THE GREATEST LOWER BOUND FOR THE VARIANCE OF UNBIASED ESTIMATES

Report R-90

April, 1957

Contract DA-36-039-SC-56695
D/A Sub-Task 3-99-06-111
THE GREATEST LOWER BOUND FOR THE VARIANCE OF UNBIASED ESTIMATES

Report R-90
April, 1957

Prepared by
Peter Swerling

CONTROL SYSTEMS LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
Contract DA-36-039-SC-56695
D/A Sub-Task 3-99-06-111

"The research reported in this document was made possible by support extended to the University of Illinois, Control Systems Laboratory, jointly by the Department of the Army (Signal Corps and Ordnance Corps), Department of the Navy (Office of Naval Research), and the Department of the Air Force (Office of Scientific Research, Air Research and Development Command), under Signal Corps Contract DA-36-039-SC-56695, D/A Sub-Task 3-99-06-111."

Numbered pages: 29
I. Introduction

Consider a family of probability density functions \( \{p(V, \alpha)\} \), where \( V \) is a point of \( E_n \) (Euclidean n-space) and \( \alpha \) belongs to some real interval \( A \). A classical result in the theory of parameter estimation is that the quantity

\[
D^2_\star(\alpha_o) = \left[ \int \left\{ \left[ \frac{\partial \log p(V, \alpha)}{\partial \alpha} \right]_{\alpha=\alpha_o} \right\}^2 p(V, \alpha_o) \, dV \right]^{-1}
\]

is a lower bound for the quantity

\[
\int \left[ F(V) - \alpha_o \right]^2 p(V, \alpha_o) \, dV
\]

for all "regular" estimates \( F(V) \) satisfying

\[
\int F(V) \, p(V, \alpha) \, dV = \alpha \quad \text{for all } \alpha \in A.
\]

That is, \( D^2_\star(\alpha_o) \) is a lower bound for the variance of regular unbiased estimates of \( \alpha \), when the true parameter value is \( \alpha_o \). A regular unbiased estimate whose variance equals \( D^2_\star(\alpha_o) \) for all \( \alpha_o \) is called efficient. \( D^2_\star(\alpha_o) \) is not in general, however, the greatest lower bound for (2) subject to the constraint (3).

Let us call an estimate \( F(V) \) satisfying (3), which attains for all \( \alpha_o \) the greatest lower bound of (2), a uniformly minimum variance unbiased estimate. Kendall\(^{(1)}\) states that in the regular estimation case a necessary and sufficient condition for the existence of a uniformly minimum variance unbiased estimate is

\[
\frac{\partial \log p(V, \alpha)}{\partial \alpha} = \frac{R(V) - \alpha}{\lambda(\alpha)} , \quad \text{all } \alpha \in A
\]
This is not correct—the condition is sufficient but not necessary, as is well known. Moreover, it might be possible for an estimate satisfying (3) to minimize (2) for one particular value of \( \alpha_o \) but not for others. Kiefer\(^4\), Barankin\(^5\), and others have given stronger lower bounds than (1)—and in fact, Barankin\(^5\) derived under certain conditions the greatest lower bound.

In the following, we develop a method for calculating the greatest lower bound of (2) for the class of all estimates satisfying (3)—i.e. with no regularity restrictions on the type of estimate considered. This method is actually an elaboration of Barankin's work, but with some of the restrictions removed. Also it provides in some cases a more explicit method of calculation than is given in Ref. 4 or Ref. 5. The method is applied to several examples, among which are: estimation of the standard deviation of a normal population with known mean and with unknown mean; estimation of the range of a rectangular distribution of known mean; and estimation of the mean of a Rayleigh distribution. (The results for these particular examples can be derived by other methods involving the properties of sufficient statistics, but the present method is applicable even in cases where sufficient statistics do not exist.)

II. A Method for Evaluating the Greatest Lower Bound

We suppose given a family \( \{dP(V, \alpha)\} \) of probability measures over \( E_n \) (Euclidean n-space), where \( V = (v_1, \ldots, v_n) \in E_n \) and \( \alpha \) is
in some real interval A. It will be assumed that the measurable sets in
E_n are the same for all \( \alpha \in A \). By "function of V" we shall henceforth
mean a function measurable on the sample space \( E_n \) for all \( dP(\alpha) \).

By an "unbiased estimate of \( \alpha \)," we mean any function \( F(V) \)
satisfying

\[
\int F(V) \, dP(\alpha) = \alpha, \quad \text{all } \alpha \in A.
\]

(Integrals with respect to V always are taken over \( E_n \).)

For each \( \alpha_0 \in A \) and function \( F(V) \), consider

\[
\int \left[ F(V) - \alpha_0 \right]^2 \, dP(\alpha_0)
\]

We shall assume henceforth that at least one function of V satisfying

(5) identically for \( \alpha \in A \) exists for which (6) is finite.

We define

\[
D_m^2 (\alpha_0) = \text{greatest lower bound of (6)}
\]

for all \( F \) satisfying (5).

Now, for any given \( \alpha_0 \), consider the set \( C(\alpha_0) \) of functions of
V consisting of all functions satisfying (5) identically for \( \alpha \in A \) and
having finite second moment with respect to \( dP(V, \alpha_0) \), and the limits in
the mean of such functions with respect to \( dP(V, \alpha_0) \).

The set \( C(\alpha_0) \) is clearly closed relative to convergence in mean
with respect to \( dP(V, \alpha_0) \); also it is clearly a convex set. Thus, there
exists a unique (with probability one) function, which we shall denote by

\( F_m(V, \alpha_0) \), which minimizes (6) for all functions in \( C(\alpha_0) \). Clearly
\[ \int F_m(V, \alpha_0) \, dP(V, \alpha_0) = \alpha_0 \]  

(8)  

\[ D_m^2(\alpha_0) = \int \left[ F_m(V, \alpha_0) - \alpha_0 \right]^2 \, dP(V, \alpha_0) \]  

(9)  

If \( F_m(V, \alpha_0) \) satisfies

(10)  

\[ \int F_m(V, \alpha_0) \, dP(V, \alpha) = \alpha \quad \text{all } \alpha \in \mathcal{A} \]  

then \( F_m(V, \alpha_0) \) is the unbiased estimate of \( \alpha \) having minimum variance when the true parameter value is \( \alpha_0 \). Otherwise, there exists no unbiased estimate of \( \alpha \) having minimum variance when the true value is \( \alpha_0 \).

