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Abstract

This thesis addresses two closely related problems about ideals of powers of linear forms.

In the first chapter, we analyze a problem from spline theory, namely to compute the dimension of the
vector space of trivariate splines on a special class of tetrahedral complexes, using ideals of powers of linear
forms. By Macaulay’s inverse system, this class of ideals is closely related to ideals of fat points.

In the second chapter, we approach a conjecture of Postnikov and Shapiro concerning the minimal free
resolutions of a class of ideals of powers of linear forms in n variables which are constructed from complete
graphs on n + 1 vertices. This statement was also conjectured by Schenck in the special case of n = 3. We
provide two different approaches to his conjecture. We prove the conjecture of Postnikov and Shapiro under

the additional condition that certain modules are free.
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Chapter 1

Applications of ideals of powers of
linear forms to spline theory

In this chapter, we compute the dimension of the vector space of trivariate splines on a special class of
tetrahedral complexes. Our main result is stated in after an introduction to spline theory in and
a review of previous work in The proof of the main theorem covers the rest of the chapter. The main
tools of proof are given in §1.4] to In we provide examples of computation using these tools. In

§1.8) we state again our main theorem and compare our results with results in the literature.

1.1 A short introduction to spline theory from the algebraic
point of view

In mathematics it is often useful to approximate a function f on a region by a “simpler” function. A natural
way to do this is to divide the region into simplices, and then approximate f on each simplex by a polynomial
function. A polynomial function on each simplex is smooth inside that region, but the polynomial functions
on two adjacent simplices should agree on the boundary to make the function f continuous on the whole
region. We may even require certain smoothness properties of these functions at the boundary of two regions.
Therefore, we are faced with the problem of constructing and analyzing these piecewise polynomial or
spline functions with a specified degree of smoothness on subdivisions of regions in R”™.

Two-variable functions of this sort are frequently used in computer-aided design to specify the shapes
of curved surfaces, and the degree of smoothness attainable in some specified class of piecewise polynomial
functions is an important design consideration. Uni- and multivariate splines are also used to interpolate
values or approximate other functions in numerical analysis, most notably in the finite element method for
deriving approximate solutions to partial differential equations. Here we give a simple example to illustrate

this idea.



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY
1.1.1 One-dimensional spline theory

Consider a < ¢ < b on R. A piecewise polynomial function is a function f such that

flx) = filo) it e loe (1.1.1)
fa(x) if x € [e,b],

where f1, fo are polynomials in Rx].

Observe that f is continuous if and only if fi(c) = f2(c), or more generally, f is C* if and only if
fl(j)(c) = fQ(j)(c), for 0 <j<k.

In that case, fi(z)— fo(w) is divisible by (z —c)**!. Let (g1, - - , gn) denote the ideal generated by g1, , .
Then

fi—f2e(@—o*). (1.1.2)

Therefore, we can represent a C” spline function on [a,c] U [¢,b] by a pair (f1, f2) satisfying the above
condition (T.1.2)). It is clear that the set of such spline functions form a vector subspace of R[z]? under the
usual componentwise addition and scalar multiplication. If we restrict the degree of each component to be
at most k, and denote the resulting vector spaces of splines as V;/, we get a finite-dimensional space and a

natural question is to determine its dimension. The answer is given by the following simple formula:

E+1 ifr+1>k
dikaT:

2k—r+1 ifr+1<k.

This theory of spline functions on the intervals of R is easy. But the generalization of spline functions
to higher dimensional regions is more difficult. In the next subsection, we give precise definitions and some

examples.

1.1.2 Definitions and examples
Definition 1.1.1 (underlying complexes). 1. A polytope is the convex hull of a finite set in R™.

2. A polyhedral complex A C R™ is a finite collection of polytopes such that the faces of each element

2



CHAPTER 1. APPLICATIONS OF IDEALS OF POWERS OF LINEAR FORMS TO SPLINE THEORY
of A are elements of A. The k-dimensional elements of a complex A are called k-cells.

3. A polyhedral complex A C R™ is called pure n-dimensional if every mazimal element of A(with re-

spective to inclusion) is an n-dimensional polyhedron.

4. Two n-dimensional polytopes in a complexr A are adjacent if they intersect along a common face of

dimension n — 1.

5. A is hereditary if for every T € A, any two n-dimensional polytopes o,c’ that contain T can be
connected by a sequence ¢ = 01,09, ,0m = o in A such that each o; is n-dimensional, each o;

contains T, and 0;,0;4+1 are adjacent for each 1.

Having defined the underlying region where the spline functions are supported, we can define these
functions. In the following, we assume the polyhedral complex A is pure n-dimensional in R™. Let o1, -+ ,0m

be a given, fixed, ordering of the n-cells in A, and let R = J., 0;.

Definition 1.1.2 (Splines). 1. For each r > 0, we denote by C"(A) the collection of C" functions f on
R such that for every 6 € A (including those of dimension < n), the restriction f|s is a polynomial

function in Rlxy, -, x,].

2. CJ(A) is the subset of f € C"(A) such that the restriction of f to each cell in A is a polynomial

function of degree at most k.

Now we ask the central question in spline theory.
Question: what is the dimension of the vector space C}(A), in terms of k,r and the geometry of R?

Here is a simple example in two dimensions.

Example 1.1.3. The plane region R is divided into four triangles, labeled as o1, 02, 03, 04. A spline
f € C"(R) is given by a 4-tuple (f1, f2, f3, f4) with f; a polynomial in =,y on o;, for each i = 1,2,3,4.

The intersection of o1 N oy is the interval defined by = = 0. Therefore, similar to equation , we
have

fi— fo € ("1, equivalently, f; — fo = ajz" !, (1.1.3)

for some polynomial a; € R[z,y].
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(-1,1) 0,1)
g2
o1
73 0 1,0)
T4
(-1-1

Similarly, oo N o3 is the interval defined by = + y = 0, 03 N oy is defined by x —y = 0 and o4 N o7 is

defined by y = 0. So we have the following equations

fi=fo=ara™! (1.1.4)
fo— fs=as(x+y) ! (1.1.5)
fo— fa=as(z —y) (1.1.6)
fo—fr=awy™! (1.1.7)

for some polynomials aq, as, a3, as € Rlz,y].

Adding these four equations gives

0=ax" ™ +ag(z+y)" ™ +az(@x—y)t +ay (1.1.8)

This algebraic relation is called a syzygy in ("1, (z+y) L, (z —y) 1,y 1), We refer to Chapter 2 Section
1 for a more detailed introduction to syzygies. Therefore, a spline function f gives rise to a syzygy in
the 4 polynomials, which are powers of linear forms; each linear form defines the faces of intersection of
the 2-dimensional facets of the complex. Conversely, given such a syzygy, namely a 4-tuple (a1, as, as, ay)
satisfying the equation , we can solve say, f1, fo, f3 in terms of f; and then give a formula for the
dimension of C}(R).

The upshot of this argument is, knowing all the syzygies enables us to find the dimension of C}(R). Un-
derstanding syzygies of ideals is an important question in commutative algebra. Here, we see one application

of algebra to spline theory.
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1.2 Previous work on splines

There have been two different approaches to splines. One is analytic, using Bernstein-Bezier coordinates.
The other is algebraic, which we follow in this thesis.

In the planar case, Alfeld and Schumaker [AS90] use Bezier-Bernstein techniques to give an explicit
formula for the dimension of C}(A) when k > 3r + 1. In [Bil88], Billera constructed a complex of modules
where the spline module C"(A) appeared as the top homology. Combining this tool with a vanishing result
of Whiteley [Whi91] allowed him to prove a conjecture of Strang [Str73] on dim C} (A), for generic complex
A (that is, complexes where all 2-cells are triangles whose edges are in sufficiently general position).

In [Sch97],[SS97], Schenck and Stillman introduced a chain complex different from that used by Billera.
The top homology of their complex also gives the spline module and the lower homologies have nicer prop-
erties. Using this tool, Geramita and Schenck [GS97] determined the dimension of planar (mixed) splines in
sufficiently high degrees. Another interesting aspect of [GS97] is the use of inverse system relating ideals in
R[z, y] generated by powers of homogeneous linear forms and ideals of fatpoints in P*.

In the case of trivariate splines, Alfeld, Schumaker and Whiteley [ASW93] determined the dimension of
C! generic tetrahedral splines for degree d > 8. But for r > 1, there is no general formula known. In [AIf96],
[ASO8] Alfeld and Schumaker gave upper and lower bounds for dim C},(A).

It is natural to first consider some simple tetrahedral complexes, as a first step in understanding splines
on general tetrahedral complexes. In this chapter, for a tetrahedral complex A, which consists of several
tetrahedra sharing a single interior vertex v, we generalize the approach of Geramita and Schenck [GS97]

and find a lower bound for the dim C}(A), r =1,2. See for a precise statement.

1.3 Statement of the result

For a tetrahedral complex A = A,, denote the number of tetrahedra by f3, the number of 2-dimensional
interior faces passing through v by f5, the number of interior edges with h, = 2, he = 3, and h. > 4,
respectively by f12, fi1,3, and fi 4. Recall that h. is the number of distinct hyperplanes incident to e. Let f;
be the number of interior edges, so fi = fi2 + fi,3 + fi,4.

In the following, the notation (Z) denotes the binomial coeflicients, with the standard convention that

(1) =0,ifa < k.
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Theorem 1.3.1. The dimension of C1(A)y, the vector space of splines of smoothness r = 1 of degree ezactly

k, is given as follows:

dim C'(A)y = ho ik + Ch,

where

h2,k = dlmHQ(R/j)k,

Ch —f3<k;2> _fZ[(k;2) - (;;)}
() )+ (70
a7 ) ()

— dim(R/J(v))g,

and dim(R/J(v))y, is given by equations (1.5.4),(1.5.5) and (1.5.6)), and explicitly computed using the method
of 4.6

Proposition 1.3.2. dim(R/J(v))x in the following cases is given by

k 0|12 >3

4 hyperplanes 1

5 hyperplanes(As) | 1

3

5 hyperplanes(A,) | 1| 3| 1| 0
3
3

Clough-Tocher 1

Theorem 1.3.3. The dimension of C?(A)y, the vector space of splines of smoothness r = 2 of degree exactly

k, is given as follows.

dlmc2(A)k = hg,k + Dk,

where

h27k = dlmHQ(R/j)k,
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b, _f3<k;2> f2{(k+2> B <k21>}
Kk;+2> (k;l) .\ (k;4>}

3Kk+2 3(k;1)+<k;2>+<k;3>}
+f14{(k+2 4(k;1>+3(k;2)}

—dim(R/J(v))g,

and dim(R/J(v))y, is explicitly computed using the method of §1.6

Proposition 1.3.4. dim(R/J(v))y in the following cases are given by

k 0112|834 ]56|2>26

4 hyperplanes 11366\ 4|1 0

5 hyperplanes(Ay) | 1| 316|530 0
5 hyperplanes(As) | 1 | 316|520 0
Clough-Tocher 1186|411 1|10] 0

Our goal in this chapter is to prove the above result. In the following sections, we develop necessary tools
to analyze the tetrahedral splines. In §1.4] we define spline complexes, following [Sch97]. To understand
each component of the spline complex, we were led to analyze certain ideals of powers of linear forms
in All the components are easy to deal with except one, for which we have to use tools from both
commutative algebra and algebraic geometry. In we completely determine the last component

and give examples.

1.4 Spline Complexes

Let R = R|z,y, 2] be fixed throughout this chapter. Our tetrahedral complex A,, which we call a Cell,
consists of several tetrahedra sharing a single interior vertex v. Following Schenck [Sch97], we define the
spline complex for C"(A,), for any r > 0.

