 = 0.

Therefore, the minimal free resolution of S(X) is

0→ S(−3)2 φ1−→ S(−2)3 φ0−→ S → S(X)→ 0,

where

φ0 =

[
xy xz yz

]
.

and

φ1 =


−z 0

y −y

0 x

 .
The Betti diagram is

Total 1 3 2
0 1 - -
1 - 3 2

From this resolution, we get the Hilbert function of S(X) as

HX(m) =

(
m+ 2

2

)
− 3

(
m

2

)
+ 2

(
m− 1

2

)
,

which for m ≥ 1 is

(m+ 1)(m+ 2)− 3m(m− 1) + 2(m− 1)(m− 2)

2
= 3.

Therefore, the Hilbert polynomial of X is the constant 3.

Now suppose the three points are collinear. For example, if the points are [0, 0, 1], [0, 1, 0], [0, 1, 1], then

the ideal of X is generated by

F1 = x, F2 = yz(y − z).
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There is only the trivial relation

F1 · F2 − F2 · F1 = 0.

The minimal free resolution is given by

0 −→ S(−4)
φ1−→ S(−3)⊕ S(−1)

φ0−→ S −→ S(X) −→ 0,

where

φ0 =

[
x yz(y − z)

]
.

and

φ1 =

 −yz(y − z)
x

 .
The Betti diagram is

Total 1 2 1
0 1 1 -
1 - - -
2 - 1 1

It is easy to obtain the Hilbert function of S(X) from the above resolution and conclude that the Hilbert

polynomial is also the constant 3. Note the Betti diagrams of these two ideals are different.

So far, we introduced the minimal free resolutions of ideals and gave a simple example. In general, it is

difficult to compute the minimal free resolution of a given ideal. One particular class of ideals for which the

minimal free resolution is known are ideals generated by monomials. In this thesis, our primary object of

study is the class of ideals generated by powers of linear forms. In the next section, we discuss the work of

Postnikov-Shapiro, where the particular ideals generated by powers of linear forms arise.

2.2 How these ideals of powers of linear forms arise

2.2.1 Motivation

Let Fln = SL(n,C)/B be the manifold of complete flags in Cn. The manifold Fln comes equipped with a

flag of tautological vector bundles E0 ⊂ E1 ⊂ · · ·En and associated sequence of line bundles Li = Ei/Ei−1,
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i = 1, 2, · · · , n. The Li possess natural Hermitian structures induced from the standard Hermian metric∑
ziz̄i on Cn. For i = 1, 2, · · · , n, we denote by wi the curvature form of the Hermitian line bundle Li, which

represents the Chern class c1(Li) in the 2-dimensional cohomology of Fln. B. Shapiro and M. Shapiro [SS98]

investigated the ring Bn generated by the forms w1, · · · , wn. As an additive group, Bn is a free abelian

group. The ring Bn is graded: Bn = B0
n⊕B1

n⊕B2
n⊕· · · . The component Bkn consists of the 2k-dimensional

forms. The cohomology ring H∗(Fln,Z) is a quotient of Bn, since the former is generated by the Chern

clases c1(Li).

Let Ĵn be the ideal in the polynomial ring R = K[x1, · · · , xn] generated by the 2n− 1 polynomials of the

form

p̂I = (xi1 + · · ·+ xir )r(n−r)+1,

where I = {i1, · · · , ir} is any nonempty subset of {1, 2, · · · , n}. In [SS98], Shapiro-Shapiro proved

Theorem 2.2.1. The ring Bn is canonically isomorphic, as a graded ring, to the quotient R/Ĵn, The

isomorphism is given by sending the generators wi of Bn to the corresponding xi.

2.2.2 Work of Postnikov-Shapiro-Shapiro

In [PSS], Postnikov-Shapiro-Shapiro proved the conjecture in [SS98] on the dimension of the ring Bn by

relating the ideal Ĵn to another ideal În.

In the polynomial ring R, they define the ideal În generated by the monomials m̂I , given by

m̂I = (xi1 · · ·xir )n−rxi1 ,

where I = {i1 < · · · < ir}, ranges over nonempty subsets of {1, · · · , n}. Then define An = R/În.

A non-negative integer sequence b = (b1, · · · , bn) is called an almost parking function of size n if the

monomial xb = xb11 · · ·xbnn does not belong to the ideal În.

A forest is a graph without cycles. For a forest F on the vertices 0, · · · , n, an inversion is a pair of vertices

labeled i and j such that i > j and the vertex i belong to the path in F that joins the vertex j with the

minimal vertex in its connected component.

Recall that for a graded algebra A = A0 ⊕ A1 ⊕ A2 ⊕ · · · , with A0 = K, the Hilbert series of A is the
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formal power series in q given by

HS(A) =
∑
k≥0

qk dimKAk.

Postnikov-Shapiro-Shapiro proved the following

Theorem 2.2.2. [PSS] The algebras An and Bn have the same Hilbert series. The dimension of these

algebras is equal to the number of forests on n+ 1 vertices. Moreover, the dimension dimKA
k
n = dimKB

k
n of

the k-th graded components of the algebras An and Bn is equal to

1. the number of almost parking functions b of size n such that
∑n
i=1 bi = k;

2. the number of forests on n+ 1 vertices with
(
n
2

)
− k inversions.

The images of the monomials xb, where b ranges over almost parking functions of size n, form linear bases

in both algebras An and Bn.

2.2.3 Postnikov-Shapiro’s generalization

The algebras in the previous subsection are associated to the complete graph Kn+1 on n + 1 vertices.

Postnikov-Shapiro in [PS04] generalized these algebras to AG and BG associated to any graph G. They

generalized parking functions to G-parking functions and the Theorem [PSS] to the setting of AG and BG.

In this subsection, we first define G-parking functions and the algebras AG and BG, then state Postnikov-

Shapiro’s theorem and conjecture. Along the way, we will also discuss a special case of the conjecture,

Schenck’s conjecture.

A parking function of size n is a sequence b = (b1, · · · , bn) of non-negative integers such that its increasing

rearrangement c1 ≤ · · · ≤ cn satisfies ci < i. A famous formula of Cayley says the number of trees on n+ 1

labeled vertices equals (n + 1)n−1 and also equals the number of parking functions of size n. Postnikov-

Shapiro [PS04] defined G-parking functions for any graph G, and Gabrielov [Gab93] proved that the number

of G-parking functions equals the number of spanning trees of G, which specializes to Cayley’s formula when

G = Kn+1, the complete graph on n+ 1 vertices.

Let G be an undirected graph on the set of vertices [n + 1] := {0, 1, · · · , n}. Let aij be the number of

edges connecting vertex i to vertex j. For a subset S in {1, · · · , n} and a vertex i ∈ S, let

dS(i) =
∑
j /∈S

aij ,
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the number of edges from the vertex i to a vertex outside of the subset S. A sequence b = (b1, · · · , bn) of

non-negative integers is a G-parking function if, for any nonempty subset S ⊆ {1, · · · , n}, there exists i ∈ S

such that bi < dS(i).

Postnikov-Shapiro construct two ideals IG and JG in the polynomial ring R = K[x1, · · · , xn] as follows.

Definition 2.2.3. The monomial ideal IG = 〈mS〉 is generated by

mS =
∏
i∈S

x
dS(i)
i ,

for all nonempty subsets S ⊆ {1, 2, · · · , n}.

Let

DS =
∑

i∈S,j /∈S

aij =
∑
i∈S

dI(i)

be the total number of edges that join some vertex in S with a vertex outside of S. The ideal JG = 〈pS〉 is

generated by

pS =
(∑
i∈S

xi
)DS

,

for all nonempty subsets S ⊆ {1, 2, · · · , n}. Let AG = R/IG and BG = R/JG.

It is easy to see that a non-negative integer sequence b = (b1, · · · , bn) is a G-parking function if and only

if the monomial xb = xb11 · · ·xbnn is nonvanishing in the algebra AG. Thus the monomials xb, where b ranges

over G-parking functions, form a basis of the algebra AG.

Theorem 2.2.4. [PS04] The monomials xb, where b ranges over G-parking functions, form a linear basis

of the algebra BG. Thus, their Hilbert series are equal:

HS(AG) = HS(BG). (2.2.1)

Both of these algebras are finite-dimensional as linear spaces over K, and

dimKAG = dimKBG = NG,

where NG is the number of spanning trees of the graph G.
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Example 2.2.5. Consider the graph G = Kl,k
n+1, the complete graph on the vertices {0, 1, · · · , n} with

the edges ei,j , i, j 6= 0, of multiplicity k and the edges e0,i of multiplicity l, where l and k are two fixed

nonnegative integers. For a nonempty subset I = {i1, · · · , ir} ⊆ {1, · · · , n}, we have

dI(r) = φ(r) = l + k(n− r). (2.2.2)

Then

mI = (xi1 · · ·xir )φ(r),

pI = (xi1 + · · ·+ xir )rφ(r).

The two ideals associated to G are given by

Iφ = 〈mI〉, Jφ = 〈pI〉, (2.2.3)

where I runs through all nonempty subsets of {1, · · · , n}. See Equations (2.11.1) and (2.11.2) below for

examples when n = 3.

2.2.4 The conjectures

Postnikov-Shapiro [PS04] showed HS(R/Iφ) = HS(R/Jφ) as a corollary of Theorem 2.2.4. They also gave

the following minimal free resolution of R/Iφ

... −→ C3 −→ C2 −→ C1 −→ C0 = R −→ R/Iφ −→ 0, (2.2.4)

with

Ci =
⊕

l1,l2,··· ,li

R(−d(l1, · · · , li))(
n

l1,··· ,li), (2.2.5)

where the direct sum is over l1, · · · , li ≥ 1 such that l1 + · · ·+ li ≤ n,

d(l1, · · · , li) = l1φ(l1) + l2φ(l1 + l2) + · · ·+ liφ(l1 + · · ·+ li),
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and (
n

l1, · · · , li

)
=

n!

l1! · · · li!(n− l1 − · · · − li)!

is the multinomial coefficient. This resolution means that the graded Betti numbers of Iφ are given by

bi,d(l1,··· ,li) =

(
n

l1, · · · , li

)
.

Moreover, the i-th Betti number is given by

bi(Iφ) = i!S(n+ 1, i+ 1),

where S(n + 1, i + 1) is the Stirling number of the second kind, i.e., the number of partitions of the set

{0, 1, · · · , n} into i + 1 nonempty subsets. In fact, they found the minimal free resolution of Iρ = 〈mS〉,

generated by

mS = (xi1 · · ·xir )ρr ,

for all nonempty subsets S = {i1, · · · , ir} ⊆ {1, · · · , n}, where ρ1 > · · · > ρn > 0, ρi ∈ N, 1 ≤ i ≤ n.

Conjecture 2.2.6. [PS04] The graded Betti numbers of Jφ are also given by (2.2.5).

More generally, they conjecture

Conjecture 2.2.7. [PS04] For any graph G, IG and JG have the same graded Betti numbers.

In the special case n = 3, the two ideals are given by

Iφ = 〈xl+2k, yl+2k, zl+2k, (xy)l+k, (xz)l+k, (yz)l+k, (xyz)l〉, (2.2.6)

Jφ = 〈xl+2k, yl+2k, zl+2k, (x+ y)2l+2k, (x+ z)2l+2k, (y + z)2l+2k, (x+ y + z)3l〉, (2.2.7)

where we use x, y, z instead of x1, x2, x3 to simplify the notation. Schenck [Sch04] used the Inverse System

of Macaulay, as we discussed in Chapter 1.8.2, to compute the Hilbert series of R/Jφ. He proved that the

Hilbert series of R/Jφ is equal to that of R/Iφ. He also conjectured
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Conjecture 2.2.8. For n = 3, the minimal free resolution of Jφ is:

0 −→ R(−
3∑
i=1

φ(i))6 −→

R(−2φ(2)− φ(3))6

⊕

R(−φ(1)− φ(2))6

−→

R(−φ(1))3

⊕

R(−2φ(2))3

⊕

R(−3φ(3))

−→ R −→ R/Jφ −→ 0.

The main focus of this chapter is on Conjecture 2.2.8. We also prove conditionally Conjecture 2.2.6.

We show that the minimal free resolution of Jφ is obtained from gluing the minimal free resolutions of

all its subideals, which are naturally associated to the partitions of [n + 1]. To show the glued complex is

exact, we use two theorems of Buchsbaum-Eisenbud. First, we use the Buchsbaum-Eisenbud Theorem on the

factorizations of complementary minors in the complexes of minimal free resolutions of the subideals. Second,

we apply the Eisenbud-Buchsbaum’s Criterion of exactness to show the glued complex is exact, under the

condition that certain module is free. In a certain sense, the proof illustrates a remark of Buchsbaum [Buc00],

“One could get information about modules of finite homological dimension by transferring information from

the ‘tail’ of its resolution to its ‘head’.”

