ELECTRON COLLISIONS IN NEON PLASMA

C. L. Chen

REPORT R-201 APRIL, 1964

COORDINATED SCIENCE LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

Contract DA-36-039-AMC 02208(E)
DA Project 3A-99-25-004

The research reported in this document was made possible by support extended to the University of Illinois, Coordinated Science Laboratory, jointly by the Department of the Army, Department of the Navy (Office of Naval Research), and the Department of the Air Force (Office of Scientific Research) under Department of Army Contract DA-36-039-AMC 02208(E).
ABSTRACT

The momentum transfer collision frequencies of electrons with neon ions and neutral atoms were measured in a decaying neon plasma over the temperature range from 200 to 600 K. The temperature-density dependence of the electron-ion collision frequency is determined to be

\[v_{ei} = 3.6 \frac{n}{T_e^{3/2}} \ln \frac{2.0 \times 10^4}{n^{1/2}}. \]

The energy dependence of the momentum transfer cross sections of electrons with neon atoms is best represented by \(Q_{m_1} (u) = 2.55 \times 10^{-16} \, u^{1/2} \) and \(Q_{m_2} (u) = 1.07 \times 10^{-17} + 2.17 \times 10^{-16} \, u^{1/2} \, \text{cm}^2 \) for one- and two-term approximations, where \(u \) is the electron energy in electron volts.
I. INTRODUCTION

This paper is concerned with the problems of the energy dependence of the momentum transfer cross section of electrons with neon atoms at low energies and the temperature dependence of the momentum transfer collision frequency of electrons with ions. These problems have been studied both theoretically1-8 and experimentally9-13 by many authors. Generally, the few experimental values reported in the literature were not quite in harmony with one another. The present work was carried out in order to shed some light on these subjects. The method of using gaseous mixtures in studying various fundamental atomic processes is well known14,15. In the present work, a decaying weakly ionized neon plasma at different fixed temperature baths was examined by microwave interferometry and the neon neutral atoms and ions were treated as a mixture in the decaying plasma with the density of one component (the ions) changing in the afterglow.

II. EXPERIMENTAL APPARATUS

The system used in the present investigation was essentially the same as that reported previously,15 and a detailed description of it will not be given here. In essence, the gas-handling system was of the standard bakeable ultrahigh-vacuum type,16 so that impurities introduced by the system were negligible. The gas used was mass spectrometrically controlled grade supplied by Linde Air Products Company. Furthermore, a cataphoresis pump17 was operated in series with the discharge tube continuously during the experiment. A transmission type microwave (\textasciitilde 2 \mu W, 8.53 \text{ kMc/sec CW}) interferometer11,15,18 was employed in measuring the electron densities n and the effective electron momentum transfer collision frequencies v_{eff} in
the decaying neon plasma. The temperature of the discharge tube was monitored constantly by three copper constantan thermocouples. The temporal behavior of the electron temperature T_e in the very early part of the afterglow was also studied briefly by an X-band maser. It was found, in one case ($p_0 = 18.4$ torr and $T_g = 300^\circ$K), for example, that T_e dropped down to $\sim 1000^\circ$K at 150 μsec in the afterglow. After this time the decaying plasma was so transparent to the microwave that accurate measurements of T_e were impossible. Nevertheless, all our measurements (n and v_{eff}) were made at times ~ 800 μsec or later in the afterglow. At such late times, it is believed that T_e had already relaxed to the gas temperature T_g. Since both electron-atom and electron-ion collisions are sensitive to electron temperature, at a given gas temperature the linear behavior of v_{eff}/p_0 vs. $n(o)/p_0$ (see next section) and its independence of gas pressure constitutes an indirect evidence to support this line of thought.