In general, for a tetrahedral complex A, C"(A) is not a graded module over R and it is convenient to have
a graded module to compute the dimension of splines for each degree. Denote by A the simplicial complex

obtained by embedding the simplicial complex A C R? in the plane {w = 1} C R* and forming the cone

7
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with the origin. Then the set of splines (of all degrees) on A is a graded module C”(A) over a polynomial
ring S = R[z,y, z,w] and C"(A);, = Cr(A).

In our situation, we don’t need to do the above cone construction and C"(A) is still a graded module over
R and C"(A); will be the vector space of splines of smoothness 7 of degree exactly k, since there is a single
interior vertex v for our tetrahedral complex A, and we can put the vertex v at the origin O = (0,0,0) € R?,
so every linear form defining a hyperplane passing through v will be homogeneous.

Let A = A, in the rest of the paper, unless otherwise stated.

Fix an integer r > 0. Define a complex of ideals of 7 on A by

J(o) = 0 for o € As,
Jir) = (,"™h  forT e AY,
Je) = (1M foree A,
Jw) = (" forve Al

Here AY are the i-dimensional interior faces of A and we consider all the tetrahedra Aj as interior. I, is the
homogeneous linear form in R defining the affine hull of 7. We denote h, and h, as the number of hyperplanes
incident to e and v respectively. Then J(e) is an ideal generated by h, powers of linear forms, and similarly
J(v) is generated by h, powers of linear forms.

We also define the constant complex R on A by R(0) = R for each face o € A with the boundary map

0; the usual simplicial boundary map. We get the following quotient complex R/J:

0— S R ST R 2 ST RII(e) B R/T(w) - 0. (1.4.1)

oE€A3 TEAY e€AY
Lemma 1.4.1. H1(R/J) = Ho(R/J) =0, and H2(R/J) is Artinian.

Proof. If we form the cone A, and define the constant complex S on A by S (A) = S for each face o € A,

we get the quotient complex S/7, see [Sch97]:

0= > 5% S 570(r) 2 N 8/d(e) 2 5/T(v) 0.

o€A3 TEAY eeA

Since

S/J =R/J ®@r R[w],
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we have

H{(S8/J)=H1(R/J) ®r Rlw],

Hy(8/J) = Ho(R/JT) @r Rlw].
By Lemma 3.1 in [Sch97), dim H2(S/J) < 1, so we have
dim Ha(R/J) < 0.
Similarly, dim H(S/J) < 0 implies that

1.5 Dimension of graded components of the modules

It is well known that

Since J(7) is a principal ideal generated by an element of degree r + 1, we also have

dim(R/J (7)) = (k : 2) - (‘“ ot 1>.

1.5.1 The case r =1

To compute dim(R/J(e)), we use the minimal free resolution of the ideal J(e).

Lemma 1.5.1. The minimal free resolution of J(e) is given by

0— R(—4) = R(-2)> = R—= R/J(e) =0  ifh.=2,

0= R(-3)2> = R(-2*—=R—R/J(e) =0  ifh,>3.

(1.5.1)

(1.5.2)
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So we get

42\ ok k—2 if he = 2,
dim(R/J(e))y = (29 =26+ (%) fhe =2 (1.5.3)

(59 -3() +205)  ihe=s
Proof. If he = 2, then J(e) is a complete intersection, generated by two quadratics. If h. > 3, then
J(e) = (13,111,13), the result follows. O

Similarly, we can analyse the ideal J(v), which is generated by squares of the linear forms which define
the hyperplanes passing through v. Since the dimension of quadratic forms in R is 6, we only need to consider

the case h, < 6. If h, > 6, then J(v) = (22,42, 22, 2y, 22,y2), so

1 ifk=0
dim(R/J(v))k =3 ifk=1 (1.5.4)
0 ifk>2

This case is actually the Clough-Tocher complex in Example [1.7.8

At the other extreme, if h, = 3, then

J(v) = (2*,9?,2%),

and therefore,

k 01112 13] >4

dim(R/J(v))x |13 [3]1] 0

We are thus left with the case h, = 4, or 5. If h, = 4, suppose the four hyperplanes passing through v

are defined by Iy, 12, (3,14, so the ideal J(v) = (I3,13,13,13). After a change of variables,

J(v) = (&, 97, 2%, 1%),

for some linear form [ in z, y, z. This ideal is an example of almost complete intersection, whose Hilbert series

10
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are given by Iarrobino (Lemma C of [[ar97]), giving

1 itk=0
3 ifk=1

dim(R/J(v))i = (1.5.5)
2 ifk=2
0 ifk>3

For h, = 5, there are more variations, depending on the five linear forms defining the hyperplanes passing
through v. After a change of variables, we may assume the linear forms are given by x, y, z,l1 (2, y, 2), l2(z, y, 2).

If the linear forms Iy, Iy only involve two variables, say z,y, (see Example|1.7.3)), then

J(v) = (2?,y°, 2y, 2%),

and the dim(R/J(v))j is the same as Equation (1.5.5)).
In the other cases, it is harder to analyze the ideal J(v), though we can still compute a Grobner basis

and find the dimension as given by

1 ifk=0
3 ifk=1
dim(R/J(v))x = (1.5.6)
1 ifk=2
0 ifk>3

We can also get the above formulas of dim(R/J(v)); using fatpoints as in

1.5.2 The case r = 2.

Lemma 1.5.2. The minimal free resolution of J(e) is given by

0— R(—6) - R(-3)> = R— R/J(e) =0  ifh,=2,
0= R(—4)® R(-5) = R(-3)> = R— R/J(e) =0  ifh,=3,

0— R(—4)> - R(-3)* = R— R/J(e) =0  ifh,>4.

11
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So we get
("3%) =205 + (%37 if he =2,
dim(R/J(e)x = ¢ (¥12) —3(";1) + (*32) + (%3°) if he =3, (L5.7)
("3%) —4(%3") +3(%3%) if he > 4.

Proof. The ideal J(e) is of codimension 2 in R, so we can apply the Hilbert-Burch Theorem [Eis95]. There
are J cases:

Case 1: h, = 2. Tt is similar to the case r = 1, but J(e) is a complete intersection of two cubics.

Case 2: he = 3. Suppose the linear forms are given by l1,ls and I3 = aly + bls, then it is not hard to see the

linear syzygy of I3,13,13 is given by
—a®(aly + 2bly)l3 + b3(2aly + blo)l3 + (aly — bl2)I3 = 0,
and the quadratic syzygy is given by
(a®13)13 + (2a*blF + 2ab?111y + b213)15 + (—13)13 = 0.
Then the minimal free resolution of J(e) is given by

(13,013,103

0 — R(—4) ® R(—5) & R(-3)? R R/J(e) = 0,

where
—a3(aly + 2bls) a’l3
©=1 b32aly +bly) 2a2bl? + 2ab*l1ly + 313
aly — bly ~13
Case 3: he > 4. Suppose the hyperplanes incident to e are given by ly,ls, - ,ls, where l; = a;l; + b;lo for

i > 3, then it is easy to see the ideal J(e) = (I3,1212,1113,13), so the minimal free resolution of J(e) is given

by

(13,0312,1, 12,13

P

0 — R(—4)* %5 R(-3)* R R/J(e) = 0,

12
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where

=l 0 0
L =l O
0 L =l
0 0 L

O

As in the case above, though the number of hyperplanes passing through v may be big, the dimension

of R/J(v) only depends on the ideal J(v). Since the dimension of cubic forms in R is 10, we only need to

consider the case h, < 10.

Example 1.5.3. If h, > 10, then J(v) = (x,v,2)® and

k

0|12

dim(R/J(v))k

1

At the other extreme, if h, = 3, then J(v) =

<x37y37 ZS>7 50

k

0

1

2

3

4

5

6

>7

dim(R/J(v))x | 1

3

6

7

6

3

1

0

We are thus left to consider the possibilities for h, € {4,5,..,9}. We use the inverse system dictionary

to translate this question into one about the Hilbert function of h, fatpoints on P2. There are two distinct

cases.

Case 1: h, € {4,---,8}. In this case, we can give a complete answer to the dimension of (R/J(v))y for

each degree k.

Case 2: h, = 9. Then there are two cases depending on whether the cone of numerically effective classes

of divisors on the surface obtained by blowup P? at the 9 points is finitely generated or not. If the cone

is finitely generated, then Harbourne’s algorithm, which we will give below [1.6.2], still works and enables

us to compute the Hilbert function of fatpoints, thus dim(R/J(v))g, for each k. However, if the cone is not

finitely generated, it is a famous open problem in algebraic geometry (see Miranda’s survey article [Mir99])

to determine the Hilbert function of fatpoints, and therefore difficult to compute dim(R/J(v))g.

13
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1.6 Review of Inverse System and Fatpoints on P?

1.6.1 Inverse system

In [EI95], Emsalem and Iarrobino proved there is a close connection between ideals generated by powers of
linear forms and ideals of fatpoints. We use their results in the special case of ideals generated by powers of
linear forms in three variables and ideals of fatpoints in P2. See [Ger96], [GS97] for more information.

Let p1,- -+ ,pn € P? be a set of distinct points,

Di = [Pil P Pi2 1Pz‘3]7

I(pi) = i € R =k[z', ¢/, 2"].

A fat point ideal is an ideal of the form

F= ﬂ et C R (1.6.1)
i=1
We define
L, =panx +piy+psz€ R, for 1 <i<n. (1.6.2)

Define an action of R’ on R by partial differentiation:
p(@’y' ") - q(x,y,2) = p(0/0x,0/0y,0/0z)q(x,y, ). (1.6.3)
Since F' is a submodule of R/, it acts on R. The set of elements annihilated by the action of F is denoted

by F~1.

Theorem 1.6.1 (Emsalem and Iarrobino [EI95]). Let F be an ideal of fatpoints

n
— a;+1
F={g"
i=1

then

R; for j <max{a;},
(Fh); = | (1.6.4)
L) Ry, + -+, LI-*" Ry, for j > max{a; +1}.

14
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and

dimy,(F~1); = dimy,(R/F),.

Corollary 1.6.2. In the case r = 1,2, let
FZ@{_TQ"'QM;T

be an ideal of fatpoints on P?. Then (F~1); = (Ly+t ... Lrth);

o i, and

itz or ) <,
dim(R/J(v)); = (2)  fro<is< (1.6.5)

dim F;  forj>r+1.

Therefore, to obtain the dimension of (R/J(v)), for each k, it is necessary to consider a corresponding

ideal of fatpoints on P?.

1.6.2 Blowing up points in P?

Here we will use some facts about rational surfaces obtained by blowing-up n points p1,--- ,p, on P2, see
Hartshorne [Har77]. We follow Harbourne [GHMO09] and only state what is needed in this thesis.

There is a well-known correspondence between the graded pieces of an ideal of fat points F' C R and the
global sections of a line bundle on the surface X which is the blowup of P? at the points. Let E; be the class
of the exceptional divisor over the point p;, and L the pullback of a line on P2. For the fatpoint ideal F in
corollary define

Dj=jL—(j—r)(Ei+ -+ Ey,). (1.6.6)

Then dim J; = h%(D;), thus we have

(32'2) for0<j<r,
dim(R/J(v)); = (1.6.7)

ho(D;) for j >r+1.

