A CURRENT MODE DA CONVERTER

Jack Stifle

REPORT R-263

AUGUST, 1965
This work was supported wholly by the Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28 043 AMC 00073(E).

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. May be released to OTS.
ACKNOWLEDGMENT

Thanks are due to Dr. Duane H. Cooper for his advice and helpful discussions.

Thanks also are due to Leonard Hedges who did the actual layout and construction of the converter.
ABSTRACT

This report describes the design of a digital to analog converter using a current driven ladder instead of the more conventional voltage driven technique.

The constant current source is a standard Darlington configuration which is easily temperature compensated.

The converter specifications include a maximum worst case absolute error of less than 0.01%, long term stability better than 0.008%, 0 offset voltage, and a setting time of less than 1.8 μs. No trimming components are used.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CIRCUIT ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>ERROR ANALYSIS</td>
<td>11</td>
</tr>
<tr>
<td>CURRENT SOURCE</td>
<td>13</td>
</tr>
<tr>
<td>DESIGN EXAMPLE</td>
<td>16</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>25</td>
</tr>
<tr>
<td>Figure/Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Figure 1.</td>
<td>Voltage Operated Ladder</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Current Mode Ladder Converter</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Simplified Converter</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Node i</td>
</tr>
<tr>
<td>Table I.</td>
<td>Values of 2k</td>
</tr>
<tr>
<td>Table II.</td>
<td>Ladder Current Distribution</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Ladder Voltage Distribution</td>
</tr>
<tr>
<td>Table III.</td>
<td>Values of $J_{(\text{max})}$</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Current Source</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Reference Voltage Source</td>
</tr>
<tr>
<td>Table IV.</td>
<td>Transistor Characteristics</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>10 Bit DA Converter</td>
</tr>
<tr>
<td>Table V.</td>
<td>Experimental Results</td>
</tr>
</tbody>
</table>
INTRODUCTION

One of the more popular digital to analog conversion (DA) techniques is the resistive ladder technique shown in Figure 1. The inputs to the ladder are switched between ground and some reference voltage. This technique, therefore, may be referred to as a voltage operated ladder.

The purpose of this paper is to investigate a DA technique using a current operated ladder. The technique will be analyzed in detail, the
sources of error identified, and finally the results of the analysis will be used in the design of a 10-bit DA converter.

CIRCUIT ANALYSIS

The circuit diagram for a \((n+1)\) bit, ladder type, current operated converter is shown in Figure 2. The current sources each supply a current \(I\) to the ladder when switch \(a_i\) is closed. Switch \(a_i\) will be closed if the corresponding bit in the digital input is a "1", and open if the bit is a "0". \(a_0\) is the least significant and \(a_n\) the most significant bit of the digital input. Each current source has the output admittance \(Y_o\). The analog output voltage is taken from node \(n\).
Before deriving the general expression for the analog output voltage, it will be helpful to simplify the circuit in Figure 2 to that of Figure 3 via the following relationships.

\[\alpha = RY_o \]
\[V_{cc} = \frac{V_c}{Y_o} = \frac{V_c}{1+2\alpha} \]
\[R_x = \frac{2R}{1+2\alpha} \]

\[\frac{V_c}{1+a} \]

Figure 3. Simplified Converter.
Consider any node \(i (i \neq o, n) \) as shown in Figure 4.

\[
V_i = V_{cc} - I_i R_x
\]
(4)

\[
I_i = a_i I + \frac{V_i-V_{i+1}}{R} - \frac{V_{i-1}-V_i}{R}
\]
(4a)

Substituting Eq. (4a) into Eq. (4) and making use of Eqs. (2) and (3) gives

\[
V_i = \frac{V_{cc} - a_i I_2 R}{5+2\alpha} + \frac{2V_{i+1}}{5+2\alpha} + \frac{2V_{i-1}}{5+2\alpha}.
\]
(4b)

Figure 4. Node i.

A similar treatment of nodes o and n will yield the following relationships:
Using Eqs. (4b) and (4c) and considerable algebra, it can be shown that the voltage at any node \(m \) (\(m = 0 \) through \(m = n-1 \)) is given by the following:

\[
V_m = \frac{1}{D_m} \left[\frac{V_0 - a IR}{2 + \alpha} + \frac{V_n - a IR}{2 + \alpha} \right]
\]

(4c)

(4d)

where

\[
D_i = (5 + 2\alpha)D_{i-1} - 4D_{i-2}
\]

(5a)

\[
D_0 = 2 + \alpha
\]

(5b)

\[
D_{-1} = \frac{1}{2}
\]

(5c)

Substituting Eq. (5) with \(m = n-1 \) into Eq. (4d) and solving for \(V_n \) yields

\[
V_n = \frac{2^n}{D_0 D_{-1} - 2D_{-2}} \left[V_0 \left\{ \frac{D_{n-1}}{2^n} + \frac{1}{2} \left[1 + \sum_{i=1}^{n-1} \frac{D_{i-1}}{2^i} \right] \right\} - \sum_{i=0}^{n} \frac{D_{i-1}}{2^i} a_i \right] .
\]

(6)

Let \(k_i = \frac{D_{i-1}}{2^i} \).

