MODIFIED UNISTOR GRAPHS
AND
SIGNAL FLOW GRAPHS

Jun Numata, M.S.

REPORT R-261

JULY, 1965
This work was supported in part by the Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28 043 AMC 00073(E).

Portions of this work were also supported by the Air Force Office of Scientific Research under Grant 903.65.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.
Abstract

In this paper modified unistors have been defined. For example, the transconductance of a vacuum tube will be expressed by one modified unistor. A M.U. graph (modified unistor graph) is a linear graph consisting of modified unistors and can represent a linear electrical network. A node voltage equation of a M.U. graph of n edges without sources can be obtained as

\[A^{+} Y^{-} V_{n} = 0 \]

where \(A^{-} \), \(A^{+} \), and \(Y \) are a negative incidence matrix, a positive incidence matrix and a diagonal n by n admittance matrix.

If there exist independent current sources from the reference vertex to any vertex in a M.U. graph, then the node voltage equations can be written as

\[A^{-} Y^{+} V_{n} = Y_{n} V_{n} = -J_{n} \]

where \(J_{n} \) is a column matrix representing independent current sources. It is noticed that \(Y_{n} \) is a connection matrix of M.U. graph.

By the Binet-Cauchy theorem, the determinant of \(Y_{n} \) is equal to summation of nonzero majors of \(A^{-} Y \) times the corresponding majors of \(A^{+} \). Therefore, first the condition of the set of edges which forms a nonzero major should be expressed topologically. Then, it can be shown that the determinant of \(Y_{n} \)
is equal to the summation of \((-1)^s\) times the C.D.C. admittance products of a M.U. graph. Similarly, topological formulas of the \(ij\) cofactor \(\Delta_{ij}\) and the double cofactor \(\Delta_{ijk}\) of \(Y_n\) are given. These formulas are important in obtaining network functions. Finally, in Chapter 5, Mason's formula for signal flow graphs will be proved by using M.U. graphs.
ACKNOWLEDGMENT

The author wishes to express his deep appreciation of the suggestions and many other significant contributions given by Professor W. Mayeda, who is the advisor of the author.

The author is also grateful for the helpful discussions with the members of the Systems Group of the Coordinated Science Laboratory of the University of Illinois.

Finally, the author wishes to express his thanks to his mother, Mrs. Mineko Numata, for the encouragement given during the past one and one-half years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. DEFINITION AND FUNDAMENTAL PROPERTIES</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Modified Unistor Graph (M.U. Graph)</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Flow Conservation and Independent Current Sources</td>
<td>6</td>
</tr>
<tr>
<td>3. TOPOLOGICAL FORMULAS FOR M.U. GRAPHS</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Definition of C.D.C. and p-q C.D.C.</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Evaluation of the Determinant of a M.U. Graph</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Evaluation of Cofactors of a M.U. Graph</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Example of Evaluation of the Determinant and Cofactor</td>
<td>19</td>
</tr>
<tr>
<td>4. TOPOLOGICAL FORMULAS FOR SHORT CIRCUIT FUNCTION</td>
<td>23</td>
</tr>
<tr>
<td>5. PROOF OF MASON'S FORMULA FOR SIGNAL FLOW GRAPHS BY M.U. GRAPHS</td>
<td>27</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>5.2 Proof of Mason's Formula</td>
<td>27</td>
</tr>
<tr>
<td>6. AN EXAMPLE OF EVALUATION OF VERTEX POTENTIAL BY TOPOLOGICAL FORMULAS</td>
<td>32</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>36</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Linear graphs are known to be a useful tool for analysis of electrical networks [6,9,10,11]. Here we introduce a modified unistor graph which is similar to a flow graph introduced by Coates [2]. By using a negative and a positive incidence matrix, it is easy to understand the development of topological formulas of flow graphs. Furthermore, Mason's formula [4,5] for a signal flow graph can be proved.

In chapter 2 and chapter 3, a modified unistor graph will be studied to obtain some fundamental properties of such graphs.

In chapter 5, Mason's formula for a signal flow graph will be proved by the use of a modified unistor graph.
2. DEFINITION AND FUNDAMENTAL PROPERTIES

2.1 Modified Unistor Graph (M.U. Graph)

It is known that the topological representation [7,8,11] of the transconductance of a vacuum tube consists of two edges, one of which is a voltage edge and the other is a current edge as shown in Figure 1a. In this paper, such an element is represented by one edge as shown in Figure 1b, and is called a "modified unistor". Also a network which consists only of modified unistors is called a "M.U. (modified unistor) graph" which is somewhat different from a unistor graph given by W. K. Chen and G. Dodd [1,3].

Since the voltage edge and the current edge of an element will be represented by only one modified unistor, the common vertex of the voltage and the current edges of every element in a network must be the reference vertex in order that the network can be represented by a M.U. graph. The formal definition of a M.U. graph is as follows:

![Diagram](a) Topological representation of transconductance (b) Modified unistor of transconductance

Figure 1. Modified Unistor
Definition 1: A M.U. (modified unistor) graph is a weighted linear graph in which every edge satisfies the following: (1) each edge has an admittance as its weight, (2) let edge e_{pq} be connected from vertex p to vertex q. Also let y_{pq} be the weight of edge e_{pq}. Then the equation

$$y_{pq}v_{po} = i_{oq}$$

must be satisfied, where v_{po} is the voltage from p to the reference vertex o and i_{oq} is the corresponding current from the reference vertex o to vertex q.

Example 1: Consider a resistor R which is located between a vertex p and the reference vertex. It can then be expressed as shown in Figure 2b.

![Figure 2](image)

(a) Register R (b) Modified unistor graph of register R

Example 2: The triode vacuum tube shown in Figure 3a can be described as in Figure 3b.
If there exist elements which are not connected to the reference vertex in an electrical network, an equivalent network in which every element is connected to the reference vertex must be considered in order to obtain a M.U. graph of the given network.

A M.U. graph can be expressed by a matrix equation in the usual manner by using negative and positive incidence matrices \([11]\) which are defined as follows:

Definition 2: A negative incidence matrix \(A^-\) is obtained from an incidence matrix of a M.U. graph by replacing all +1's by 0's.

Definition 3: A positive incidence matrix \(A^+\) is obtained from an incidence matrix of a M.U. graph by replacing all -1's by 0's.