Remark 1.6.3. This equation tells us that dim(R/J(v)); only depends on the divisor D;, which only
depends on the configuration of the fatpoints, and thus only depends on the geometry of the hyperplanes

passing through v, See §1.7] for examples.
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On X, the divisor class group CI(X) is a free abelian group with basis L, Fy,--- , E, which has the
intersection product:

L= -E? =1, L.E;=E;.E; =0, for j # i. (1.6.8)

The canonical class of X is

Kx=-3L+E ++E,.

We also define
An = (n—2)L—Kx.

A prime divisor is the class of a reduced irreducible curve on X and an effective divisor is a nonnegative
integer combination of prime divisors. We denote the set of effective divisors by EFF(X). A divisor whose
intersection product with every effective divisor is > 0 is called numerically effective(nef). We define Neg(X)
as the classes of prime divisors C' with C? < 0. In [GHMO09] Proposition 3.1 and 4.1, Neg(X) is explicitly
determined, which is the main point for the following algorithm of Geramita, Harbourne, and Migliore to

compute h?(F) for any divisor F on X. To determine Neg(X), we first define a few classes of divisors on X.
1. B, ={FE1, - ,E.};
2. Ly ={L—E; — —E;]2<7,0<i; <---<i; <7}
3. Q = {20~ B, — -~ E,5<j <r};

4. C,={3L—2E; —E;, —-— E, [T<j<8,j<r};

2

5. Ms = {AL — 2E;, — 2E;, — 2E;, — E;, — -+ — Ey,,5L — 2F;, — 2E;, — -+- — 2E;, — By, — Ei,, 6L —

2F;, — 2E;, — - — 2E;}.

i1

Let N, =B, UL, U Q,UC, UMsg. Let X be obtained by blowing up 2 < r < 8 distinct points of P2, then

Neg(X) C N,

and
Neg(X) = neg(X)U{C € N,|C? = —1,C - D >0, for all D € neg(X)},

where neg(X) is the subset of Neg(X) of classes of those C with C? =C - C < —1.
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Remark 1.6.4. In any given case, we can list the five classes of divisors on X and Neg(X) is the union of
the classes C' with C? < —1 and the classes C’ with C’> = —1 and C' - D > 0 for all D € neg(X). Each
class in £, is the pullback of a line passing through the points p;,, -, p;; if they are on a line; similarly,
each class in @, is the pullback of a conic passing through the points p;,,--- ,p;; if they are on a conic; and

so on. The computation of C? and C - D just uses the intersection product, see Equation (1.6.8)). See also

examples in

Once we have determined Neg(X), we can use the following algorithm due to Geramita, Harbourne, and
Migliore [GHMO09] to compute h°(F) for any class F on X.

Algorithm :
Start with H = F, N = 0.
If H.C < 0 for some C' € Neg(X), replace H by H — C and replace N by N +C. Eventually either H.A,, <0
or HC >0 for all C' € Neg(X).
In the first case, F is not effective, and h?(F) = 0.

In the latter case, H is nef and effective and we have a Zariski decomposition
F=H+N,

with

RO(F)=h"(H) = (H? — HEKx)/2+ 1.

Remark 1.6.5. The above algorithm is based on Bezout Theorem. See Miranda [Mir99] for an elementary

exposition.

1.7 Examples of Fatpoint Computation

In this section, we will apply the above algorithm to compute dim(R/J(v));, depending on the number of
hyperplanes h, passing through v, where h, € {4,5,6,7,8}. We mainly consider the case r = 2 and indicate
the similar computation for » = 1 in remarks. We demonstrate the computation with examples of tetrahedral
complexes constructed from the standard octahedron A by perturbing a vertex to get different numbers of
hyperplanes passing through O. A key point is to determine Neg(X) in each case, where X as above, is the

blowup of P2 at the fatpoints corresponding to the linear forms defining h, hyperplanes. For concreteness,
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we give the coordinates of the vertices of A as O = (0,0,0), P, = (10,0,0), P, = (0,10,0), P; = (—10,0,0),
P, =(0,-10,0), Ps = (0,0,10), P; = (0,0,—10). As noted in Remark the result does not depend on

the actual coordinates.

Example 1.7.1. [4 hyperplanes]
By perturbing one vertex along one of the edges, we get an example with 4 hyperplanes. For example,
move P; along the edge Py P, to get P{ = (7,3,0). Then there are 3 hyperplanes passing through the interior

edge OPs with defining equations and the corresponding 3 points in P? as follows.

llz.I(—>Q1:[12030]7
l2:y<—>Q2:[0:110]7

l3=3c—Ty<+— Q3=[3:-7:0].
The points @1, Q2, @3 are collinear. The other hyperplane defined by
lyg=2z+—>Q4=[0:0:1].
(4 is not collinear with the other 3 points. So on the surface X, the divisor
Cy=L—FE — E;— E3 € Neg(X),

where L is the pullback of a line on P? and E; is the exceptional divisor corresponding to Q; for i = {1,2,3,4}.
In fact,

Neg(X) ={C1,L — By — Ey,L — By — By, L — E3 — Ey, 1, B, E3, Eq}.
Define D; as in equation (|1.6.6)),
D;=jL—(j —2)(E1+ E2+ Es + Ey).

Remark 1.7.2. In this example, N, = B, U L,.. It seems that we should include L — Ey — E,, L — E; — Ej3,
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L—FE>—E5in Neg(X). However, these classes are not in Neg(X ), because they are not prime. For example,
L—-FE,—FEy=(L—F,—Ey—FEs3)+ Ej

is a sum of two prime divisors. The class L — E; — E5 — E3 is prime because the points Q1, Q2,3 are

collinear. Moreover, neg(X) = 0.

Let’s just show that h°(D,) = 4 as a sample of computation, using the intersection product. First,

Dy =4L —2(Ey1 + Es + E5 + Ey),
D4.Cy = 4L? +2E? + 2F3 + 2E3

=4-2-2-2=-2<0.

So we take

Dy=Dy—Cy=3L—FE; — FEy— E3 —2E}.

It is easy to check that
D) -C >0, for any C € Neg(X),

therefore, D) is nef and effective. So the Zariski decomposition of Dy is

Dy =D} +C;.

Using the intersection product (|1.6.8)) again, we have

D}? = (3L)? 4+ E? + E2 + E2 + (2E3)?
=9-1-1-1—4

=2
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Similarly,
Kx = -3L+ E1 + Ey + E3 + Ey,
D).Kx = —(3L)> — E? - E3 — E; — 2F3
=-9+1+1+1+2
=—4
So we get

h(D,) = h°(D}y) = (D — D}.Kx)/2+ 1 = 4.

A similar computation shows the Zariski decomposition of Dy is

D5 = D + 20y,

where

D, =3L— E, — Ey — E3 — 3E,,

and

KO(Ds) = KO(D}) = 1.

Summarizing, we have

6 forj=3
4 forj=4
dim(R/J(v)); = h%(D;) = (1.7.1)
1 forj=>5
0 forj>6

Example 1.7.3. [5 hyperplanes: Aq]
By perturbing P>, P; on the plane z = 0, there are 4 hyperplanes passing through the interior edge
OPs(or OPs), so there are 4 corresponding points Q1, Q2, Q3, Q4 on P? which lie on a line .

There is another point Q5 = [0 : 0 : 1] corresponding to the plane z = 0, not lying on I. On the surface
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X from blowup of the @.s, as above, E; corresponds to Q;, for 1 < i < 5, the divisor class

ClzL—El—EQ—Eg—E4EN6g(X>.

In fact,
Neg(X) ={Cr,L — E; — E5, E;, E5,i € {1,2,3,4}}.

We also have

Dj =jL—(j—2)(E1+ E>+ Es + Ey + Es).
We analyse the case j = 4 in details, since it is similar for any j. First,
Dy=4L —2(E1 + E> + Es + E4 + E5),
Dy.Cy = 4L? +2E7 + 2E3 + 2E2 + 2E3

=4-2-2-2-2

=—-4<0.

So we take

D,=Dy—Cy=3L—E| — Ey— E3 — Ey — 2E5.

Moreover,

D,.Cy =3L> + F} + E2 + B2 + E}

=3-1-1-1-1=-1<0.

So we subtract Cy from D} to get

D} = D) — Cy = 2L — 2E;.

Now, we can check

D}].Cy =2L* =2>0.
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In fact, DJ.C > 0 for any C' € Neg(X). Therefore, we have the Zariski Decomposation of Dy as

Dy = DZ + 2CY.

A similar computation will show that,

D}? =0, D] Kx = —4.

So we get

r%(D,) = h*(DY) = 3.

Summarizing, we have

5 forj=3
dim(R/J(v)); = h*(D;) =43 forj=4 (1.7.2)
0 forj>5

Remark 1.7.4. We have given the formula of dim(R/J(v)); in Equation (1.5.5) for the case r = 1, by
applying a result of Iarrobino [[ar97]. Here we reprove that formula using a similar computation as above.

Since r = 1, the divisor D; is given by
Dj=jL—(j—1)(E1+ -+ Es5).

By Corollary [1.6.2] we just need to compute dim(R/J(v));, or equivalently h°(D;) for j > 2. For j = 2,
DQ =2L — (E1 + - +E5) Since

Dy-Cy=2[2+FE}+---+EI=2-4=-2<0,
we get D), = Dy — Cy = L — Es, which is effective. Since

D=0, and Dy - Kx = —3+1= -2,
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we get

W02 = 10l = =2

The computation for j > 2 is completely similar.

Example 1.7.5. [5 hyperplanes: As]
By perturbing one vertex along the interior of a face, we can get another example of 5 hyperplanes. For
example, if we perturb Ps = (0,0,10) to Pi = (1,1,8), then there are 3 hyperplanes passing through the

interior edge OP; (or OP3) with defining equations and the corresponding 3 points in P? as follows.

lh=2+—Q,=[0:0:1],
ZQZyHQQZ[OSIZO],

lg=8y—2<—>Q3:[0282—1].

The points Q1,Q2, Q3 are collinear in P2. Similarly, through the interior edge OP,(or OP;), there are 3

hyperplanes

l1:z<—>Q1:[O:O:1],
l4:$<—>Q4:[1:020],

ls=8r—2z+—Q5=[8:0:-1].

Similarly, @1, Q4, Q5 are collinear and 1 is the intersection of the two lines.

So, on the surface X, the two divisors

Ci=L—-E\—E— Ej3,

Co=L—-F —Ey—Fs,

are in Neg(X), where FE; is the exceptional divisor corresponding to @; for i = {1,2,3,4,5}. In this case,

Neg(X) given by

{017027L_E2_E47L_E2_E57L_E3_E47L_E3_E57Ei7i:{172u37475}}'
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We also have

D =jL—(j—2)(E1+ Ex+ Es+ Ey + Es).

It is easy to check that D3 is nef, and a similar computation shows

D3 =4, D3 .Kx = —4.

So
h%(D3) = 5.
For
Dy =4L —2(E1 + E> + E3 + E4 + E5),
we have
D4.Cy = 4L? + 2E} + 2F2 + 2%
=4-2-2-2<0.
So we take
DQ:D4—C1:3L—E1—E2—E3—2E4—2E5.
Since
D}.Co = 3L? + E} + 2E} + 2E?
=3-1-2-2<0.
So we take

D! =D} —Cy=2L—Es— B3 — E4 — Es.

It is easy to check DY is nef, so we get the Zariski decomposition

D4:Dg+01+02.
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A similar computation will show that,

D}* =0, D} Kx = —2.

Thus,
KO(Dy) = KO(Df) = 2.

For j > 5, D; is not effective, so h(D;) = 0.