(6a)

Eq. (6) then becomes:

\[
V_n = \frac{1}{2(D_0 k_n - k_{n-1})} \left[V_0 (2k_{n+1} + \frac{1}{2} \sum_{i=1}^{n-1} 2k_i) - \sum_{i=0}^{n} 2k_i a_i \right] .
\]

(6b)

Values of \(2k_i \) are determined from Eq. (6a) and Eq. (5a). Note that \(D_0 \) and \(D_{-1} \) are defined by Eqs. (5b) and (5c), respectively.
The following examples illustrate the calculation of $2k_i$.

\[i = 0 \quad 2k_0 = 2 \frac{D_0-1}{2^0} = 1 = 2^0 \]

\[i = 1 \quad 2k_1 = 2 \frac{D_0}{2^1} = 2+\alpha = 2^1+\alpha \]

\[i = 2 \quad 2k_2 = 2 \left[\frac{D_1}{2^2} \right] = \frac{1}{2} \left[(5+2\alpha)(2+\alpha) - 4 \left(\frac{1}{2} \right) \right] \]

\[= \frac{1}{2} [8+9\alpha+2\alpha^2] \quad . \]

It will be assumed in all calculations that

\[\alpha \leq .001 \quad . \]

This assumption can quite easily be met as will be shown later. Therefore, all α^2 and higher order terms that arise in calculations for $2k_i$ can be neglected. Therefore:

\[2k_2 \approx \frac{1}{2} [8+9\alpha] = 2^2 + 4.5\alpha \quad . \]

Note that:

\[2k_1 = 2^i + j_i \alpha \quad . \]

Values of $2k_i$ are summarized in Table I.
Consider the factor \(\frac{1}{2(D - k - k - n)} \) in Eq. (6b).

\[
\frac{1}{2(D - k - k - n)} \rightarrow \frac{1}{2^n (3/2 + \alpha')} + \alpha (2j - j - n - 1) + j - \alpha^2.
\]

From values of \(j \) in Table I and making use of assumption (7), the above expression becomes

\[
\frac{1}{2(D - k - k - n)} \approx \frac{1}{2^n (3/2)}.
\]

Similarly, it may be shown, for the other factors in Eq. (6b)

\[
2k_n + 1 + \frac{1}{2} \sum_{i=1}^{n-1} 2k_i = 2^n (3/2) + \alpha \left[j_n + \frac{1}{2} \sum_{i=1}^{n-1} j_i \right] \approx 2^n (3/2),
\]

\[
\sum_{i=0}^{n} 2k_i a_i = \sum_{i=0}^{n} 2^j a_i + \alpha \sum_{i=0}^{n} j_i a_i.
\]
Making use of the above approximations, Eq. (6b) becomes

\[V_n = V_c - \frac{IR}{2^{n(3/2)}} \left[\sum_{i=0}^{n} 2^i a_i + \alpha \sum_{i=0}^{n} j^i a_i \right]. \tag{9} \]

Equation (9) is the basic converter equation and it shows that for perfect DA conversion, infinite output impedance is required of the current sources \(\alpha = 0 \).

Assuming \(\alpha = 0 \), the following points of interest are noted:

a) \(V_n = V_c \) for a digital input of 0 (all \(a_i = 0 \));

b) \(V_n \approx V_c - \frac{4}{3} IR \) for a digital input of \(2^{n+1} - 1 \) (all \(a_i = 1 \));

c) The total voltage swing \(\Delta V \approx -\frac{4}{3} IR \);

d) For each unit change in the digital input, the output analog voltage will change by an amount \(\frac{IR}{2^{n(3/2)}} \). This quantity is called the analog step size. The factor \(\frac{1}{2^{n(3/2)}} \) is sometimes referred to as the scale factor of the converter.

Table II shows the fractional value of current from each current source (10 bit A D) flowing in each vertical resistor of the ladder. From this data the maximum ladder voltage distribution curve in Figure 5 may be obtained. Note that the maximum voltage drop occurs for the center stages. This fact must be considered in the design of the current sources for the prevention of current source saturation.
\[\frac{1}{2} \]

Table II. Ladder Current Distribution

<table>
<thead>
<tr>
<th>(I_0)</th>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
<th>(I_4)</th>
<th>(I_5)</th>
<th>(I_6)</th>
<th>(I_7)</th>
<th>(I_8)</th>
<th>(I_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{768})</td>
<td>(\frac{1}{384})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{16})</td>
<td>(\frac{2}{3})</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{384})</td>
<td>(\frac{1}{384})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{12})</td>
</tr>
<tr>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
</tr>
<tr>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{12})</td>
</tr>
<tr>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{24})</td>
</tr>
<tr>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{48})</td>
</tr>
<tr>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{96})</td>
</tr>
<tr>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{192})</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{384})</td>
<td>(\frac{1}{384})</td>
</tr>
<tr>
<td>(\frac{2}{3})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{12})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{48})</td>
<td>(\frac{1}{96})</td>
<td>(\frac{1}{192})</td>
<td>(\frac{1}{384})</td>
<td>(\frac{1}{768})</td>
<td>(\frac{1}{768})</td>
</tr>
</tbody>
</table>

| TOTAL \((K) \) | \(1.333 \) | \(.832 \) | \(.912 \) | \(.951 \) | \(.949 \) | \(.949 \) | \(.951 \) | \(.912 \) | \(.832 \) | \(1.333 \) |