The following example will illustrate the negative and positive incidence matrices of a M.U. graph.
Example 3: An incidence matrix of the M.U. graph in Figure 4 is

\[
\begin{bmatrix}
1 & 1 & 0 & -1 \\
2 & -1 & 1 & 0 \\
3 & 0 & -1 & 1 \\
\end{bmatrix}
\]

\[A = \begin{bmatrix}
1 & 1 & 0 & -1 \\
2 & -1 & 1 & 0 \\
3 & 0 & -1 & 1 \\
\end{bmatrix}
\] \hspace{1cm} (2)

Hence, the negative and positive incidence matrices of the M.U. graph are

\[
\begin{bmatrix}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
\end{bmatrix}
\]

\[A^- = \begin{bmatrix}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
\end{bmatrix}
\] \hspace{1cm} (3)

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[A^+ = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\] \hspace{1cm} (4)

Figure 4. A M.U. graph
By Definition 1, if there exists an edge e_{pq}, which is oriented from p to q, and has edge admittance y_{pq}, the current i_{oq} from the reference vertex to the vertex q satisfies Equation (1).

The matrix expression of Equation (1) is

$$YA^T v_n = I$$

(5)

When there are no current sources in a modified unistor graph, net current at any vertex p is zero, i.e.,

$$\sum_{m \in \text{in}} i_{op_m} - \sum_{n \in \text{out}} i_{pn_n} = 0$$

(6)

where i_{op_m} ($m = 1, 2, \ldots$) and i_{pn_n} ($n = 1, 2, \ldots$) are currents which flow into and out from vertex p.

The matrix expression of Equation (6)

$$A^- I = 0$$

(7)

Equation (5) and (7) give

$$A^- Y A^T v_n = 0$$

(8)

2.2 Flow Conservation and Independent Current Sources

Suppose that there are independent current sources j_{vp} ($v = 1, 2, \ldots$) in a M.U. graph which are located from the reference vertex o to the vertex p; then Equation (6) becomes

$$\sum_{m \in \text{in}} i_{op_m} - \sum_{n \in \text{out}} i_{pn_n} + \sum_{v} j_{vp} = 0$$

(9)
or

\[\sum_{m} i_{op_{m}} - \sum_{n} i_{op_{n}} = -\sum_{v} j_{op_{v}} \quad (10) \]

The left hand side is exactly the same as that of Equation (6). Therefore Equation (7) becomes

\[A^I = -J_n . \quad (11) \]

If there are independent sources which do not flow from or toward the reference vertex, then Equation (7) can be expressed as

\[A^I = A_J J \quad (12) \]

where \(A_J \) is the incidence matrix of sources only. Then Equation (8) becomes

\[A^{-1} YA^+V_n = A_J J . \quad (13) \]

Consider a source \(J \) which is located from vertex \(p \) to \(q \) and represented by a weighted edge \(g \), then

\[
A_J^g = \begin{bmatrix}
g & 0 & 1 & 0 & 0 \\
p & 0 & 0 & 1 & 0 \\
q & 0 & 0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
-J_g & p \\
J_q & q \\
0 & g \\
\end{bmatrix}
\]

\[= -J_n \quad (14) \]
This shows that every source from the vertex p to the vertex q can be expressed by a negative source from vertex p to the reference vertex and a positive source from the reference vertex to vertex q. Exactly the same argument can be applied by the use of superposition, when there is more than one source.

Most of the discussion in this chapter will be given in the following theorem.

Theorem 1: All the vertex potentials must satisfy the equation

\[
A^{-1}Yb = -J_n
\]

where \(J_n\) is the column matrix of independent current sources, each of which flows from the reference vertex.

It must be emphasized that

\[
A^{-1}Yb = Y_n
\]

is the connection matrix of a M.U. graph.
3. TOPOLOGICAL FORMULAS FOR M.U. GRAPHS

3.1 Definition of C.D.C. and p-q C.D.C.

Subgraphs of a M.U. graph which are related to the determinant of \(Y_n \) of the graph are C.D.C. (covering disjoint circuits) and p-q C.D.C., which are defined as follows:

Definition 4: A C.D.C. (covering disjoint circuits) is either a directed circuit or an edge disjoint union of directed circuits of a M.U. graph which contains all vertices except the reference vertex of the M.U. graph.

Definition 5: A p-q C.D.C. is either a directed path from the vertex p to the vertex q or an edge disjoint union of a directed path from the vertex p to the vertex q and directed circuits which contains all vertices except the reference vertex of M.U. graph.

Definition 6: The number of disconnected circuits of a C.D.C. is the order of the C.D.C. Similarly, the number of disconnected circuits in a p-q C.D.C. circuit is the order of the p-q C.D.C.

Example 4: An example of Definitions 4, 5, and 6. Suppose there exists the M.U. graphs shown in Figure 5.

![Figure 5. Modified Unistor Graph](image-url)
Then one of the C.D.C. can be shown in Figure 6 and the order of this C.D.C. is two.

Figure 6. A C.D.C. of the M.U. graph shown in Figure 5.

Also the 5-4 C.D.C. is shown in Figure 7.

Figure 7. 5-4 C.D.C. of the M.U. graph shown in Figure 5.

The order of this 5-4 C.D.C. is one.
3.2 Evaluation of the Determinant of a M.U. Graph

By the Binet-Cauchy theorem, \(|A^-YA^+|\) is the summation of all possible nonzero majors of \(A^-Y\) and the corresponding majors of \(A^+\). Since \(A^-Y\) is the matrix such that every column of \(A^-\) is multiplied by corresponding edge admittances, the next theorem can be obtained. For convenience, symbol \(e\) will be used to represent an edge in a M.U. graph as well as a row corresponding to the edge in the negative and positive incidence matrices of the M.U. graph.

Theorem 2: The determinant of \(A^-YA^+\) is the summation of \(v-1\) admittance products, where \(v\) is the number of vertices in M.U. graph.

Proof: Suppose the set of edges \(e_1', e_2', \ldots, e_{v-1}'\) form a nonzero major of \(A^-Y\) and the corresponding major of \(A^+\). Also the corresponding edge admittance are \(y_1', y_2', \ldots, y_{v-1}'\). Since each column of \(A^-\) and \(A^+\) has only one nonzero entry, \(-1\) and \(+1\) respectively,

\[
a \text{major of } A^- = e \ y_1' y_2' \cdots y_{v-1}'
\]

\[
a \text{major of } A^+ = e'
\]

where \(e\) and \(e'\) are \(\pm 1\). Therefore the determinant of \(Y_n\) is the summation of the \(v-1\) admittance products.

Theorem 3: A major of \(A^-\) and the corresponding major of \(A^+\) are both nonzero if and only if the corresponding edges of the majors form a C.D.C.