We stress that most work on ideals generated by powers of linear forms uses Macaulay Inverse Systems, see

[Ger96],[EI95] and [Iar97] for example, to translate into questions about fatpoints. However, that approach

seems not sufficient to deal with the free resolutions of these ideals generated by powers of linear forms.

In the literature, there have been some work on G-parking function ideals, see [MSW] and [MS] for ex-

ample. Their G-parking function ideals are monomial ideals and lattice ideals, while our ideals are generated

by powers of linear forms, which are completely different.

The structure of the following sections is as follows. In §2.3, we give more examples of free resolutions,

including free resolutions of monomial ideals. In §2.4 we state the Hilbert-Burch resolution of Cohen-

Macaulay ideals of codimension 2. In §2.5, we explicitly compute the Hilbert-Burch resolution for ideals

of codimension 2 generated by powers of linear forms. In §2.6, we explicitly syzygies of the ideal Jφ in

conjecture 2.2.8 using the methods of §2.5. In §2.7, we show the constructed syzygies are minimal. In §2.8

and §2.9, we show the constructed syzygies generate the syzygies of Jφ, except one degree. In §2.10, we

give a different approach to show the constructed syzygies generate the syzygies of Jφ. In §2.11, we prove
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Conjecture 2.2.8 conditionally using Buchsbaum-Eisenbud’s Criterion of exactness. The last three sections

§2.12, §2.13 and §2.14 provide conditional proof of Conjecture 2.2.6.

2.3 Free resolutions of monomial ideals

In this section, we give more examples of resolutions. Here we follow the presentation of Eisenbud [Eis95].

A finite simplicial complex ∆ is a finite set N, called the vertices of ∆, and a collection F of subsets of

N, called the faces of ∆, such that if A ∈ F is a face and B ⊂ A then B is also in F. Maximal faces are

called facets. A simplex is a simplicial complex in which every subset of N is a face.

We say that ∆ is labeled by monomials of R if there is a monomial of R associated to each vertex of ∆.

We then label each face A of ∆ by the least common multiple of the labels of the vertices in A. We write

mA for the monomial that is the label of A. By convention the label of the empty face is m∅ = 1. We also

denote ∆m for the subcomplex consisting of those faces of ∆ whose labels divide m.

Let ∆ be an oriented labeled simplicial complex, and write I ⊂ S for the ideal generated by the monomials

mj = xαj labeling the vertices of ∆. We will associate to ∆ a graded complex of free R-modules

F(∆, R) : ...→ Fi
δ−→ Fi−1 → · · ·

δ−→ F0 = R,

where Fi is the free R-module whose basis consists of the set of faces of ∆ having i elements. The differential

δ is given by

δ(A) =
∑
n∈A

(−1)pos(n,A) mA

mA\n
(A\n),

where pos(n,A), the position of vertex n in A, is the number of elements preceding n in the ordering of A,

and A\n denotes the face obtained from A by removing n.

Theorem 2.3.1 (Bayer, Peeva, and Sturmfels). Let ∆ be a simplicial complex labeled by the monomials

{m1, · · · ,mt} ∈ S, and let I = 〈m1, · · · ,mt〉 ⊂ R be the ideal in R generated by the vertex labels. The

complex F(∆, R) is a free resolution of R/I if and only if the reduced simplicial homology Hi(∆m,K) vanishes

for every monomial m and every i ≥ 0. Moreover, F(∆, R) is a minimal complex if and only if mA 6= mA′

for every proper subface A′ of a face A.

Example 2.3.2. We turn to our example of three points on P2, see 2.1.1. We can label the simplicial
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complex as follows:

x0x1x2 x0x1x2

x0x1 x0x2 x1x2

The distinct subcomplexes of the form ∆m are the empty complex ∆1, the complexes ∆x0x1 , ∆x0x2 , ∆x1x2 ,

each of which consists of a single point, and the complex ∆x0x1x2
itself. As each of these is contractible,

they have no higher reduced homology, and we see that the complex is the minimal free resolution of

R/〈x0x1, x0x2, x1x2〉.

Example 2.3.3. We consider the minimal free resolution of the ideal IK4
associated to the complete graph

K4. In this case the simplicial complex ∆ is the barycentric subdivision of a triangle. The following figure

shows the complex ∆ with the vertices marked by exponent vectors of the generators of IK4
.

003

030

300

022220

202

111

The Betti numbers (1, 7, 12, 6) of the ideal IK4 , which are also the numbers of i-dimensional faces of ∆,

for i = 0, 1, 2, can be expressed in terms of the Stirling numbers. The graded Betti numbers of this ideal are

indicated in the following minimal free resolution:

0→ R(−6)6 → R(−5)12 → R(−3)4 ⊕R(−4)3 → R→ R/I → 0.

Similarly, a minimal free resolution of the ideal IKn+1 associated with the complete graph Kn+1 is given by

the complex corresponding to the simplicial complex ∆, which is the barycentric subdivision of the (n− 1)-

dimensional simplex.
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In the above Example 2.1.1, we have seen the explicit minimal free resolutions of two ideals. Both ideals

are examples of the class of ideals of Cohen-Macaulay codimension two, for which the resolutions are given

by the Hilbert-Burch Theorem.

2.4 Another class of free resolutions: Hilbert-Burch

The following theorem is of fundamental importance to this thesis. It describes the minimal free resolutions

of an important class of ideals whose projective dimension pd(R/I) = 2.

Theorem 2.4.1 (Hilbert-Burch). Suppose that an ideal I in R = K[x1, · · · , xn] has a free resolution of the

form

0→ Rm−1 A−→ Rm
B−→ R −→ R/I −→ 0

for some m. Then there exists a nonzero element g ∈ R such that B = (gf̃1, · · · , gf̃m), where f̃i is the

determinant of the (m− 1)× (m− 1) submatrix of A obtained by deleting row i. If k is algebraically closed

and V (I) has dimension n− 2, then we may take g = 1.

Example 2.4.2. Let’s compute the minimal free resolution of the ideal I = 〈x3, y3, (x + y)3〉 by hand. In

this case, the ideal I is minimally generated by the three polynomials, so m = 3. If we take B as

B =
[
x3, y3, (x+ y)3

]
,

then A is a 3× 2 matrix, such that

BA = 0.

Note that,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3. (2.4.1)

So

x(x+ y)3 = x3(x+ 3y) + xy3 + 3x2y2, (2.4.2)

y(x+ y)3 = x3y + y3(y + 3x) + 3x2y2. (2.4.3)
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From Equations (2.4.2), (2.4.3), we get one syzygy of the ideal I,

(x+ 2y)x3 + (2x+ y)y3 + (−x+ y)(x+ y)3 = 0. (2.4.4)

In other words, we have obtained one column of the matrix A, as

s1 =


x+ 2y

2x+ y

−x+ y

 .

We can also get a second syzygy easily by multiplying both sides of Equation (2.4.3) by y and rewriting

the equation as

y2x3 + (3x2 + 3xy + y2)y3 + (−y2)(x+ y)3 = 0. (2.4.5)

So we have obtained another column of A as

s2 =


y2

3x2 + 3xy + y2

−y2

 .

In fact, the above two syzygies are independent and generates all the syzygies of the ideal I. First, the

second syzygy is not a multiple of the first syzygy, in other words, s2 is not a multiple of s1, which is clear,

for example, by noticing that −x+ y does not divide y2. Second, these two syzygies generate all the syzygies

of the ideal I. For example, there is another syzygy obtained by multiplying both sides of Equation (2.4.2)

by x to get

(x2 + 3xy + 3y2)x3 + x2y3 + (−x2)(x+ y)3 = 0. (2.4.6)

In vector notation, we have

s3 =


x2 + 3xy + 3y2

x2

−x2

 .
We can check that s3 = (x+ y)s1 + s2.
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Now that we have the matrix A given by

A =


x+ 2y y2

2x+ y 3x2 + 3xy + y2

−x+ y −y2

 ,

we can see that

det

 x+ 2y y2

−x+ y −y2

 = −3y3,

det

 x+ 2y y2

−x+ y −y2

 = −3x3,

det

 x+ 2y y2

2x+ y 3x2 + 3xy + y2

 = −3(x+ y)3.

The same method of constructing syzygies can be applied to ideals of the form I = 〈xa, yb, (x + y)c〉.

However, it would be very messy if we compute the syzygies in the same way. In the following section, we

give a more systematic approach to this class of ideals.

2.5 Explicit Computation of the Hilbert-Burch resolution

Given an ideal of the form I = 〈xa, yb, (x + y)c〉 in the polynomial ring R = k[x, y], we would like to write

down explicitly its minimal free resolutions. By a change of variables, we have

I = 〈xa, yb, (x+ y)c〉

= 〈(x+ y)a, yb, xc〉

= 〈xa, (x+ y)b, yc〉

where the second equality follows by the change of variables

x := x+ y, y := −y
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and the last equality follows by the change of variables

x := −x, y := x+ y.

So we can assume that a ≤ b ≤ c from the start without loss of generality.

Also notice that if c ≥ a + b − 1, then the generator (x + y)c is redundant and I = 〈xa, yb〉, so there is

only the trivial syzygy

xayb − ybxa = 0.

Therefore we focus on the case where c ≤ a+ b− 2 in the following. Set r = ba+b−c
2 c and s = da+b−c

2 e. Then

the resolution of I is given the Hilbert-Burch resolution of the form

0 −→ R(−c− r)⊕R(−c− r) φ0−→ R(−a)⊕R(−b)⊕R(−c) −→ I −→ 0,

where

φ0 =


A D

B E

C F


is a matrix of forms. In terms of the entries of the matrix φ0 we may write the ideal J = 〈C,F 〉 as

J = 〈xa, yb〉 : (x+ y)c (2.5.1)

where degC = r, degF = s, and r + s = a+ b− c.

In the following we focus on the case where r = s = a+b−c
2 , because it is sufficient for our later use and

also avoids the unnecessary complication in the argument. The goal is to construct explicitly the matrix φ0.

Suppose f ∈ Jd is given by

f =
∑
i+j=d

ai,jx
iyj ,
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then

f(x+ y)c =
∑
i+j=d

ai,jx
iyj

∑
m+n=c

(
c

m

)
xmyn

=
∑
i+j=d

∑
m+n=c

(
c

m

)
ai,jx

m+iyn+j

=
∑

u+v=c+d

( ∑
m+i=u

ai,j

(
c

m

))
xuyv.

The last expression is in the ideal 〈xa, yb〉 if and only if the nonzero coefficients only occur when u ≥ a

or v ≥ b. Equivalently, if u < a and v < b, the coefficients of xuyv must be zero. Therefore, we have the

following system of equations in the coefficients ai,d−i, i = 0, 1, · · · , d.

∑
m+i=u

ai,d−i

(
c

m

)
= 0, for u = c+ d− b+ 1, · · · , a− 1. (2.5.2)

Let e = c+ d− b, then we can write these conditions in the following form



(
c
e+1

) (
c
e

)
· · ·

(
c

e−d+1

)
(
c
e+2

) (
c
e+1

)
· · ·

(
c

e−d+2

)
· · · · · ·(
c

a−1

) (
c

a−2

)
· · ·

(
c

a−d−1

)





a0,d

a1,d−1

...

ad,0


= 0. (2.5.3)

Later, we will show the above matrix of size (a+ b− c− d− 1)× (d+ 1) is of full rank. So if

a+ b− c− d− 1− (d+ 1) ≥ 0,

equivalently, if d < r = a+b−c
2 , there is no solution to the above equation (2.5.3). When d = r, there is a

2-dimensional solution and correspondingly two polynomials f ∈ Jr. This fact is consistent with the that J

is generated by the two polynomials C and F of degree r. The matrix equation 2.5.3 just shows the condition

on the coefficients of a polynomial of degree r to be in J.

Taking any solution to equation (2.5.3), we get a polynomial f ∈ Jr. So f(x+ y)c = gxa + hyb for some
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polynomials g and h. Thus we have obtained a syzygy of the ideal I as

(g, h,−f)t.

Since there is a 2-dimensional solution to equation (2.5.3), we have generated two linearly independent

syzygies of the ideal I, which is the matrix φ0 we are looking for. In the following section, we will give

examples to demonstrate this idea more clearly.

Now we start our analysis of Schenck’s conjecture (2.2.8).

2.6 Construction of syzygies

Consider the following six subideals Ji of Jφ, i = 0, 1, 2, 3, 4, 5,

J0 = 〈xl+2k, yl+2k, (x+ y)2l+2k〉,

J1 = 〈xl+2k, zl+2k, (x+ z)2l+2k〉,

J2 = 〈yl+2k, zl+2k, (y + z)2l+2k〉,

J3 = 〈xl+2k, (y + z)2l+2k, (x+ y + z)3l〉,

J4 = 〈yl+2k, (x+ z)2l+2k, (x+ y + z)3l〉,

J5 = 〈zl+2k, (x+ y)2l+2k, (x+ y + z)3l〉.