For our purposes, the most important property of \( F_m(V, \alpha_0) \) is the following: consider functions \( f(\alpha) \) defined over \( \mathcal{A} \) of the form

(11)  

\[ f(\alpha) = \int H(V) \, dP(V, \alpha) \quad \text{all } \alpha \in \mathcal{A} \]  

where \( H(V) \) has finite second moment with respect to \( dP(V, \alpha_0) \); i.e. where

(12)  

\[ \int H^2(V) \, dP(V, \alpha_0) < \infty \]  

Theorem 1: Let \( f(\alpha) \) be of the form (11); then

(13)  

\[ \int F_m(V, \alpha_0) \, H(V) \, dP(V, \alpha_0) \]  

is a constant for all \( H \) satisfying (12) and satisfying (11) for the given \( f(\alpha) \).

Proof: Let \( H_1(V) \) and \( H_2(V) \) both satisfy (11) and (12).

Then

\[ F^*(V) = F_m(V, \alpha_0) + \epsilon \left[ H_1(V) - H_2(V) \right], \epsilon \text{ real, is an element of } \mathcal{C} \]  

Now consider
\[
D(\epsilon) = \int \left[ \frac{F^*(v) - \alpha_0}{\alpha} \right]^2 dP(v,\alpha_0). \quad \text{If}
\]
\[
\int \frac{F_m(v,\alpha_0)}{H_1(v) - H_2(v)} \frac{dp(v,\alpha_0)}{\epsilon_0} \neq 0, \quad \text{then} \quad \frac{dp}{dp}\bigg|_{\epsilon=0} \neq 0.
\]
This contradicts the definition of \( F_m(v,\alpha_0) \).

We shall use Theorem 1 to define a linear functional \( \Lambda^{(\alpha_0)} \) on the set of functions \( f \) of form (11), as follows: if \( f \) is of form (11),

\[
(14) \quad \Lambda^{(\alpha_0)} \left[ f \right] = \int H(v) \left[ F_m(v,\alpha_0) - \alpha \right] dP(v,\alpha_0)
\]
where \( H(v) \) is any function of \( v \) satisfying both (11) and (12). By Theorem 1, this defines \( \Lambda^{(\alpha_0)} \left[ f \right] \) uniquely (no matter which \( H \) satisfying (11) and (12) is used in (14)).

Denote by \( \phi_0 \) the function whose values on \( A \) are \( \phi_0(\alpha) = 1 \); and denote by \( \phi_1 \) the function whose values on \( A \) are \( \phi_1(\alpha) = \alpha \). It is clear from the definition of \( \Lambda^{(\alpha_0)} \) and from the properties of \( F_m(v,\alpha_0) \) that

\[
(15) \quad \Lambda^{(\alpha_0)} \left[ \phi_0 \right] = 0
\]
\[
(16) \quad \Lambda^{(\alpha_0)} \left[ \phi_1 \right] = D_m^2(\alpha_0)
\]
Thus, evaluation of \( D_m^2(\alpha_0) \) is equivalent to evaluation of \( \Lambda^{(\alpha_0)} \left[ \phi_1 \right] \). It is also clear that
We must next prove some continuity properties of $\Lambda^{(\alpha_0)}$.

Theorem 2: Suppose

$$f_i(\alpha) = \int H_i(V) \, dP(V,\alpha) \quad \text{all } \alpha \in A$$

$$i = 1, 2, \ldots$$

and suppose that for each $i$ (including $\infty$) $H_i(V)$ can be selected among all functions of $V$ satisfying (18) for the given $i$ in such a way that $H_i$ approaches $H_\infty$ in mean with respect to $dP(V,\alpha_0)$.

Then

$$\Lambda^{(\alpha_0)} \left[ f_\infty \right] = \lim_{i \to \infty} \Lambda^{(\alpha_0)} \left[ f_i \right]$$

Proof:

$$\Lambda^{(\alpha_0)} \left[ f_\infty \right] = \Lambda^{(\alpha_0)} \left[ f_i \right]$$

$$= \int \left[ F_m(V,\alpha_0) - \alpha_0 \right] \left[ H_\infty(V) - H_i(V) \right] \, dP(V,\alpha_0)$$

and the conclusion follows immediately.

Theorem 3: Suppose

$$f_i(\alpha) = \int H_i(V) \, dP(V,\alpha) \quad \text{all } \alpha \in A$$

$$i = 1, 2, \ldots$$

and suppose that for each $i$, $H_i$ can be selected among all functions satisfying (20) for the given $i$ in such a way that the sequence $\left\{ H_i \right\}$
converges in mean to the same function \( H_\infty(V) \) with respect to \( dP(V,\alpha) \) for all \( \alpha \in A \).

Then

\[
\lim_{i \to \infty} f_i(\alpha) = \int H_\infty(V) \, dP(V,\alpha) = f_\infty(\alpha) \quad \text{all } \alpha \in A
\]

(the last equality is a definition); and

\[
\Lambda(\alpha) \left[ f_\infty \right] = \lim_{i \to \infty} \Lambda(\alpha) \left[ f_i \right]
\]

Proof: (21) is obvious from the hypothesis of Theorem 3 and (22) follows from Theorem 2.

Theorem 4: Let \( u \) be in some finite real interval \( U \) and let

\[
f(\alpha, u) = \int H(V, u) \, dP(V,\alpha) \quad \text{all } \alpha \in A \quad \forall u \in U
\]

where, for each \( u \), \( H(V, u) \) has finite second moment with respect to \( dP(V,\alpha) \) for all \( \alpha \in A \). Also suppose that \( \lambda(u) \) is a function defined on \( U \) such that \( \lambda(u) H(V, u) \) and \( \lambda(u) f(\alpha, u) \) are integrable with respect to \( u \) for each \( V \in E_n \), \( \alpha \in A \). Define

\[
H^*(V) = \int \lambda(u) H(V, u) \, du
\]

\[
f^*(\alpha) = \int \lambda(u) f(\alpha, u) \, du
\]

Also suppose that \( \lambda(u) H(V, u) \) is continuous in the mean over \( U \) with respect to \( dP(V,\alpha_0) \), and is measurable over the product space \( E_n \times U \) for each \( \alpha \in A \). Then
\[(26) \quad f^*(\alpha) = \int H^*(V) \, dP(V, \alpha), \quad \text{all } \alpha \in A\]

and

\[(27) \quad \Lambda^{(\alpha_0)}\left[ f^* \right] = \int \lambda(u) \Lambda^{(\alpha_0)}\left[ f(\cdot, u) \right] \, du \]

**Proof:** (26) follows from integrating both sides of (23) after multiplying by \(\lambda(u)\), and exchanging the order of integration.