Proof: Suppose a set of edges \(e_1', e_2', e_3', \ldots, e_{v-1}'\) form such a nonzero major of \(A^-\) and the corresponding major of \(A^+\). Then \(\tilde{A}^-\) and \(\tilde{A}^+\), which is formed by the column corresponding edge \(e_1', e_2', \ldots, e_{v-1}'\), can be changed to diagonal matrices since each column of \(\tilde{A}^-\) and \(\tilde{A}^+\) have
only one nonzero entry, -1 and +1 respectively. Therefore \tilde{A}^- and \tilde{A}^+ can be expressed as Equations (19) and (20) respectively by column permutations.

Equations (19) and (20) imply that every edge is connected to or from a different vertex and also every vertex is the initial and final vertex of exactly one edge. Therefore $e_1^+,$ $e_2^+,$..., and e_{v-1}^+ form a C.D.C. Conversely, if the set of edges $e_1^+,$ $e_2^+,$..., and e_{v-1}^+ form a C.D.C., then it is clear that \tilde{A}^- and \tilde{A}^+ can be expressed as Equations (21) and (22).
Therefore \mathbf{A}^{-} and \mathbf{A}^{+} are nonsingular, and $e_{1}, e_{2}, \ldots, e_{v-1}$ form a nonzero major of \mathbf{A}^{-} and the corresponding major of \mathbf{A}^{+}. Q.E.D.

Theorem 4: The determinant Δ of Y_n is equal to

$$\Delta = \Sigma(-1)^{s} \text{C.D.C. of } G \text{ admittance products}$$

(23)
where summation is over all possible C.D.C. and \(s \) is the order of C.D.C.

Proof: By the Binet-Cauchy theorem and Theorem 3, the determinant \(\Delta \) of \(Y_n \) is equal to

\[
\Delta = \sum \epsilon \in \text{C.D.C. admittance products}
\]

where \(\epsilon \) is \(\pm 1 \).

Let \(\tilde{A}^- \) be the matrix whose determinant is a nonzero major of \(A^- \) and similarly \(\tilde{A}^+ \) be the matrix whose determinant is the corresponding nonzero major of \(A^+ \). By row permutations, \(\tilde{A}^- \) and \(\tilde{A}^+ \) can be expressed by \(\tilde{A}_- \) and \(\tilde{A}_+ \), respectively as

\[
\tilde{A}_- = (-1)^k \tilde{A}_- = (-1)^k
\]

\[
\tilde{A}_+ = (-1)^\ell \tilde{A}_+ = (-1)^\ell
\]
The transformations from A^{-} to A_{Σ}^{-} and A^{+} to A_{Σ}^{+} require the same number of permutations, therefore $k = \ell$. Then

$$|A_{\Sigma}^{-}| = |A_{\Sigma}^{+}| = |A^{-}| = |A^{+}|$$

(27)

Since $|A_{\Sigma}^{+}| = 1$, only evaluation of $|A_{\Sigma}^{-}|$ is necessary. Suppose the set of rows $C_{i} (i = 1, 2, \ldots, C_{s})$ contains C_{i} rows; then to make A_{Σ}^{-} diagonal,

$$(c_{1}^{-} - 1) + (c_{2}^{-} - 1) + \ldots + (c_{s}^{-} - 1)$$

$$= (c_{1}^{-} + c_{2}^{-} + \ldots + c_{s}^{-}) - s = v - 1 - s$$

(28)

permutations are necessary. Since all entries of A_{Σ}^{-} are -1, the sign of a C.D.C. is

$$(-1)^{v - 1} \cdot (-1)^{v - 1 - s} = (-1)^{s}$$

(29)

where s is the order of the C.D.C. Q.E.D.

3.3 Evaluation of Cofactors of a M.U. Graph

Theorem 5: The cofactor $A_{i}^{'}$ of Y_{n} is equal to

$$A_{i}^{'} = \Sigma (-1)^{s'} \text{ C.D.C. of } G_{-i} \text{ admittance products}$$

(30)

where G_{i} is a subgraph of G which doesn't contain vertex i, s' is the order of a C.D.C. of G_{-i} and summation is over all possible C.D.C. of G_{-i}.

Proof: The cofactor $A_{i}^{'}$ is the determinant $[A^{-}]_{-i} A_{i}^{+}$, where $[A^{-}]_{-i}$ and A_{i}^{+} are obtained by deleting row i and column i from A^{-} and A^{+} respectively. Notice that $[A^{-}]_{-i}$ is equal to $A_{-i}^{-} Y$, where A_{-i}^{-} is obtained by deleting row i from A^{-}. Also A_{-i}^{-} and A_{i}^{+} are the negative and positive
incidence matrices of graph G_{-i} which is obtained from a given M.U. graph by elimination of all edges which are connected to and from the vertex i.

The remaining part of the proof is exactly the same as that of Theorem 4. Q.E.D.

Theorem 6: The cofactor A_{ij} of Y_n is equal to

$$A_{ij} = \Sigma(-1)^{s^i}i-j \text{ C.D.C. of } G \text{ admittance products} \tag{31}$$

where G is a given M.U. graph, s^i is the order of $i-j$ C.D.C. of G, and summation is over all possible $i-j$ C.D.C. of G.

Proof: It is clear that A_{ij} is equal to $(-1)^{i+j}$ times the determinant of $A_{-i}Y_{-j}$, where A_{-i} and A_{-j} are obtained by deleting row i and column j from A_- and A_+^t respectively. Suppose $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ form a nonzero major of $A_{-i}Y$. Since there is only one nonzero element in each column of A_{-i}, the edges $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ are the edges which are connected to all vertices except the vertex i and the reference vertex, and the converse is also true.