\(K = \) the factor, which, when multiplied by \(I \), gives the maximum current which flows in each vertical resistor
Figure 5. Ladder Voltage Distribution (All $a_i = "1"$)
ERROR ANALYSIS

The converter error is defined by Eq. (10)

\[\text{ERR} = \frac{dV}{V} \]

\[\frac{n(x)}{n(x)} \]

where \(V_n(x) = \text{converter output voltage for a digital input of } x \). Or in terms of Eq. (9):

\[V_n(x) = V_c - \frac{IR}{2^n(3/2)} \left[x + \alpha J(x) \right] \]

where

\[J(x) = \sum_{i=0}^{n} j_i a_i(x) \] \tag{10a}

Differentiating the above equation,

\[dV_n(x) = dV_c - \frac{IR}{2^n(3/2)} \left[dx + \alpha dJ(x) + J(x) d\alpha \right] - \left[\frac{x + \alpha J(x)}{2^n(3/2)} \right] [R dI + I dR]. \]

But \(dx \) and \(dJ(x) = 0 \); therefore:

\[dV_n(x) = dV_c - \frac{IR}{2^n(3/2)} \left[x + \alpha J(x) \right] \left[\frac{J(x)}{x + \alpha J(x)} d\alpha + \frac{dI}{I} + \frac{dR}{R} \right] \]

\[= dV_c + V_n(x) \left[\frac{J(x)}{x + \alpha J(x)} d\alpha + \frac{dI}{I} + \frac{dR}{R} \right]. \]

But \(d\alpha = RdY_o + Y_o dR = \alpha \left(\frac{dY}{Y_o} + \frac{dR}{R} \right) \). Making this substitution and rearranging terms,

\[\frac{dV}{V} = \frac{dV_c}{V} + \frac{dI}{I} + \frac{x + 2\alpha J(x)}{x + \alpha J(x)} \frac{dR}{R} + \frac{aJ(x)}{x + \alpha J(x)} \frac{dY}{Y_o}. \]
This expression is true for all inputs \((x)\) greater than \(0\). Also it may be shown that:

\[
\frac{x+2\alpha J(x)}{x+\alpha J(x)} = 1 \quad \text{for all } x > 0.
\]

Therefore,

\[
\frac{dv_{\nu(x)}}{v_{\nu(x)}} = \frac{dv_c}{v_{\nu(x)}} + \frac{dI}{I} + \frac{dR}{R} + \frac{e^J(x)}{x+\alpha J(x)} \frac{dy_o}{y_o}
\]

(10b)

Assuming \(dv_c = 0\), this expression will be maximum when the digital input is a maximum (all \(a_i = 1\)) or \(x = 2^{n+1}-1\).

\[
\frac{\text{ERR}_{\text{max}}}{v_{\nu(\text{max})}} = \frac{dv_c}{v_{\nu(\text{max})}} + \frac{dI}{I} + \frac{dR}{R} + \frac{\alpha J_{\text{max}}}{2^{n+1}-1+\alpha J_{\text{max}}} \frac{dy_o}{y_o}.
\]

(11)

<table>
<thead>
<tr>
<th>No. Bits</th>
<th>(J_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5239</td>
</tr>
<tr>
<td>11</td>
<td>11839</td>
</tr>
<tr>
<td>12</td>
<td>26399</td>
</tr>
</tbody>
</table>

Table III. Values of \(J_{\text{max}}\).

Values of \(J_{\text{max}}\) found using Eq. (10a) and the values of \(j_i\) in Table I, are summarized in Table III for 10, 11, and 12-bit converters.

Since \(I\) and \(Y_o\) are determined by the current source, it is necessary to know the actual circuit before the analysis can be completed.
CURRENT SOURCE

The current source used in the converter is the Darlington circuit, shown in Figure 6. This circuit was chosen for possessing

1) very stable current gain, and
2) relatively high output impedance.

Transistors T_1 and T_2 should both be silicon planer expitaxial transistors chosen for

1) very low I_{co},
2) very high output impedance, and
3) high h_{fe}; and in the case of T_2, high h_{fe} at very low currents.

For the circuit of Figure 6, it can be shown that

$$I = \alpha I_e + I_{co}$$

(12)
where

\[I = \frac{V_{ee} + V_r - (V_{be_1} + V_{be_2})}{R_e} \] \hspace{2cm} (13)

\[I_{co} = I_{co_1} (1 - \alpha_t) + I_{co_2} \approx I_{co_2} \] \hspace{2cm} (14)

\[\alpha_t = \frac{h_{fe_1}}{1 + h_{fe_1}} + \frac{h_{fe_2}}{1 + h_{fe_2}} - \frac{h_{fe_1} h_{fe_2}}{(1 + h_{fe_1})(1 + h_{fe_2})} \] \hspace{2cm} (15)

Substituting Eq. (13) and (14) into Eq. (12) yields

\[I = \frac{\alpha_t}{R_e} (V_{ee} + V_r - V_{be_1} - V_{be_2}) + I_{co_2} \]