In the polynomial ring R = k[x, y], the ideal

J0 = 〈xl+2k, yl+2k, (x+ y)2l+2k〉

is codimension two and has the following minimal free resolution by the Hilbert-Burch Theorem [EI95],

0 −→ R(−2l − 3k)2
φ0−→ R(−l − 2k)2 ⊕R(−2l − 2k) −→ R −→ R/J0 −→ 0,
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where

φ0 =


a1 a2

b1 b2

c1 c2

 .
Here a1, a2, b1, b2 are polynomials of degree l+k, c1, c2 are polynomials of degree k. The entries of φ0 satisfy

the following equations:

b1c2 − b2c1 = α0x
l+2k,

a1c2 − a2c1 = −α0y
l+2k,

a1b2 − a2b1 = α0(x+ y)2l+2k,

(2.6.1)

for some nonzero constant α0. Moreover, we have

〈c1, c2〉 = 〈xl+2k, yl+2k〉 : (x+ y)2l+2k. (2.6.2)

The two syzygies of the ideal J0, given by (a1, b1, c1)t and (a2, b2, c2)t, are of degree 2l + 3k. They can

be naturally extended to syzygies of the ideal Jφ as follows,

s1 = (a1, b1, 0, c1, 0, 0, 0)t,

s2 = (a2, b2, 0, c2, 0, 0, 0)t.

Inspired by the Therefore we have obtained two first syzygies of degree 2l + 3k of the ideal Jφ.

Here, we apply the results of the previous section (2.5) to explicitly construct the matrix φ0. In this case,

the matrix (2.5.3) condition for

f =
∑
i+j=k

ai,jx
iyj ∈ 〈c1, c2〉

is 

(
2l+2k
l+k+1

) (
2l+2k
l+k

)
· · ·

(
2l+2k
l+1

)
(

2l+2k
l+k+2

) (
2l+2k
l+k+1

)
· · ·

(
2l+2k
l+2

)
· · · · · ·(

2l+2k
l+2k−1

) (
2l+2k
l+2k−2

)
· · ·

(
2l+2k
l+k−1

)





a0,k

a1,k−1

...

ak,0


= 0. (2.6.3)

There is a 2-dimensional solution to this equation. Given a solution v = (a0,k, · · · , ak,0), we have a syzygy
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(g, h,−f)t, where

g =

l+k∑
u=0

( ∑
m+i=u+l+2k

ai,j

(
2l + 2k

m

))
xuyl+k−u

h =

l+k∑
u=0

( ∑
m+i=u

ai,j

(
2l + 2k

m

))
xuyl+k−u.

Taking one solution v1 with ak,0 = 0, then we have y divides f. Moreover, the coefficient of xl+k in g is

∑
m+i=2l+3k

ai,k−i

(
2l + 2k

m

)
= ak,0

(
2l + 2k

2l + 2k

)
= 0.

Therefore y divides both f and g in this syzygy.

Taking another solution v2 to the above equation which satisfies

∑
m+i=l+k

ai,k−i

(
2l + 2k

m

)
= 0.

Equivalently, v2 is (up to scaling) the unique solution to the matrix obtained by adding one row

[(
2l + 2k

l + k

)
,

(
2l + 2k

l + k − 1

)
, · · · ,

(
2l + 2k

l

)]

on top of the matrix (2.6.3) above. Corresponding to this solution v2, we have another syzygy

(G,H,−F )t,

where y divides H.

Lemma 2.6.1. The Hilbert-Burch matrix

φ0 =


a1 a2

b1 b2

c1 c2


in the resolution of the ideal 〈xl+2k, yl+2k, (x+ y)2l+2k〉 has the property that y divides a1, c1, b2.

The other two ideals J1, J2 have completely similar minimal free resolutions, with the matrix of the first
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differential given by

φ1 =


d1 d2

e1 e2

f1 f2

 , φ2 =


g1 g2

h1 h2

k1 k2

 .
The entries of φ1, φ2 satisfy the following equations:

e1f2 − e2f1 = α1x
l+2k, h1k2 − h2k1 = α2y

l+2k,

d1f2 − d2f1 = −α1z
l+2k, g1k2 − g2k1 = −α2z

l+2k,

d1e2 − d2e1 = α1(x+ z)2l+2k, g1h2 − g2h1 = α2(y + z)2l+2k,

(2.6.4)

for some nonzero constant α1, α2.

We also have

〈d1, d2〉 = 〈zl+2k, (x+ z)2l+2k〉 : xl+2k. (2.6.5)

The two syzygies of J1 and those of J2 can also be extended to syzygies of the ideal Jφ, given by

s3 = (d1, 0, e1, 0, f1, 0, 0)t,

s4 = (d2, 0, e2, 0, f2, 0, 0)t,

s5 = (0, g1, h1, 0, 0, k1, 0)t,

s6 = (0, g2, h2, 0, 0, k2, 0)t.

Therefore, we have constructed six first syzygies of degree 2l+ 3k from the ideals J0, J1, J2. In §2.7, we show

these syzygies are independent.

To construct six first syzygies of degree 3l + 2k, we consider the subideals J3, J4, and J5. For example,

the ideal

J3 = 〈xl+2k, (y + z)2l+2k, (x+ y + z)3l〉

is essentially an ideal in two variables x, y + z and has a Hilbert-Burch resolution,

0 −→ R(−3l − 2k)2
φ3−→ R(−l − 2k)⊕R(−2l − 2k)⊕R(−3l) −→ R −→ R/J3 −→ 0,
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where the matrix of differential is given by

φ3 =


A1 A2

B1 B2

C1 C2

 .

Here A1, A2 are polynomials in x, y+z of degree 2l, B1, B2 are of degree l, C1, C2 are of degree 2k. Similarly,

the entries of φ3 satisfy the equations:

B1C2 −B2C1 = β0x
l+2k,

A1C2 −A2C1 = −β0(y + z)2l+2k,

A1B2 −A2B1 = β0(x+ y + z)3l,

(2.6.6)

for some nonzero constant β0. Moreover, we have

〈A1, A2〉 = 〈(y + z)2l+2k, (x+ y + z)3l〉 : xl+2k. (2.6.7)

The two syzygies of the ideal J3, given by (A1, B1, C1)t and (A2, B2, C2)t are of degree 3l+ 2k. They can

also be extended to syzygies of the ideal Jφ as follows

s7 = (A1, 0, 0, 0, 0, B1, C1)t,

s8 = (A2, 0, 0, 0, 0, B2, C2)t.

The ideals J4, J5 have completely similar minimal free resolutions with their matrices of first differentials

given by

φ4 =


D1 D2

E1 E2

F1 F2

 , φ5 =


G1 G2

H1 H2

K1 K2

 .
Here D1, D2, E1, E2, F1, F2 are polynomials in y, x+z and G1, G2, H1, H2,K1,K2 are polynomials in z, x+y.

They satisfy equations similar to Equations (2.6.6). For latter use in §2.8, we have

〈H1, H2〉 = 〈zl+2k, (x+ y)2l+2k〉 : (x+ y + z)3l. (2.6.8)
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The two syzygies of J4 and those of J5 are of degree 3l + 2k, too. They can be extended to syzygies of

the ideal Jφ, given by

s9 = (0, D1, 0, 0, E1, 0, F1)t,

s10 = (0, D2, 0, 0, E2, 0, F2)t,

s11 = (0, 0, G1, H1, 0, 0,K1)t,

s12 = (0, 0, G2, H2, 0, 0,K2)t.

Therefore, we have constructed six first syzygies of degree 3l + 2k.

Remark 2.6.2. As we have done for the ideal J0, we can apply the same method to construct the Hilbert-

Burch matrix φ5 for the ideal J5. In this case, we have z divides H1,K1, and G2. We omit the tedious

details.

2.7 Constructed Syzygies are Minimal

Now we show the syzygies of degree 2l + 3k and 3l + 2k constructed above are minimal generators of the

first syzygies of the ideal Jφ; and there are no other first syzygies of degree at most max(2l + 3k, 3l + 2k).

For that purpose, we make use of the structure of the Betti diagram and the Hilbert series of Jφ. We divide

our analysis into three cases, depending on l, k.

Case 1: l = k. This case is trivial, since 2l+3k = 3l+2k, the constructed syzygies are of the same degree.

Case 2: k < l. So 2l+ 3k < 3l+ 2k. In this case, the six first syzygies of degree 2l+ 3k must be minimal

and it is impossible to have first syzygies of degree less than 2l + 3k, since there are no second syzygies of

the same degree to cancel those first syzygies.

Now we show it is also impossible to have first syzygies of degree s, s = 2l + 3k + 1, · · · , 3l + 2k − 1.

Starting with s = 2l+3k+1, suppose there are ks first syzygies of degree s, there must be ks second syzygies

of degree s of Jφ, since there is no term ts in the numerator of the Hilbert series of R/Jφ. Those potential

second syzygies of degree s must be the syzygies of the six syzygies of degree 2l + 3k. However, there is no

such syzygy of degree s < 3l + 2k by the following lemma.

Lemma 2.7.1. The degree of the syzygies of the six syzygies of degree 2l + 3k is at least 3l + 6k.
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Proof. The six syzygies of degree 2l + 3k are the columns of the following matrix

A =



a1 a2 d1 d2 0 0

b1 b2 0 0 g1 g2

0 0 e1 e2 h1 h2

c1 c2 0 0 0 0

0 0 f1 f2 0 0

0 0 0 0 k1 k2

0 0 0 0 0 0



.

The syzygies of these six syzygies are just the column vectors v = (v1, v2, v3, v4, v5, v6)t, where each compo-

nent vi is a homogeneous polynomial in x, y, z, such that

Av = 0.

Writing explicitly, we have 

a1v1 + a2v2 + d1v3 + d2v4 = 0

b1v1 + b2v2 + g1v5 + g2v6 = 0

e1v3 + e2v4 + h1v5 + h2v6 = 0

c1v1 + c2v2 = 0

f1v3 + f2v4 = 0

k1v5 + k2v6 = 0

(2.7.1)

Since c1, c2 are co-prime from Equation (2.6.1), the fourth equation implies that

(v1, v2) = p1(−c2, c1),

for some polynomial p1. Similarly, we have

(v3, v4) = p2(−f2, f1),

(v5, v6) = p3(−k2, k1),
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for some polynomial p2, p3 from the fifth and the last equation, respectively.

Substitute the v1, v2, v3, v4, v5, v6 into the first three equations, we get


p1(−a1c2 + a2c1) + p2(−d1f2 + d2f1) = 0

p1(−b1c2 + b2c1) + p3(−g1k2 + g2k1) = 0

p2(−e1f2 + e2f1) + p3(−h1k2 + h2k1) = 0

(2.7.2)

By equations (2.6.1), (2.6.4), and (2.6.6), the above three equations are


p1(α0y

l+2k) + p2(α1z
l+2k) = 0

p1(−α0x
l+2k) + p3(α2z

l+2k) = 0

p2(−α1x
l+2k) + p3(−α2y

l+2k) = 0

(2.7.3)

The only solution to these equations is

p1 = cα1α2z
l+2k, p2 = −cα0α2y

l+2k, and p3 = cα0α1x
l+2k, (2.7.4)

for some nonzero polynomial c, possibly constant.

Therefore, the only nonzero syzygies of the six syzygies of degree 2l + 3k are

v = (−c2p1, c1p1,−f2p2, f1p2,−k2p3, k1p3)t,

with p1, p2, p3 given in Equation (2.7.4). Since

deg p1 = deg p2 = deg p3 ≥ l + 2k, (2.7.5)

deg ci = deg fi = deg ki = k, for i = 1, 2. (2.7.6)

Each component of v is of degree at least l + 3k. Since the six syzygies are of degree 2l + 3k, the degree of

the syzygies of the six syzygies is at least 3l + 6k.

Therefore there are no first syzygies of degree s where 2l+ 3k < s < 3l+ 2k. Again, by the Hilbert series,

the six syzygies of degree 3l + 2k must be minimal.

Case 3:k > l. The analysis is similar to the case k < l. In this case, 3l + 2k < 2l + 3k. There are no first
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syzygies of degree less than 3l + 2k and the six first syzygies of degree 3l + 2k are minimal.

There are also no first syzygies of degree s such that 3l + 2k < s < 2l + 3k. If there were, then there

would be second syzygies of the syzygies of degree 3l + 2k which are the columns of the matrix

B =



A1 A2 0 0 0 0

0 0 D1 D2 0 0

0 0 0 0 G1 G2

0 0 0 0 H1 H2

0 0 E1 E2 0 0

B1 B2 0 0 0 0

C1 C2 F1 F2 K1 K2



.

The syzygies of the six syzygies are the vectors w = (w1, w2, w3, w4, w5, w6)t such that Bw = 0.