To prove (27), consider the Riemann sums

\[\sum f(\alpha, \xi_i) \lambda(\xi_i) (u_i - u_{i-1}) \quad \text{where } u_{i-1} \leq \xi_i < u_i.\]

Now,

\[\sum f(\alpha, \xi_i) \lambda(\xi_i) (u_i - u_{i-1}) = \sum \lambda(\xi_i) H(V, \xi_i) (u_i - u_{i-1}) \, dP(V, \alpha)\]

Also, by the continuity in the mean hypothesis, the Riemann sums

\[\sum \lambda(\xi_i) H(V, \xi_i) (u_i - u_{i-1}) \text{ converge in mean with respect to } dP(V, \alpha_0) \text{ to } H^*(V).\]

Thus, (27) follows from Theorem 2.

Theorems 2, 3, and 4 are admittedly tailored to the examples of the next section. Many other similar theorems can be stated— for example, giving sufficient conditions for \(\Lambda^{(\alpha)}\) to commute with differential operators; or perhaps weakening the conditions, or giving slightly different conditions, for the above theorems.

From this point on we assume that the probability measures \(dP(V, \alpha)\) have density functions \(p(V, \alpha)\). We turn our attention to the following function, defined for every fixed \(\alpha_0 \in A\):
The notation $\gamma \in A$, $\beta \in B_0^{(\alpha)}$ means that for the given $\alpha$, $G(\alpha, \beta, \gamma)$ is assumed to exist for all $\gamma \in A$, provided $\beta$ is in some set $B_0 \subseteq A$. (Examples are given in the next section.) It is clear that $p(V, \alpha^0) = 0$ for some $V$ must imply that $p(V, \beta) = 0$ for all $\beta \in B_0^{(\alpha)}$. If both numerator and denominator of the integrand in (28) are zero for some $V$, the integrand is understood to be zero.

We also assume that

$$
(29) \quad \int \left( \frac{p(V, \beta)}{p(V, \alpha^0)} \right)^2 p(V, \alpha^0) \, dV < \infty \quad \text{for } \beta \in B_1^{(\alpha)} \subseteq B_0^{(\alpha)}
$$

We may thus for each $\beta \in B_1^{(\alpha)}$ consider $\Lambda^{(\alpha)}(\alpha)$ acting on $G(\alpha, \beta, \gamma)$, considered as a function of $\gamma$. From the definition (14) of $\Lambda^{(\alpha)}(\alpha)$, it is clear that

$$
(30) \quad \Lambda^{(\alpha)}(\alpha) \left[ G(\alpha, \beta, \cdot) \right] = \beta - \alpha
$$

for all $\beta \in B_1^{(\alpha)}$ for which

$$
(31) \quad \int F_m(V, \alpha^0) \, p(V, \beta) \, dV = \beta
$$

We denote the subset of $B_1^{(\alpha)}$ for which (31) is satisfied by $B_2^{(\alpha)}$.

**Theorem 5:** A sufficient condition that a particular $\beta$...
belonging to $B_1$ be in $B_2$ is that any sequence of functions of $V$ which converges in mean to a function $H_\infty(V)$ with respect to $p(V,\alpha_0)$ also converges in mean to the same function $H_\infty(V)$ with respect to $p(V,\beta)$.

**Proof:** $F_m(V,\alpha_0)$ is defined to be the limit in the mean with respect to $p(V,\alpha_0)$ of functions satisfying (5) identically in $\alpha$. Then $F_m(V,\alpha_0)$ is also the limit in the mean with respect to $p(V,\beta)$ of functions satisfying (5), for any $\beta$ for which the stated condition of Theorem 5 holds. Thus, (31) holds for any such $\beta$.

We now have at our disposal the machinery to compute $D_m^2(\alpha_0) = A(\alpha_0) \left[ \phi_1 \right]$ in many cases. Eq. (30) gives the values of $A(\alpha_0)$ on a certain family of functions of $\gamma$, each member of the family corresponding to some $\beta \in B_2$. If $B_2$ gives a sufficiently large family of functions of $\gamma$, we may be able to express $\phi_1(\gamma) = \gamma$ as a linear combination of functions $G(\alpha_0,\beta,\gamma)$ for $\beta \in B_2$, or as a limit of such linear combinations. If this can be done in such a way as to satisfy the conditions of Theorems 2, 3, 4, or the like, $A(\alpha_0) \left[ \phi_1 \right]$ can be calculated.

Since $G(\alpha_0,\beta,\gamma)$ is fundamental to this process, it is useful to state one more fact concerning it:

**Theorem 6:** If $p(V,\alpha) = \prod_{i=1}^{n} h_i(v_i,\alpha)$, all $\alpha \in A$

(where $h_i$ are density functions)
define

\begin{equation}
G_i^{(1)}(\alpha, \beta, \gamma) = \int \frac{h_i(v_i, \beta) h_i(v_i, \gamma)}{h_i(v_i, \alpha)} \, dv_i
\end{equation}

and assume that for all \( \gamma \in A \), \( G_i^{(1)}(\alpha, \beta, \gamma) \) exists for the same values of \( \beta \) for each \( i \). Then

\begin{equation}
G(\alpha, \beta, \gamma) = \prod_{i=1}^{n} G_i^{(1)}(\alpha, \beta, \gamma)
\end{equation}

In particular, if \( h_i(V, \alpha) = h(V, \alpha) \), all \( i \); hence, if \( G_i^{(1)}(\alpha, \beta, \gamma) = G^{(1)}(\alpha, \beta, \gamma) \) for all \( i \), then

\begin{equation}
G(\alpha, \beta, \gamma) = \left\{ G^{(1)}(\alpha, \beta, \gamma) \right\}^n
\end{equation}

Proof: Let \( E_{\gamma} \left\{ \right\} \) be the expected value of the quantity in braces with respect to \( p(V, \gamma) \). Then,

\begin{equation}
G(\alpha, \beta, \gamma) = E_{\gamma} \left\{ \prod_{i=1}^{n} \frac{h_i(v_i, \beta)}{h_i(v_i, \alpha)} \right\} = \prod_{i=1}^{n} E_{\gamma} \left\{ \frac{h_i(v_i, \beta)}{h_i(v_i, \alpha)} \right\}
\end{equation}

\begin{equation}
= \prod_{i=1}^{n} G_i^{(1)}(\alpha, \beta, \gamma)
\end{equation}

III. Examples

Suppose

\begin{equation}
p(V, \alpha) = \left[ c(k) \right]^n \frac{1}{\alpha^n} \exp \left[ -\frac{1}{2\alpha^k} \sum_{i=1}^{n} v_i^k \right]
\end{equation}

\( k \) a positive even integer

\( \alpha > 0 \).