Differentiating and dividing by I

\[\frac{dI}{I} = \frac{\alpha_t}{R_e} \left[dV_{ee} + dV_r - dV_{be_1} - dV_{be_2} \right] + \frac{\alpha_t}{I} d\alpha_t - \frac{\alpha_t}{I} \frac{dR_e}{R_e} - \frac{I_{co_2}}{I} \frac{dI_{co_2}}{I_{co_2}} \]

This equation can be simplified via the following approximations:

\[\alpha_t \approx 1 \]

\[I = \frac{\alpha_t}{R_e} \frac{V_{ee} + V_r - (V_{be_1} + V_{be_2})}{R_e} \]

Then

\[\frac{dI}{I} \approx \frac{dV_{ee} + dV_r - dV_{be_1} - dV_{be_2}}{V_{ee} + V_r - (V_{be_1} + V_{be_2})} + \frac{\alpha_t}{\alpha_t} \frac{dR_e}{R_e} + \frac{I_{co_2}}{I} \frac{dI_{co_2}}{I_{co_2}} \] \hspace{2cm} (16)

For the circuit of Figure 6 it may be shown that the output admittance is given by Eq. 17:
\[Y_o = h_{ob_2} + h_{ob_1}(1-\alpha_2) + \frac{(h_{rb_1} + h_{rb_2} + h_{lb_1}h_{ob_2})(\alpha_1 + \alpha_2 - \alpha_1\alpha_2)}{R + h_{lb_1}h_{ob_2}} \]

(17)

where the \(h_i\)'s are the small signal, common base \(h\) parameters for \(T_1\) and \(T_2\).

For typical values of these parameters and values of \(R\) in \(10k\Omega\) range or larger, Eq. (17) becomes

\[Y_o \approx h_{ob_2} + h_{ob_1}(1-\alpha_2) \]

(17a)

also

\[
\frac{dY_o}{Y_o} = \frac{h_{ob_2}}{Y_o} \frac{dh_{ob_2}}{h_{ob_2}} + \frac{(1-\alpha_2)h_{ob_1}}{Y_o} \frac{dh_{ob_1}}{h_{ob_1}} - \frac{\alpha_2 h_{ob_1}}{Y_o} \frac{d\alpha_2}{\alpha_2} .
\]

(17b)

Substitution of Eqs. (16) and (17b) into Eq. (11) will yield the complete expression for the converter error.

Finally, to complete the error analysis, the temperature coefficient (TC) of the converter must be determined. This may be found by dividing Eq. (11) by \(dt\).

\[
TC = \frac{1}{V(n(\text{max})/V_{n(\text{max})})} \frac{dV}{dt} = \frac{1}{V(n(\text{max})/V_{n(\text{max})})} \frac{dV}{dt} + \frac{1}{R} \frac{dR}{dt} + \frac{\alpha J(\text{max})}{2^n+1} \frac{1}{\frac{dY_o}{Y_o}} .
\]

(18)

An approximate TC may be found by assuming

\[
\frac{dV}{dt} = \frac{dY_o}{dt} = 0.
\]

Then,

\[
TC \approx \frac{1}{I} \frac{dT}{dt} + \frac{1}{R} \frac{dR}{dt} .
\]
But \(\frac{dR}{dt} = \theta_R R \) where \(\theta_R \) = temperature coefficient of the ladder resistors.

Therefore:

\[
TC = \frac{1}{I} \frac{dI}{dt} + \theta_R .
\]

(18a)

The effect of temperature on the current is determined by dividing Eq. (16) by \(dt \).

\[
\frac{1}{I} \frac{dI}{dt} = \frac{dV_{ee}}{dt} + \frac{dV_{r}}{dt} - \frac{dV_{be1}}{dt} - \frac{dV_{be2}}{dt} + \frac{d\alpha}{dt} - \frac{1}{R_e} \frac{dR_e}{dt} + \frac{1}{I} \frac{dI_{co2}}{dt} .
\]

If \(T_1 \) and \(T_2 \) are both silicon planar transistors, then

\[
\frac{dV_{be1}}{dt} \sim \frac{dV_{be2}}{dt}
\]

Also

\[
\frac{dR_e}{dt} = \theta_{R_e} \quad \text{where } \theta = \text{temperature coefficient of } R_e .
\]

Making these substitutions:

\[
\frac{1}{I} \frac{dI}{dt} \approx \frac{dV_{ee}}{dt} + \frac{dV_{r}}{dt} - \frac{2dV_{be}}{dt} + \frac{d\alpha}{dt} - \theta + \frac{1}{I} \frac{dI_{co2}}{dt} .
\]

(19)

DESIGN EXAMPLE

Consider now the actual design of a 10-bit A to D converter using the above results.
1. Power Supplies

a) Choose $V_c = 0$. This choice eliminates the first term of Eq. (11) and (18).

b) Choose $V_{ee} = -300$. This large value will reduce the effects of V_{be} as shown in Eq. (16).

c) From Eq. (19) it is noted that if $\frac{dV_r}{dt} = \frac{2dV_{be}}{dt}$, then the effects of temperature on the current will be greatly reduced. A circuit for V_r that meets this requirement is shown in Figure 7, where D_1 is an 8.2 volt diffused silicon zener diode having a temperature coefficient of approximately $4.4 \text{ mV/}^\circ\text{C}$.