Summarizing, we have

5 forj=3
dim(R/J(v)); = h*(D;) =42 forj=4 (1.7.3)
0 forj>5

Remark 1.7.6. Comparing example and example|1.7.5] the dim(R/J(v)); differ at j = 4, even though

in both examples, J(v) is an ideal generated by 5 powers of linear forms in z, y, 2.

Remark 1.7.7. In Equation (|1.5.6), we have given a formula of dim(R/J(v))y in the case r = 1. Here we
prove that formula using the same computation. For k = 2, we consider the divisor Dy = 2L—(E;+- - -+ E5).
Now

Dy-Ch1=2-3=-1<0,

so we get Dy, = Dy — Cy; = L — E4 — E5. It is easy to check that D) - D > 0, for all D € Neg(X), so D} is
nef. Since

D= -1, and Dy - Kx = -3+2=—1,

we get

KO(Da) = h(Df) = —

Example 1.7.8. [6 hyperplanes: Clough- Tocher(CT))

This tetrahedral complex CT is constructed by putting an interior point O, which we put at the origin
(0,0,0), in the tetrahedron and decomposing the tetrahedron into four tetrahedra.

Through each interior edge of C'T, there are 3 different hyperplanes, each corresponding to a point in

P2. So we have 4 lines in P?, with each line corresponding to an interior edge of C'T, and on each line, there
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are exactly 3 points. Moreover, each point is the intersection of two lines. For example, through the interior

edge OP;, we have the planes OP; P,,OP; P3 and OP, Py, each corresponding to a point, say (1,02 and Q3

in P2. Similarly, around OP,,0P; and OP,, we have the following corresponding points.

OoP, OPs
ORP, +— (1 OP3P <— Qq
OPyP3 <— Q4 OP3P; <— Q2
OPRPy +— Qs OP3 Py +—— Qs

The configuration of the 6 points on P? is type 10 in the table of [GHMO09)].

OP4P1 < Q5
OP4P2 — Qd

OP4P3(—>Q6

So on the surface X obtained from the blowup the 6 points, we have the following class of divisors in

Neg(X).

Ci=L-E—FE,—FEs3, (y=L-FE —FE,—E;s,

C3=L—-FE,—E;— FEg, Cy=L—E3 — E5 — Eg,

with FE; as the exceptional divisor from blowup of @;, for 1 <i < 6.

In this case, D3 is nef, with

D2 =3, D3 Kx = —3.

So h%(D3) = 4. As for Dy, the Zariski decomposition is
Dy=0+C; +Cy+Cs5+ Cy.
So h%(Dy4) = h°(0) = 1. Summarizing, we have

4 forj=3
dim(R/J(v)); = h*(D;) =<1 forj =4

0 forj>5
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1.8 Main Result

1.8.1 Theorems

Now we have computed the dimension for each component of the complex R/J. Putting the results together,
we get our main result.

For a tetrahedral complex A = A, denote the number of tetrahedra by fs, the number of 2-dimensional
interior faces passing through v by f5, the number of interior edges with h. = 2, he = 3, and h. > 4,
respectively by f1 2, fi1,3, and fi 4. Recall that h. is the number of hyperplanes incident to e. Let f; be the

number of interior edges, so fi1 = fi2 + fi,3 + f1.4.

Theorem 1.8.1. The dimension of C1(A)y, the vector space of splines of smoothness r = 1 of degree exactly
k, is given as follows.

dim Cl(A)k = hgyk + Ck,

where

hg’k = dlmHg(R/j)k,

a1 5157 )
(7)) ()
sl ()

—dim(R/J(v))g,

and dim(R/J(v))g is given by Equations (1.5.4),(1.5.5) and (1.5.6)), and explicitly computed using the method
of {3,

Theorem 1.8.2. The dimension of C?(A)y, the vector space of splines of smoothness r = 2 of degree exactly
k, is given as follows.

dim C?(A)y, = haj + Dy,

where

h2,k = dlmHQ(R/j)k,
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Dk—f3<k;r2> f2[(k+2>_<k21>}
[(k+2> (k;1>+(k;4>}
3{(134—2 3(k;1)+<k;2>+<k;3>}
+f14{(k+2 4(k;1)+3(k;2)}
— dim(R/J())k,

and dim(R/J(v))y, is explicitly computed using the method of §1.6

(Z) —0, ifa<?2

of Theorems[I.8.1), [I:8.3 The Euler characteristic equation applied to the complex R/7 is

In the above theorems,

X(H(R/T)) = x(R/T).

Since C%(A) ~ H3(R/J), this fact implies that

dim C2(A)y, = dlmz ) P ®r/IB kerlmZ ) Hai(R) T )i

ﬁeAS i

By equations (1.5.3)), (L.5.7), we get dim(R/J(7))r and dim(R/J(e))r. By Lemma 1 Hi(R/T) =
Ho(R/J)=0. Also H2(R/J) is Artinian, so its k-th graded component vanishes when & > 0. O

Corollary 1.8.3. dim C'(A)y > Cy, and dim C%(A)y, > Dy.
Remark 1.8.4. The two complexes R/J for r = 1 and r = 2 are different, so are the modules Ha(R /7).

Corollary 1.8.5. The dimension of CL(A), the vector space of splines of smoothness 1 = 1 of degree at

most d, is bounded below as

dim Cj(A) (f3—f2+f1)( +3)+(f2—2f1,2—3f1,3—3f1,4)<d;:1>

d (1.8.1)
+2(f1,3 + f1,4) (g) + fi2 (d; 1) - Zdim(R/J(v))k.
k=0
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For d > 4, the inequality simplifies to

dim Cj(A) z%d?’ +(fs = F2) + (5 fs = 22+ 31 + fr)d
(1.8.2)

d
+(fs—fat+ fiz+ fra) — Zdim(R/J(v))k~

k=0

Corollary 1.8.6. The dimension of C%(A), the vector space of splines of smoothness 1 = 2 of degree at

most d, is bounded below as

dim C3(A) >(fs — f2 + fl)(d;)r?)) + (fa—2f12 —3f1,3 —4f1.4) <g)
+ (fi3+3f14) (d; 1) + f13 (d ; 2) + f12 (d g 3) (1.8.3)
d
=Y dim(R/J(v))x-
k=0

For d > 6, the inequality simplifies to

dim C2%(A) z%df" + (fs — gfg)dz + (%f:’) - %fg +6f1+3f12+ fi1,3)d
d (1.8.4)
+(fs—fao—9fi2—4fi3—2f14) — Zdim(R/J(v))k.
k=0

For the extremal cases of exactly 3 or > 10 hyperplanes, we work out dim(R/J(v)); in Example
Here we put our results on the above examples of 4, 5 or 6 hyperplanes in one place for the readers’
convenience. We don’t claim these are all the cases of 4, 5 or 6 hyperplanes. Our point is to illustrate the

computation of dim(R/J(7))x by the algorithm. All the remaining cases are similar but more complicated.

Proposition 1.8.7. In the case r = 2, dim(R/J(v))x for the following cases are given by

k 011128145626

4 hyperplanes 113|166\ 4|1 0

5 hyperplanes(Ay) | 1| 38|65 | 3|0 0
5 hyperplanes(As) | 1| 316|520 0
Clough-Tocher 1136|410 0
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1.8.2 Comparison and Examples
In the case r = 1, Alfeld, Schumaker and Whiteley [ASW93] Theorem 54 also give a lower bound on

dim C}(A)

d(d —1)(d - 5)
6

dim C}(A) > T+3(d—1)Vr +d(d—1)Vg + 1+ 5d — 2d?, for d > 3,

where T, Vg, V; are the number of tetrahedra, boundary vertices, and interior vertices, respectively.

In the setting of our paper, V; = 1. Using the relation Vg = 2f5 — f3 4+ 2, their bound is given by
. 7
&mCaA)z%M¢+Ugfﬁm2+@€ﬁ+45+md72 (1.8.5)

Compare our bound in Equation (1.8.2)) with their bound, the difference is
d
frod+ (fs = fo+ fra+ fra) +2 =) dim(R/J(v))x. (1.8.6)

k=0

It is clear that our bound is better if f 2 > 0. If fi 2 = 0, the difference is only
d
= dim(R/J(v))
k=2

For a tetrahedral partition A of a simply connected polygonal region D C R? and d > r, Lau [Lau06]

proved that, a lower bound of C(A) is given by

mmCﬂA)g(dgf)+b(d‘;+2>

d+3 +3 +2 (187)
r r
("5 () (T e
where
1 d—r 1
6= D (r+1+j—jen)s,
k=11=1 j=1
and ey, is the number of interior faces attached to the interior edge ex (k =1,2,- -, f1) which lie on different

planes. Here, (z); = z, if 2 > 0. Otherwise, (x)4 = 0.
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The leading term of his formula is only

1_f1+f23 f3_13
d° = d
6 6 ’

thus is weaker than our bounds, especially when d is large.

Example 1.8.8. For the example of 4 hyperplanes, we have

f3=8fo=12,fio=4,fi3=2,f14=0.

For the two interior edges OPs and OPFg, there are three hyperplanes passing through each edge. For the
other four edges OP;, OP,, OP5,OPy, only two hyperplanes passing through each edge. The formula above

gives the following lower bound for dim C}(A)

d |01} 2] 3

Bound | 14| 12| 30

and

dim C}(A) > 4/3d® — 4d* + 38/3d — 8, for d > 4.

In this case, the bound is actually exact and H2(R/J) = 0.

In the case r = 2, we get the lower bound for dim C%(A) as

d (0|12 |3]4

Bound | 1| 4|10 | 22 | 44

and

dim C2(A) > 4/3d® — 10d* + 140/3d — 69, for d > 6.
In this case, the bound is actually also exact and therefore Ho(R/J) = 0.

Example 1.8.9. For the Clough-Tocher, we have

fa=4,f2=06fia=/fia=0fi3=4
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The lower bound for dim C%(A) is given by

d

d+3 d d—1 d—2
: 2 > _ — i .
dlmCd(A)2< ) ) 6<3)+4( 5 >+4< 5 ) kzzodlm(R/J(v))k
The right hand side is equal to 1,4, 10,20, 35 for d = 0,1,2,3,4 and
2/3d* — 5d* +79/3d — 33, for d > 5.

For example, when d = 17, this formula gives 2245, agrees with the computation in [ASS92|.

Similarly, the lower bound for dim C}(A) is given by
d+3 d+1 A
. 1 .
dim C}(A) > 2( 5 ) —6( 3 > +8<3> - kz_odlm(R/J(v))k.

Example 1.8.10. For the example of 5 hyperplanes, Example [I.7.3] we have

fa=8fo=12,fio=4,fi3=0, fia=2.
For the example of 5 hyperplanes, Example [I.7.5] we have

[3=8f2=12fi2=1,fiz3=4,fia=1

We can also get lower bounds in the same way as in Examples [I.8.8 and [I.8.9]

Remark 1.8.11. Using Macaulay2, we found that C2?(A) is a free module over R for the above examples of
4 hyperplanes and Clough-Tocher. By Schenck’s Theorem in [Sch97], this observation implies H2(R/J) =0
and dim C?(A); = C, so our bound in corollary is tight. In any case, corollary agrees with

Macaulay2’s output, thus provids strong supports of our theorem.

Remark 1.8.12. To compute the homology H3(R/J), one way is to program in the appropriate maps and

have Macaulay 2 compute the homology.