Here \( c(k) \) is an appropriate normalizing constant. This corresponds
to estimation of $\alpha$, using a sample of $n$ from the population

(36) \[ h(v,\alpha) = c(k) \frac{1}{\alpha} \exp \left[ -\frac{1}{2} \left( \frac{v}{\alpha} \right)^2 \right] \]

From Theorem 6, it is readily determined that

(37) \[ G(\alpha_0, \beta, \gamma) = \sum_{k=0}^{\gamma} \left( \frac{\alpha_0^2}{(\alpha_0^k - \beta^k)^{1/k}} \cdot \frac{1}{(\gamma^k + \frac{\alpha_0^k \beta^k}{\alpha_0^k - \beta^k})^{1/k}} \right)^n \]

for $\gamma > 0$, $\beta \leq \alpha_0$.

It is easily verified (applying Theorem 5) that $B_2(\alpha_0)$ is the set $\beta \leq \alpha_0$.

Now let

(38) \[ u = \frac{\alpha_0 \beta}{(\alpha_0^k - \beta^k)^{1/k}} \]

and

(39) \[ G(\alpha_0, \beta, \gamma) = \left( \frac{\alpha_0^k + u^k}{\gamma^k + u^k} \right)^n \]

and (30) implies that

(40) \[ \Lambda(\alpha_0) \left[ \frac{1}{(\gamma^k + u^k)^{n/k}} \right] = \frac{-\alpha_0}{(\alpha_0^k + u^k)^{n/k}} \left[ 1 - \frac{u}{(\alpha_0^k + u^k)^{1/k}} \right] \]

for $0 \leq u < \infty$.
This defines $A^{(\alpha_0)}$ on the family of functions $\{(\gamma^k + u^k)^{-\frac{n}{k}}\}$, $0 \leq u < \infty$. Now, it can be shown that for $\gamma > 0$,

$$
\gamma = \frac{k}{n} \frac{\Gamma\left(\frac{n+k}{k}\right)}{\Gamma\left(\frac{n+1}{k}\right) \Gamma\left(\frac{k-1}{k}\right)} \lim_{T \to \infty} \left\{ T - \int_0^T \frac{u^n \, du}{(\gamma^k + u^k)^{n/k}} \right\}
$$

This can be derived as follows: let us find $\lambda(u)$ such that

$$
\int_0^\infty \lambda(u) (\gamma^k + u^k)^{-\frac{n+k}{k}} = -\frac{1}{n\gamma^{k-1}}
$$

The expression on the left side of (42) can be transformed by suitable change of variable to a generalized Stieltjes transform. It turns out that

$$
\lambda(u) = -\frac{k}{n} \frac{\Gamma\left(\frac{n+k}{k}\right)}{\Gamma\left(\frac{n+1}{k}\right) \Gamma\left(\frac{k-1}{k}\right)} u^n
$$

Now, Eq. (42) cannot be multiplied by $\gamma^{k-1}$ and then integrated with respect to $\gamma$ under the integral, since the result would diverge. However, for $0 < T < \infty$, let

$$
-n \int_0^T \gamma^{k-1} \lambda(u) (\gamma^k + u^k)^{-\frac{n+k}{k}} \, du = f_T(\gamma)
$$

where $f_T(\gamma) \to 1$ as $T \to \infty$ for each $\gamma > 0$. Eq. (44) may be integrated between zero and $\gamma$ under the integral sign, giving

$$
\frac{k}{n} \frac{\Gamma\left(\frac{n+k}{k}\right)}{\Gamma\left(\frac{n+1}{k}\right) \Gamma\left(\frac{k-1}{k}\right)} \left[ \int_0^T \left\{ 1 - \frac{u^n}{(\gamma^k + u^k)^{n/k}} \right\} \, du \right] = \int_0^{\gamma} f_T(\xi) \, d\xi
$$
Letting \( T \to \infty \), we obtain (4.1). Therefore assuming for the moment the applicability of our method, and recalling that 
\[
(\alpha_o) \lambda_{(o)} [T] = 0, \text{ all } T, \text{ we get}
\]

\[
(4.6) \quad \lambda_{(o)} [\phi_1] = \frac{k\alpha_o^2}{n} \int_{0}^{\infty} u^n \left[ 1 - \frac{u}{(\alpha_o^k + u)^{l/k}} \right] \frac{u^{n/k}}{(\alpha_o^k + u)^{n/k}} \, du
\]

which, after another transformation of variable, gives

\[
(4.7) \quad \lambda_{m}^2(\alpha_o) = \lambda_{(o)} [\phi_1] = \frac{k\alpha_o^2}{n} \int_{0}^{\infty} \frac{1}{v} \left( \frac{1 + v^k}{v^2(1 + v^k)} \right) ^{1/k} \, dv
\]

Two special cases of interest are:

a) \( k=2 \) (estimation of the standard deviation of a normal population)

In this case, 
\[
\int_{0}^{\infty} \frac{(1 + v^2)^{1/2}}{v^{2(1 + v^2)^2}} \, dv
\]

can be evaluated in closed form (as \( \lim_{t \to 0} \int_{t}^{\infty} \{ \} \, dv \)), and the result is:
(48) \[ D_m^2(\alpha_0) = \frac{\alpha_0^2}{2n} \left\{ \frac{n^2}{12(n-1)} - 2n \right\} \] (for k=2)

Now, it so happens that the estimate

(49) \[ \hat{\alpha} = \sqrt{\frac{2}{n}} \left\{ \frac{\sum_{i=1}^{n} v_i^2}{n(n+1)} \right\}^{1/2} \]

is unbiased and has variance equal to \( D_m^2(\alpha_0) \) as given by (48) for all \( \alpha_0 > 0 \). Thus, \( \hat{\alpha} \) given by (49) is the uniformly minimum-variance unbiased estimate of the standard deviation of a normal population.

b) \( k \to \infty \)

As \( k \to \infty \), one can evaluate \( \lim_{k \to \infty} D_m^2(\alpha_0) \) with the aid of the formulas