For the circuit in Figure 7:

$$\frac{dV_r}{dt} = \frac{dV_z}{dt} = 4.4 \text{ mV/}^\circ\text{C} \approx \frac{2dV_{be}}{dt}$$
and

$$\frac{dV}{V} = -dV = -Z \frac{dI}{I}$$

where \(Z_r \) = zener diode impedance at \(= 10 \) ma

\(Z_r \approx 10\Omega \)

\(I \approx \frac{V_{ee}}{R} \)

then

$$\frac{dV}{V} \approx .009 \frac{dV_{ee}}{R} = \frac{.009}{30 \times 10^3} \frac{dV_{ee}}{R} = -.3 \times 10^{-6} dV_{ee}.$$

2. I and \(R_e \)

A value of 5ma is chosen for I. Then for \(V_{ee} = 300\)v; \(R_e = 60\)k.

The following additional specifications are set for \(R_e \):

- Power rating = 3 watts (twice the actual dissipation)
- Resistance Tolerance = \(\pm .01\% \)
- Ratio Tolerance = \(\pm .005\% \)
- \(\theta = \pm 5\)ppm.

3. Ladder Resistors

R should be small to keep \(\alpha \) small (see Eq. (1) and (9)) and for fast conversion times.

R should be large enough, however, to provide an easily detectable change in the analog output for each increment of the digital input.

For this design choose:

\(R = 500\Omega \) (non-inductive)

Resistor Tolerance = \(\pm .01\% \)

\(\theta = \pm 5\)ppm.
4. Transistors

\[T_1 = 2N3227 \]
\[T_2 = 2N2586 \]

The pertinent characteristics of these transistors are summarized in Table IV. Manufacturer's data was used for \(I_{co} \) and \(h_{fe} \) while \(V_{be} \) and \(h_{ob} \) data was obtained in the laboratory.

From the table, the following design values are set:

For \(T_1 \)

\[V_{be} = 700\text{mv} \pm 10\text{mv} \]
\[h_{ob} = .6\mu\text{mho} \]
\[\frac{dh_{ob}}{h_{ob}} = \pm 50\% \text{ (assumed)} \]
\[I_{co} = 2\mu\text{a} \]
\[\frac{dI_{co}}{dt} = 10\% \frac{I_{co}}{C^o} \]
\[h_{fe} = 80 \text{ to } \infty \]
\[\frac{dh_{fe}}{dt} = 10\% \frac{h_{fe}}{C^o} \]

For \(T_2 \)

\[V_{be} = 500\text{mv} \pm 10\text{mv} \]
\[h_{ob} = .025\mu\text{mho} \]
\[\frac{dh_{ob}}{h_{ob}} = \pm 50\% \text{ (assumed)} \]
\[I_{co} = 2\mu\text{a} \]
\[\frac{dI_{co}}{I_{co}} = 100\% \text{ (assumed)} \]
\[h_{fe} = 100 \text{ to } \infty \]
\[\frac{dh_{fe}}{dt} = 10\% \frac{h_{fe}}{C^o} \]
Table IV. Transistor Characteristics

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3227</td>
<td>V_{be} (volts)</td>
<td>.702</td>
<td>.705</td>
<td>.706</td>
<td>$V_{cb} = 8v$</td>
</tr>
<tr>
<td></td>
<td>I_{c}</td>
<td>$I_{c} = 5ma$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>$f = 1kc$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_{ob} (μmho)</td>
<td>.485</td>
<td>.588</td>
<td>.776</td>
<td>$V_{cb} = 20v$</td>
</tr>
<tr>
<td></td>
<td>I_{co} (na)</td>
<td>200</td>
<td>$I_{c} = 5ma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_{fe}</td>
<td>95</td>
<td>$I_{c} = 5ma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N2586</td>
<td>V_{be} (volts)</td>
<td>.486</td>
<td>.496</td>
<td>.596</td>
<td>$V_{cb} = 8v$</td>
</tr>
<tr>
<td></td>
<td>I_{c}</td>
<td>$I_{c} = 10\mu$a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>$f = 1kc$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_{ob} (μmho)</td>
<td>.023</td>
<td>.024</td>
<td>.0245</td>
<td>$V_{cb} = 45v$</td>
</tr>
<tr>
<td></td>
<td>I_{co} (na)</td>
<td>2</td>
<td>$I_{c} = 10\mu$a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_{fe}</td>
<td>120</td>
<td>$I_{c} = 10\mu$a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Calculations

a) Determine Y_{o} from Eq. (17a)

$$Y_{o} = h_{ob2} + h_{ob1}(1-\alpha_2)$$

$$Y_{o} = .025 + .6(1 - \frac{100}{101})$$

$$Y_{o} = .031 \mu$mho

b) Find $\frac{dY_{o}}{Y_{o}}$ from Eq. (17b)

$$\frac{dY_{o}}{Y_{o}} = \frac{.025}{.031} (\pm 50) + (1 - \frac{100}{101})(.6) \frac{100}{.031} (\pm 50) - \frac{100}{.031} \frac{.6}{\alpha_2}$$

But $\frac{d\alpha_2}{\alpha_2} \approx 1\%$ (α varies from .99 to 1).