Remark 1.8.13. For any given tetrahedral complex A,, we can find the configuration of the fatpoints

corresponding to the hyperplanes passing through v. The classification of all configurations of fatpoints up
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to 8 points is given in [GHMO09|, though some configurations do not correspond to a tetrahedral complex

A,.
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Chapter 2

The Postnikov-Shapiro Conjecture

In this chapter, we give one approach to the Postnikov-Shapiro conjecture, including Schenck’s conjecture
as a special case, about the minimal free resolutions of a particular class of ideals of powers of linear forms.
The conjecture is stated in In we give a short introduction to syzygies and resolutions of
general homogeneous ideals. In §2.2, we give an overview on how the particular class of ideals arise. Our
analysis of Schenck’s conjecture, is given in §2.5|to after introducing the basic tool of the Hilbert-Burch
Theorem. In this part of analysis, we provide two different approaches to Schenck’s conjecture. One of our
main results is Theorem [2.8.2]in In we provide a proof of Postnikov-Shapiro conjecture in the case
of four variables under an additional hypothesis. In we gave an inductive proof of Postnikov-Shapiro

conjecture for any number of variables, under additional hypotheses.

2.1 A short introduction to syzygies

In algebraic geometry, the ideal-variety correspondence enables us to study the geometric properties of a
projective variety X C P" from its homogeneous ideal I. Fix a field K of characteristic 0 throughout this
chapter. The homogeneous coordinate ring of P" is S = Klzg, - ,2,]. It turns out that to study ideals
effectively we also need to study graded modules over S; the primary example is the homogeneous coordinate
ring of X, given by S(X) = /1.

Let M = ®gecz Mg be a finitely generated graded S-module with d-th graded component M. Because M
is finitely generated, each My is a finite-dimensional vector space, and the Hilbert function of M is defined
by

Hy(d) = dimg M.
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The Hilbert series of M is the generating function, defined by

HSy(t) =Y Hy(d)t".
d>0
Hilbert had the idea of computing Hjs(d) by comparing M with free modules, using a free resolution. For
any graded module M, denote by M (a) the module M shifted by a,

M(a)g = Mqaya

For instance, the free S-module of rank 1 generated by an element of degree a is S(—a). Given homogeneous
elements m; € M of degree a; that generate M as an S-module, we may define a degree-preserving map
from the graded free module Fy = @;5(—a;) onto M by sending the i-th generator to m,. Let M; C Fy be
the kernel of this map. By the Hilbert Basis Theorem, M; is also a finitely generated module. The elements
of My are called syzygies on the generators m;. Choosing finitely many homogeneous syzygies that generate
M, we may define a map from a graded free module F} to Fy with image M;. Continuing in this way we

construct a sequence of maps of graded free modules, called a graded free resolution of M :
SN NN SNy NG N}

Then Hilbert Syzygy Theorem says that every finitely generated graded S-module has a finite graded resolu-
tion of length at most n+ 1. We say the above resolution is minimal if for each [ > 0, all the nonzero entries
of the matrix of ¢; are in the maximal ideal of S. Then a finitely graded module M has a unique minimal
resolution up to isomorphism.

If the graded S-module M has a finite free resolution

F:0F, ™ F - .2 E

with each Fj a finitely generated free module F; = @;5(—a; ;), then

Har(d) = i(_l)i Z (n + dn— az‘,j).

i=0 j
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There is a unique polynomial H Py, called the Hilbert polynomial, such that
Hy(d) = HPy(d)

when d is sufficiently large. The Hilbert polynomial contains interesting geometric information. For example,
1. The degree of the Hilbert polynomial H Pg(x) is the dimension of the variety X.

2. If dim X = d, then the degree of X, defined as the number of points where X intersects a generic

(n — d)-dimensional linear subspace of P", is d! times the leading coefficient of H Pg(x.

Since the Hilbert function of M is determined by the a; ; in the minimal free resolution of M, they are

finer invariants than the Hilbert function. We use a compact way to display them, called a Betti diagram. If
Fy = @;8(—j)"7;

that is, F; requires 3; ; minimal generators of degree j, then the Betti diagram of F is

0 1 .. S
{ Boi  Boiyr - Bs,its
i+ 1| Boir1 Boivre o Bsitits
J Boj  Bojr1 o Bsjis

Example 2.1.1. [Three points in P?] There are two cases, depending on whether or not the points are
collinear. First, if they are not collinear, we may take them to be the points X = {[0,0,1],[0,1,0],[1,0,0]}.
It is easy to see the ideal of X is

I= <5€,y> N <.73, Z> n (y,z),

which is generated by the quadratic monomials

Fy =xy, Fo = xz, and F3 = yz.
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The relations among these three are easy to find; they are given by

—z- 1 +y-Fo=0

—y'F2+1"F3:O.
Therefore, the minimal free resolution of S(X) is

0 8(=3)2 25 §(—2) 2% § — S(X) — 0,

where
$o = [ Yy x2 Yz ] .
and
-z 0
=1y -y
0 =

The Betti diagram is

From this resolution, we get the Hilbert function of S(X) as
m+ 2 m m—1
H = — 2

(m+1)(m+2)—3m(m—1)+2(m—1)(m—2)
2

which for m > 1 is

=3.

Therefore, the Hilbert polynomial of X is the constant 3.
Now suppose the three points are collinear. For example, if the points are [0,0,1],[0,1,0], [0, 1,1], then

the ideal of X is generated by
Fy =2, Fy = yz(y — 2).
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There is only the trivial relation

P -F,—Fy -y =0.
The minimal free resolution is given by

0= S(—4) 25 S(=3) @ S(—1) 2% § — S(X) — 0,

where
b0 = {x yz(y—z)]~
and
—yz(y — 2)
¢1 =
x
The Betti diagram is
Total | 1 2 1
0 1 1 -
1 - - -
2 -1 1

It is easy to obtain the Hilbert function of S(X) from the above resolution and conclude that the Hilbert
polynomial is also the constant 3. Note the Betti diagrams of these two ideals are different.

So far, we introduced the minimal free resolutions of ideals and gave a simple example. In general, it is
difficult to compute the minimal free resolution of a given ideal. One particular class of ideals for which the
minimal free resolution is known are ideals generated by monomials. In this thesis, our primary object of
study is the class of ideals generated by powers of linear forms. In the next section, we discuss the work of

Postnikov-Shapiro, where the particular ideals generated by powers of linear forms arise.

2.2 How these ideals of powers of linear forms arise

2.2.1 Motivation

Let Fl, = SL(n,C)/B be the manifold of complete flags in C™. The manifold Fl,, comes equipped with a

flag of tautological vector bundles Ey C E; C - -+ E,, and associated sequence of line bundles L; = E;/FE;_1,
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i = 1,2,--- ,n. The L; possess natural Hermitian structures induced from the standard Hermian metric
> z;Z;on C". For i =1,2,--- ,n, we denote by w; the curvature form of the Hermitian line bundle L;, which
represents the Chern class ¢1(L;) in the 2-dimensional cohomology of Fl,,. B. Shapiro and M. Shapiro [SS98]
investigated the ring B,, generated by the forms wi, -+ ,w,. As an additive group, B,, is a free abelian
group. The ring B, is graded: B, = BS® B! ® B2®--. . The component BF consists of the 2k-dimensional
forms. The cohomology ring H*(Fl,,Z) is a quotient of B, since the former is generated by the Chern
clases ¢1(L;).

Let J,, be the ideal in the polynomial ring R = K[z, - , x,] generated by the 2" — 1 polynomials of the
form

pr = ((pil + .o+ xir)r(n_r)'i‘l7
where I = {iy, - ,i,} is any nonempty subset of {1,2,--- ,n}. In [SS98], Shapiro-Shapiro proved

Theorem 2.2.1. The ring B, s canonically isomorphic, as a graded ring, to the quotient R/jn, The

isomorphism is given by sending the generators w; of B, to the corresponding x;.

2.2.2 Work of Postnikov-Shapiro-Shapiro

In [PSS], Postnikov-Shapiro-Shapiro proved the conjecture in [SS98] on the dimension of the ring B, by
relating the ideal J,, to another ideal I,,.

In the polynomial ring R, they define the ideal I, generated by the monomials v, given by

mr = (@ - 2)" 24y,

where I = {i; < .-+ <i,}, ranges over nonempty subsets of {1,--- ,n}. Then define A, = R/fn

A non-negative integer sequence b = (by,--- ,b,) is called an almost parking function of size n if the
monomial z° = 2% ... 2P does not belong to the ideal I,,.

A forest is a graph without cycles. For a forest F' on the vertices 0, - - - ,n, an inversion is a pair of vertices
labeled 7 and j such that ¢ > j and the vertex ¢ belong to the path in F' that joins the vertex j with the
minimal vertex in its connected component.

Recall that for a graded algebra A = Ag ® Ay ® A @ --- , with Ag = K, the Hilbert series of A is the
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formal power series in g given by

HS(A) = Z q" dimg Ay,.
k>0

Postnikov-Shapiro-Shapiro proved the following

Theorem 2.2.2. [PSS] The algebras A, and B, have the same Hilbert series. The dimension of these
algebras is equal to the number of forests on n+ 1 vertices. Moreover, the dimension dimg AX = dimy B of

the k-th graded components of the algebras A, and B, is equal to
1. the number of almost parking functions b of size n such that >, b; = k;
2. the number of forests on n + 1 vertices with (g) — k inversions.

The images of the monomials x°, where b ranges over almost parking functions of size n, form linear bases

in both algebras A, and B,,.

2.2.3 Postnikov-Shapiro’s generalization

The algebras in the previous subsection are associated to the complete graph K,.; on n + 1 vertices.
Postnikov-Shapiro in [PS04] generalized these algebras to Ag and Bg associated to any graph G. They
generalized parking functions to G-parking functions and the Theorem [PSS] to the setting of Ag and Bg.
In this subsection, we first define G-parking functions and the algebras Ag and Bg, then state Postnikov-
Shapiro’s theorem and conjecture. Along the way, we will also discuss a special case of the conjecture,
Schenck’s conjecture.

A parking function of size n is a sequence b = (by, - - - , b,,) of non-negative integers such that its increasing
rearrangement ¢; < --- < ¢, satisfies ¢; < i. A famous formula of Cayley says the number of trees on n + 1
labeled vertices equals (n + 1)"~! and also equals the number of parking functions of size n. Postnikov-
Shapiro [PS04] defined G-parking functions for any graph G, and Gabrielov [Gab93] proved that the number
of G-parking functions equals the number of spanning trees of G, which specializes to Cayley’s formula when
G = K, 11, the complete graph on n + 1 vertices.

Let G be an undirected graph on the set of vertices [n + 1] := {0,1,--- ,n}. Let a;; be the number of

edges connecting vertex i to vertex j. For a subset S in {1,--- ,n} and a vertex i € S, let
ds(i) = Z aij,
i¢s
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the number of edges from the vertex i to a vertex outside of the subset S. A sequence b = (by,--- ,b,) of
non-negative integers is a G-parking function if, for any nonempty subset S C {1,--- ,n}, there exists i € S
such that b; < dg(i).

Postnikov-Shapiro construct two ideals I and Jg in the polynomial ring R = Kxy,- -, x,] as follows.

Definition 2.2.3. The monomial ideal I = (mg) is generated by

mgsg = H I?S(i)7
€S
for all nonempty subsets S C {1,2,--- ,n}.
Let

DS: Z aij:Zd[(i)

i€S,j¢S ics
be the total number of edges that join some vertex in S with a vertex outside of S. The ideal Jg = (pg) is

generated by

bs = (Z%’)DS,

i€S

for all nonempty subsets S C {1,2,--- ;n}. Let A = R/I¢ and Bg = R/Jg.

It is easy to see that a non-negative integer sequence b = (b, -+ ,b,) is a G-parking function if and only
if the monomial z® = xlf -zt is nonvanishing in the algebra Ag. Thus the monomials 2°, where b ranges

over G-parking functions, form a basis of the algebra Ag.