(50) \[ \lim_{k \to \infty} (1 + v^{1/k}) = \max (1, v) \]

(51) \[ \lim_{k \to \infty} \frac{k}{\sqrt{(n+1)/k}} = n + 1 \]

One obtains

(52) \[ \lim_{k \to \infty} D_m^2(\alpha_0) = \frac{\alpha_0^2}{n(n+2)} \]

As \( k \to \infty \), the probability density function \( h(v, \alpha) \) in (36) approaches

(53) \[ h(v, \alpha) = \frac{1}{2\alpha}, \quad |v| \leq \alpha \]

\[ = 0, \quad |v| > \alpha \]
Therefore, it is reasonable to suppose that (52) gives $D_m^2(\alpha_0)$ for the estimation of $\alpha$ in a population with density function given by (53), for a sample of $n$. That this is in fact the case can be checked by applying the above methods directly to a population with density function given by (53). This is left as an exercise for the reader. (Here one may use the additional fact that in this case $A_{0}^{(0)} - f(j) = 0$ for any $f(\alpha)$ which is constant for $0 < \alpha \leq \alpha_0$.) For estimation of $\alpha$ in (53), $D_m^2(\alpha_0)$ is attained for all $\alpha_0$ by the unbiased estimate

$$\hat{\alpha} = \frac{n+1}{n} \max_i |v_i|$$

To show that the conditions for applying this method of evaluation are satisfied (in the general case given by (35)), we will first point out that, from the definition of $G(\alpha, \beta, \gamma)$ and from the expression (35) for $p(V, \alpha)$, it is readily determined that

$$\frac{1}{(\gamma^k + u^k)^{n/k}} = \int H(V,u) \cdot p(V,\gamma) \, dV$$

where

$$H(V,u) = \frac{1}{(\alpha_0^k + u^k)^{n/k}} \frac{p(V,\beta)}{p(V,\alpha_0)}$$

$$= \frac{1}{u^n} \exp \left[ - \frac{1}{2u^k} \sum_{i=1}^{n} v_i^k \right]$$

It is readily verified that the conditions of Theorem 4 (with $\lambda(u)$ given by (43), and $U = [0,T]$) and of Theorem 3 are satisfied.
Still another example is

\[ p(v, \alpha) = \prod_{i=1}^{n} \left( \frac{2v_i}{\alpha^2} \right)^{2v_i} \exp \left( -\frac{v_i^2}{\alpha^2} \right) \]

corresponding to a sample of \( n \) from a population with density function

\[ h(v, \alpha) = \frac{2v}{\alpha^2} \exp \left( -\frac{v^2}{\alpha^2} \right) \]

It turns out that

\[ G(\alpha_0, \beta, \gamma) = \left( \frac{\alpha_0^2 + u^2}{\gamma^2 + u^2} \right)^n, \quad 0 \leq u < \infty \]

where

\[ u = \frac{\alpha_0 \beta}{(\alpha_0^2 - \beta^2)^{1/2}}, \quad \beta \leq \alpha_0 \]

and

\[ \Lambda^{(\alpha_0)} \left( \frac{1}{\gamma^2 + u^2} \right)^n \left( \frac{-\alpha_0}{\alpha_0^2 + u^2} \right)^n \left[ 1 - \frac{u}{\sqrt{\alpha_0^2 + u^2}} \right] \]

This is exactly the same as (40) for \( k = 2 \), with \( n \) in place of \( \frac{n}{2} \). Thus,

\[ D_m^2(\alpha_0) = \frac{\alpha_0^2}{n} \left[ \frac{n^2(n+1)}{n^2(n+1/2)} - n \right] \]

Since the mean \( \bar{v} \) in (58) is given by
the minimum variance of unbiased estimates of the mean is just \( \frac{1}{n} \) times \( D_m^2(\alpha_0) \).

There are some cases in which \( \phi_1(\gamma) = \gamma \) must be expressed in terms of a differential operator acting on \( G(\alpha_0, \beta, \gamma) \), e.g.

\[
\gamma = \left\{ \frac{\partial G}{\partial \beta} \right|_{\beta = \alpha_0} \right\} \times \text{constant}_1 + \text{constant}_2
\]

As an example, the reader might try applying the above methods to the case of estimation of the mean of a normal population with known variance. (The classical results are readily obtained.)

IV. More than One Unknown Parameter

The present section will extend the above results to cases where there is more than one unknown parameter. Since the development parallels that of the above sections closely, and the theorems are proved in the same way, we will not give detailed proofs of the various steps in the argument.

Consider a family \( \{dP(V, \alpha)\} \) of probability measures over Euclidean n-space \( E_n \), where \( V = (v_1, \ldots, v_n) \in E_n \) and \( \alpha = (\alpha_1, \ldots, \alpha_K) \) belongs to some parallelopiped \( A \) in \( E_K \). It is assumed that the measurable sets are the same for all \( \alpha \) in \( A \). By "function of \( V \)" we mean a function measurable on the sample space \( E_n \) for all \( dP(V, \alpha) \).

By "unbiased estimate of \( \alpha_1 \)" we mean any function \( F(V) \) satisfying

\[
\int F(V) \, dP(V, \alpha) = \alpha_1 , \quad \text{all } \alpha \in A
\]
(Integrals with respect to $V$ always are taken over $E_n$.)

Let $\alpha_0 = (\alpha_{01}, \ldots, \alpha_{0K})$ denote a particular point of $A$. For any given $F$ and $\alpha_0$, consider

$$I_F(v) = \alpha_0 \, dP(V, \alpha_0)$$

We assume henceforth that at least one function $F(V)$ exists satisfying (64) for all $\omega \in A$ and for which (65) is finite.

Define

$$D_m^2(\alpha_0) = \text{greatest lower bound of } (65)$$

for all $F$ satisfying (64).