Therefore, omitting the last term,

$$\frac{dY_{o}}{Y_{o}} \approx \pm 40 \pm 10 = \pm 50\%$$
c) Find α, using Eq. (1)

$$\alpha = RY_o$$

$$\alpha = 500(0.031) \times 10^{-6} = 15.5 \times 10^{-6}$$

d) Determine α_t from Eq. (15)

$$\alpha_{t_{\text{min}}} = \frac{80}{81} + \frac{100}{101} - \frac{80}{81} \frac{100}{101}$$

$$\alpha_{t_{\text{min}}} = 0.9998778$$

$$\alpha_{t_{\text{max}}} = 1 \quad (h_{fe1_{\text{max}}} = h_{fe2_{\text{max}}} = \infty)$$

α_t is then defined as

$$\alpha_t = 0.9999389 \pm 0.0000611$$

or

$$\frac{d\alpha_t}{\alpha} \approx 0.000611\%$$

e) Determine $\frac{dI}{I}$ from Eq. (16)

$$\frac{dI}{I} = \frac{dV_{ee} + dV_r}{300 + (-8.2) - (.7 + .5)} \pm 0.00000611 \pm 0.001 \pm \frac{2 \times 10^{-9}}{5 \times 10^{-3}}(1)$$

But $dV_r = -0.3 \times 10^{-6} dV_{ee}$

$$\frac{dI}{I} \approx \frac{dV_{ee}}{290.6} + \frac{20 \times 10^{-3}}{290.6} \pm 0.00010611$$

$$\frac{dI}{I} = \frac{dV_{ee}}{290.6} \pm 0.000175 = \frac{dV_{ee}}{V_{ee}} \pm 0.0175\%$$

This calculation shows that the % deviation in I is approximately .0175% plus the % variation of V_{ee}. Since V_{ee} affects all stages, long term drifts in its value may be considered a change in the scale factor of the converter.
f) Determine converter accuracy from Eq. (11)

\[
% \text{error}(\text{max}) \approx \pm \left[\frac{dV}{V_{ee}} + 0.175 \right] \pm 0.01 \pm \frac{(15.5 \times 10^{-6})(5239)}{2^{10} \cdot 1 + 15.5 \times 10^{-6} (5239)} \quad (50\%)
\]

\[
= \frac{dV}{V_{ee}} \pm 0.175 \pm 0.01 \pm 0.00415
\]

\[
% \text{error}(\text{max}) = \frac{dV}{V_{ee}} \pm 0.0317\% .
\]

g) Determine current variation due to temperature from Eq. (19)

\[
\frac{1}{I} \frac{dI}{dt} = \frac{dV_{ee}}{V_{ee} + V_{r}} - \frac{2dV_{be}}{(V_{be1} + V_{be2})} + \frac{d\alpha_t}{dt} - \frac{1}{I} \frac{dI}{co2} .
\]

But \(\frac{dV_t}{dt} \approx \frac{2dV_{be}}{dt} . \)

From Eq. (15),

\[
\frac{d\alpha_t}{dt} = \left(\frac{1}{1 + \h_{fe1}} \right) \left(\frac{1}{1 + \h_{fe1}} \right) \frac{2d\h_{fe1}}{dt} + \left(\frac{1}{1 + \h_{fe1}} \right) \left(\frac{1}{1 + \h_{fe2}} \right) \frac{2d\h_{fe2}}{dt} .
\]

From specifications for \(T_1 \) and \(T_2 \):

\[
\frac{d\h_{fe1}}{dt} = +\h_{fe1} 10\%/C^0
\]

\[
\frac{d\h_{fe2}}{dt} = +\h_{fe2} 10\%/C^0 .
\]

Therefore

\[
\frac{d\alpha_t}{dt} \approx \pm \frac{2}{101} \left(\frac{1}{81} \right) 800 + \frac{2}{101} \left(\frac{1}{81} \right) 1000 \% / C^0
\]

\[
\frac{d\alpha_t}{dt} \approx \pm 0.0025 \% / C^0 ;
\]
also

\[\frac{1}{I} \frac{dI_{co}}{dt} = \frac{I_{co}}{I} 10\%/C^0 \]

\[\frac{1}{I} \frac{dI_{co}}{dt} = \frac{2 \times 10^{-9}}{5 \times 10^{-3}} 10\%/C^0 = 4 \times 10^{-6}\%/C^0. \]

This can be ignored. Also

\[\frac{dV_{ee}}{dt} = T_v V_{ee} \]

where \(T_v \) = temperature coefficient of \(V_{ee} \) in \%/C^0.

\[\frac{1}{I} \frac{dI_{\sim}}{dt} = - \frac{T_v V_{ee}}{V_{ee} + V_r - (V_{be1} + V_{be2})} + \frac{d\alpha_t}{\alpha_t} - \theta \]

or

\[\frac{1}{I} \frac{dI_{\sim}}{dt} = T_v + \frac{d\alpha_t}{dt} - \theta \]

\[\frac{1}{I} \frac{dI_{\sim}}{dt} \approx T_v + 0.0025 + 0.0005 = T_v + 0.003. \]

Substituting this value and the value of \(\theta_R \) into Eq. (18a) yields for the temperature coefficient

\[T_C \approx T_v \pm 0.0035%/C^0 \]

The complete circuit diagram for the converter is shown in Figure 8. Transistor \(T_3 \) provides the switching action for the current source, i.e., a +3 volt input to \(T_3 \) will turn the current source "on," while a 0 volt signal will turn the current source "off."