Since it is only necessary to consider the case when a major of $A_{-i}Y$ and the corresponding major of A_{-j}^t are both nonzero, suppose $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ form a nonzero major of A_{-j}^t. Then the edges $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ should be incident at all the vertices except j, and the converse is also true. Hence edges $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ should be incident at all vertices except vertices i, j and of course the reference vertex. Adding edge e_{ji} from j to i makes edges $e_1, e_2', ..., e_1', e_2', ..., e_{v-2}'$ and e_{ji} incident at all vertices except the reference vertex. Since there are $v-1$ vertices except the reference vertex and there are $v-1$ edges, these edges form a C.D.C.
Conversely, suppose there exists an i-j C.D.C. which consists of edges $e_1, e_2, \ldots, e_{v-2}$ and e_{v-1}. Let $G(e_{ji})$ be a graph obtained by adding edge e_{ji} from vertex j to vertex i in G. Also let $A^-(e_{ji}), A^+(e_{ji})$ and $Y(e_{ji})$ be a negative, a positive and the corresponding diagonal admittance matrices of $G(e_{ji})$ such that removal of the column corresponding to e_{ji} from $A^-(e_{ji})$ and $A^+(e_{ji})$ produces A^- and A^+ of G, and removal of the row and the column corresponding to e_{ji} in $Y(e_{ji})$ produces Y of G. Since edges e_1, \ldots, e_{v-2} and edge e_{ji} form a C.D.C., by the definition of an i-j C.D.C., the determinants of square submatrices $A^-(e_{ji})$ and $A^+(e_{ji})$ whose columns are $e_1, e_2, \ldots, e_{v-2}$ and e_{ji} are both nonzero. Since $A^-(e_{ji})$ is nonsingular and e_{ji} is connected from j to i, there exists only one nonzero element in row i at the intersection of column e_{ji}. Hence removal of row i and column e_{ji} makes the determinant of the resultant submatrix nonzero. However this resultant submatrix is A^- whose determinant is the major of A^-_i which corresponds to the i-j C.D.C. Similarly, the only nonzero entry in row j of $A^+(e_{ji})$ is at the intersection of column e_{ji}. Therefore, by the property of a C.D.C., the removal of row j and column e_{ji} of $A^+(e_{ji})$ makes a nonsingular matrix. However, this resultant matrix is A^+_j whose determinant is a major of A^+_j. Thus the major of A^-_i and the corresponding major of A^+_j corresponding to an i-j C.D.C. are both nonzero. Therefore cofactor Δ_{ij} is the summation of ε times Y admittance products of all possible i-j C.D.C.'s of G, where ε is either +1 or -1.

The sign ε of each i-j C.D.C. will be considered next. Let \sim be the matrix of order $(v-1) by (v-2)$ obtained from an incidence matrix of a M.U. graph by taking only the columns corresponding to the edges in an i-j C.D.C.
By the definition of an i-j C.D.C., A can be transformed by permutation of rows and columns to \tilde{A} as in Equation (31).

Let A_{i-1}^- be the matrix obtained from A by removing row i and replacing all 1's by 0's and A_{j-1}^+ be the matrix obtained from A by removing row j and replacing all -1's by 0's. Also, without loss of generality, let $i < j$.

Then the transformation A_{i-1}^- to A_{j-1}^+ requires $j-2 + k$ permutations, where $j-2$ is the number of permutations necessary to place jth row at the top of the matrix and k is the permutations of other rows. Similarly the transformation A_{i-1}^+ to A_{j-1}^+ requires $i-1 + \ell$ permutations where $i-1$ is the required number of permutations for ith row and ℓ is for the permutation of other rows. It is clear that ℓ can be equal to k. After this transformation A_{i-1}^+ is diagonal. Hence, only A_{i-1}^- must be considered in order to determine the sign of an i-j C.D.C. Let a path P_i contain p_i vertices, and a circuit C_i contain c_i vertices ($i = 2, 3, \ldots, s$). Then the following permutations make A_{i-1}^- diagonal.
\[(p_1 - 1) + (c_2 - 1) + \ldots + (c_s - 1)\]

\[= (p_1 + c_2 + c_3 + \ldots + c_s) - s = v - 2s\] (33)

Therefore the sign \(\epsilon\) of a i-j C.D.C. will be

\[(-1)^{i+j} \cdot (-1)^{i+j-3+2k} \cdot (-1)^{v-2} \cdot (-1)^{v-2-s} = (-1)^{s-1}\] (34)

where \((-1)^{v-2}\) is from the determinant of the diagonalized \(A^-\) because all nonzero entries of \(A^-\) are \(-1\). Therefore the sign of cofactor is \((-1)^{s-1}\) which is equal to \((-1)^s\).

Q.E.D.

3.4 Example of Evaluation of the Determinant and Cofactor

Consider a M.U. graph as in Figure 8 whose \(Y_n\) is given in Equation (35).

![Figure 8. M.U. Graph](image)
The determinant can be obtained directly from the M.U. graph by Theorem 4.

\[
\Delta = y_2 y_3 y_4 y_8 y_9 - y_2 y_4 y_6 y_7 y_8 - y_1 y_3 y_5 y_8 y_9 + y_1 y_5 y_6 y_7 y_8
\]
(36)

where each C.D.C. is shown in Figure 9a, 9b, 9c and 9d.

Similarly, cofactor \(\Delta_{54} \) can be obtained by Theorem 6 as

\[
\Delta_{54} = -y_2 y_3 y_4 y_9 + y_2 y_4 y_6 y_7 + y_1 y_3 y_5 y_9 - y_1 y_5 y_6 y_7
\]
(37)

where each 5-4 C.D.C. is shown in Figure 10a, 10b, 10c and 10d.
Figure 9. A C.D.C. of M.U. graph shown in Figure 8.
Figure 10. 5-4 C.D.C.'s of M.U. graph shown in Figure 8.
4. TOPOLOGICAL FORMULAS FOR SHORT CIRCUIT FUNCTION

Let N be a four terminal network shown in Figure 11.

Figure 11. Four terminal network

\[
\begin{bmatrix}
0 \\
\vdots \\
0 \\
v_{\text{io}} \\
0 \\
\vdots \\
0 \\
v_{\text{jo}} \\
0 \\
\vdots \\
0 \\
v_{\text{ko}} \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
\Delta_{11} & \Delta_{12} & \Delta_{13} & \cdots \\
\Delta_{21} & \Delta_{22} & \cdots \\
\Delta_{31} & \cdots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 \\
i_{\text{io}} & 0 & \cdots & \cdots & 0 \\
i_{\text{jo}} & 0 & \cdots & \cdots & 0 \\
i_{\text{ko}} & 0 & \cdots & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\] (38)
Equation (38) can be written as

\[
\begin{bmatrix}
 v_{io} \\
 v_{jo} \\
 v_{ro}
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
 \Delta_{ii} & \Delta_{ji} & \Delta_{ki} \\
 \Delta_{ij} & \Delta_{jj} & \Delta_{kj} \\
 \Delta_{ir} & \Delta_{jr} & \Delta_{rr}
\end{bmatrix}
\begin{bmatrix}
 i_{io} \\
 i_{jo} \\
 i_{ro}
\end{bmatrix}
\]

(39)

By letting \(v_{jk} = v_{jo} - v_{ko} \) and \(i_{jk} = i_{jo} = -i_{ko} \), Equation (39) becomes

\[
\begin{bmatrix}
 \Delta_{io} \\
 v_{jk}
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
 \Delta_{ii} & \Delta_{ji} - \Delta_{ki} \\
 \Delta_{ij} - \Delta_{ik} & \Delta_{jj} - \Delta_{jk} - \Delta_{k}\Delta_{rr}
\end{bmatrix}
\begin{bmatrix}
 i_{io} \\
 i_{jk}
\end{bmatrix}
\]