III. RESULTS AND DISCUSSION

The effective electron collision frequency for momentum transfer v_{eff} is given by

$$v_{eff} = v_{em} + v_{ei}$$ \hspace{1cm} (1)

for a weakly ionized gas under the influence of a low level dc or rf electric field. Here v_{em} and v_{ei} are the momentum transfer collision frequencies of electrons with atoms and ions, respectively. Theoretical considerations of v_{ei} in general, lead to the functional form

$$v_{ei} = C_1 \frac{n}{T_e^{3/2}} \ln \frac{C_2 T_e^{3/2}}{n^{1/2}}$$ \hspace{1cm} (2)
where C_1 and C_2 are constants. The present investigation attempts (1) to establish the dependence of v_{ei} on T_e, and (2) to determine the constants C_1 and C_2, experimentally. For a limited range of n, Equation (2) may be written as

$$v_{ei} = C(T_e) n$$

where $C(T_e)$ is a function of T_e and only depends weakly on n. Since $v_{ei} \propto n$, a knowledge of spatial distribution of n is important in deducing v_{ei} from the experimentally measured v_{eff}. The requirements that $T_e = T_g$ and that the spatial electron density distribution be known confine the study to times late in the afterglow where the electrons are well thermalized with the gas and the electron density decay is predominantly controlled by ambipolar diffusion of the fundamental mode. Under such conditions, the radial electron density distribution in the cylindrical discharge tube assumes the form of a zero order Bessel function. A simple analysis and numerical integration pertaining to the present case give

$$\frac{v_{eff}}{p_o} = \frac{v_{em}}{p_o} + 0.675 C(T_e) \frac{n(o)}{p_o}$$ \hspace{1cm} (3)$$

where $n(o)$ is the electron density at the axis of the tube and p_o is the neon gas pressure referred to $0^\circ C$. Since v_{em}/p_o should be constant at a given temperature, Equation (3) predicts a linear behavior of v_{eff}/p_o versus $n(o)/p_o$. Typical results at gas temperature of 305 and 480$^\circ K$ are shown in Figure 1. The intersection of v_{eff}/p_o at $n(o)/p_o = 0$ gives v_{em}/p_o and the slope is $0.675 C(T_e)$. One immediately notices from Figure 1 that the electron-ion collisions are a significant percentage of v_{eff} and
the usual procedure of securing \(v_{em}/p_0 \) from \(v_{eff}/p_0 \) at late afterglow time is therefore not reliable in the present case and may lead to wrong interpretations. \(v_{em}/p_0 \) and 0.675 \(C(T_e) \) so determined as a function of electron temperature are shown in Figures 2 and 3, respectively. The velocity dependence of the momentum transfer cross section \(Q_m(v) \) of electrons with neon atoms is determined from the best fit to the experimental data by

\[
\frac{v_{em}}{p_0} = 1.18 \times 10^{16} \left(\frac{2}{\pi} \right)^{1/2} \left(\frac{m}{kT_e} \right)^{5/2} \int_0^\infty Q_m(v)v^5 \exp \left(\frac{-mv^2}{2kT_e} \right) dv \quad (4)
\]

where \(m \) is the electron mass and \(v \) the electron velocity. \(k \) is Boltzmann's constant. It is found that both \(Q_{m_1}(v) = 4.3 \times 10^{-24} \) \(v \) and \(Q_{m_2}(v) = 1.07 \times 10^{-17} + 3.66 \times 10^{-24} v \) \(cm^2 \) give fairly good fits within the accuracy of the present experiments. The subscripts 1 and 2 represent one- and two-term approximations, respectively. In terms of electron energy \(u \), in electron volts, they are

\[
Q_{m_1}(u) = 2.54 \times 10^{-16} u^{1/2} \text{ cm}^2 \quad (5a)
\]

and

\[
Q_{m_2}(u) = 1.07 \times 10^{-17} + 2.17 \times 10^{-16} u^{1/2} \text{ cm}^2 \quad (5b)
\]

Equations (5a) and (5b) are plotted on Figure 4. On which, the experimental results of Gilardini and Brown at higher energies are also presented. O'Malley recently has analyzed Ramsauer-Kollath's data of electron beam scattering experiments in noble gases by "atomic effective range formulas". The parameters in his theory are so chosen to fit the Ramsauer-Kollath
experimental cross sections and the calculations are extrapolated to zero energy. His neon result is reproduced in Figure 4 and it is seen that all curves exhibit the same shape. The agreements of these results are considered to be excellent especially those of O'Malley's and the present one. Recently, the swarm experimental data of neon by Pack and Phelps has been analyzed by Frost and Phelps. Their cross sections indicate a reasonable agreement with ours above ~0.03 eV to within a few percent.