This converter was constructed in the laboratory and the experimental results obtained are summarized in Table V.
Figure 8. Bit DA Converter
Table V. Experimental Results.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage</td>
<td>0.00000 volts</td>
</tr>
<tr>
<td>Max Output Voltage</td>
<td>3.22770 volts</td>
</tr>
<tr>
<td>% Error (max)</td>
<td>less than .01%</td>
</tr>
<tr>
<td>Stability (8 hours)</td>
<td>less than .008%</td>
</tr>
<tr>
<td>Temperature Coefficient (TC)</td>
<td>.0015 %/C°</td>
</tr>
<tr>
<td>Converter Settling Time</td>
<td><1.8μs</td>
</tr>
<tr>
<td>Analog Step Size</td>
<td>3.13mv ± .06mv</td>
</tr>
</tbody>
</table>

Conclusion

It has been demonstrated that relatively high DA converter accuracy may be obtained with the use of a current operated ladder.

Further, this technique offers the following advantages:

1. High accuracy may be obtained without trimming and components.
2. Only three values of precision resistance are required; two in the ladder and one in the current source.
3. A simple current source which inherently has the important characteristics of a very high output impedance, very stable current gain, and is easy to duplicate.
4. A simple temperature compensation technique.

The disadvantages of this technique are:

1. The requirement of a large supply voltage for the current sources.
2. The rather heavy dependence on the stability of this supply.
3. The requirement of a high wattage resistor in the current sources.
<table>
<thead>
<tr>
<th>Distribution list as of March 1, 1965 (Cont'd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lincoln Laboratory</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>P. O. Box 73</td>
</tr>
<tr>
<td>Lexington, Massachusetts</td>
</tr>
<tr>
<td>Attn: Dr. Robert Kingston</td>
</tr>
<tr>
<td>1 APG (MAPI)</td>
</tr>
<tr>
<td>Eglin Air Force Base</td>
</tr>
<tr>
<td>Florida</td>
</tr>
<tr>
<td>1 Mr. Alan Barum</td>
</tr>
<tr>
<td>Air Development Center</td>
</tr>
<tr>
<td>Griffiss Air Force Base</td>
</tr>
<tr>
<td>Rome, New York 13462</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Research Laboratory of Electronics</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Attn: Library</td>
</tr>
<tr>
<td>1 Polytechnic Institute of Brooklyn</td>
</tr>
<tr>
<td>35 Johnson Street</td>
</tr>
<tr>
<td>Brooklyn, New York 11201</td>
</tr>
<tr>
<td>Attn: Mr. Jerome Yan</td>
</tr>
<tr>
<td>Research Coordinator</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Columbia Radiation Laboratory</td>
</tr>
<tr>
<td>Columbia University</td>
</tr>
<tr>
<td>138 West 170th Street</td>
</tr>
<tr>
<td>New York, New York 10027</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Coordinated Science Laboratory of Illinois</td>
</tr>
<tr>
<td>Urbana, Illinois 61803</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Stanford Electronics Laboratories</td>
</tr>
<tr>
<td>Stanford University</td>
</tr>
<tr>
<td>Stanford, California</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Electronics Research Laboratory</td>
</tr>
<tr>
<td>University of California</td>
</tr>
<tr>
<td>Berkeley, California</td>
</tr>
<tr>
<td>Attn: A. A. Dougal, Director</td>
</tr>
<tr>
<td>1 Professor J. K. Aggarwal</td>
</tr>
<tr>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td>University of Texas</td>
</tr>
<tr>
<td>Austin, Texas 78712</td>
</tr>
<tr>
<td>1 Director</td>
</tr>
<tr>
<td>Director of Engineering & Applied Physics</td>
</tr>
<tr>
<td>Data Processing Systems Division</td>
</tr>
<tr>
<td>Columbia University</td>
</tr>
<tr>
<td>51 Johnson Street</td>
</tr>
<tr>
<td>Brooklyn, New York 11201</td>
</tr>
<tr>
<td>1 Professor Lt. Willard Levin</td>
</tr>
<tr>
<td>Aerospace Corporation</td>
</tr>
<tr>
<td>P. O. Box 9101</td>
</tr>
<tr>
<td>Los Angeles 9001</td>
</tr>
<tr>
<td>1 Professor Nicholas George</td>
</tr>
<tr>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>Electrical Engineering Department</td>
</tr>
<tr>
<td>Pasadena, California</td>
</tr>
<tr>
<td>1 National Bureau of Standards</td>
</tr>
<tr>
<td>Research Information Center and Advisory Section</td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Attn: Dr. Wallace Mathis</td>
</tr>
<tr>
<td>1 Data Processing Systems Division</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Attn: A. E. Hackett</td>
</tr>
<tr>
<td>1 Exchange and Gift Division</td>
</tr>
<tr>
<td>The Library of Congress</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Attn: Archives Supervisor</td>
</tr>
<tr>
<td>1 Dr. Alan T. Weinman, Director</td>
</tr>
<tr>
<td>National Science Foundation</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>1 A. G. Ochse</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>36 Oak Ridge Road</td>
</tr>
<tr>
<td>Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1 G. E. Atomic Energy Commission</td>
</tr>
<tr>
<td>Office of Technical Information Extension</td>
</tr>
<tr>
<td>901 University Avenue</td>
</tr>
<tr>
<td>Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1 Mr. D. D. Weisman</td>
</tr>
<tr>
<td>Defense Research Agency</td>
</tr>
<tr>
<td>Canadian Joint Staff</td>
</tr>
<tr>
<td>4500 Massachusetts Avenue, N. W.</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>1 Martin Company</td>
</tr>
<tr>
<td>P. O. Box 5837</td>
</tr>
<tr>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>Attn Engineering Library MW 30</td>
</tr>
<tr>
<td>1 Laboratories for Applied Sciences</td>
</tr>
<tr>