(40)

Let us take the inverse of Equation (40).

\[
\begin{bmatrix}
 i_{io} \\
 i_{jk}
\end{bmatrix}
= \frac{1}{\Delta}
\begin{bmatrix}
 \frac{\Delta_{ii} \Delta_{jk} - \Delta_{ik} + \Delta_{kk}}{\Delta^2} & \frac{\Delta_{i} - \Delta_{ki}}{\Delta} \\
 \frac{\Delta_{ij} - \Delta_{ik}}{\Delta} & \frac{\Delta_{jj} - \Delta_{jk} - \Delta_{k}\Delta_{rr}}{\Delta}
\end{bmatrix}
\begin{bmatrix}
 v_{io} \\
 v_{jk}
\end{bmatrix}
\]

(41)
However,

\[
\frac{\Delta_{ii} (\Delta_{jj} - \Delta_{jk} - \Delta_{kj} + \Delta_{kk})}{\Delta^2} = \frac{1}{\Delta} \cdot \frac{\Delta_{ik} - \Delta_{ik}}{\Delta} \\
= \frac{1}{\Delta^2} \left(\Delta_{ii} \Delta_{jj} - \Delta_{ij} \Delta_{ik} - \Delta_{ijk} + \Delta_{ij} \Delta_{ik} + \Delta_{ij} \Delta_{ik} \Delta_{kk} \right) \\
= \frac{\Delta^2}{\Delta (\Delta_{ij} \Delta_{jk} + \Delta_{ik} \Delta_{jk} - \Delta_{ijk} \Delta_{ik})}
\]

(42)

Hence,

\[
\begin{bmatrix}
\Delta_{io} \\
\Delta_{jk}
\end{bmatrix} = \frac{1}{\Delta_{ijj} + \Delta_{iik} - \Delta_{ijk} - \Delta_{ikj}} \begin{bmatrix}
\Delta_{ii} & -\Delta_{ij} + \Delta_{ik} \\
-\Delta_{ij} + \Delta_{ik} & \Delta_{jj} - \Delta_{jk} - \Delta_{kk}
\end{bmatrix} \begin{bmatrix}
\Delta_{io} \\
\Delta_{jk}
\end{bmatrix}
\]

(43)

This equation shows that the topological formula for double cofactors is important in analysis of networks.

Theorem 7: The double cofactor \(\Delta_{ijk} \) of \(Y_n \) is equal to

\[
\Delta_{ijk} = \Sigma (-1)^{s'} j-k \text{ C.D.C. of } G_{-i} \text{ admittance products}
\]

(44)

where \(G_{-i} \) can be obtained from the vertex \(i \) from the M.U. graph \(G \), \(s' \) is the order of \(j-k \) C.D.C. of \(G_{-i} \) and summation is over all possible \(j-k \) C.D.C. of \(G_{-i} \).

Proof: It is clear that \(\Delta_{ijk} \) is equal to the determinant of the matrix which is obtained by deleting the \(i \) and \(j \)th rows and \(i \) and \(k \)th columns.

However, deleting the \(i \)th row and column gives the cofactor \(\Delta_{ii} \) of \(Y_n \) of \(G \).
which means that Δ_{ijik} is the j-k cofactor of the admittance matrix of G_{-i}. Thus by Theorem 6,

$$\Delta_{ijik} = \Sigma(-1)^s' j-k \text{ C.D.C. of } G_{-i} \text{ admittance products}.$$ \hspace{1cm} (45)

Q.E.D.
5. PROOF OF MASON’S FORMULA FOR SIGNAL FLOW GRAPHS
BY M.U. GRAPHS

5.1 Introduction

Mason’s signal flow graph \([4,5]\) is one of the graphical representations of linear equations. If by some modification of a signal flow graph, the resultant graph represents a system of linear equations similar to that stated in chapter 2, then the modified graph is a M.U. graph, and it is possible to prove Mason’s formula by the method of chapter 3.

5.2 Proof of Mason’s Formula

A linear equation which can be represented by Mason’s signal flow graph has the form

\[
\begin{align*}
X_1 & \quad y_0 \quad x_1 \quad x_2 \quad \cdots \quad x_n \\
X_2 & \quad C_1 \quad C_2 \\
\vdots & \quad \vdots \quad \vdots \\
X_n & \quad \vdots \quad \vdots \quad \vdots \\
\end{align*}
\]

\[
\begin{bmatrix}
y_0 \\
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix} = \begin{bmatrix}
y_0 \\
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix} + \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix}
\]

(46)

This can be changed to

\[
\begin{align*}
X_1 & \quad y_0 \quad x_1 \quad x_2 \quad \cdots \quad x_n \\
X_2 & \quad C_1 \quad C_2 \cdot U \\
\vdots & \quad \vdots \quad \vdots \\
X_n & \quad \vdots \quad \vdots \quad \vdots \\
\end{align*}
\]

\[
\begin{bmatrix}
y_0 \\
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix} = \begin{bmatrix}
y_0 \\
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
0 \\
\end{bmatrix}
\]

(47)
or by adding

\[y = \alpha x_1. \] (48)

Equation (47) becomes

\[
\begin{pmatrix}
 y_0 \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 y_0 \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} +
\begin{pmatrix}
 \alpha \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]

Equation (49) can be expressed as M.U. graph (see chapter 2). By Equations (46) and (49), it can be seen that a M.U. graph can be obtained from a signal flow graph by the following steps.

1. Addition of -1 circuits to all the vertex in the graph.
2. Addition of an edge, whose weight is \(\alpha \), from the output vertex (in this case vertex \(x_1 \)) to the input vertex (in this case vertex \(y_0 \)).

If Equation (46) is consistent, then the determinant of Equation (49) is zero.

From Equation (48) we have

\[
\frac{1}{\alpha} = \frac{x_1}{y_0}
\]

(50) and \(\frac{1}{\alpha} \) is the quantity which should be evaluated.
Consider a Mason's signal flow graph G^m having v vertices. Let G be a M.U. graph obtained by using steps (1) and (2), then by Theorem 4 the determinant of Y_n of G is

$$\Delta = \sum (-1)^s \text{C.D.C. of } G \text{ admittance products}.$$ \hspace{1cm} (51)

For convenience, symbols U_i, L^q_i, p^q and L^r_\sim are defined as follows:

Definition 7: U_i is the ith set of negative unit circuits which is added in the step (1) to obtain a M.U. graph from a signal flow graph.