Theorem 2.2.4. [PS0]] The monomials z°, where b ranges over G-parking functions, form a linear basis

of the algebra Bg. Thus, their Hilbert series are equal:

HS(Ag) = HS(Bg). (2.2.1)

Both of these algebras are finite-dimensional as linear spaces over K, and

dimK AG = dimK BG = Ng,

where N¢g is the number of spanning trees of the graph G.
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Example 2.2.5. Consider the graph G = KUk

i1, the complete graph on the vertices {0,1,---,n} with

the edges e, ;, %, # 0, of multiplicity £ and the edges e ; of multiplicity I, where [ and %k are two fixed

nonnegative integers. For a nonempty subset I = {i1, -+ ,4,} C {1, -+ ,n}, we have

di(r) =¢(r) =1+ k(n—r). (2.2.2)

Then

mp = (@i, - 2,) 0,

pr = (mil 4.+ xiT)T¢(T)~

The two ideals associated to G are given by

Iy =(mp),  Jo={(p1), (2.2.3)

where I runs through all nonempty subsets of {1,---,n}. See Equations (2.11.1) and (2.11.2]) below for

examples when n = 3.

2.2.4 The conjectures

Postnikov-Shapiro [PS04] showed HS(R/Iy) = HS(R/J) as a corollary of Theorem They also gave

the following minimal free resolution of R/I,

o™ C3 — Cy — C; — Cy=R— R/I, — 0, (2.2.4)
with
Ci = @ R(_d(llv vli))(h‘ﬁ’li)v (225)
l1112’...’li
where the direct sum is over Iy, -+ ,l; > 1 such that Iy +---+1[; < n,

d(ly, -+, L) =ho(l) + ol + o) + -+ Lio(lh + -+ 1),
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and

n _ n!
L, L) L' Ll (n—1 —- = 1)

is the multinomial coefficient. This resolution means that the graded Betti numbers of I are given by

n
bi)d(ll’”' ali) - <Z17 e 7l2> :

Moreover, the i-th Betti number is given by
bi(Iy) =dlS(n+1,i+1),

where S(n + 1,4 + 1) is the Stirling number of the second kind, i.e., the number of partitions of the set
{0,1,--- ,n} into ¢ + 1 nonempty subsets. In fact, they found the minimal free resolution of I, = (mg),
generated by

ms = (i, - @,)"",
for all nonempty subsets S = {iy, - ,i.} C{1,--- ,n}, where p; >--->p, >0, p; e N, 1 <i < n.
Conjecture 2.2.6. [PS0J] The graded Betti numbers of Jy are also given by ,
More generally, they conjecture
Conjecture 2.2.7. [PS04] For any graph G, Ig and Jg have the same graded Betti numbers.

In the special case n = 3, the two ideals are given by

Iy = (ah 28yt +2k 2k ()R (22)! TR (y2) T, (2y2)h), (2.2.6)

J¢ — <$l+2k7yl+2k’Zl+2k7 (:E + y)2l+2k, (1, + Z)2l+2k, (y + Z)ZZJer7 (1, + y + Z)3l>, (227)

where we use z,y, z instead of x1, 22, z3 to simplify the notation. Schenck [Sch04] used the Inverse System
of Macaulay, as we discussed in Chapter to compute the Hilbert series of R/J,. He proved that the

Hilbert series of R/Jy is equal to that of R/I4. He also conjectured
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Conjecture 2.2.8. For n = 3, the minimal free resolution of Jy is:

R(—¢(1))°
5 R(-2¢(2) — ¢(3))° @
0— R(— Z¢(i))6 — @ — R(—24(2))3 = R— R/Js—0.
- R(-6(1) — 6(2))° o
R(=3¢(3))

The main focus of this chapter is on Conjecture 2.2.8] We also prove conditionally Conjecture [2:2.6]
We show that the minimal free resolution of Jy is obtained from gluing the minimal free resolutions of
all its subideals, which are naturally associated to the partitions of [n 4 1]. To show the glued complex is
exact, we use two theorems of Buchsbaum-FEisenbud. First, we use the Buchsbaum-Eisenbud Theorem on the
factorizations of complementary minors in the complexes of minimal free resolutions of the subideals. Second,
we apply the Eisenbud-Buchsbaum’s Criterion of exactness to show the glued complex is exact, under the
condition that certain module is free. In a certain sense, the proof illustrates a remark of Buchsbaum [Buc00],
“One could get information about modules of finite homological dimension by transferring information from
the ‘tail’ of its resolution to its ‘head’.”

We stress that most work on ideals generated by powers of linear forms uses Macaulay Inverse Systems, see
[Ger96],|EI95] and [[ar97] for example, to translate into questions about fatpoints. However, that approach
seems not sufficient to deal with the free resolutions of these ideals generated by powers of linear forms.

In the literature, there have been some work on G-parking function ideals, see [MSW] and [MS] for ex-
ample. Their G-parking function ideals are monomial ideals and lattice ideals, while our ideals are generated
by powers of linear forms, which are completely different.

The structure of the following sections is as follows. In we give more examples of free resolutions,
including free resolutions of monomial ideals. In §2.4] we state the Hilbert-Burch resolution of Cohen-
Macaulay ideals of codimension 2. In we explicitly compute the Hilbert-Burch resolution for ideals
of codimension 2 generated by powers of linear forms. In we explicitly syzygies of the ideal Jy in
conjecture [2.2.8 using the methods of In we show the constructed syzygies are minimal. In
and we show the constructed syzygies generate the syzygies of Jy, except one degree. In we

give a different approach to show the constructed syzygies generate the syzygies of Jy. In §2.11] we prove
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Conjecture conditionally using Buchsbaum-Eisenbud’s Criterion of exactness. The last three sections

42.12] 42.13) and §2.14] provide conditional proof of Conjecture [2.2.6

2.3 Free resolutions of monomial ideals

In this section, we give more examples of resolutions. Here we follow the presentation of Eisenbud [Eis95].

A finite simplicial complex A is a finite set N, called the vertices of A, and a collection F' of subsets of
N, called the faces of A, such that if A € F'is a face and B C A then B is also in F. Maximal faces are
called facets. A simplex is a simplicial complex in which every subset of N is a face.

We say that A is labeled by monomials of R if there is a monomial of R associated to each vertex of A.
We then label each face A of A by the least common multiple of the labels of the vertices in A. We write
my for the monomial that is the label of A. By convention the label of the empty face is my = 1. We also
denote A, for the subcomplex consisting of those faces of A whose labels divide m.

Let A be an oriented labeled simplicial complex, and write I C S for the ideal generated by the monomials

m; = 2% labeling the vertices of A. We will associate to A a graded complex of free R-modules
F(AR) :.. > F5F - 5 F =R,

where Fj is the free R-module whose basis consists of the set of faces of A having i elements. The differential
0 is given by
5(A) = D7 (~1)pore ) A (),

neAd MA\n
where pos(n, A), the position of vertex n in A, is the number of elements preceding n in the ordering of A,

and A\n denotes the face obtained from A by removing n.

Theorem 2.3.1 (Bayer, Peeva, and Sturmfels). Let A be a simplicial complex labeled by the monomials
{my, -~ ,m} €8, and let I = (mq,---,my) C R be the ideal in R generated by the vertex labels. The
complex F(A, R) is a free resolution of R/I if and only if the reduced simplicial homology H;(A,,, K) vanishes
for every monomial m and every i > 0. Moreover, F(A, R) is a minimal complex if and only if ma # mas

for every proper subface A’ of a face A.

Example 2.3.2. We turn to our example of three points on P2, see [2.1.11 We can label the simplicial
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complex as follows:

XoX1X2 XoX1X2

The distinct subcomplexes of the form A,,, are the empty complex Ay, the complexes Ay z,, Agozas Doz,
each of which consists of a single point, and the complex A, ., 2, itself. As each of these is contractible,
they have no higher reduced homology, and we see that the complex is the minimal free resolution of

}3/<.’170£L'17 o2, .%'13?2>.

Example 2.3.3. We consider the minimal free resolution of the ideal Ik, associated to the complete graph
K,. In this case the simplicial complex A is the barycentric subdivision of a triangle. The following figure
shows the complex A with the vertices marked by exponent vectors of the generators of Ix,.

030

220 022

300 003

N
(=)
N

The Betti numbers (1,7,12,6) of the ideal If,, which are also the numbers of i-dimensional faces of A,
for i = 0,1, 2, can be expressed in terms of the Stirling numbers. The graded Betti numbers of this ideal are

indicated in the following minimal free resolution:

0— R(—6)% — R(—5)'? = R(-3)*® R(-4)> - R — R/I — 0.

Similarly, a minimal free resolution of the ideal I'x, _ , associated with the complete graph K, is given by

n+1
the complex corresponding to the simplicial complex A, which is the barycentric subdivision of the (n — 1)-

dimensional simplex.
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In the above Example we have seen the explicit minimal free resolutions of two ideals. Both ideals
are examples of the class of ideals of Cohen-Macaulay codimension two, for which the resolutions are given

by the Hilbert-Burch Theorem.

2.4 Another class of free resolutions: Hilbert-Burch

The following theorem is of fundamental importance to this thesis. It describes the minimal free resolutions

of an important class of ideals whose projective dimension pd(R/I) = 2.

Theorem 2.4.1 (Hilbert-Burch). Suppose that an ideal I in R = K[x1, - ,x,] has a free resolution of the
form

0-R" 4 R B R S R/IT—0

for some m. Then there exists a nonzero element g € R such that B = (gfl, e 7gf;n)7 where fz is the
determinant of the (m — 1) x (m — 1) submatriz of A obtained by deleting row i. If k is algebraically closed

and V(I) has dimension n — 2, then we may take g = 1.

Example 2.4.2. Let’s compute the minimal free resolution of the ideal I = (23,43, (x + y)3) by hand. In

this case, the ideal I is minimally generated by the three polynomials, so m = 3. If we take B as
B = [x37y35 (JJ + y)S] )

then A is a 3 x 2 matrix, such that

BA=0.
Note that,
(z+19)? = 2° + 32y + 32y® + ¢°. (2.4.1)
So
2(z +y)* = 2% (x + 3y) + 2y’ + 327, (2.4.2)
y(a +y)* = 2%y + v (y + 32) + 3%°. (2.4.3)
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From Equations (2.4.2)), (2.4.3)), we get one syzygy of the ideal I,
(x +2y)2° + (22 + y)y* + (—x + y)(x +y)* = 0. (2.4.4)
In other words, we have obtained one column of the matrix A, as

T+ 2y
S1= | 2z 4y

—x+y

We can also get a second syzygy easily by multiplying both sides of Equation (2.4.3)) by y and rewriting
the equation as

y?23 + (327 + 3zy + y)y® + (—y*)(z + y)* = 0. (2.4.5)
So we have obtained another column of A as

y2

sy = | 32 + 3wy + y?

—y?

In fact, the above two syzygies are independent and generates all the syzygies of the ideal I. First, the
second syzygy is not a multiple of the first syzygy, in other words, s is not a multiple of sy, which is clear,
for example, by noticing that —z + 1 does not divide y2. Second, these two syzygies generate all the syzygies
of the ideal I. For example, there is another syzygy obtained by multiplying both sides of Equation
by x to get

(22 + 3zy + 3y*)2® + 2%y + (=2 (z +y)® = 0. (2.4.6)

In vector notation, we have
22 + 3zy + 312

53 = x

We can check that s3 = (x + y)s1 + Sa.
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Now that we have the matrix A given by

x4 2y y?