Lemma 2.7.2. The only solution to the equation Bw = 0 is w = 0.

Proof. Writting the equation Bw = 0 explicitly, we have



A1w1 +A2w2 = 0

D1w3 +D2w4 = 0

G1w5 +G2w6 = 0

H1w5 +H2w6 = 0

E1w3 + E2w4 = 0

B1w1 +B2w2 = 0

C1w1 + C2w2 + F1w3 + F2w4 +K1w5 +K2w6 = 0

(2.7.7)

The first and the sixth equation together imply that w1 = w2 = 0, since

det

 A1 A2

B1 B2

 = β0(x+ y + z)3l,
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by Equation (2.6.6). Similarly, the second and the fifth equation imply that w3 = w4 = 0, since

det

 D1 D2

E1 E2

 = β1(x+ y + z)3l.

We also have w5 = w6 = 0 from the third and the fourth equation.

The above proof shows that the constructed syzygies of degree 2l + 3k and 3l + 2k are minimal.

2.8 No higher degree first syzygies

In this section, we aim to show the syzygies constructed above generate all the first syzygies of the ideal Jφ, by

proving that there are no generators of first syzygies of degree bigger than max(2l+3k, 3l+2k). The argument

is similar to showing that there are no other first syzygies of degrees at most max(2l+3k, 3l+2k). Because of

the Hilbert series, we show that there are no second syzygies of Jφ of degree bigger than max(2l+3k, 3l+2k),

except those of degree 3l + 3k.

Since the ideal Jφ is Artinian, its regularity is equal to the maximum degree d such that (R/Jφ)d 6= 0,

which is equal to the highest exponent in the Hilbert series of Jφ. We see that the regularity of R/Jφ is

3l + 3k − 3, or equivalently, the regularity of Jφ is 3l + 3k − 2. Since the regularity is obtained at the last

step of the minimal free resolution, the maximum degree of the second syzygies of Jφ is 3l + 3k. Our goal

is to show that there are no second syzygies of degree strictly smaller than 3l + 3k. For that purpose, we

consider the syzygies of the six syzygies of degree 2l + 3k and the six syzygies of degree 3l + 2k.

We define the matrix

Φ = A|B =



a1 a2 d1 d2 0 0 A1 A2 0 0 0 0

b1 b2 0 0 g1 g2 0 0 D1 D2 0 0

0 0 e1 e2 h1 h2 0 0 0 0 G1 G2

c1 c2 0 0 0 0 0 0 0 0 H1 H2

0 0 f1 f2 0 0 0 0 E1 E2 0 0

0 0 0 0 k1 k2 B1 B2 0 0 0 0

0 0 0 0 0 0 C1 C2 F1 F2 K1 K2



.

61



CHAPTER 2. THE POSTNIKOV-SHAPIRO CONJECTURE

A syzygy of the six syzygies of degree 2l + 3k and six syzygies of degree 3l + 2k is a vector

U = (v1, v2, · · · , v6, w1, · · · , w6)t,

where each component vi, wi is a homogeneous polynomial of x, y, z such that

ΦU = 0.

Expanding ΦU = 0, one of the equations we get is

c1v1 + c2v2 +H1w5 +H2w6 = 0,

which is equivalent to

c1v1 + c2v2 = −H1w5 −H2w6 = f,

for some element f ∈ R. Therefore, we must have

f ∈ I := 〈c1, c2〉 ∩ 〈H1, H2〉.

Just prior to equation (2.3), we have shown that

deg c1 = deg c2 = k,

degH1 = degH2 = l.

If f 6= 0, the degree of the syzygy corresponding to U is

2l + 2k + deg f.

In the following, we show that HF (I, d) = 0 for d < l+k−1. Therefore, there is no syzygy of degree smaller

than 2l + 3k − 1.

Theorem 2.8.1. For d < l + k − 1, HF (I, d) = 0.

As a consequence of this theorem, we get the best partial result on Schenck’s conjecture as follows:
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Theorem 2.8.2. The syzygies constructed in §2.7 generate all the first syzygies, except possibly of degree

3l + 3k − 1.

2.9 The proof

This section is devoted to the proof of Theorem 2.8.1 in the last section. Recall that, we have

〈c1, c2〉 = 〈xl+2k, yl+2k〉 : (x+ y)2l+2k,

〈H1, H2〉 = 〈zl+2k, (x+ y)2l+2k〉 : (x+ y + z)3l,

I = 〈c1, c2〉 ∩ 〈H1, H2〉.

To compute the Hilbert function HF (I, d), we make an invertible change of variables

x = z + y

y = −y

z = x.

Then the ideal 〈c1, c2〉 becomes

L1 = 〈yl+2k, (y + z)l+2k〉 : z2l+2k,

and the ideal 〈H1, H2〉 becomes

L2 = 〈xl+2k, (x+ z)3l〉 : z2l+2k.

Therefore,

HF (I, d) = HF (L1 ∩ L2, d).

Definition 2.9.1. Let I ∈ k[x0, · · · , xn] be a homogeneous ideal and let > be a monomial order on

k[x0, · · · , xn]. Then the initial ideal of I with respect to >, denoted in>(I), is the monomial ideal gener-

ated by the leading terms of all elements f ∈ I.
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We also use in(I) if there is no confusion about the monomial order >. An important fact is the following

theorem of Macaulay, see [CLO05].

Lemma 2.9.2. An ideal and its initial ideal has the same Hilbert function.

The point of introducing the above change of variables is that we can compute the initial ideals of L1

and L2 easily. Once we have computed in(L1) and in(L2), we use the following simple observation

in(L1 ∩ L2) ⊆ in(L1) ∩ in(L2), (2.9.1)

and thus

HF (L1 ∩ L2, d) ≤ HF (in(L1) ∩ in(L2), d), for any d ≥ 0.

The conclusion follows since HF (in(L1) ∩ in(L2), d) = 0 for d < l + k − 1.

Proposition 2.9.3. In the polynomial ring R = k[x, y, z], with respect to the standard lexicographic order

x > y > z, the initial ideal of L1 is

K1 = 〈xk, xk−1z, · · · , xk−iz2i−1, · · · , z2k−1〉,

and that of L2 is

K2 = 〈yl, yl−1z, · · · , xl−iz2i−1, · · · , z2l−1〉.

Proof. These are the special cases of the following Lemma 2.9.4. The ideal L1 is just the case where

p = q = l + 2k, r = 2l + 2k and the ideal L2 is the case where p = l + 2k, q = 3l and r = 2l + 2k.

Notice that each of L1 and L2 is an ideal in two variables and there is no loss in considering ideals in two

variables with general exponents. Therefore, in the polynomial ring S = k[s, t], we consider the ideal

J = 〈sp, (s+ t)q〉 : tr,

where p, q, r are positive integers. To avoid considering degenerate cases where the ideal 〈sp, tr, (s + t)q〉 is
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generated by two polynomials, we assume that

p+ q − r ≥ 2

p+ r − q ≥ 2

q + r − p ≥ 2

Lemma 2.9.4. Given p, q, r positive integers satisfying the above conditions, set

a = bp+ q − r
2

c, b = dp+ q − r
2

e.

With respect to the lexicographic order s > t in S = k[s, t], the initial ideal of

J = 〈sp, (s+ t)q〉 : tr

is given by

H(a, b) = 〈sa, sa−1tb−a+1, sa−2tb−a+3, · · · , sa−itb−a+2i−1, · · · , ta+b−1〉.

Proof. The main idea of the proof is to construct polynomials in J with the leading terms given in the lemma

and then show they generate a monomial ideal with the same Hilbert function as J. Since J is minimally

generated at degrees a and b, we assume the polynomials in J have degree at least a.

Suppose P ∈ Jd, where d ≥ a, then there are homogeneous polynomials f and Q such that

Ptr = f(s+ t)q +Qsp,

where

deg f = d+ r − q,degQ = d+ r − p.

Suppose

P =
∑
k+l=d

pk,ls
ktl,

f =
∑

i+j=d+r−q

ai,js
itj ,
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Then

f(s+ t)q =
∑

i+j=d+r−q

ai,js
itj

∑
m+n=q

(
q

m

)
smtn

=
∑

i+j=d+r−q

∑
m+n=q

(
q

m

)
ai,js

m+itn+j

=
∑

u+v=d+r

sutv

( ∑
m+i=u

(
q

m

)
ai,j

)
.

Since

f(s+ t)q = Ptr −Qsp ∈ 〈sp, tr〉,

the last expression is in the ideal 〈sp, tr〉 if and only if the nonzero coefficients only occur when u ≥ p or

v ≥ r. Equivalently, if u < p and v < r, the coefficients of sutv must be zero. Since

v = d+ r − u < r ⇔ d < u.

If d ≥ p − 1, then there is no u and v such that u < p and v < r. In other words, there is no condition on

the coefficients ai,j . In this case,

P =
∑

u+v=d

sutv

( ∑
m+i=u

(
q

m

)
ai,j

)
.

If d < p− 1, then for d < u < p, ∑
m+i=u

(
q

m

)
ai,j = 0.

We fit these together into the following matrix condition on the coefficients of f,



(
q
d+1

) (
q
d

)
· · ·

(
q

q−r+1

)
(
q
d+2

) (
q
d+1

)
· · ·

(
q

q−r+2

)
· · · · · ·(
q
p−1

) (
q
p−2

)
· · ·

(
q

p+q−r−d−1

)





a0,d+r−q

a1,d+r−q−1

...

ad+r−q,0


= 0. (2.9.2)
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Denote the matrix above as M(p, q, r, d), whose entries are given by

M(p, q, r, d)i,j =

(
q

d+ 1 + i− j

)
,

for i = 0, 1, · · · , p− d− 2, j = 0, 1, · · · , d+ r − q.

Moreover,

f(s+ t)q =

(
d∑

u=0

+

d+r∑
u=p

)( ∑
m+i=u

(
q

m

)
ai,j

)
sutd+r−u.

The first summand above gives the polynomial P as

P =
∑

u+v=d

sutv

( ∑
m+i=u

(
q

m

)
ai,j

)
,

thus we have

pk,d−k =
∑

m+i=k

(
q

m

)
ai,d+r−q−i, k = 0, 1, · · · , d

This is encoded by the following (d+ 1)× (d+ r− q + 1) exchange matrix, which we denote by E(p, q, r, d).



1 0 0 · · · 0

q 1 0 · · · 0(
q
2

)
q 1 · · · 0

· · · · · ·(
q
d

) (
q
d−1

)
· · ·

(
q

q−r−1

)





a0,d+r−q

a1,d+r−q−1

...

ad+r−q,0


=



p0,d

p1,d−1

...

pd,0


. (2.9.3)

E(p, q, r, d) has entries

E(p, q, r, d)i,j =

(
q

i− j

)
,

for i = 0, 1, · · · , d and j = 0, 1, · · · , d+ r − q. With this choice of indexing, row i of E(p, q, r, d) corresponds

to coefficient pi,d−i. There is a similar matrix relating the coefficients of f and Q, but we will not need it.

The following lemma is fundamental for understanding M(p, q, r, d) and E(p, q, r, d).

Lemma 2.9.5. Let t ≥ h0 ≥ h1 · · · ≥ hw > 0 be a sequence of integers, and let N be a square matrix with
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entries

Ni,j =

(
t

hj + i− j

)
for i = 0, 1, · · · , w, and j = 0, 1, · · · , w. Then N has nonzero determinant.

Proof. This observation is made in §3.1 of [MT13], where it is noted that determinants of such matrices play

a role in the representation theory of the special linear group SL(V ), where V is a t-dimensional vector space.

In particular, if λ = µ′, the conjugate partition to µ, then detN(µ) is the dimension of the Weyl module

SλV, which is a nontrivial irreducible representation of GL(V ). More explicitly, detN(µ) = sλ(1, 1, · · · , 1),

where sλ(x1, x2, · · · , xt) is the Schur polynomial in t variables of the partition λ = µ′. In particular, N(µ)

has a nonzero determinant. See [Eis95], §6.1 and Appendix A.1 for more details.

Now we construct polynomials in the ideal J with specific leading terms by applying Lemma 2.9.5.

For j = 1, 2, · · · , a, define the square matrix

Nj =



(
q
a−j
) (

q
a−j−1

)
· · ·

(
q

2a−2j−p+1

)
(

q
a−j+1

) (
q
a−j
)
· · ·

(
q

2a−2j−p+2

)
· · · · · ·(
q
p−1

) (
q
p−2

)
· · ·

(
q
a−j
)


. (2.9.4)

Applying Lemma 2.9.5 with h0 = · · · = hb+j+r−q = a−j, we see that detNj 6= 0, so kerNj = 0. Moreover,

taking the submatrix N ′j of Nj by removing its first row, then kerN ′j is 1-dimensional, say generated by

v =



a0,b+j+r−q−1

a1,b+j+r−q−2

...

ab+j+r−q−1,0


.