Definition 8: L^q_i is a set of an edge and vertex disjoint union of i directed circuits consisting of q edges of a signal flow graph G^m.

Definition 9: p^q is an oriented path from the input vertex to the output vertex consisting of q edges.

Definition 10: For a given oriented path p^q, L^r_\sim is a set of either an edge or a vertex disjoint union of i directed circuits consisting of r edges of G^m such that the set and p^q are also disjoint each other.

By Equation (51) and the above four definitions, determinant Δ of G can be expressed as

$$\Delta = (-1)^v U_v + \sum (-1)^{v-p} P^q U_p \text{ adm. prod.} + \sum (-1)^{v-p+2} P^q U_p \text{ adm. prod.}$$

$$+ \ldots + \sum (-1)^{v-p+k} P^q U_p \text{ adm. prod.} + \ldots + \sum (-1)^v L^v \text{ adm. prod.}$$

$$+ \alpha \sum P^r \left\{ (-1)^{v-r} U_{v-r-1} + \sum (-1)^{v-q-r+1} L^q U_{v-q-r-1} \text{ adm. prod.} + \ldots
+ \sum (-1)^{v-q-r+k} L^q U_{v-q-r-1} \text{ adm. prod.} + \ldots + \sum (-1)^v L^v \text{ adm. prod.} \right\}$$

\hspace{1cm} (52)
where if \(L_1^p \) is empty, then \((-1)^{v-p-1} L_1^p U_{v-p} \) adm. prod. is zero, and if either \(P_r \) or \(L_k^q \) is empty, then \(\alpha P_r (-1)^{v-q-r+1} L_k^q U_{v-q-r-1} \) adm. prod. is zero. The above result is true, because of the following two reasons:

1. Suppose an edge and vertex disjoint union of \(k \) directed circuits is obtained from \(G^m \). Also suppose the circuits together contain \(k \) edges.

By Definition 8, the collection of these circuits is symbolized by \(L_k^p \). It is obvious that \(L_k^p \) consists of \(p \) vertices. In order to form a C.D.C. \(v-p \) negative unit circuits must be picked, therefore \(L_k^p U_{v-p} \) is a C.D.C., and the sign of this C.D.C. is \((-1)^{v-p+k} \) which is in Equation (52).

2. Suppose that a path from the output vertex to the input vertex is obtained from \(G^m \) which consists of \(r \) edges, which is symbolized by \(P_r \). This path with edge \(\alpha \) forms a directed circuit which contains \(r+1 \) vertices. Also suppose an edge and vertex disjoint union of \(k \) directed circuits such that these circuits and the circuit formed by \(\alpha \) and \(P_r \) are disjoint. By Definition 10, these \(k \) circuits are symbolized by \(L_k^q \), under the assumption that these circuits consist of \(q \) edges. It is clear that \(L_k^q \) consists of \(q \) vertices.

In order that \(\alpha \) and the circuit formed by \(\alpha \) and \(P_r \) are in a C.D.C., \(v-r-1 \) negative unit circuits must be chosen. Hence every term which contains \(\alpha \) must be of the form \(\alpha P_r (-1)^{v-q-r+k} L_k^q U_{v-q-r-1} \) adm. prods.

Because \(U_1 \) adm. prods. is equal to \((-1)^i \), Equation (52) can be written as

\[
\Delta = 1 - \sum L_1^p \text{ adm. prod.} + \sum L_2^p \text{ adm. prod.} + \ldots \\
+ \sum(-1)^k L_k^p \text{ adm. prod.} + \ldots \\
- \alpha \sum P_r \{ 1 - \sum L_1^q \text{ adm. prod.} + \sum L_2^q \text{ adm. prod.} \\
+ \sum(-1)^k L_k^q \text{ adm. prod.} + \ldots \} \\
\]

(53)
By setting determinant Δ being zero, we will obtain Mason's formula as

$$\frac{1}{\alpha} = \frac{\sum P_r \{ 1 - \sum \frac{L_q}{2} \text{ adm. prod.} + \sum \frac{L_q}{2} \text{ adm. prod.} - \ldots \} }{1 - \sum L_1^p \text{ adm. prod.} + \sum L_2^p \text{ adm. prod.} - \ldots}$$

(54)

Q.E.D.
6. AN EXAMPLE OF EVALUATION OF VERTEX POTENTIAL BY TOPOLOGICAL FORMULAS

Let the given system be the network of an amplifier shown in Figure 12.

![Figure 12. The given network N](image)

The corresponding M.U. graph can be expressed in Figure 13, and the matrix expression of linear equations is written as Equation (55).
Then the determinant of Y_n of G can be obtained by the topological formulas which are in chapter 3.
Then the cofactor Δ_{gg} of γ_n should be obtained. According to chapter 3, G_{-1}, which is obtained by deleting the vertex i of G, will be necessary and shown in Figure 14.

By Figure 14, the cofactor Δ_{gg} is as follows:

$$\Delta_{gg} = -(1-\alpha) \cdot g_1 g_2 g_3$$

Therefore the vertex potentials V_g of N is
\[V_g = \frac{(1 - \alpha) \cdot g_1 g_2 g_3 \cdot \frac{I_g}{g}}{(1 - \alpha) g_{m1} g_{m2} g_{m3} \cdot g_3 - (1 - \alpha)^2 \cdot g_3 \cdot g_1 g_2 + (1 - \alpha) \cdot g_1 g_2 g_3 \cdot g + \alpha (1 - \alpha) \cdot g_1 g_2 g_3} \]

\[+ (1 - \alpha)^2 \cdot g_1 g_2 g_3 \]

\[\frac{g_1 g_2}{g_{m1} g_{m2} g_{m3} + g_1 g_2 g_3 + \alpha g_1 g_2 g_3} \cdot \frac{I_g}{g} \]

(58)
BIBLIOGRAPHY

Distribution list as of March 1, 1965

[List continued on next page]
Distribution list as of March 1, 1965 (Cont’d.)

1 Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73
Lexington 72, Massachusetts
Attn: Dr. Robert Kingston

1 ARDC (PR927)
Eglin Air Force Base
Florida

1 Mr. Alan Barnum
Rose Air Development Center
Griffiss Air Force Base
Rome, New York 13442

1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
75 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator

1 Director
Columbia Radiation Laboratory
Columbia University
120 West 120th Street
New York, New York 10027

1 Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California

1 Professor A. A. Dougall, Director
Laboratories for Electronics and Related Science Research
University of Texas
Austin, Texas 78712

1 Professor J. K. Aggarwal
Department of Electrical Engineering
University of Texas
Austin, Texas 78712

1 Director
Engineering & Applied Physics
210 Florida Hall
Harvard University
Cambridge, Massachusetts 02138

1 Capt. Paul Johnson (DNB Ret.)
National Aeronautics & Space Agency
1500 K. Street, N.W.
Washington 25, D. C.

1 NASA Headquarters
Office of Applications
400 Maryland Avenue, N.W.
Washington 25, D. C.

1 Code 40 Mr. A. M. Greg Anderson
National Bureau of Standards
Research Information Center and Advisory Serv.
on Info. Processing
Data Processing Systems Division
Washington 25, D. C.