For any given $\alpha_0$, consider the set $C_{(\alpha_0)}$ of functions of $V$ consisting of all functions satisfying (64) for all $\omega \in A$ and having finite second moment with respect to $dP(V, \alpha_0)$, and the limits in the mean of such functions with respect to $dP(V, \alpha_0)$. There is a unique (with probability one) function, denoted by $F_m(V, \alpha_0)$, which minimizes (65) for all functions in $C_{(\alpha_0)}$. Clearly

$$\int F_m(V, \alpha_0) \, dP(V, \alpha_0) = \alpha_{01}$$

$$D_m^2(\alpha_0) = \int \left[ F_m(V, \alpha_0) - \alpha_{01} \right]^2 dP(V, \alpha_0)$$

Now consider functions $f(\alpha)$ defined over $A$ of the form

$$f(\alpha) = \int H(V) \, dP(V, \alpha) \, , \quad \text{all } \omega \in A$$

where
We define a linear functional $\Lambda_{\alpha_o}$ on the set of functions $f$ of form (69) by

$$
\Lambda_{\alpha_o}[f] = \int \left[ F_m(V, \alpha_o) - \alpha_{01} \right] H(V) \, dP(V, \alpha_o)
$$

where $H(V)$ is any function of $V$ satisfying (70) and satisfying (69) for the given $f$. This can be shown to define $\Lambda_{\alpha_o}[f]$ uniquely (regardless of which particular $H$ satisfying (69) is used) by the same reasoning as employed in Section II.

Denote by $\phi_0$ the function of $\alpha$ whose values on $A$ are $\phi_0(\alpha) = 1$; and denote by $\phi_1$ the function of $\alpha$ whose values on $A$ are $\phi_1(\alpha) = \alpha_1$. Then

$$
\Lambda_{\alpha_o} [\phi_0] = 0
$$

$$
\Lambda_{\alpha_o} [\phi_1] = D_m^2(\alpha_o)
$$

Linearity and continuity properties can be shown for $\Lambda_{\alpha_o}$ similar to those proved in Section II.

Also, as in Section II, we now suppose that the probability measures $dP(V, \alpha)$ have density functions $p(V, \alpha)$ and we consider the function

$$
G(\alpha_o, \beta, \gamma) = \int \frac{P(V, \beta) \, P(V, \gamma)}{P(V, \alpha_o)} \, dV , \quad \gamma \in A
$$

$$
\beta \in B
$$
Also assume that for $\beta \in B_1 \subset B$, 

\begin{equation}
\int \left[ \frac{p(V, \beta)}{p(V, \alpha_0)} \right]^2 p(V, \alpha_0) \, dV < \infty
\end{equation}

Thus, we may consider $A(\alpha_0)$ acting on $G(\alpha_0, \beta, \gamma)$ considered as a function of $\gamma$ for each $\beta \in B_1$. From (71)

\begin{equation}
A(\alpha_0) \left[ G(\alpha_0, \beta, \gamma) \right] = \beta_1 - \alpha_{o1}
\end{equation}

for all $\beta \in B_1$ for which

\begin{equation}
\int F_m (V, \alpha_0) \, p(V, \beta) \, dV = \beta_1.
\end{equation}

We denote by $B_2$ the subset of $B_1$ for which (77) is satisfied.

Also, we may state that if

\begin{equation}
p(V, \alpha) = \prod_{i=1}^{n} h(v_i, \alpha), \quad \text{all } \alpha \in A
\end{equation}

(where $h(v_i, \alpha)$ is a density function), then

\begin{equation}
G(\alpha_0, \beta, \gamma) = \left[ g^{(1)}(\alpha_0, \beta, \gamma) \right]^n
\end{equation}

where

\begin{equation}
g^{(1)}(\alpha_0, \beta, \gamma) = \int \frac{h(v, \beta)}{h(v, \alpha_0)} \, h(v, \gamma) \, dV
\end{equation}

We will apply this to the case of estimation of the standard deviation of a normal population with unknown mean. In this case, let
\[ h(v, \alpha) = \frac{1}{\alpha_1 \sqrt{2\pi}} \exp \left[ -\frac{1}{2} \left( \frac{v - \alpha_2}{\alpha_1} \right)^2 \right] \]

where \(-\infty < \alpha_2 < \infty; \quad \alpha_1 > 0.\)

Also, for \(n \geq 2,\) let

\[ p(v, \alpha) = \prod_{i=1}^{n} h(v_i, \alpha) \]

It is readily determined that, for \(\beta \) such that \(\beta_1 \leq \alpha_{o1},\)

\[ G(\alpha_0, \beta, \gamma) = \frac{\alpha_{o1}^{2n}}{\left(\alpha_{o1}^2 \gamma_1^2 + \alpha_{o1}^2 \beta_1^2 - \beta_1^2 \gamma_1^2\right)^{n/2}} \left\{ \begin{split} & \exp \left\{ -n \left[ \frac{\alpha_{o1}^2 \gamma_1^2 \beta_2^2 + \alpha_{o1}^2 \beta_1^2 \gamma_2^2 - \beta_1^2 \gamma_1^2 \alpha_{o2}^2}{\alpha_{o1}^2 \beta_1^2 \gamma_1^2} \right] \\
& + \frac{\left[ \alpha_{o1}^2 \gamma_1^2 \beta_2^2 + \alpha_{o1}^2 \beta_1^2 \gamma_2^2 - \beta_1^2 \gamma_1^2 \alpha_{o2}^2 \right]^2}{2\alpha_{o1}^2 \beta_1^2 \gamma_1^2 \left[ \alpha_{o1}^2 \gamma_1^2 + \alpha_{o1}^2 \beta_1^2 - \beta_1^2 \gamma_1^2 \right]} \end{split} \right. \]

It is clear that \(D_m^2(\alpha_0)\) is independent of the true value of the mean--i.e. of \(\alpha_{o2}--so no generality is lost by setting \(\alpha_{o2} = 0.\)

Then (83) simplifies to
(84) \[ G(\alpha_0, \beta, \gamma) = \frac{\alpha_{01}^{2n}}{(\alpha_{01}^2 \gamma_1^2 + \alpha_{01}^2 \beta_2^2 - \beta_1^2 \gamma_1^2)^{n/2}} \times \exp \left\{ -n \left[ \frac{\gamma_1^2 \beta_2^2 + \beta_1^2 \gamma_2^2}{2 \beta_1^2 \gamma_1^2} \right] \right. \]

\[ + n \frac{\alpha_{01}^2 \left[ \gamma_1^2 \beta_2^2 + \beta_1^2 \gamma_2^2 \right]^2}{2 \beta_1^2 \gamma_1^2 \left[ \alpha_{01}^2 \gamma_1^2 + \alpha_{01}^2 \beta_1^2 - \beta_1^2 \gamma_1^2 \right]} \]}

Now consider a function \( \lambda(\beta_2) \) defined by

(85) \[ \lambda(\beta_2) = \frac{1}{\sqrt{2\pi}} \left( \frac{n}{\alpha_{01}^2 - \beta_1^2} \right)^{1/2} \exp \left[ -\frac{n \beta_2^2}{2(\alpha_{01}^2 - \beta_1^2)} \right] \]