Then Nj · v has all components equal to 0 except the first one, which is pa−j,b−a+2j−1. Therefore we have

found a polynomial P in the ideal J with leading term sa−jtb−a+2j−1, for each j = 1, 2, · · · , a. Therefore,

we have shown that H(a, b) ⊆ in(J).

To establish H(a, b) = in(J), it suffices to show that HF (R/H(a, b), d) = HF (R/J, d), for all d ≥ 0.
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Since J is a complete intersection generated in degrees a and b, its minimal free resolution is given by

0 −→ R(−a− b) −→ R(−a)⊕R(−b) −→ R −→ R/J −→ 0.

Therefore

HF (R/J, d) =

(
d+ 1

1

)
−
(
d+ 1− a

1

)
−
(
d+ 1− b

1

)
+

(
d+ 1− a− b

1

)
.

More explicitly,

HF (R/J, d) =


d+ 1 if 0 ≤ d < a

a+ b− 1− d if a ≤ d < a+ b− 1

0 if a+ b− 1 ≤ d

It is clear that

HF (R/H(a, b), d) =


d+ 1 if 0 ≤ d < a

0 if a+ b− 1 ≤ d

In degree d = b+ i− 1, i = 1, 2, · · · , a, the monomials sjtb+i−1−j for 0 ≤ j < a− i are outside of H(a, b), so

HF (R/H(a, b), b+ i− 1) = a− i = (a+ b− 1)− (b+ i− 1).

If d = a and a = b, the monomials sjta−j for 0 ≤ j ≤ a− 2 are outside of H(a, b), so

HF (R/H(a, b), a) = a− 1 = b− 1.

If d = a and b = a+ 1, the monomials sjta−j for 0 ≤ j ≤ a− 1 are outside of H(a, b), so

HF (R/H(a, b), a) = a = b− 1.

Hence HF (R/H(a, b), d) = HF (R/J, d), for all d ≥ 0 and we are done.

Completion of the proof:

So we have computed the initial ideal K1 of L1 and K2 of L2. As outlined before Lemma 2.9.2, we just
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need to compute K1 ∩K2 and show (K1 ∩K2)d = 0, for d < l + k − 1.

If m = xpyqzd−p−q ∈ (K1 ∩K2)d, where d < l + k − 1. We divide into two cases.

Case 1: p < k. Since m ∈ K1, we have

d− p− q ≥ 2(k − p)− 1⇔ d+ p− q ≥ 2k − 1.

Also since m ∈ K2, we have

d− p− q ≥ 2(l − q)− 1⇔ d− p+ q ≥ 2l − 1.

Adding these two inequalities, we get

d ≥ l + k − 1,

contradiction to our assumption.

Case 2: p ≥ k. Then we must have

0 ≤ q ≤ d− p ≤ d− k < l − 1,

therefore, d− p+ q < 2l − 1.

Also since m ∈ K2, we have

d− p− q ≥ 2(l − q)− 1⇔ d− p+ q ≥ 2l − 1,

A contradiction. So (K1 ∩K2)d = 0, for d < l + k − 1. Thus

HF (I, d) = HF (L1 ∩ L2, d) = 0, for d < l + k − 1.
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2.10 A different approach: reduction to two variables

In this section, we use a different approach to analyze the second syzygies of the 7× 12 matrix M in three

variables x, y, z. Recall that

Φ =



a1 a2 d1 d2 0 0 A1 A2 0 0 0 0

b1 b2 0 0 g1 g2 0 0 D1 D2 0 0

0 0 e1 e2 h1 h2 0 0 0 0 G1 G2

c1 c2 0 0 0 0 0 0 0 0 H1 H2

0 0 f1 f2 0 0 0 0 E1 E2 0 0

0 0 0 0 k1 k2 B1 B2 0 0 0 0

0 0 0 0 0 0 C1 C2 F1 F2 K1 K2



.

A second syzygy is a vector

U = (v1, v2, · · · , v6, w1, · · · , w6)t,

where each component vi, wi is a homogeneous polynomial of x, y, z such that

ΦU = 0.

The degree of this syzygy is

2l + 3k + deg vi = 3l + 2k + degwi, for any vi 6= 0, wi 6= 0.

Our goal is to show there is no nonzero second syzygy of degree smaller than 3l + 3k.

Suppose U = (v1, v2, · · · , v6, w1, · · · , w6)t is a syzygy of Φ. We can write

U = zj(ṽ1, ṽ2, · · · , ṽ6, w̃1, · · · w̃6)t = zjŨ ,

where zj is the highest power of z dividing all the entries of U. The equation MU = 0 is equivalent to

MŨ = 0. (2.10.1)
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As syzygies, degU = j + deg Ũ . Moreover, the syzygy Ũ has at least one entry, say ṽ1, not divisible by z.

Setting z = 0 in the Equation (2.10.1) and denote the resulting matrix and vector as M ′ and Ũ ′, we get

M ′Ũ ′ = 0.

Since Ũ ′ 6= 0, deg(U ′) = deg Ũ ′, and

degU = j + deg Ũ = j + deg Ũ ′ ≥ deg Ũ ′.

In other words, the degree of a nonzero syzygy U of M must be bigger or equal to any nonzero syzygy of M ′.

Thus we can focus on the nonzero syzygies of the matrix M ′, which is a matrix in two variables x and y, thus

easier to analyze. To write down explicitly the matrix M ′, we use our results of §2.6, where we describe the

syzygies of the subideals, especially Lemma 2.6.1 shows the divisibility on the entries of the syzygies. Since

the first two columns of the matrix M are obtained from syzygies of the ideal J1 = 〈xl+2k, yl+2k, (x+y)2l+3k〉,

which does not involve the variable z. So setting z = 0 in M has no effects on these two columns. We get

the following matrix M ′,

M ′ =



a1 a2 0 xl+k 0 0 A′1 A′2 0 0 0 0

b1 b2 0 0 0 yl+k 0 0 D′1 D′2 0 0

0 0 xl+k 0 yl+k 0 0 0 0 0 (x+ y)2l 0

c1 c2 0 0 0 0 0 0 0 0 0 (x+ y)l

0 0 0 xk 0 0 0 0 E′1 E′2 0 0

0 0 0 0 0 yk B′1 B′2 0 0 0 0

0 0 0 0 0 0 C ′1 C ′2 F ′1 F ′2 0 (x+ y)2k



.

If U ′ = (v′1, v
′
2, · · · , v′6, w′1, · · ·w′6)t is a syzygy of M ′, i.e., M ′U ′ = 0. Then we have the following equations

obtained from the first, fourth and sixth row of M ′,

a1v
′
1 + a2v

′
2 + xl+kv′4 +A′1w

′
1 +A′2w

′
2 = 0 (2.10.2a)

c1v
′
1 + c2v

′
2 + (x+ y)lw′6 = 0 (2.10.2b)

ykv′6 +B′1w
′
1 +B′2w

′
2 = 0 (2.10.2c)
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Recall that we have the equations,

xl+2ka1 + b1y
l+2k + c1(x+ y)2l+2k = 0

xl+2ka2 + b2y
l+2k + c2(x+ y)2l+2k = 0

Therefore,

(c1v
′
1 + c2v

′
2)(x+ y)2l+2k = −(xl+2k(a1v

′
1 + a2v

′
2) + yl+2k(b1v

′
1 + b2v

′
2))

Substituting into the above Equation (2.10.2b), we get

(x+ y)3l+2kv′6 = xl+2k(a1v
′
1 + a2v

′
2) + yl+2k(b1v

′
1 + b2v

′
2).

Therefore,

a1v
′
1 + a2v

′
2 ∈ 〈yl+2k, (x+ y)3l+2k〉 : xl+2k.

We denote this ideal by K1.

Similarly, we have

xl+2kA1 +B1(y + z)2l+2k + C1(x+ y + z)3l = 0,

xl+2kA2 +B2(y + z)2l+2k + C2(x+ y + z)3l = 0.

So setting z = 0, we have

xl+2kA′1 +B′1y
2l+2k + C ′1(x+ y)3l = 0

xl+2kA′2 +B′2y
2l+2k + C ′2(x+ y)3l = 0

Substituting into the above Equation (2.10.2c), we get

y2l+3kv′6 = xl+2k(A′1w
′
1 +A′2w

′
2) + (x+ y)3l(C ′1w

′
1 + C ′2w

′
2).

Therefore,

A′1w
′
1 +A′2w

′
2 ∈ 〈y2l+3k, (x+ y)3l〉 : xl+2k.
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We denote this ideal by K2.

Back to the first equation (2.10.2c)

a1v
′
1 + a2v

′
2 + xl+kv′4 +A′1w

′
1 +A′2w

′
2 = 0,

which is equivalent to

a1v
′
1 + a2v

′
2 +A′1w

′
1 +A′2w

′
2 = −xl+kv′4.

Notice that the left hand of this equation is an element in the ideal K1 + K2, while the right hand is an

element in the ideal generated by xl+k. So this equation means that there is a nonzero element in the ideal

(K1 +K2) ∩ 〈xl+k〉, which we denote as K.

Our goal is to show that there is no nonzero element in K of degree 2l + k − 1.

Example 2.10.1. [l = k = 2] In this case, the ideal 〈x6, y6, (x+y)10〉 has the following Hilbert-Burch matrix

M1 =


x4y + 10x3y2 + 45x2y3 + 120xy4 + 210y5 6x5 + 55x4y + 220x3y2 + 495x2y3 + 660xy4 + 462y5

252x5 + 210x4y + 120x3y2 + 45x2y3 + 10xy4 + y5 −330x4y − 330x3y2 − 165x2y3 − 44xy4 − 5y5

−y −6x+ 5y


which can be constructed as in §2.5. So the ideal K1 is generated by the top row entries of M1, denoted as

f1, f2. In the same way, the ideal 〈x6, y10, (x+ y)6〉 has the Hilbert-Burch matrix

M2 =


14x4y + 70x3y2 + 135x2y3 + 120xy4 + 42y5 126x5 + 756x4y + 1855x3y2 + 2340x2y3 + 1530xy4 + 420y5

2x+ y 9x+ 4y

−14x4y + 14x3y2 − 9x2y3 + 4xy4 − y5 −126x5 + 35x3y2 − 30x2y3 + 15xy4 − 4y5

 ,

then the ideal K2 is generated by the top row entries of M2, denoted as f3, f4. So K1 +K2 is generated by

f1, f2, f3, f4, each of degree 5. For this example, our goal is to show there is no nonzero element in K1 +K2

of degree 5, which is divisible by x4. A general element in K1 +K2 of degree 5 is of the form

f = c1f1 + c2f2 + c3f3 + c4f4,

where ci’s are scales. This polynomial f is divisible by x4 if and only if all the coefficients of x3y2, x2y3, xy4, y5
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in f are zero. So in the end, we get the system of equations in c1, c2, c3, c4



1855 70 220 10

2340 135 495 45

1533 120 660 120

420 42 462 210





c1

c2

c3

c4


= 0

The matrix above has a nonzero determinant and thus the only solution is

c1 = c2 = c3 = c4 = 0

Therefore, there is no nonzero element in K1 + K2 of degree 5 divisible by x4. By our argument above, we

have proved Schenck’s conjecture 2.2.8 in this case. For any given l and k, the same argument leads to show

an (l + k) × (l + k) matrix has a nonzero determinant. This matrix is constructed from the entries of the

top row of the Hilbert-Burch matrix of the ideals 〈xl+2k, yl+2k, (x + y)3l+2k〉 and 〈xl+2k, y2l+3k, (x + y)3l〉.

However, we have not been able to evaluate the determinant obtained this way in general.

The above example is interesting because its determinant and the determinant of all its square submatrices

are positive; hence it is an example of a totally positive matrix. See [FZ00] for a survey.

2.11 Proof of Conjecture 2.2.8 under an extra hypothesis

Recall that we have the two ideals

Iφ = 〈xl+2k, yl+2k, zl+2k, (xy)l+k, (xz)l+k, (yz)l+k, (xyz)l〉, (2.11.1)

Jφ = 〈xl+2k, yl+2k, zl+2k, (x+ y)2l+2k, (x+ z)2l+2k, (y + z)2l+2k, (x+ y + z)3l〉. (2.11.2)
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In construction of the syzygies of Jφ, we have used its several subideals in (essentially) two variables.