<td>University of Chicago</td>
</tr>
<tr>
<td>2222 South Beach Drive</td>
</tr>
<tr>
<td>Chicago, Illinois 60637</td>
</tr>
<tr>
<td>1 Laboratory for Electronics Research</td>
</tr>
<tr>
<td>New York University</td>
</tr>
<tr>
<td>New York, New York</td>
</tr>
<tr>
<td>1 National Physical Laboratory</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>1 Mr. Glenn L. Bryan, Director</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>1 Stanford Research Institute</td>
</tr>
<tr>
<td>0-337 External Reports</td>
</tr>
<tr>
<td>Menlo Park, California</td>
</tr>
<tr>
<td>Attn: J. K. de Sibert</td>
</tr>
<tr>
<td>1 Stanford Research Institute</td>
</tr>
<tr>
<td>0-337 External Reports</td>
</tr>
<tr>
<td>Menlo Park, California</td>
</tr>
</tbody>
</table>

```
1 Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73
Lexington, Massachusetts
Attn: Dr. Robert Kingston

1 APG (MAPI)
Eglin Air Force Base
Florida

1 Mr. Alan Barum
Air Development Center
Griffiss Air Force Base
Rome, New York 13462

1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
35 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Yan
Research Coordinator

1 Director
Columbia Radiation Laboratory
Columbia University
138 West 170th Street
New York, New York 10027

1 Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61803

1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California

1 Director
Electronics Research Laboratory
University of California
Berkeley, California

1 Professor A. A. Dougal, Director
Laboratories for Electronics and Related Science
Research
Austin, Texas 78712

1 Professor J. K. Aggarwal
Department of Electrical Engineering
University of Texas
Austin, Texas 78712

1 Director of Engineering & Applied Physics
215 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

1 Capt. Paul Johnson (USN Ret.)
National Aeronautics & Space Agency
5309 N. Street, N.W.
Washington, D.C. 20384

1 NASA Headquarters
Office of Applications
400 Maryland Avenue, N.W.
Washington, D.C. 20384

1 National Bureau of Standards
Research Information Center and Advisory Service on Data Processing System Division
Washington, D.C.

1 Dr. Wallace Mathis
Institute for Defense Analyses
Research & Engineering Division
1750 Massachusetts Avenue, N.W.
Washington, D.C. 20036

1 Data Processing Systems Division
National Bureau of Standards
Glen Echo, Maryland 20812

1 Exchange and Gift Division
The Library of Congress
Washington, D.C.

1 Dr. Alan T. Weinman
National Science Foundation
Washington, D.C.

1 A. G. Ochse
Oak Ridge National Laboratory
P.O. Box 3
Oak Ridge, Tennessee

1 G. E. Atomic Energy Commission
Office of Technical Information Extension
2222 South Beach Drive
Chicago, Illinois 60637

1 Laboratory for Electronics Research
New York University
New York, New York

1 National Physical Laboratory
Washington, D.C.

1 Mr. Glenn L. Bryan
Naval Research Laboratory
Washington, D.C.

1 Stanford Research Institute
Menlo Park, California 94025
```
A CURRENT MODE DA CONVERTER

This report describes the design of a digital to analog converter using a current-driven ladder instead of the more conventional voltage-driven technique.

The constant current source is a standard Darlington configuration which is easily temperature compensated.

The converter specifications include a maximum worst case absolute error of less than .01%, long-term stability better than .008%, 0 offset voltage, and a setting time of less than 1.8 μs. No trimming components are used.
Instructions

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Role</td>
<td>Role</td>
</tr>
<tr>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
</tbody>
</table>

Digital analog converter

Current-operated ladder type

Key Words

<table>
<thead>
<tr>
<th>Role</th>
<th>WT</th>
</tr>
</thead>
</table>

1. **Originating Activity:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **Report Security Classification:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **Group:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **Report Title:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **Descriptive Notes:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **Author(s):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **Report Date:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **Total Number of Pages:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **Number of References:** Enter the total number of references cited in the report.

8a. **Contract or Grant Number:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. **Project Number:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **Originating Agency's Report Number(s):** Enter the official report numbers by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **Other Report Number(s):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **Availability/Limitation Notices:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC."

2. "Foreign announcement and dissemination of this report by DDC is not authorized."

3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

5. "All distribution of this report is controlled. Qualified DCC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **Supplementary Notes:** Use for additional explanatory notes.

12. **Sponsoring Military Activity:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **Abstract:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **Key Words:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.