Since the present values of the energy dependence of the momentum transfer collision cross section are deduced from v_{em}/p_0 as a function of electron temperature, measurements of v_{em}/p_0 at temperatures below 200°K are desirable especially the question of whether neon is a Ramsauer gas or not is raised. No determinations of v_{em}/p_0 below 200°K were made at the present time. Nevertheless, some measurements of v_{eff}/p_0 at a gas temperature of 77°K have been carried out by Dougal and Goldstein in a study of a decaying neon plasma and by Marshall, Kawcyn, and Goldstein in a study of the widths of electron cyclotron resonance curves. Their results are, in general, higher than the extrapolated value at 77°K given by the present analysis. MKG pointed out that the high value of v_{em}/p_0 at 77°K could not be conveniently explained by the theoretically predicted existence of Ne$_2$ (with ~0.002 eV binding energy). Since the velocity of sound in neon indicated no noticeably change of the specific heat ratio down to ~30°K and the compressibility of gaseous neon showed no molecular neon condensation with decreasing temperature. If DG and MKG's results are correct, they may constitute evidence for a low energy "Ramsauer-like" effect in neon. The present investigation indicates that if a Ramsauer type minimum should exist for electron-neon scatterings, it
would most probably be at an electron energy less than 0.01 eV.

In support of this, it is of interest to note that the scattering lengths for the five noble gases (i.e., He, Ne, Ar, Kr and Xe) exhibit a reasonable linear relationship with respect to the number of electrons in the atom (see Figure 5). Empirically, it is found that

\[A \propto (1.58 - 0.158Z) a_0 \] (6)

where \(A \) is the scattering length, \(Z \) the atomic number and \(a_0 \) the electron Bohr radius. The agreements between values of \(A \) as determined by various authors are considered to be good, since almost all are extrapolated values. The apparent linear relationship of \(A \) to \(Z \) suggests that the scattering length for neon is very small. Should it be negative, the energy \(E_m \) at which the Ramsauer minimum occurs would most probably be \(< 0.003 \) eV estimated from Figure 5 and using O'Malley's formula\(^3\) [Equation (3.4)]. In view of this, DG and MKG's original data should be regarded as tentative. The theoretical interpretation of Equation (6) is not clear at the present time. Should this trend be continued in the noble gas sequence to Rn, the scattering length of Rn would be \(\approx -12 a_0 \) and the value of \(Q_m(0) \) would be \(\approx 5.05 \times 10^{-14} \) cm\(^2\) to an accuracy of \(\approx 20 \% \).

To study the electron-ion collision frequency experimentally in an isothermal plasma, the physical conditions have to be compatible with the theoretical requirement that the electron and ion number densities in a Debye sphere are much greater than unity. To fulfill this condition, the electron density must be lower if the temperature is reduced. This condition, together with the electron temperature relaxation and electron density spatial distribution considerations, require that measurements be confined
to the late afterglow times where the electron density loss occurs mainly through the fundamental ambipolar diffusion mode. The slope of v_{eff}/p_0 versus $n(o)/p_0$ plot, which is $0.675\ C(T_e)$, is shown in Figure 3 for different electron temperatures. The $200^\circ K$ point is not shown here because of its uncertainty in being compatible with the physical conditions stated above. The electron density decays more rapidly in this case than in others during the first few hundred microseconds in the afterglow. This is presumably due to the more rapid electron-ion recombination at lower temperatures. In order to get accurate measurable attenuations (> 0.1 db), high gas pressures (> 10 mm Hg) must be used and the electron density decay is not entirely diffusion controlled up to 1 msec in the afterglow where relative accurate microwave attenuations could still be made. From the results shown in Figure 3, it is clear that

$$v_{ei} \propto T_e^{-3/2}$$

approximately. The deviation of the $\ln 0.675\ C(T_e)$ versus $\ln T_e$ graph from the minus-three-half power law is due to the logarithmic factor in Equation (2). A best fit to the experimental data according to Equation (2) (the solid curve in Figure 3) yields the following values of C_1 and C_2

$$C_1 = 3.6\ \text{cm}^3\ -\ \text{o} K^{3/2}\ -\ \text{sec}^{-1}$$ \hspace{1cm} (7a)

and

$$C_2 = 2.0 \times 10^4\ \text{cm}^{-3}\ -\ \text{o} K^{-3/2}$$ \hspace{1cm} (7b)