J0 = 〈xl+2k, yl+2k, (x+ y)2l+2k〉, I0 = 〈xl+2k, yl+2k, (xy)l+k〉, (2.11.3)

J1 = 〈xl+2k, zl+2k, (x+ z)2l+2k〉, I1 = 〈xl+2k, zl+2k, (xz)l+k〉, (2.11.4)

J2 = 〈yl+2k, zl+2k, (y + z)2l+2k〉, I2 = 〈yl+2k, zl+2k, (yz)l+k〉, (2.11.5)

J3 = 〈xl+2k, (y + z)2l+2k, (x+ y + z)3l〉, I3 = 〈xl+2k, (yz)l+k, (xyz)l〉, (2.11.6)

J4 = 〈yl+2k, (x+ z)2l+2k, (x+ y + z)3l〉, I4 = 〈yl+2k, (xz)l+k, (xyz)l〉, (2.11.7)

J5 = 〈zl+2k, (x+ y)2l+2k, (x+ y + z)3l〉, I5 = 〈zl+2k, (xy)l+k, (xyz)l〉. (2.11.8)

Here we index these subideals in a way easy to generalize to similar ideals in more variables.

Because of the structure of the generators of the ideals Jφ and Iφ, it is convenient to view each pair of

sub-ideals {Ji, Ii} as constructed from a partition Πi = {N0, N1, N2} of {0, 1, 2, 3} with 0 ∈ N0. For each

nonempty subset S ⊆ {N1, N2}, there is a generator pS and mS of Ji and Ii respectively. For example,

{J0, I0} is constructed from the partition {03, 1, 2}; {J1, I1} from the partition {02, 1, 3} and {J2, I2} from

the partition {01, 2, 3}.

The other three pairs of ideals {J3, I3}, {J4, I4} and {J5, I5} are constructed from the partition {0, 1, 23},

{0, 2, 13} and {0, 3, 12}, respectively. The ideals Jφ and Iφ can be considered as constructed from the partition

of {0, 1, 2, 3} into four nonempty subsets, i.e., {0, 1, 2, 3} and S runs through all nonempty subsets of {1, 2, 3}.

If we consider the partitions of {0, 1, 2, 3} into two nonempty subsets {N0, N1} with 0 ∈ N0, we just get the

corresponding principal sub-ideal 〈pN1
〉, 〈mN1

〉 of Jφ and Iφ. For example, for {0, 123}, we get 〈(x+y+z)3l〉

and 〈(xyz)l〉 respectively.

As we have seen before, the following 7 × 12 matrix encodes all the syzygies of Jφ we constructed from

its subideals.

Φ =



a1 a2 d1 d2 0 0 l1 l2 0 0 0 0

b1 b2 0 0 g1 g2 0 0 p1 p2 0 0

0 0 e1 e2 h1 h2 0 0 0 0 s1 s2

c1 c2 0 0 0 0 0 0 0 0 t1 t2

0 0 f1 f2 0 0 0 0 q1 q2 0 0

0 0 0 0 k1 k2 m1 m2 0 0 0 0

0 0 0 0 0 0 n1 n2 r1 r2 u1 u2



.
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Since

mx = det



b1 b2 0 0 0 0

0 0 e1 e2 0 0

c1 c2 0 0 0 0

0 0 f1 f2 0 0

0 0 0 0 m1 m2

0 0 0 0 n1 n2


= α0α1β0x

3l+6k,

my = det



a1 a2 0 0 0 0

0 0 h1 h2 0 0

c1 c2 0 0 0 0

0 0 0 0 q1 q2

0 0 k1 k2 0 0

0 0 0 0 r1 r2


= −α0α2β1y

3l+6k,

and

mz = det



d1 d2 0 0 0 0

0 0 g1 g2 0 0

0 0 0 0 t1 t2

f1 f2 0 0 0 0

0 0 k1 k2 0 0

0 0 0 0 u1 u2


= −α1α2β2z

3l+6k,

these three nonzero minors of Φ provide us a regular sequence of length three. Since the 7× 12 matrix Φ is

of rank six, its kernel is of rank six. In 2.12.5, we show that the length of a maximal regular sequence of the

ideal of 6× 6 minors is also three.

Remark 2.11.1. Here the 6× 6 matrix to compute mx is a block matrix after a permutation of the rows,

consisting of three 2 × 2 blocks. Each block is taken from the second and third row of the matrix in the

Hilbert-Burch resolution of the ideals J0, J1, J3, i.e., all the sub-ideals of Jφ with a generator xl+2k. To

visualize this fact easily, notice that the partitions corresponding to J0, J1, J3 are given by

{03, 1, 2}, {02, 1, 3}, {0, 1, 23}.
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Each partition has a subset given by {1}, which is assigned the variable x.

Similarly, the 6 × 6 matrix to compute my consists of three 2 × 2 blocks. Each block is taken from the

first and third row of the matrix in the resolution of the ideals J0, J2, J4, which are all the sub-ideals of Jφ

with a generator yl+2k. These subideals correspond to the partitions

{03, 1, 2}, {01, 2, 3}, {0, 2, 13},

Each of which has a subset given by {2}, which is assigned the variable y. Similar patterns apply to mz. It is

clear that the argument may be generalized to ideals in more variables and applied in the proof of Conjecture

2.2.7 in §4.

Recall the Buchsbaum-Eisenbud Criterion for exactness:

Theorem 2.11.2. [BE73] A complex of free modules

F∗ : 0 −→ Fn
φn−−→ Fn−1 −→ · · · −→ F1

φ1−→ F0

over Noetherian ring R is exact if and only if

rank(φi+1) + rank(φi) = rank(Fi), and depth(I(φi)) ≥ i for every i,

where I(φi) is the ideal generated by the minors of order rank(φi), and depth(I(φi)) is the length of a maximal

regular sequence of homogeneous elements of positive degree.

Theorem 2.11.3. Let Φ be the matrix constructed in §2.8. If the kernel of Φ is a free module, then the

minimal free resolution of the ideal

Jφ = 〈xl+2k, yl+2k, zl+2k, (x+ y)2l+2k, (x+ z)2l+2k, (y + z)2l+2k, (x+ y + z)3l〉
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is given by

0 −→ R(−3l − 3k)6 d3−→

R(−2l − 3k)6

⊕

R(−3l − 2k)6

Φ−→

R(−l − 2k)3

⊕

R(−2l − 2k)3

⊕

R(−3l)

Ψ−→ R −→ R/Jφ −→ 0.

Proof. Since F3 = ker d3, the complex of free modules is exact at the last step. It is exact at the first step. So

we only need to show it is exact in the middle. This statement is equivalent to depthΦ = 2 and rankΦ = 6,

which we showed on the previous page.

Since the Hilbert series of R/Jφ is given by

1− 3tl+2k − 3t2l+2k − t3l + 6t2l+3k + 6t3l+2k − 6t3l+3k

(1− t)3
.

We conclude that F3
∼= R(−3l − 3k)6 and the theorem is proved.

2.12 Complementary factorization of minors

In the complex in Theorem (2.11.3), the differential d2 : F2 −→ F1 is represented explicitly by the matrix

Φ and F3 is defined as the kernel of Φ. Now we explore the structure of the differential d3 : F3 −→ F2. We

have only shown that d3 is represented by a 12× 6 matrix, say by ∆. In this section, we show how to choose

three nonzero 6 × 6 minors, which form a regular sequence of length three, even though we don’t know an

explicit form of ∆. This is important, since it makes possible to apply the Buchsbaum-Eisenbud criterion to

show exactness of the complexes we construct later for the minimal free resolution of the ideals Jφ in more

variables. For that, we will use the following theorem of Buchsbaum-Eisenbud, Theorem 3.1 in [BE74]. Here

we follow the presentation in [EN73]. First, some preliminaries:

Definition 2.12.1. Given a matrix C = (cij) over a commutative ring T with a nonzero identity element.

We say C factorizes completely if there exists ai, bj ∈ T, such that cij = aibj , for all i, j. If C is a row

matrix, i.e., a matrix with only one row, we take ai = 1 and bj = cij , and call this factorization its canonical

complete factorization.
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Definition 2.12.2. Suppose C is a matrix of p × q, and 0 ≤ µ ≤ min{p, q}. The minors CµJ,K , where

J = {j1, j2, · · · , jµ} such that 1 ≤ j1 < j2 < · · · < jµ ≤ p and K = {k1, k2, · · · , kµ} such that 1 ≤ k1 < k2 <

· · · < kµ ≤ q, produce an
(
p
µ

)
×
(
q
µ

)
matrix, denoted by C(µ).

Definition 2.12.3. Given two matrices A and B of size p × q and q × t, such that AB = 0. Let µ ≥ 0,

ν ≥ 0 be integers such that µ + ν = q and assume that each entry of the matrix A(µ) and B(ν) factorizes

completely, say

A
(µ)
J,K = uJvK ,

B
(ν)
M,N = ωMzN .

These two factorization is said to be complementary if

ωM = sgn(M,M ′)vM ′ ,

where M ′ denotes the complement of M in [q] := {1, 2, · · · , q}, and sgn(M,M ′) is the sign of the permutation

{M,M ′} of [q].

For a complex of free T -modules

F∗ : 0 −→ Fn
ϕn−−→ Fn−1

ϕn−1−−−→ Fn−2 −→ · · · −→ F1
ϕ1−→ F0.

such that rank(Fk) = µk, for 1 ≤ k ≤ n, suppose that for each k a basis for Fk has been chosen. The matrix

of ϕk with respect to the chosen bases for Fk and Fk−1 will be denoted by Ak.

Theorem 2.12.4 (Theorem 3 [EN73]). Suppose F∗ is exact. Then there is a unique way in which the

matrices A
(µk)
k can simultaneously be factored completely so that (a) the factorization of the row matrix

A
(µn)
n is the canonical factorization, and (b) for 1 ≤ k ≤ n − 1, the factorization of A

(µk+1)
k+1 and A

(µk)
k are

complementary.

Theorem 2.12.4 provides us important information about the maximal minors of two consecutive differ-

entials in an exact sequence. We apply the theorem to the complex in Theorem 2.11.3.

Example 2.12.5. In this case, ∆
(6)
M,N is the canonical factorization, i.e, N = [6] := {1, 2, 3, 4, 5, 6}, and is

complementary to Φ
(6)
J,K . So M = K ′. We have shown three minors mx,my,mz by choosing the columns of
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Φ as

Kx = {0, 1, 2, 3, 6, 7},

Ky = {0, 1, 4, 5, 8, 9},

Kz = {2, 3, 4, 5, 10, 11}.

Taking M to be complement of these K ′s :

Mx = {4, 5, 8, 9, 10, 11},

My = {2, 3, 6, 7, 10, 11},

Mz = {0, 1, 6, 7, 8, 9}.

Then

∆
(6)
Mx,[6] = sgn(Mx,Kx)vKx

,

∆
(6)
My,[6] = sgn(My,Ky)vKy

,

∆
(6)
Mz,[6] = sgn(Mz,Kz)vKz

.

Since

vKx divides mx = α0α1β0x
3l+6k,

∆
(6)
Mx,[6] is also a constant multiple of power of x. Similarly ∆

(6)
My,[6] and ∆

(6)
Mz,[6] are constant multiples of

power of y and z respectively. Therefore, we have found three nonzero minors of ∆, which give a regular

sequence of length three.

Here we make another observation on how the above rows Mx, My and Mz are chosen. For example,

we have chosen the rows Mx as the complement of those columns of syzygies of the ideals J0, J1, J3, each

of which has xl+2k as a generator. Therefore, the rows Mx correspond exactly to the union of columns of

syzygies of the other ideals J2, J4, J5, none of which has xl+2k as a generator. In terms of partitions, these

ideals correspond to the partitions without the subset {1}, namely

{01, 2, 3}, {0, 2, 13}, {0, 3, 12}.
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The conclusion is, to have a 6× 6 minor of ∆ as a nonzero constant multiple of power of x, we take the

rows of ∆ by the six columns of syzygies of the ideals corresponding to the partitions without the subset

{1}.

Similarly, to have a 6× 6 minor of ∆ as a nonzero constant multiple of power of y, or z, we take the rows

of ∆ by the six columns of syzygies of the ideals corresponding to the partitions without the subset {2}, or

{3}.

We apply this observation in the proof of Conjecture 2.2.6 for n = 4 in §4.

2.13 Proof of Conjecture 2.2.6 for n = 4 under an extra

hypothesis

In this section, we prove Conjecture 2.2.6 under an extra hypothesis for the case n = 4 to illustrate the ideas

of proofs in the general case. As we have done in §2.6, we first construct the minimal free resolutions of its

sub-ideals and show they have the same graded Betti numbers as the corresponding monomial sub-ideals of

Iφ. In §2.13.1, we list the subideals JΠ, IΠ of Jφ, Iφ corresponding to the partitions Π of {0, 1, 2, 3, 4} and

show the equality of their Hilbert series. In §2.13.2, we show JΠ and IΠ have the same graded Betti numbers.

In §2.13.3, we construct a complex from the complexes of minimal free resolutions of the J ′Πs and show it is

exact, which gives the minimal free resolution of Jφ.