1 Dr. Wallace Kinchlo
Director for Defense Analyses
Research & Dev. Support Div.
1606 Connecticut Avenue, N.W.
Washington 9, D. C.

1 Data Processing Systems Division
National Bureau of Standards
Conr. at 15th Street
Washington 25, D. C.
Attn: A. E. Mellow

1 Exchange and Gift Division
The Library of Congress
Washington 25, D. C.

1 Dr. Alan T. Waterman, Director
National Science Foundation
Washington 25, D. C.

1 B. E. Cochrane
Oak Ridge National Laboratory
P. O. Box X
Oak Ridge, Tennessee

1 Division of Atomic Energy Commission
Office of Technical Information Extension
P. O. Box 52
Oak Ridge, Tennessee

1 Mr. J. R. Watson
Director
Colidian Joint Staff
2520 Massachusetts Avenue, N.W.
Washington 5, D. C.

1 Martin Company
P. O. Box 3357
Orlando, Florida
Attn: Engineering Library MF-30

1 Laboratories for Applied Sciences
University of Chicago
6225 South Doran
Chicago, Illinois 60637

1 Libraries
School of Electrical Engineering
Purdue University
Lafayette, Indiana

1 Donald L. Spiro
Director
School of Electrical Engineering
State University of Iowa
Iowa City, Iowa

1 Instrumentation Laboratory
Massachusetts Institute of Technology
60 Albany Street
Cambridge 39, Massachusetts
Attn: Library HS-109

1 Sylvania Electric Products, Inc.
Electronic Systems Division
Waltham Labs. Library
100 Forest Avenue
Waltham 54, Massachusetts

1 Hughes Aircraft Company
Centinsals and Dale Streets
Calver City, California
Attn: K. C. Rosenberg, Supervisor
Company Technical Document Center

1 Automation
9150 seat Imperial Highway
Downey, California
Attn: Tech. Library, 2041-11

1 Mr. Arnold T. Nordtack
General Motors Corporation
Defence Research Laboratories
6767 Hollister Avenue
Goleta, California

1 University of California
Lawrence Radiation Laboratory
P. O. Box 808
Livermore, California

1 Mr. Thomas L. Hartwick
Aerospace Corporation
P. O. Box 9508
Los Angeles 45, California

1 Lt. Col. Willard Levin
Aerospace Corporation
P. O. Box 9508
Los Angeles 45, California

1 Sylvania Electronic Systems-West
Electronic Defense Laboratories
P. O. Box 305
Mountain View, California
Attn: Documents Center

1 Various Associates
611 Hansen Way
Palo Alto, California 94303
Attn: Tech. Library

1 Houston Methodist
Library Supervisor
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

1 Professor Nicholas George
California Institute of Technology
Electrical Engineering Department
Pasadena, California

1 Space Technology Labs., Inc.
One Space Park
Redondo Beach, California
Attn: Acquisitions Group
SSF Technical Library

1 The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library

1 Miss E. Clark
Reed Corp. of America
NASA Laboratories
David Sarnoff Research Center
Princeton, New Jersey

1 Mr. A. A. Londerman
Bell Telephone Laboratories
Room 2E-127
Whippany, New Jersey

1 Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo 21, New York
Attn: J. P. Desmon, Librarian

1 Sperry Gyroscope Company
Marine Division Library
155 Glenn Cove Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd

1 Libraries
Light Military Electronics Dept.
General Electric Company
Aerospace & Control Products Section
Johnson City, New York

1 Mr. W. E. Wold
Director
Radio Corporation of America
Kennecott Polytechnic Institute
Troy, New York

1 Battelle-NORTHWEST
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio

1 Laboratory for Electrosience Research
New York University
University Heights
Bronx 33, New York

1 National Physical Laboratory
Teddington, Middlesex
England
Attn: Dr. A. M. Dibley, Superintendent
Aeronautics Division

1 Dr. Lee Ruff
Behavioral Sciences
Advanced Research Projects Agency
The Pentagon (Room 2613)
Washington, D. C. 20301

1 Mr. Glenn L. Ryan
Head, Personnel and Training Branch
Navy Department
Washington, D. C. 20360

1 Instituto de Fisica Aplicado "L. Torres Quevedo"
High Vacuum Laboratory
Madrid, Spain
Attn: Jose L. de Segovia

1 Stanford Research Institute
Attn: G-035 External Reports
(for J. Goldberg)
Menlo Park, California 94025
REVISED U. S. ARMY DISTRIBUTION LIST

As received at the Coordinated Science Laboratory 27 July 1965

1 Dr. Chalmers Sherwin
 Deputy Director (Research & Technology)
 DD&RE Rm 3E1060
 The Pentagon
 Washington, D. C. 20301

1 Dr. Edward M. Reilley
 Asst. Director (Research)
 Ofc of Defense Res & Eng
 Department of Defense
 Washington, D. C. 20301

1 Dr. James A. Ward
 Office of Deputy Director (Research and Information Rm 3D1037)
 Department of Defense
 The Pentagon
 Washington, D. C. 20301

1 Director
 Advanced Research Projects Agency
 Department of Defense
 Washington, D. C. 20301

1 Mr. E. I. Salkovitz, Director
 For Materials Sciences
 Advanced Research Projects Agency
 Department of Defense
 Washington, D. C. 20301

1 Colonel Charles C. Mack
 Headquarters
 Defense Communications Agency (333)
 The Pentagon
 Washington, D. C. 20305

20 Defense Documentation Center
 Attn: TISIA
 Cameron Station, Building 5
 Alexandria, Virginia 22314
1 Director
 National Security Agency
 Attn: Librarian C-332
 Fort George G. Meade, Maryland 20755

1 U. S. Army Research Office
 Attn: Physical Sciences Division
 3045 Columbia Pike
 Arlington, Virginia 22204

1 Chief of Research and Development
 Headquarters, Department of the Army
 Attn: Mr. L.H. Geiger, Rm 3D442
 Washington, D.C. 20310