We have

(86) \[ \int_{-\infty}^{\infty} \lambda(\beta_2) \, G(\alpha_0, \beta, \gamma) \, d\beta_2 = \left[ \frac{\alpha_{01}^2}{\sqrt{\alpha_{01}^2 \gamma_1^2 + \alpha_{01}^2 \beta_2^2 - \beta_1^2 \gamma_1^2}} \right]^{n-1} \]

and

(87) \[ \int_{-\infty}^{\infty} \lambda(\beta_2) \, (\beta_1 - \alpha_{01}) \, d\beta_2 = \beta_1 - \alpha_{01} \]

Thus, integrating both sides of (76), (which holds for all \( \beta \) such that \( \beta_1 \leq \alpha_{01} \)), with respect to \( \lambda(\beta_2) \, d\beta_2 \), we obtain
But this is of precisely the same form as Eq. (40) of Section III (for \( k = 2 \)), with \( n - 1 \) in place of \( n \). Thus, we can now apply exactly the same methods as applied in Section III to obtain

\[
D_m^2(\alpha_0) = \frac{\alpha_{ol}^2}{2(n-1)} \left\{ \frac{(n-1)^2 \sum (n-1)}{2} - 2(n-1) \right\}
\]

Consider the unbiased estimate

\[
\hat{\alpha}_1 = \sqrt{\frac{n}{2}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (v_i - \bar{v})^2 \right\}^{1/2}
\]

where

\[
\bar{v} = \frac{1}{n} \sum_{i=1}^{n} v_i
\]

According to Cramer\(^{(3)}\), \( \hat{\alpha}_1 \) has variance equal to \( D_m^2(\alpha_0) \) as given by (89).

Using (89) and the results of Section III, we can compare the results for unbiased estimation of the standard deviation of a normal population a) with known mean, and b) with unknown mean. It
is seen that $D_m^2(\alpha_o)$ for case b), for a sample of $n$, is equal to $D_m^2(\alpha_o)$ for case a), for a sample of $n-1$.

We may apply the same methods to obtain $D_m^2(\alpha_o)$ for the unbiased estimation of the mean of a normal population of unknown variance. It is convenient to retain the notation of Eq's. (61), (83), and (84), and to substitute the subscript 2 for the subscript 1 in Eq's. (64)-(71), (76), and (77). Also, we may again without loss of generality set $\sigma_{o2} = 0$. It is then easy to verify that

\begin{equation}
\gamma_2 = \frac{\sigma_{o1}^2}{n} \left[ \frac{\partial}{\partial \beta_2} \ G(\alpha_o, \beta, \gamma) \right]_{\beta_2 = \alpha_{o2} = 0} = \sigma_{o1}^2
\end{equation}

Thus, (where now $\varphi_1(\alpha) = \alpha_2$ for $\alpha \in A$),

\begin{equation}
D_m^2(\alpha_o) = \Lambda(\alpha_o) \left[ \varphi_1 \right] = \frac{\sigma_{o1}^2}{n} \left[ \frac{\partial}{\partial \beta_2} (\beta_2 - \alpha_{o2}) \right]_{\beta_2 = 0} = \frac{\sigma_{o1}^2}{n}
\end{equation}