A= 1| 204y 322+3zy+19°2 |,

2

—T+y —y
we can see that
42y P .
det = —3y3,
—z+y -y
r+2y  y?
det = —3z3,
—z+y -y
T+ 2y y? .
det = -3(z +y)>
2z +vy 322+ 3zy + y?

The same method of constructing syzygies can be applied to ideals of the form I = (z% y°, (z + y)°).
However, it would be very messy if we compute the syzygies in the same way. In the following section, we

give a more systematic approach to this class of ideals.

2.5 Explicit Computation of the Hilbert-Burch resolution

Given an ideal of the form I = (x%, 4%, (z + y)¢) in the polynomial ring R = k[z,y], we would like to write

down explicitly its minimal free resolutions. By a change of variables, we have

I=(z"y", (z+y)°)
= ((x+y)* 9", 2

= <xa’ (:C + y)ba yc>
where the second equality follows by the change of variables
=ty Y=y
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and the last equality follows by the change of variables

xri=—x,Yy:=x+Y.

So we can assume that a < b < ¢ from the start without loss of generality.
Also notice that if ¢ > a + b — 1, then the generator (z + y)¢ is redundant and I = (2%, %), so there is
only the trivial syzygy

zayb o ybxa = 0.

Therefore we focus on the case where ¢ < a+b—2 in the following. Set r = [“*2=¢]| and s = [2t2=¢]. Then

the resolution of [ is given the Hilbert-Burch resolution of the form

0= R(—c—1) @ R(—c—1) 2% R(—a) @ R(—b) @ R(—c) = I — 0,

where

$o =

Q & =
B R

is a matrix of forms. In terms of the entries of the matrix ¢y we may write the ideal J = (C, F') as
J= (@) s (ot y) (2:5.1)

where degC =1, degF=s,andr+s=a+b—c.
In the following we focus on the case where r = s = %b_c, because it is sufficient for our later use and
also avoids the unnecessary complication in the argument. The goal is to construct explicitly the matrix ¢q.

Suppose f € Jg is given by

f= Z ai,jxiij

i+j=d
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then

fatn = 3wty ¥ ()

i+j=d m+n=c

= 5 (e

i+j=d m+n=c

S (3 ()

utv=c+d \m-+i=u

The last expression is in the ideal (z?, %) if and only if the nonzero coefficients only occur when u > a

v

or v > b. Equivalently, if v < @ and v < b, the coefficients of z%y" must be zero. Therefore, we have the

following system of equations in the coefficients a; 4—;, 2 =0,1,--- ,d.
Z ai’di(c)zo, foru=c+d—-b+1,---,a—1. (2.5.2)
m
m-+ti=u

Let e = ¢ 4+ d — b, then we can write these conditions in the following form

@ (an)| | a0a

(i) o (emige) | | @24 —0. (2.5.3)

(ail) (aEQ) (a—2—1) @d,0

Later, we will show the above matrix of size (a +b—c—d —1) x (d+ 1) is of full rank. So if
a+b—c—d—1—(d+1) >0,

equivalently, if d < r = %H, there is no solution to the above equation . When d = r, there is a
2-dimensional solution and correspondingly two polynomials f € J,.. This fact is consistent with the that J
is generated by the two polynomials C' and F' of degree . The matrix equation just shows the condition
on the coefficients of a polynomial of degree r to be in J.

Taking any solution to equation (2.5.3)), we get a polynomial f € J,.. So f(z + y)¢ = gz® + hy® for some
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polynomials g and h. Thus we have obtained a syzygy of the ideal I as

(97 ha _f)t'

Since there is a 2-dimensional solution to equation (2.5.3), we have generated two linearly independent
syzygies of the ideal I, which is the matrix ¢y we are looking for. In the following section, we will give
examples to demonstrate this idea more clearly.

Now we start our analysis of Schenck’s conjecture (2.2.8]).

2.6 Construction of syzygies

Consider the following six subideals J; of Jy, 1 =0,1,2,3,4,5,

Jo = <xl+2k, yl-‘er'7 (.T + y)QH-2k>7
Ji = (glF2R LR (g g )22k
Jy = <yl+2k,zl+2k7 (y + Z)21+21c>7
Jy = (@2 (y + 2)2F2 (2 4y + 2)3),
Jo= (YT, (2 + )" (2 y + 2)Y),

J5 _ <Zl+2k7 (x+y)21+2k, (x+y+ Z)3l>.
In the polynomial ring R = k[z, y], the ideal
JO — <xl+2k yl+2k (x+y)21+2k)

is codimension two and has the following minimal free resolution by the Hilbert-Burch Theorem [EI95],

0 — R(—20 — 3k)* 2% R(—1 - 2k)* ® R(~2l — 2k) — R — R/.Jo — 0,
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where
ap asz
¢0 = b1 by
1 C2

Here aq, as, b1, by are polynomials of degree [ + k, ¢1, co are polynomials of degree k. The entries of ¢q satisfy

the following equations:

_ I+2k
blcg — b201 = QT s

I+2k
ajcy — age; = —aogy' R, (2.6.1)
20+2k
)

aiby — asby = ag(xz +y)

for some nonzero constant ag. Moreover, we have
(c1, ¢a) = (ol+26, gl F2ky ; (g 4 g)22H (2.6.2)

The two syzygies of the ideal Jy, given by (a,b1,c1)! and (ag, be,co)t, are of degree 2 + 3k. They can

be naturally extended to syzygies of the ideal Jy4 as follows,

S1 = (al,bl,O,cl,0,0,0)t,

S2 = (CLQ, b270a C2, Oa 070)t'

Inspired by the Therefore we have obtained two first syzygies of degree 2] 4 3k of the ideal J.
Here, we apply the results of the previous section (2.5)) to explicitly construct the matrix ¢¢. In this case,
the matrix (2.5.3) condition for

f=> az'y €{a,c)

i+j=k
is ) o )
2042k 20+2k 20+2k
(l+k+1) ( I+k ) | I+1 ) @0,k
202k 2+2k 20+2k a
1,k—1
2042k 2+2k 21+2k
_(l+2k—1) (l+2k—2) (l+l~c—1)_ L %0 |
There is a 2-dimensional solution to this equation. Given a solution v = (agk,- - ,ax,0), we have a syzygy

53



CHAPTER 2. THE POSTNIKOV-SHAPIRO CONJECTURE

(97 h7 _f>t7 where

I+k
A+ 26\ \ ' 1ok
g= ( Z aw- < m )) T yl+k

u=0 \m-+i=u+l+2k
l+k
20+ 2k w. Itk—u
h = < Z ai’j ( m )) €T y + .
u=0 \m-+i=u

Taking one solution v; with ay ¢ = 0, then we have y divides f. Moreover, the coefficient of 2!k in g is
Z o (20+2kN 20 + 2k ~0
_ Gikmi\ ) T2 2k) T
m—+i=2l+3k

Therefore y divides both f and ¢ in this syzygy.

Taking another solution vy to the above equation which satisfies

2l + 2k
Z Gig—i| =0.

m-ti=l+k

Equivalently, vy is (up to scaling) the unique solution to the matrix obtained by adding one row

20 + 2k 20+2k Y\  [(20+2k
I+ )J’\U+k—-1)" l

on top of the matrix (2.6.3)) above. Corresponding to this solution vs, we have another syzygy

(Ga Ha 7F)t7
where y divides H.
Lemma 2.6.1. The Hilbert-Burch matrix
a; az
o= | b by
1 C2

in the resolution of the ideal (x'T2F y*2k (z + 4)2+2k) has the property that y divides ay,cy, bs.
The other two ideals Ji, Jo have completely similar minimal free resolutions, with the matrix of the first
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differential given by

dy do g1 92
p1=1|e e |s P2=|h he
fi f2 ki ko

The entries of ¢1, ¢o satisfy the following equations:

eifo—efi = alleer; hike — hoky = Oé2yl+2k7
d1f2 - d2f1 - —Oéle_Qk, g1]€2 — ggkj = —OéQZZ-"_2k7 (264)

dies —daer = ay(z 4 2)2F, grho — gohy = an(y + 2)? 2,

for some nonzero constant o, as.
We also have

(dy1,d2) = (zl+2k, (z+ z)2l+2k> s gtttk (2.6.5)

The two syzygies of J; and those of J> can also be extended to syzygies of the ideal Jy, given by

83 = (d170761a07f17070)t7
S4 = (d270a62507f2’0’0)t?
S5 = (0,91,h1,0,0,k1,0)t,

S = (0,92, h2,0,0, ko, O)t

Therefore, we have constructed six first syzygies of degree 2 + 3k from the ideals Jy, J1, Jo. In we show

these syzygies are independent.

To construct six first syzygies of degree 3l + 2k, we consider the subideals J3, J4, and J5. For example,

the ideal

JS _ <:L,l-i-2k7 (y+ 2)21+2k’ (x +y+z)3l>

is essentially an ideal in two variables x,y + z and has a Hilbert-Burch resolution,

0 — R(—31 — 2k)* 2% R(—1 — 2k) & R(—2l — 2k) & R(—31) = R — R/Js — 0,
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where the matrix of differential is given by

A1 As
¢3 = By Bs
Cy Oy

Here Ay, Ay are polynomials in z,y + 2z of degree 21, By, By are of degree I, C, Cs are of degree 2k. Similarly,

the entries of ¢3 satisfy the equations:

BCy — BoCy = ﬁ()$l+2k7
A1Cy — A3Cy = —Boly + Z)2l+2k, (2.6.6)

A1By — A3By = By +y + 2)*,
for some nonzero constant y. Moreover, we have
(Au Ag) = ((y + 2%, a4y 2 42 (267)

The two syzygies of the ideal Js, given by (Ay, B1,C1)! and (As, B, Co)? are of degree 31+ 2k. They can

also be extended to syzygies of the ideal J, as follows

S7 = <A1707 0) 0707 B17 Cl)t7

S8 = (A27Oa 07 0707 BQa CQ)t'

The ideals Jy, J5 have completely similar minimal free resolutions with their matrices of first differentials

given by

Here Dy, Do, E1, Es, Fy, F5 are polynomials in y, x4z and G1, G2, Hy, Ho, K1, K5 are polynomials in z, z +y.
They satisfy equations similar to Equations (2.6.6)). For latter use in we have

(Hy, Hs) = <zl+2k, (x + y)2l+2k> (x+y+ z)gl. (2.6.8)
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The two syzygies of J;y and those of J5 are of degree 3] 4+ 2k, too. They can be extended to syzygies of

the ideal Jy, given by

S9 = (07D170707E1707F1)t7
$10 = (0?D27O707E27O7F2)t,
S11 = (0,0,G17H1,0707K1)t,

s12 = (0,0, G4, Ho,0,0, K»)".

Therefore, we have constructed six first syzygies of degree 3l + 2k.

Remark 2.6.2. As we have done for the ideal Jy, we can apply the same method to construct the Hilbert-
Burch matrix ¢5 for the ideal J5. In this case, we have z divides Hy, K1, and G3. We omit the tedious

details.

2.7 Constructed Syzygies are Minimal

Now we show the syzygies of degree 21 + 3k and 3l + 2k constructed above are minimal generators of the
first syzygies of the ideal Jy; and there are no other first syzygies of degree at most max(2l + 3k, 3] + 2k).
For that purpose, we make use of the structure of the Betti diagram and the Hilbert series of J;. We divide
our analysis into three cases, depending on [, k.

Case 1: | = k. This case is trivial, since 21+ 3k = 31+ 2k, the constructed syzygies are of the same degree.