A comparison of the present results with those of the theoretical and experimental studies by other authors is shown in Table 1.
The variations in C_1 and C_2 by different authors result from the different approximations adopted in various stages of their treatment of the problem. From Table I it is seen that the present work favors the theories developed by Landau4 and by Spitzer8. However, no attempt is made to compare the present results with the theory (of transport phenomena) by Cohen, Spitzer and Routly35 and by Spitzer and Harm36 because of the different nature of the problem involved37. The values of C_1 and C_2 determined by Anderson and Goldstein11 are extremely good considering that they only did the experiment at one temperature (i.e., 300°K). Yet the present experiment clearly demonstrates the temperature dependence of electron-ion collision frequency for momentum transfer in an isothermal plasma.

In conclusion, the method of microwave diagnostics of a decaying weakly ionized neon plasma at different gas temperatures provides a unique means of studying the fundamental processes of electron-neon atom and electron-ion collisions at very low energies.

ACKNOWLEDGMENT

It is a great pleasure to acknowledge the cooperation and assistance given by Dr. P. D. Goldan on the electron temperature measurements in the early part of the investigation. The author enjoyed the many stimulating and beneficial discussions with Professors L. Goldstein, J. H. Cahn and M. Raether during the course of the work. He also thanks the members of the Atomic Physics group in Westinghouse Research Laboratories for their reading of the manuscript. In particular, the author would like to express his sincere gratitude to Dr. A. V. Phelps for his criticism and suggestions of this paper.
Table I. Comparison of experimental and theoretical values of C_1 and C_2

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>C_2</td>
<td>C_1</td>
</tr>
<tr>
<td>3.62</td>
<td>14.7 x 10^3</td>
<td>(a)</td>
</tr>
<tr>
<td>4.84</td>
<td>12.5 x 10^3</td>
<td>(b)</td>
</tr>
<tr>
<td>3.59</td>
<td>3.32 x 10^3</td>
<td>(c)</td>
</tr>
<tr>
<td>2.25</td>
<td>8.4 x 10^3</td>
<td>(d)</td>
</tr>
<tr>
<td>3.62</td>
<td>12.5 x 10^3</td>
<td>(e)</td>
</tr>
</tbody>
</table>

(a) see Reference 4
(b) see Reference 5
(c) see Reference 6
(d) see Reference 7
(e) see Reference 8. The energy equipartition time constant τ_{eq} derived in their theory is set equal to $(\frac{2m}{M} v_{e1})^{-1}$.

Here m and M are the electron- and ion-mass, respectively. [See, for example, I. P. Shkarofsky, Can. J. Phys. 41, 1753 (1963), Equation (65)].

(f) see Reference 11
(g) present studies
REFERENCES

9. A. V. Phelps, O. T. Fundingsland and S. C. Brown, Phys. Rev. 84, 559 (1951). This is referred to as PFB in Figure 2.
20. In our case, the ions are singly charged and the ion density $n_i = n$.
22. The constant 0.675 in Equation (3) is derived from the interaction of electromagnetic wave (of TE_{10} mode) with the plasma in a cylindrical discharge tube housed coaxially in a square waveguide for the present experiment.
26. L. S. Frost and A. V. Phelps (private communication).
28. A completely different temperature bath design is required for the experiments below 200°K. For lack of time, we could not accomplish this objective.

29. T. Marshall (private communication).

34. Since the logarithmic factor is relatively insensitive to a narrow range of variation of the electron density, the present data are so chosen that $6.2 \times 10^{10} < \tilde{n} < 9.6 \times 10^{10}$ cm$^{-3}$ with a mean value of the spatial average electron density $\tilde{n} \sim 8 \times 10^{10}$ cm$^{-3}$ used for the best fit calculation.