which is the classical result.
References

# AUTHORIZED DISTRIBUTION LIST

As of March 31, 1957

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Director of Research and Development</td>
</tr>
<tr>
<td></td>
<td>Headquarters United States Air Force</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Attn: AFIRD-AC/2</td>
</tr>
<tr>
<td>1</td>
<td>AFIRD-CC/2</td>
</tr>
<tr>
<td></td>
<td>Deputy Chief of Staff/Development</td>
</tr>
<tr>
<td></td>
<td>Headquarters United States Air Force</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Attn: AFDAP</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Headquarters, Air Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1395</td>
</tr>
<tr>
<td></td>
<td>Baltimore 3, Maryland</td>
</tr>
<tr>
<td></td>
<td>Attn: RDDR-5</td>
</tr>
<tr>
<td>1</td>
<td>Headquarters, Air Force Office of Scientific Research</td>
</tr>
<tr>
<td></td>
<td>Air Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>United States Air Force</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>Attn: SROP</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Air Force Cambridge Research Center</td>
</tr>
<tr>
<td></td>
<td>Laurence G. Hanscom Field</td>
</tr>
<tr>
<td></td>
<td>Bedford, Massachusetts</td>
</tr>
<tr>
<td></td>
<td>Attn: CRR</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Wright Air Development Center</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>2</td>
<td>Attn: WCOSI-3</td>
</tr>
<tr>
<td>1</td>
<td>WCLOW</td>
</tr>
<tr>
<td>1</td>
<td>WCRR</td>
</tr>
<tr>
<td>1</td>
<td>WCLR</td>
</tr>
<tr>
<td>1</td>
<td>WCLLOT-2 (Mr. Cooper)</td>
</tr>
<tr>
<td>1</td>
<td>WCLRW (Mr. Overholt)</td>
</tr>
<tr>
<td>1</td>
<td>WCLRW (Mr. Clute)</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USAF Security Service</td>
</tr>
<tr>
<td></td>
<td>San Antonio, Texas</td>
</tr>
<tr>
<td></td>
<td>Attn: OPR-2</td>
</tr>
<tr>
<td>Number of Copies</td>
<td>Agency</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 1                | Commanding Officer  
Rome Air Development Center  
Griffiss Air Force Base, New York |
| 1                | Director  
Air University Library  
Maxwell Air Force Base, Alabama  
Attn: CR-4803a |
| 1                | Commander  
Air Force Armament Center  
Eglin Air Force Base, Florida  
Attn: Deputy for Operations |
| 1                | Chief, Bureau of Ships  
Department of the Navy  
Washington 25, D.C.  
Attn: Code 810  
Code 825  
Code 812-E  
Code 565-C  
Code 850  
Code 280 |
| 1                | Chief, Bureau of Aeronautics  
Department of the Navy  
Washington 25, D.C.  
Attn: EL-402  
TD-4 |
| 1                | Department of the Navy  
Office of Naval Research  
Washington 25, D.C.  
Attn: Code 900  
Code 430  
Code 437 |
| 1                | Commanding Officer  
Office of Naval Research  
Chicago Branch  
John Crerar Library Building  
10th Floor, 86 E. Randolph Street  
Chicago 1, Illinois |
| 1                | Bureau of Ordnance  
Department of the Navy  
Washington 25, D.C.  
Attn: Re4C |
<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Agency</th>
</tr>
</thead>
</table>
| 1                | Director  
Office of Naval Research Branch Office  
1000 Geary Street  
San Francisco, California |
| 2                | U. S. Navy Inspector of Ordnance  
Applied Physics Laboratory  
The Johns Hopkins University  
8621 Georgia Avenue  
Silver Springs, Maryland |
| (Progress Reports only) | Commanding Officer and Director  
U. S. Naval Electronics Laboratory  
San Diego 52, California |
| 1                | Attn: Library  
Code 2800, C. S. Manning |
| 1                | Director  
Naval Research Laboratory  
Washington 25, D.C.  
Attn: Code 4100 |
| 1                | Code 3620 |
| 1                | Code 1100 |
| 1                | Chief of Naval Operations  
Navy Department  
Washington 25, D.C.  
Attn: OP-51  
OP-371-C  
OP-551  
OP-341-D |
| 1                | Commanding Officer  
Naval Air Development Center  
Johnsville, Pennsylvania  
Attn: Code AAEL |
| 1                | Commander  
Naval Ordnance Laboratory  
White Oaks  
Silver Springs 19, Maryland  
Attn: Technical Library |
| 1                | Head, Combat Direction Systems Branch (OP-345)  
Department of the Navy  
Room 4C-518 Pentagon  
Washington 25, D.C. |
<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of the Army</td>
</tr>
<tr>
<td></td>
<td>Office of the Chief Signal Officer</td>
</tr>
<tr>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>Attn: SIGRD</td>
</tr>
<tr>
<td>1</td>
<td>SIGRD-9-b</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Research and Development</td>
</tr>
<tr>
<td></td>
<td>Office of the Chief of Staff</td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
</tr>
<tr>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Asst. Chief of Staff, Development and Test</td>
</tr>
<tr>
<td></td>
<td>Headquarters, Continental Army Command</td>
</tr>
<tr>
<td></td>
<td>Fort Monroe, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>President, U. S. Army Airborne and Electronics Board</td>
</tr>
<tr>
<td></td>
<td>Continental Army Command</td>
</tr>
<tr>
<td></td>
<td>Fort Bragg, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td>President, U. S. Army Defense Board</td>
</tr>
<tr>
<td></td>
<td>Continental Army Command</td>
</tr>
<tr>
<td></td>
<td>Fort Bliss, Texas</td>
</tr>
<tr>
<td></td>
<td>Office of the Chief of Ordnance</td>
</tr>
<tr>
<td></td>
<td>Department of Ordnance</td>
</tr>
<tr>
<td>1</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Attn: ORDTR</td>
</tr>
<tr>
<td></td>
<td>ORDTRB</td>
</tr>
<tr>
<td>2</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>Office of Ordnance Research</td>
</tr>
<tr>
<td></td>
<td>2127 Myrtle Drive</td>
</tr>
<tr>
<td></td>
<td>Duke Station</td>
</tr>
<tr>
<td></td>
<td>Durham, North Carolina</td>
</tr>
<tr>
<td>3</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Ballistics Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. L. A. Delsasso</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>Frankford Arsenal</td>
</tr>
<tr>
<td></td>
<td>Philadelphia 37, Pennsylvania</td>
</tr>
<tr>
<td>Number of Copies</td>
<td>Agency</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 1                | 9560 S. C. Electronics Research Unit  
P. O. Box 205  
Mountain View, California |
| 20               | Transportation Officer  
Fort Monmouth  
Little Silver, New Jersey  
Marked for: SCEL Accountable Property Officer  
Bldg. 2700 Camp Wood Area  
Inspect at Destination  
File No. 0060-PH-54-91(5308) |
| 1                | Director  
National Bureau of Standards  
Washington 25, D.C.  
Attn: Dr. S. N. Alexander |
| 1                | Librarian  
Instrumentation Laboratory  
Massachusetts Institute of Technology  
Cambridge 39, Massachusetts |
| 1                | Director  
Jet Propulsion Laboratory  
California Institute of Technology  
Pasadena, California |
| 1                | Librarian  
Chicago Midway Labs  
6040 South Greenwood Avenue  
Chicago 37, Illinois  
Attn: Librarian |
| 1                | Hughes Research and Development Library  
Hughes Aircraft Company  
Culver City, California  
Attn: Miss Mary Jo Case |
| 1                | Mr. Robert R. Everett  
Division Head,  
Lincoln Laboratory  
Massachusetts Institute of Technology  
Lexington 73, Massachusetts |
| 1                | University of Michigan  
Willow Run Research Center  
Technical Data Service  
Ypsilanti, Michigan  
Attn: Mr. J. E. Corey |
<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Agency</th>
</tr>
</thead>
</table>
| 1               | The Rand Corporation  
1700 Main Street  
Santa Monica, California  
Attn: Library |
| 1               | Dr. C. C. Furnas  
Cornell Aeronautical Laboratory  
Buffalo, New York |
| 1               | Massachusetts Institute of Technology  
Lincoln Laboratory  
P. O. Box 73  
Lexington 73, Massachusetts |
| 1               | W. L. Maxson Corporation  
460 West 34th Street  
New York 1, New York |
| 1               | Stanford University  
Electronics Research Laboratory  
Stanford, California |
| 1               | Radio Corporation of America  
RCA Laboratories Division  
David Sarnoff Research Center  
Princeton, New Jersey  
Attn: Mr. A. W. Vance |
| 1               | The Johns Hopkins University  
Operations Research Office  
6410 Connecticut Avenue  
Chevy Chase, Maryland  
For: Contract DA 44-109 qm-266 |
| 1               | Light Military Electronic Equipment Department  
General Electric Company  
French Road  
Utica, New York  
For Contract AF 33(600)-16934 |
| 1               | Goodyear Aircraft Corporation  
Akron 15, Ohio  
For: Project MX 778  
Contract W33-038 ac-14153 |
| 1               | Mr. A. A. Lundstrom  
Bell Telephone Laboratories  
Whippany, New Jersey |
<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Armed Services Technical Information Agency Document Service Center Knott Building Dayton, Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Litton Industries 336 North Foothill Road Beverly Hills, California via: Inspector of Naval Materiel Los Angeles, California</td>
</tr>
<tr>
<td>1</td>
<td>Remington Rand Univac Division of Sperry Rand Corporation via: Insmat, BuShips Insp. Officer 1902 West Minnehaha Avenue St. Paul 4, Minnesota</td>
</tr>
</tbody>
</table>