Case 2: k <. So 2l + 3k < 3l + 2k. In this case, the six first syzygies of degree 2l 4+ 3k must be minimal
and it is impossible to have first syzygies of degree less than 2l + 3k, since there are no second syzygies of
the same degree to cancel those first syzygies.

Now we show it is also impossible to have first syzygies of degree s, s = 2l + 3k + 1,--- ;31 + 2k — 1.
Starting with s = 214+ 3k + 1, suppose there are k; first syzygies of degree s, there must be kg second syzygies
of degree s of Jy, since there is no term ¢° in the numerator of the Hilbert series of R/Jy. Those potential
second syzygies of degree s must be the syzygies of the six syzygies of degree 2] + 3k. However, there is no

such syzygy of degree s < 3l + 2k by the following lemma.

Lemma 2.7.1. The degree of the syzygies of the six syzygies of degree 2l + 3k is at least 31 + 6k.
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Proof. The six syzygies of degree 2] + 3k are the columns of the following matrix

ap ax di do 0 O
bi b2 0 0 g1 g0
0 0 e e hy he
A=1]¢ e 0 0 0 0

The syzygies of these six syzygies are just the column vectors v = (vy, va, v3,v4,v5, v6)", where each compo-

nent v; is a homogeneous polynomial in x,y, z, such that

Av=0.

Writing explicitly, we have

a1v1 + agve + divs + dovy =0

bivy + bavg + g1vs + ga2ve = 0

e1v3 + €204 + h1vs + hovg =0 (2.7.1)
c1v1 + covg =0

Jivs + fava =0

kivs + kovg =0

Since c1, ¢y are co-prime from Equation (2.6.1)), the fourth equation implies that

(1)171)2) =p1(—62,01)7

for some polynomial p;. Similarly, we have

(03, v4) = Pz(*fza fl),

(U57 UG) = p3(_k2a k1)7
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for some polynomial po, p3 from the fifth and the last equation, respectively.

Substitute the vy, va, v3,v4, U5, Vg into the first three equations, we get

p1(—aica + azcr) + p2(—difo +daf1) =0
p1(—=bica + baci) + p3(—gika + g2k1) =0 (2.7.2)

pa(—e1fa + ez f1) + p3(—hiks + hoky) =0

By equations ([2.6.1)), (2.6.4)), and ([2.6.6)), the above three equations are

pl(aoyl+2k) +p2(alzl+2k) =0

1 (=o't 2%) + ps(anztt2*) = 0 (2.7.3)

pg(—alx“r%) +p3(—a2yl+2k) =0

The only solution to these equations is

I+2k I+2k
)

P = caioz p2 = —capazy'T2*, and ps = cagon ! T, (2.7.4)

for some nonzero polynomial ¢, possibly constant.

Therefore, the only nonzero syzygies of the six syzygies of degree 2[ + 3k are

v = (—cap1, c1p1, — fap2, fip2, —kops, kips)’,

with p1, p2, p3 given in Equation (2.7.4]). Since

degp1 = degps = degps > | + 2k, (2.7.5)

degc; = deg f; =degk; =k, fori=1,2. (2.7.6)
Each component of v is of degree at least | + 3k. Since the six syzygies are of degree 2| + 3k, the degree of
the syzygies of the six syzygies is at least 3] + 6k. O

Therefore there are no first syzygies of degree s where 2] + 3k < s < 3l + 2k. Again, by the Hilbert series,
the six syzygies of degree 3] + 2k must be minimal.

Case 3:k > [. The analysis is similar to the case k < [. In this case, 3] + 2k < 2] + 3k. There are no first
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syzygies of degree less than 3] + 2k and the six first syzygies of degree 3] + 2k are minimal.
There are also no first syzygies of degree s such that 31 4+ 2k < s < 2] 4 3k. If there were, then there

would be second syzygies of the syzygies of degree 3l + 2k which are the columns of the matrix

Ay A, 0 0 0 0
0 0 Dy Dy 0 0
0 0 0 0 G Gy
B = 0 0 0 0 H H
0 0 E E, 0 0
B, B, 0 0 0 0
c, C, F F, K K,

The syzygies of the six syzygies are the vectors w = (wy, wa, w3, w4, ws, we)? such that Bw = 0.
Lemma 2.7.2. The only solution to the equation Bw =0 is w = 0.

Proof. Writting the equation Bw = 0 explicitly, we have

Ajwy + Aswe =0
Diws + Dywy =0
Giws + Gowg = 0
Hiws + Hywg = 0 (2.7.7)
Fiws + Fows =0
Biw; + Bows =0

Clwl + CQ’U)Q + F1U)3 + F2w4 + K1w5 + K2w6 =0

The first and the sixth equation together imply that w; = wy = 0, since

A A
det ! ? = Bo(z 4y +2)%,
B, By
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by Equation (2.6.6)). Similarly, the second and the fifth equation imply that ws = w4 = 0, since

D, D
det b =Bi(z +y+2)*
E, E,
We also have ws = wg = 0 from the third and the fourth equation. O

The above proof shows that the constructed syzygies of degree 2[ 4+ 3k and 3l + 2k are minimal.

2.8 No higher degree first syzygies

In this section, we aim to show the syzygies constructed above generate all the first syzygies of the ideal Jy, by
proving that there are no generators of first syzygies of degree bigger than max(2l+3k, 3]+ 2k). The argument
is similar to showing that there are no other first syzygies of degrees at most max(2l+ 3k, 3]+ 2k). Because of
the Hilbert series, we show that there are no second syzygies of J, of degree bigger than max(2!+ 3k, 31+ 2k),
except those of degree 31 + 3k.

Since the ideal Jy, is Artinian, its regularity is equal to the maximum degree d such that (R/Jy)q # 0,
which is equal to the highest exponent in the Hilbert series of Jy. We see that the regularity of R/Jy is
3l + 3k — 3, or equivalently, the regularity of Jy is 3l + 3k — 2. Since the regularity is obtained at the last
step of the minimal free resolution, the maximum degree of the second syzygies of J, is 3/ + 3k. Our goal
is to show that there are no second syzygies of degree strictly smaller than 3] + 3k. For that purpose, we
consider the syzygies of the six syzygies of degree 21 + 3k and the six syzygies of degree 3I + 2k.

We define the matrix

(o as dv ds O 0 A A, 0 O 0 0]
by by 0 0 g1 go 0 0O Dy Dy 0 0
0 0 e e hi hg 0 0 0 0 G G
@=AB=|¢ ¢ 0 0 0 0 0 O 0 0 H H
0 0 fi fo 0 0 0 0 E E 0 0
0 0 0 0 k ks By B, 0 0 0 0
00 0 0 0 0 C C F F K K
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A syzygy of the six syzygies of degree 2] + 3k and six syzygies of degree 31 + 2k is a vector

t
U= (U17/U2u"' , Vg, W1, * - * 7’LU6) 3

where each component v;, w; is a homogeneous polynomial of x, ¥y, z such that

oU = 0.

Expanding @U = 0, one of the equations we get is

c1v1 + covo + Hiws + Howg = 0,

which is equivalent to

11 + v = —Hiws — Howg = f,

for some element f € R. Therefore, we must have

ferl:= <Cl762> N <H1,H2>.

Just prior to equation (2.3), we have shown that

degcy = degey =k,

deg Hy = deg Hs = 1.

If f # 0, the degree of the syzygy corresponding to U is

21+ 2k + deg f.

In the following, we show that HF(I,d) = 0 for d < I+ k — 1. Therefore, there is no syzygy of degree smaller
than 2! 4+ 3k — 1.

Theorem 2.8.1. Ford<l+k—1, HF(I,d) =0.

As a consequence of this theorem, we get the best partial result on Schenck’s conjecture as follows:
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Theorem 2.8.2. The syzygies constructed in §2.7 generate all the first syzygies, except possibly of degree
3l 43k — 1.

2.9 The proof

This section is devoted to the proof of Theorem in the last section. Recall that, we have

(1, e2) = (@125, 20 (o4 )22,
(Hy, Ha) = (272 (z +y)2T2F) (2 +y + 2)%,

I = <Cl,62> n <H1,H2>.

To compute the Hilbert function HF (I, d), we make an invertible change of variables

r=z+y
y=-Y
z=x

Then the ideal (¢1,ce) becomes

Ll _ <yl+2k7 (y+z)l+2k> . Z2l+2k,

and the ideal (H;, Ha) becomes

Lg _ <Z‘l+2k, (l‘—i—Z)gl) . Z2l+2k.

Therefore,
HF(1,d) = HF(L1N Lo, d).
Definition 2.9.1. Let I € klzo,---,z,] be a homogeneous ideal and let > be a monomial order on
klxg, - ,xn]. Then the initial ideal of I with respect to >, denoted ins (I), is the monomial ideal gener-

ated by the leading terms of all elements f € I.
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We also use in(I) if there is no confusion about the monomial order >. An important fact is the following

theorem of Macaulay, see [CLO05].
Lemma 2.9.2. An ideal and its initial ideal has the same Hilbert function.

The point of introducing the above change of variables is that we can compute the initial ideals of L

and Lo easily. Once we have computed in(Lq) and in(Ls), we use the following simple observation

in(Ll n LQ) g Z’/L(Ll) n in(Lg), (291)

and thus

HF(Ly N Ly,d) < HF(in(Ly) Nin(Lg),d), for any d > 0.
The conclusion follows since HF (in(L1) Nin(Ly),d) =0 ford <1+ k — 1.

Proposition 2.9.3. In the polynomial ring R = k[x,y, z], with respect to the standard lexicographic order

T >y > z, the initial ideal of Ly is

k k—1 k—i 2i—1 2k—1
K1:<$7.’II Zy o, X ak s, R >7

and that of Ly is

b 1-1 -1, 2i—1 2[—1
K2*<y7y 2y, T z y TR >

Proof. These are the special cases of the following Lemma The ideal L; is just the case where

p=q=1+2k, r =204 2k and the ideal Ly is the case where p =1 + 2k, ¢ = 3l and r = 2] + 2k. O]

Notice that each of L1 and Lo is an ideal in two variables and there is no loss in considering ideals in two

variables with general exponents. Therefore, in the polynomial ring S = k[s, t], we consider the ideal

J=(s" (s +1)T) : 1",

where p, ¢, are positive integers. To avoid considering degenerate cases where the ideal (sP,t", (s + t)?) is
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generated by two polynomials, we assume that

p+q—r>2
p+r—q>2
q+r—p>2

Lemma 2.9.4. Given p,q,r positive integers satisfying the above conditions, set

ptq—r
2

ptqg-—r

a=| 5

Lo=1 I

With respect to the lexicographic order s >t in S = kl[s, t], the initial ideal of

J={(s",(s+t)?) : "

is given by

H(a, b) _ <sa, safltbfaJrl, 81172tl7fa+37 . ’safitb7a+2ifl’ . 7ta+b71>.

Proof. The main idea of the proof is to construct polynomials in J with the leading terms given in the lemma
and then show they generate a monomial ideal with the same Hilbert function as J. Since J is minimally
generated at degrees a and b, we assume the polynomials in J have degree at least a.

Suppose P € J;, where d > a, then there are homogeneous polynomials f and @ such that

Pt" = f(s+ 1)+ Qs?,

where

degf=d+r—q,deg@Q =d+1r —p.

Suppose
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Then

fls+ 1)

Z a;,js't! Z (i) s

i+j=d+r—q m+n=q

2 (e

i+j=d+r—q m+n=q

) t( 3 @))

utv=d+r m4i=u

Since

f(s+t)T=Pth —QsP € (sP,t"),

the last expression is