2.13.1 Partitions and subideals

As we have seen in §2.11 for the case n = 3, the first syzygies of Jφ are constructed by combining the first

syzygies of the sub-ideals Ji associated to the partitions of {0, 1, 2, 3} into three nonempty subsets Πi, for

0 ≤ i ≤ 5. For n = 4, we need to consider the sub-ideals associated to the partitions of {0, 1, 2, 3, 4} into four

nonempty subsets. There are the following ten sub-ideals of Jφ (there are also corresponding ten monomial

sub-ideals of Iφ).

type I :{J04,1,2,3, J03,1,2,4, J02,1,3,4, J01,2,3,4},

type II :{J0,1,2,34, J0,1,3,24, J0,2,3,14, J0,1,4,23, J0,2,4,13, J0,3,4,12}.
(2.13.1)

By the permutation symmetry, the ideals in each type are isomorphic, so we only need to consider one
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sub-ideal from each type. For example,

J0,1,2,34 =〈xφ(1)
1 , x

φ(1)
2 , (x3 + x4)2φ(2), (x1 + x2)2φ(2),

(x1 + x3 + x4)3φ(3), (x2 + x3 + x4)3φ(3), (x1 + x2 + x3 + x4)4φ(4)〉.

I0,1,2,34 =〈xφ(1)
1 , x

φ(1)
2 , (x3x4)φ(2), (x1x2)φ(2), (x1x3x4)φ(3), (x2x3x4)φ(3), (x1x2x3x4)φ(4)〉.

Similar to the case n = 3, the ideals J0,1,2,34 and I0,1,2,34 have six pairs of subideals corresponding to the

partitions

{0, 12, 34}, {0, 2, 134}, {0, 1, 234}, {01, 2, 34}, {02, 1, 34}, {034, 1, 2}. (2.13.2)

For example,

J01,2,34 = 〈xφ(1)
2 , (x3 + x4)2φ(2), (x2 + x3 + x4)3φ(3)〉,

I01,2,34 = 〈xφ(1)
2 , (x3x4)φ(2), (x2x3x4)φ(3)〉.

Notice that, J01,2,34 and I01,2,34 are ideals in essentially two variables {x2, x3 + x4} and {x2, x3x4}

respectively. Therefore, it is easy to find their minimal free resolutions. There are 25 partitions of {0, 1, 2, 3, 4}

into three nonempty subsets in total. Correspondingly there are 25 pairs of sub-ideals of Jφ and Iφ. Some

ideals are the sub-ideals of more than one partition of {0, 1, 2, 3, 4} to four nonempty subsets. For example,

J1,2,034 is a sub-ideal of both J1,2,3,04 and J0,1,2,34.

It is clear that the ideal J0,1,2,34 is an ideal in essentially 3-variables x1, x2, x3 + x4 and the ideal I0,1,2,34

is also an ideal in essentially 3-variables x1, x2, x3x4. Let R = K[x1, x2, x3, x4] and R′ = K[x1, x2, x3]. Since

x4 is nonzerodivisor of R, we have

R/J0,1,2,34
∼= (R/x4)/(J0,1,2,34/x4) = R′/J ′,

where

J ′ = 〈xφ(1)
1 , x

φ(1)
2 , x

2φ(2)
3 , (x1 + x2)2φ(2), (x1 + x3)3φ(3), (x2 + x3)3φ(3), (x1 + x2 + x3)4φ(4)〉.
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Similarly, x3 − x4 is nonzerodivisor of R, we have

R/I0,1,2,34
∼= (R/(x3 − x4))/(I0,1,2,34/(x3 − x4)) = R′/I ′,

where

I ′ = 〈xφ(1)
1 , x

φ(1)
2 , x

2φ(2)
3 , (x1x2)φ(2), (x1x

2
3)φ(3), (x2x

2
3)φ(3), (x1x2x

2
3)φ(4)〉.

Now the Hilbert series of R′/J ′ and R′/I ′ are the same by Postnikov-Shapiro [PS04], since The ideals J ′

and I ′ can be constructed from the same graph G′.

The Hilbert series of the sub-ideals J01,2,34 and I01,2,34 are also the same, considered as ideals in two

variables, since both can be constructed from a graph on {0, 1, 2}. Other pairs of sub-ideals corresponding

to partitions of {0, 1, 2, 3, 4} into three nonempty subsets also have the same Hilbert series.

2.13.2 Minimal Free Resolution of the subideals

It is easy to find the minimal free resolution of the ideal I0,1,2,34 as

0→ F3
d3−→ F2

d2−→ F1
d1−→ R −→ R/I0,1,2,34 −→ 0, (2.13.3)

where

F1 = R(−φ(1))2 ⊕R(−2φ(2))2 ⊕R(−3φ(3))2 ⊕R(−4φ(4)),

F2 = R(−d(1, 1))2 ⊕R(−d(1, 2))4 ⊕R(−d(1, 3))4 ⊕R(−d(2, 2))2,

F3 = R(−d(1, 1, 2))6.

(2.13.4)

Recall that

d(l1, · · · , lk) = l1φ(l1) + l2φ(l1 + l2) + · · ·+ lkφ(l1 + · · ·+ lk).

Proposition 2.13.1. The ideal J0,1,2,34 has the same graded Betti numbers as I0,1,2,34, if the kernel of the

matrix d2 in (2.13.6) is a free module.

Proof. We show the minimal free resolution of the ideal J0,1,2,34 is constructed similarly as Theorem 2.11.3.

The first syzygies of J0,1,2,34 are obtained by combining the first syzygies from the six sub-ideals of

J0,1,2,34 corresponding to partitions in (2.13.2). For example, the minimal free resolution of J01,2,34 is given
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by

0 −→ R(−d(1, 2))2 −→

R(−φ(1))

⊕

R(−2φ(2))

⊕

R(−3φ(3))

−→ R −→ R/J01,2,34 −→ 0, (2.13.5)

which has the same graded Betti numbers as I01,2,34. This resolution provides us two first syzygies of degree

2d(1, 2). Similarly, we get another two first syzygies of degree 2d(1, 2) from I02,1,34; two syzygies of degree

2d(1, 1) from J034,1,2 and two of degree 2d(2, 2) from J0,12,34; each of J0,2,134 and J0,1,234 provides us two

first syzygies of degree 2d(1, 3). Notice the arguments of the function d(l1, l2) are exactly the sizes of the

subsets in the partition.

Similar to the proof of Conjecture 2.2.8, we can construct a complex by combining the six complexes of

the form (2.13.5), given by

0→ K3
d3−→ K2

d2−→ F1
d1−→ R −→ R/J0,1,2,34 −→ 0, (2.13.6)

Assume that the kernel of d2 is a free module, denoted by K3. Therefore (2.13.6) is a complex of free

modules.

Now K2 and F2 are isomorphic; hence K3 and F3 also are, since

HS(R/I0,1,2,34) = HS(R/J0,1,2,34).

We conclude that the minimal free resolution of J0,1,2,34 is given by the complex in (2.13.6) and has the

same graded Betti numbers as I0,1,2,34.

A similar analysis will show that the minimal free resolution of J01,2,3,4 is given by a similar complex as

(2.13.6) and has the same graded Betti numbers as I01,2,3,4, corresponding to the partition {01, 2, 3, 4} of

type II.

2.13.3 Exactness of the constructed complex

Inspired by the construction of the differentials in our approach to Schenck’s conjecture, we give the following
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Definition 2.13.2. Suppose an ideal I in R = k[x1, · · · , xn] is a sum of m subideals Ii, i = 1, 2, · · · ,m. and

the minimal free resolution of Ii is given by

Fi : 0
din−1−−−→ F in−2 · · ·

di3−→ F i2
di2−→ F i1

di1−→ F i0 −→ Ii → 0.

The S-sum of these complexes is a new complex,

F : 0 −→ Fn−1 −→ Fn−2 · · ·
D3−−→ F2

D2−−→ F1
D1−−→ F0 −→ I → 0,

where, for 1 ≤ i ≤ n − 2, the matrix of differential Di is obtained from the union of columns of all the di

extended by 0’s. We take Fn−1 as the kernel of Dn−2.

Example 2.13.3. For any l, k ≥ 1, consider the monomial ideal I in k[x, y, z] defined by

I = 〈xl+2k, yl+2k, zl+2k, (xy)l+k, (xz)l+k, (yz)l+k, (xyz)l〉.

Postnikov-Shapiro found the minimal free resolution of I as follows, see (2.2.4) for the special case of

n = 3.

0 −→ R(−3l − 3k)6 d3−→

R(−3l − 2k)6

⊕

R(−2l − 3k)6

d2−→

R(−l − 2k)3

⊕

R(−2l − 2k)3

⊕

R(−3l)

d1−→ R −→ R/Jφ −→ 0.

where the matrix of differentials (up to a permutation of columns) can be written as

d1 = [xl+2k, yl+2k, zl+2k, (xy)l+k, (xz)l+k, (yz)l+k, (xyz)l],
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d2 =



−yl+k 0 −zl+k 0 0 0 −(yz)l 0 0 0 0 0

0 −xl+k 0 0 −zl+k 0 0 0 −(xz)l 0 0 0

0 0 0 −xl+k 0 −yl+k 0 0 0 0 −(xy)k 0

xk yk 0 0 0 0 0 0 0 0 0 −zl

0 0 xk zk 0 0 0 0 0 −yl 0 0

0 0 0 0 yk zk 0 −xl 0 0 0 0

0 0 0 0 0 0 x2k (yz)k y2k (xz)k z2k (xy)k



.

Here, the twelve columns of the matrix d2 is obtained from the union of columns of all the differentials

of its six subideals Ii in (2.11.3), extended by 0’s.

Remark 2.13.4. In general, the S-sum complex will not give the minimal resolution of the ideal.

Theorem 2.13.5. Fix any l, k ≥ 1. Assume that G4 in the complex (2.13.7) is a free module. Then the

minimal free resolution of the ideal

Jφ = 〈(xi1 + · · ·+ xir )rφ(r)〉,

where {i1, · · · , ir} runs through all nonempty subsets of {1, 2, 3, 4} and φ(r) = l + k(4− r), is

0→ G4 −→ G3
D3−−→ G2

D2−−→ G1
D1−−→ R −→ R/Jφ −→ 0.

Here the modules Gi are given by

G1 = R(−l − 3k)4 ⊕R(−2l − 4k)6 ⊕R(−3l − 3k)4 ⊕R(−4l),

G2 = R(−2l − 5k)12 ⊕R(−3l − 5k)24 ⊕R(−4l − 3k)8 ⊕R(−4l − 4k)6,

G3 = R(−3l − 6k)24 ⊕R(−4l − 5k)36,

G4 = R(−4l − 6k)36.

Proof. By taking the S-sum of the ten complexes of resolutions of the subideals in equation (2.13.1) together,

we get

0→ G4 −→ G3
D3−−→ G2

D2−−→ G1
D1−−→ R −→ R/Jφ −→ 0, (2.13.7)
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where G4 is the kernel of D3, and

G1 = R(−d(1))4 ⊕R(−d(2))6 ⊕R(−d(3))4 ⊕R(−d(4)),

G2 = R(−d(1, 1))12 ⊕R(−d(1, 2))24 ⊕R(−d(1, 3))8 ⊕R(−d(2, 2))6,

G3 = R(−d(1, 1, 1))24 ⊕R(−d(1, 1, 2))36.

We can apply the Buchsbaum-Eisenbud criterion (2.11.2) to show the complex (2.13.7) is exact. D1 is

clearly of rank one, and the generators x
φ(1)
1 , x

φ(1)
2 , x

φ(1)
3 and x

φ(1)
4 are a regular sequence of length four.

Next, we show D2 is of rank 14 and there is also a regular sequence of length four of its ideal of minors

of maximal order, by choosing appropriate 14× 14 minors, in a way similar to our choice of the 6× 6 minors

in the proof of Theorem 2.11.3, see Remark 2.11.1.

We choose the 14× 14 minor as the block matrix consisting of seven 2× 2 blocks, each block is from the

the second and third row of the 3× 2 matrices in the resolutions of the sub-ideals with x
φ(1)
1 as a generator,

which corresponds to the partitions with a subset {1},

{023, 1, 4}, {034, 1, 2}, {024, 1, 3},

{02, 1, 34}, {03, 1, 24}, {04, 1, 23}, {0, 1, 234}.

The determinant of each block is a nonzero constant multiple of x
φ(1)
1 , so the 14× 14 minor is a nonzero

constant multiple of x
7φ(1)
1 . Similarly, we can choose the other three 14 × 14 minors given by a nonzero

constant multiple of x
7φ(1)
2 , x

7φ(1)
3 , and x

7φ(1)
4 .

To show D3 is of rank 36, we use the argument given at the end of §3. We can choose a 36×36 sub-matrix,

consisting of six 6 × 6 blocks, whose determinant is a power of x1. Notice that there are six sub-ideals of

Jφ in essentially three variables which have x
φ(1)
1 as a generator, corresponding to the partitions with one

subset {1},

{04, 1, 2, 3}, {03, 1, 2, 4}, {02, 1, 3, 4},

{0, 1, 2, 34}, {0, 1, 3, 24}, {0, 1, 4, 23}.