37. For a Lorentz gas, the dc resistivity η_L cannot simply be written as

$$\eta_L = \frac{mv_{ei}}{ne^2}.$$

It can be shown from the Boltzmann transport equation that, in the case of $Q_m(v) = bv^{-4}$

$$\eta_L = \frac{mv}{xne^2},$$

where $v = nb<v>^{-3}$ may be identified as v_{ei} and $<v> = \left(\frac{8kT_e}{\pi m}\right)^{1/2}$ is the mean thermal velocity of the electrons. To equate η_L so obtained to
Spitzer's more rigorous derivation of η_L yields

$$v_{ei} = 3.36 \frac{n}{T_e^{3/2}} \ln \frac{1.25 \times 10^4 T_e^{3/2}}{n^{1/2}}$$

There is an apparent discrepancy of v_{ei} so derived to that derived from τ_{eq}. Because of the approximate nature in the treatment to deduce v_{ei} from η_L, we think that it is improper to compare the present result with the dc resistivity theory.

Figure 1: Measured $v_{\text{eff}}(\text{Ne})/p_o(\text{Ne})$ versus $n(o)/p_o(\text{Ne})$ at two temperatures, i.e., 305° and 480°K. The straight line behavior is predicted by Equation (3) in the text under the condition $v^2 \ll \omega^2$, where ω is the radian frequency of the applied field. The points are from: ■ 3.66 mm Hg, ○ 3.78 mm Hg, ▼ 6.52 mm Hg, △ 9.60 mm Hg, ○ 2.28 mm Hg + 4.49 mm Hg, * 8.92 mm Hg, △ 8.15 mm Hg.

The intersection of $v_{\text{eff}}(\text{Ne})/p_o(\text{Ne})$ at $n(0)/p_o = 0$ gives v_{em}/p_o at that temperature and the slope is 0.675 $C(T_e)$.

* B. Kivel, see Reference 1
X, O T. F. O'Malley, see Reference 3

A C. L. Chen, see Reference 15

Figure 2: $\nu_{em}(\text{Ne})/p_o(\text{Ne})$ versus T_e. The dash and solid curves are the best fits to the experimental points according to Equation (4) and the assumption of $Q_{m1}(v) = Bv$ and $Q_{m2}(v) = A + Bv$, respectively.
Figure 3: 0.675 C(T_e). The dash line is the expected T_e^{-3/2} variation should the logarithm term be constant. The solid curve is the best fit to the experimental points according to Equation (2).
Figure 4: Momentum transfer cross section of electrons with neon atoms. The result of the present experiment is compared with those found by Gilardini and Brown at higher energies and the theoretical calculations by O'Malley. The equivalent electron-volt values of kT_e at 200 and 600°K are also shown.
Figure 5: Scattering length versus atomic number determined by various authors in noble gases.
Distribution list as of February 1, 1964

1 Director
Air University Library
Maxwell Air Force Base, Alabama
Attn: CR-4605A

2 Hughes Aircraft Company
Fresno and Eagle
Culver City, California
Attn: N. E. Devereux
Technical Document Center

3 Honeywell
3150 East Imperial Highway
Downey, California
Attn: Tech. Library, 3041-11

1 Dr. Arnold T. Nordsieck
General Motors Corporation
Defense Research Laboratories
6767 Hollister Avenue
Goleta, California

1 University of California (Unclassified)
Lawrence Radiation Laboratory
P. O. Box 9205
Los Angeles 45, California

1 Mr. Thomas L. Hartwick
Aerospace Corporation
P. O. Box 9205
Los Angeles 45, California

1 Lt. Colonel Willard Lavin
Aerospace Corporation
P. O. Box 9205
Los Angeles 45, California

1 Professor Zorba Kaprielian
University of Southern California
Los Angeles 7, California

1 Sylvania Electronic Systems - West
Electronic Defense Laboratories
P. O. Box 205
Mountain View, California
Attn: Documents Center

1 Vector Associates
61 Hansen Way
Palo Alto, California
Attn: Dr. Ira Weissman

1 Huston Denslow (Unclassified)
Library Supervisor
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

1 Professor Nicholas George
California Institute of Technology
Electrical Engineering Department
Pasadena, California

1 Space Technology Labs., Inc.
One Space Park
Redondo Beach, California
Attn: Acquisitions Group
STL Technical Library

2 Commanding Officer and Director
U.S. Naval Electronics Laboratory
San Diego 52, California
Attn: Code 2800, C. S. Manning

1 Commanding Officer and Director
U.S. Navy Electronics Laboratory
San Diego 52, California
Attn: Library

1 Office of Naval Research Branch Office
1000 Geary Street
San Francisco, California