1 Research Plans Office
 U. S. Army Research Office
 3045 Columbia Pike
 Arlington, Virginia 22204

1 Commanding General
 U. S. Army Materiel Command
 Attn: AMCRD-RS-PE-E
 Washington, D.C. 20315

1 Commanding General
 U. S. Army Strategic Communications Command
 Washington, D.C. 20315

1 Commanding Officer
 U. S. Army Materials Research Agency
 Watertown Arsenal
 Watertown, Massachusetts 02172

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Attn: V. W. Richards
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Attn: Keats A. Pullen, Jr.
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005
1 Commanding Officer
U. S. Army Ballistics Research Laboratory
Attn: George C. Francis, Computing Lab
Aberdeen Proving Ground, Maryland 21005

1 Commandant
U. S. Army Air Defense School
Attn: Missile Sciences Division, C&S Dept
P. O. Box 9390
Fort Bliss, Texas 79916

1 Commanding General
U. S. Army Missile Command
Attn: Technical Library
Redstone Arsenal, Alabama 35809

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1310 (Dr. Sidney Ross)
Philadelphia, Pennsylvania 19137

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1300
Philadelphia, Pennsylvania 19137

1 U. S. Army Munitions Command
Attn: Technical Information Branch
Picatinny Arsenal
Dover, New Jersey 07801

1 Commanding Officer
Harry Diamond Laboratories
Attn: Mr. Berthold Altman
Connecticut Avenue and Van Ness Street, N.W.
Washington, D. C. 20438

1 Commanding Officer
Harry Diamond Laboratories
Attn: Library
Connecticut Avenue and Van Ness Street, N.W.
Washington, D. C. 20438

1 Commanding Officer
U. S. Army Security Agency
Arlington Hall
Arlington, Virginia 22212
1 Commanding Officer
U. S. Army Limited War Laboratory
Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005

1 Commanding Officer
Human Engineering Laboratories
Aberdeen Proving Ground, Maryland 21005

1 Director
U. S. Army Engineer Geodesy, Intelligence & Mapping
Research and Development Agency
Fort Belvoir, Virginia 22060

1 Commandant
U. S. Army Command and General Staff College
Attn: Secretary
Fort Leavenworth, Kansas 66207

1 Dr. H. Robl, Deputy Chief Scientist
U. S. Army Research Office (Durham)
Box CM, Duke Station
Durham, North Carolina 27706

1 Commanding Officer
U. S. Army Research Office (Durham)
Attn: CRD-AA/IP (Richard O. Ulsh)
Box CM, Duke Station
Durham, North Carolina 27706

1 Superintendent
U. S. Army Military Academy
West Point, New York 10996

1 The Walter Reed Institute of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

1 Commanding Officer
U. S. Army Electronics R&D Activity
Fort Huachuca, Arizona 85163

1 Commanding Officer
U. S. Army Engineers R&D Laboratory
Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding Officer
U. S. Army Electronics R&D Activity
White Sands Missile Range, New Mexico 88002

1 Director
Human Resources Research Office
The George Washington University
300 N. Washington Street
Alexandria, Virginia 22300

1 Commanding Officer
U. S. Army Personnel Research Office
Washington, D. C.

1 Commanding Officer
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky 40120

1 Commanding General
U. S. Army Signal Center and School
Fort Monmouth, New Jersey 07703
Attn: Chief, Office of Academic Operations

1 Dr. S. Benedict Levin, Director
Institute for Exploratory Research
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command
Attn: Mr. Robert O. Parker, Executive Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703

1 Commanding General
U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703
Attn: ASEL-SC

 RD-D
 RD-G
 RD-MAF-I
 RD-MAT
 RD-GF
 RD-MN (Marine Corps LmO)
 XL-D
Attn: XL-E
XL-C
XL-S
HL-D
HL-L
HL-J
HL-P
HL-O
HL-R
NL-D
NL-A
NL-P
NL-R
NL-S
KL-D
KL-E
KL-S
KL-T
VL-D
WL-D

1 Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics and Space Administration
Washington, D. C. 20546

1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator

1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027

1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94301
13. ABSTRACT

In this paper modified unistors have been defined. For example, the transconductance of a vacuum tube will be expressed by one modified unistor. A M.U. graph (modified unistor graph) is a linear graph consisting of modified unistors and can represent a linear electrical network. A node voltage equation of a M.U. graph of n edges without sources can be obtained as

$$\mathbf{A}^- \mathbf{Y}^+ \mathbf{V}^+ = 0$$

where \mathbf{A}^-, \mathbf{A}^+, and \mathbf{Y} are a negative incidence matrix, a positive incidence matrix, and a diagonal n by n admittance matrix.

If there exist independent current sources from the reference vertex to any vertex in a M.U. graph, then the node voltage equations can be written as

$$\mathbf{A}^- \mathbf{Y}^+ \mathbf{V}^+ = \mathbf{Y} \mathbf{V}^+ = -\mathbf{J}$$

where \mathbf{J} is a column matrix representing independent current sources. It is noticed that \mathbf{Y} is a connection matrix of M.U. graph.

By the Binet-Cauchy theorem, the determinant of \mathbf{Y} is equal to summation of nonzero majors of $\mathbf{A}^- \mathbf{Y}$ times the corresponding majors of $\mathbf{A}^+ \mathbf{Y}$. Therefore, first the condition of the set of edges which forms a nonzero...
<table>
<thead>
<tr>
<th>INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.</td>
</tr>
<tr>
<td>2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.</td>
</tr>
<tr>
<td>2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.</td>
</tr>
<tr>
<td>3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.</td>
</tr>
<tr>
<td>4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.</td>
</tr>
<tr>
<td>5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.</td>
</tr>
<tr>
<td>6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.</td>
</tr>
<tr>
<td>7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.</td>
</tr>
<tr>
<td>7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.</td>
</tr>
<tr>
<td>8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.</td>
</tr>
<tr>
<td>8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.</td>
</tr>
<tr>
<td>9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.</td>
</tr>
<tr>
<td>9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).</td>
</tr>
<tr>
<td>10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:</td>
</tr>
</tbody>
</table>
| (1) "Qualified requesters may obtain copies of this report from DDC."
| (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
| (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."
| (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."
| (5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."
| If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known. |
| 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. |
| 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. |
| 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. |
| It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. |
| 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional. |
major should be expressed topologically. Then, it can be shown that
the determinant of Y_n is equal to the summation of $(-1)^s$ times the
C.D.C. admittance products of a M.U. graph. Similarly, topological
formulas of the ij cofactor Δ_{ij} and the double cofactor Δ_{iijk} of Y_n
are given. These formulas are important in obtaining network
functions. Finally, in Chapter 5, Mason's formula for signal flow
graphs will be proved by using M.U. graphs.