For each of these six sub-ideals, the differential d3 of its minimal free resolution is represented by a 12×6
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matrix. We can choose a 6 × 6 sub-matrix whose determinant is a power of x1. For example, we choose a

6 × 6 sub-matrix by choosing the six rows as the six columns of syzygies of the three sub-ideals of J1,2,3,04

which don’t have x
φ(1)
1 as a generator, which corresponds to the partitions

{04, 12, 3}, {04, 13, 2}, {014, 2, 3}. (2.13.8)

This argument shows the rank of D3 is 36, and the ideal of its minors of order 36 has a regular sequence

of length four.

Now, the assumption that G4 is free, combined with the equality of the Hilbert series

HS(R/Jφ) = HS(R/Iφ),

and the graded Betti numbers of Iφ agree with those of Jφ on G3, G2 and G1, we conclude

G4
∼= R(−d(1, 1, 1, 1))24.

Applying the Buchsbaum-Eisenbud criterion 2.11.2 again, we see the complex (2.13.7) is exact, which

completes the proof of the Conjecture 2.2.6 for n = 4.

2.14 Proof of Conjecture 2.2.6 for general n under an extra

hypothesis

For an arbitrary n ∈ N, in R = K[x1, x2, · · · , xn] we have the two ideals

Iφ = 〈xφ(1)
1 , · · · , xφ(1)

n , (x1x2)φ(2), · · · , (xi1 · · ·xir )φ(r), · · · 〉, and

Jφ = 〈xφ(1)
1 , · · · , xφ(1)

n , (x1 + x2)2φ(2), · · · , (xi1 + · · ·+ xir )rφ(r), · · · 〉,

where {i1, · · · , ir} runs through all nonempty subsets of {1, 2, · · · , n}. Both are constructed from the graph

Kl,k
n+1 on the vertices [n+ 1] = {0, 1, · · · , n}.

We want to construct a minimal free resolution of Jφ by generalizing the method in the cases n = 3, 4. So

we have to find the minimal free resolutions of suitably chosen sub-ideals associated to partitions of [n+ 1].
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For 1 ≤ p ≤ n, consider a partition of [n+ 1] into p+ 1 nonempty subsets,

Πp = {N0, N1, · · · , Np}.

By convention, we always assume 0 ∈ N0.

There are sub-ideals of Jφ and Iφ associated to the partition Πp, which we denote by JΠp
and IΠp

,

generated by pS and mS for all nonempty subsets S ⊆ {N1, · · · , Np}, respectively.

For two partitions P = {P0, · · · , Pr} and Q = {Q0, · · · , Qs}, where r < s, we say Q is a refinement of

P, denoted by P ≺ Q, if each Pi is a union of some Q′js. This definition defines a poset structure on all

partitions of [n+ 1] into nonempty subsets.

Notice that if P ≺ Q, then JP is a sub-ideal of JQ and similarly IP is a sub-ideal of IQ. The unique

partition of [n + 1] into n + 1 subsets, with Ni = {i}, for 0 ≤ i ≤ n, is a refinement of any other partition,

corresponding to the ideals Iφ, Jφ themselves. Therefore, it suffices to find the minimal free resolution of the

ideals JΠp
, for any 1 ≤ p ≤ n.

In the following, we fix a partition Πp = {N0, N1, · · · , Np} with |Ni| = ni, for 1 ≤ i ≤ p. We aim to

construct the minimal free resolution of JΠp
and show it has the same graded Betti numbers as IΠp

. If Ni =

{j1, j2, · · · , jni
} for 1 ≤ i ≤ p, the ideal JΠp

is essentially an ideal in p-variables xNi
:= xj1 +xj2 + · · ·+xjni

,

for 1 ≤ i ≤ p. Similarly, the ideal IΠp is also essentially an ideal in p-variables yNi := xj1xj2 · · ·xjni
, for

1 ≤ i ≤ p. As we have done in the case n = 4, we can reduce the analysis of the ideals JΠp
and IΠp

to ideals

in p variables, renamed as x1, x2, · · · , xp to simplify the notation. Then we have

JΠp
= 〈xn1φ(n1)

1 , x
n2φ(n2)
2 · · · , xnpφ(np)

p , (x1 + x2)(n1+n2)φ(n1+n2), · · · ,

(xi + xj)
(ni+nj)φ(ni+nj), · · · , (x1 + x2 + x3)(n1+n2+n3)φ(n1+n2+n3), · · · ,

(x1 + x2 + · · ·+ xp)
(n1+n2+···+np)φ(n1+n2+···+np)〉,

IΠp = 〈xn1φ(n1)
1 , · · · , xnpφ(np)

p , (xn1
1 xn2

2 )φ(n1+n2), · · · , (xni
i x

nj

j )φ(ni+nj), · · · ,

(xn1
1 xn2

2 xn3
3 )φ(n1+n2+n3), · · · , (xn1

1 xn2
2 · · ·xnp

p )φ(n1+n2+···+np)〉.

(2.14.1)

Lemma 2.14.1. For any partition Πp of [n+ 1], the Hilbert series of R/JΠp
and R/IΠp

are equal.

Proof. Both ideals can be constructed from the same graph Gp on {0, 1, 2, · · · , p}. For example, the multi-

plicity of the edges connecting i and 0 is niφ(n1 + n2 + · · ·+ np), for each i.
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Lemma 2.14.2. The k-th total Betti numbers of IΠp is given by

βk(IΠp
) = k!S(p+ 1, k + 1).

Proof. This lemma follows from Corollary 6.8 in [PS04], since the ideal IΠp
is a strictly monotone monomial

ideal in the sense of Postnikov-Shapiro [PS04] and we take all nonempty subsets in {N1, · · · , Np} to construct

IΠp .

Recall that,

d(l1, l2, · · · , lk) = l1φ(l1) + l2φ(l1 + l2) + · · ·+ lkφ(l1 + · · ·+ lk).

Theorem 2.14.3. For the ideal JΠp corresponding to Πp = {N0, N1, · · · , Np} with |Ni| = ni, for 1 ≤ i ≤ p,

form the following complex

F∗ : 0 −→ Fp
dp−→ Fp−1

dp−1−−−→ · · · d2−→ F1
d1−→ R −→ R/JΠp

−→ 0, (2.14.2)

which is obtained by combining the complexes of minimal free resolutions of the subideals of JΠp
corresponding

to all partitions Πi = {A0, A1, · · · , Ai} such that Πi ≺ Πp, and li = |Ai| is the cardinality of Ai. Therefore,

Fi =
⊕

Πi≺Πp

R(−d(l1, l2, · · · , li))i!, (2.14.3)

and the differential di is obtained from combining the d
′

i of the minimal free resolution of these sub-ideals

correspondent to Πi. Fp is isomorphic to the kernel of dp−1. Assume Fp is a free module, then the complex

(2.14.3) is exact and thus gives the minimal free resolution of JΠp
with

Fp ∼= R(−d(n1, n2, · · · , np))p!.

Moreover, all the graded Betti numbers of IΠp are the same as JΠp .

Proof. The proof is by induction. For p = 1, it is clear. For p = 2, both JΠp
and IΠp

are ideals in essentially

two variables, their minimal free resolutions are given by the Hilbert-Burch resolution and they have the

same graded Betti numbers.

Suppose we have proved the theorem for all ideals JΠp
corresponding to partitions Πp of [n + 1] into p
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nonempty subsets. We now consider ideals corresponding to partitions into p+ 1 nonempty subsets.

Pick one partition Πp = {N0, N1, · · · , Np} with |Ni| = ni ≥ 1, for 1 ≤ i ≤ p. We have the pair of ideals

{JΠp , IΠp} and by Lemma 2.14.1,

HS(R/JΠp
) = HS(R/IΠp

).

If we take the union of two subsets from Πp as one subset, we get partitions of [n+ 1] into p nonempty

subsets, which has Πp as the refinement. The number of such partitions is t =
(
p
2

)
. We denote these partitions

as Πi
p, 1 ≤ i ≤ t. Correspondingly, there are t sub-ideals of JΠp , IΠp in essentially p− 1 variables.

By induction, we have the minimal free resolutions for each of these sub-ideals of the form

E∗ : 0 −→ Ep−1
dp−1−−−→ Ep−2

dp−2−−−→ · · ·E1
d1−→ R

d0−→ R/JΠi
p
−→ 0.

By combining these t complexes together and taking Fp as the kernel of Dp−1 which is obtained from

combining the dp−1, we get the complex

F∗ : 0→ Fp
Dp−−→ Fp−1

Dp−1−−−→ · · ·F1
D1−−→ R

D0−−→ R/JΠp
−→ 0.

We assume that Fp is a free module.

Next, we show the complex F∗ is exact. To see this, we show for 1 ≤ i ≤ p, the Di has the maximal

rank and there is a minor of Di equal to a power of x1, x2, · · · , xp. By symmetry, we just show a minor of

Di equal to a power of x1 for 1 ≤ i ≤ p. Therefore, the ideal of maximal minors of Di always has a regular

sequence of length p.

D1 is given by the generators of JΠp , so of rank 1 and x
n1φ(n1)
1 is a generator.

F2 is the union of first syzygies of all sub-ideals of JΠp
in essentially 2-variables, and the matrix D2

is obtained from the union of d′2s. Consider those sub-ideals with a generator x
n1φ(n1)
1 , corresponding to

partitions Π2 of [n + 1] into three nonempty subsets such that Π2 ≺ Πp and Π2 has N1 as a subset. These

partitions are equivalent to partitions of {N0, N2, · · · , Np} into 2 nonempty subsets, in total S(p, 2).

Then the rank of D2 is 2S(p, 2), by choosing the union of the 2 × 2 sub-matrices of the 3 × 2 matrices,

where we take the second and third row of the syzygies of these S(p, 2) sub-ideals. Each minor is a constant
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multiple of x
S(p,2)n1φ(n1)
1 . So the rank is the maximal possible, since rank(G1) = S(p+ 1, 2) and

2S(p, 2) + 1 = 2p − 1 = S(p+ 1, 2),

which is rank(D2) + rank(D1) = rank(F1).

By construction, Dk is obtained by combining the matrix of d′ks of the sub-ideals corresponding to

partitions Πk of [n + 1] into k + 1 nonempty subsets, such that Πk ≺ Πp, say {M0,M1, · · · ,Mk} with

|Mi| = mi, for 1 ≤ i ≤ k, with each one contributing to Ek by

R(−d(m1,m2, · · · ,mk))k!,

by induction. Moreover, dk is represented by a matrix of size

(k − 1)!S(p, k)× k!.

Now we show the rank of Dk is k!S(p, k). Since the maximal minors of dk have the canonical factoriza-

tion, we choose the columns as the union of the k! columns for the sub-ideals with a generator x
n1φ(n1)
1 ,

corresponding to those Πk with a subset equal to N1, thus in total S(p, k).

For each dk, we choose the rows as complements to the union of columns in dk−1, which arise from the

(k − 1)-th syzygies of all the sub-ideals of JΠk
in (k − 1)-variables, as suggested by Buchsbaum-Eisenbud’s

Theorem 2.12.4. The total number of columns is (k − 1)!S(p + 1, k), and the number of complementary

columns is

(k − 1)!S(p+ 1, k)− (k − 1)!S(p, k − 1) = k!S(p, k),

which is rank(Fk−1)− rank(Dk−1) = k!S(p, k).

In terms of the partitions, the maximal minor of Dk, for 1 ≤ k ≤ p, corresponds to the partitions Πk =

{M0,M1, · · · ,Mk} ≺ Πp with M1 = N1 as fixed. These correspond to the partitions of {N0, N2, · · · , Np}

into k nonempty subsets, thus the number is S(p, k).

The k!S(p, k)×k!S(p, k) minor of Dk is a power of x1. Therefore, each Dk has the maximal rank k!S(p, k).

The ideal of maximal minors also gives a regular sequence of length p. Therefore, we proved the exactness

of the glued complex.
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Since the Hilbert series of R/JΠp is equal to that of R/IΠp , we have

Fp ∼= S(−d(n1, n2, · · · , np))p!.

Thus the complex F∗ gives a minimal free resolution of JΠp
.

Corollary 2.14.4. Taking p = n, so Πp = {0, 1, · · · , n} and JΠp = Jφ, the Postnikov-Shapiro ideal of powers

of linear forms in n variables. Then the constructed complex (2.14.2) gives a minimal free resolution of Jφ,

assuming that Fn is a free module.

Remark 2.14.5. It is tempting to construct a basis for the Fi at each step and thus give a very explicit

description of the differentials in the resolution, but we have not been able to do so.
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