ELEMENTARY COMPLETE TREE TRANSFORMATION

Wataru Mayeda

R-272 December, 1965
This work was supported in part by the Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract No. DA 28 043 AMC 00073(E).

Portions of this work were also supported by the Air Force Office of Scientific Research under Air Force Grant AF-AFOSR 931-65.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.
ELEMENTARY COMPLETE TREE TRANSFORMATION

by

Wataru Mayeda

Introduction

It is known that a passive electrical network without mutual couplings can be analyzed by knowing all possible trees of a linear graph corresponding to the network. Since there exists a reasonably simple method of generating all possible trees of a linear graph without duplications, analysis of such a network by a computer becomes indubitably simple.

When a pair of linear graphs is used, an active network can be analyzed by knowing all possible complete trees each of which is a tree of both linear graphs. At present there is no simple method of generating all possible complete trees without duplications. Hence, in order to obtain all possible complete trees by a computer, one of the best available methods at present is to generate all possible trees of each linear graph to obtain two collections of trees, then intersecting the two collections. It is not difficult to design an active network such that there are more than a thousand of trees in each of a pair of linear graphs corresponding to the net, but there are less than one hundred complete trees. Hence to obtain a simple method of generating all possible complete trees is undoubtedly important for analysis of active networks by a computer.

Obtaining one tree from another tree which is used to generate all possible trees in a linear graph is accomplished by so-called "elementary tree transformation." In this paper, this transformation is generalized so that a complete tree can be obtained from another complete tree by the generalized
transformation namely an "elementary complete tree transformation."

Furthermore, any complete tree can be obtained from any other complete tree by successive elementary complete tree transformations. The study of the properties of such transformation will hopefully lead to find a method of generating all possible complete trees without duplications in the future.

Edge-permutations

In this paper, a pair of linear graphs G_1 and G_2 is assumed to have the properties that

\[
\Omega_1 = \Omega_2 \quad (1)
\]

and

\[
\xi_1 = \xi_2 \quad (2)
\]

where Ω_p and ξ_p are the sets of all vertices and the set of all edges in G_p respectively for $p=1,2$. It is easily seen that these properties must be satisfied when the pair of linear graphs represents an active electrical network. Notice that the location of an edge e in G_1 and that of edge e in G_2 may not be the same.

A complete tree t of a pair of linear graphs G_1 and G_2 is a set of edges in ξ_1 which is a tree of G_1 as well as a tree of G_2. In a pair of linear graphs G_1 and G_2 given in Fig. 1, a set of edges $\{cd\}$ is a complete tree. However, a set of edges $\{bc\}$ is not a complete tree.

For an edge e in a complete tree t, the symbol $S^p_e(t)$ is defined to be the fundamental cut set with respect to t which contains edge e in G_p for $p = 1,2$. For a complete tree $t = \{cd\}$ in Fig. 1, $S^1_c(t) = \{bc\}$ and $S^2_c(t) = \{abc\}$.
Definition 1: Let t_1 and t_2 be complete trees of a pair of linear graphs G_1 and G_2. Also let

$$t_1 - t_2 = \{a_1 \ldots a_m\}^*$$

and

$$t_2 - t_1 = \{e_1 \ldots e_m\}.$$

Then edge-permutation $\mathcal{E}(t_1, t_2)$ of t_1 and t_2 is

$$\mathcal{E}(t_1, t_2) = \begin{pmatrix}
 e_1' & e_2' & \ldots & e_m' \\
 e_1'' & e_2'' & \ldots & e_m'' \\
\end{pmatrix}$$

where each column represents edge a_p $(p = 1, 2, \ldots, m)$ and entries in column a_p are edges e_p' and e_p'' which satisfy that

1. $e_p' \in S^1_{a_p}(t_1)$
2. $e_p'' \in S^2_{a_p}(t_1)$

and

3. $\{e_1' e_2' \ldots e_m'\} = \{e_1'' e_2'' \ldots e_m''\} = \{e_1 e_2 \ldots e_m\}$

* $A - B$ is a set of edges in A but not in $B.$
Consider a pair of linear graphs G_1 and G_2 in Fig. 2. Let

$$t_0 = \{a_1a_2a_3\}$$
$$t_1 = \{e_1e_2a_3\}$$

then $t_0 - t_1 = \{a_1a_2\}$, $t_1 - t_0 = \{e_1e_2\}$

and the edge permutation $\epsilon(t_0t_1)$ is

$$\epsilon(t_0t_1) = \begin{pmatrix} e_1 \\ e_2 \\ e_2 \\ e_1 \end{pmatrix}$$

Fig. 2. Complete tree $t_0 = \{a_1a_2a_3\}$

Since t_1 and t_2 are trees of G_1, it is easily seen that we can assign each edge e_p to only one of fundamental cut sets $S_{a_p}^1(t_1)$ ($p = 1,2,\ldots,m$) such that every fundamental cut set has exactly one of edges $e_1,e_2,\ldots,$ and e_m and each edge e_p ($1 \leq p \leq m$) is assigned to exactly one of the fundamental cut sets. This is also true for G_2. Thus we can always obtain an edge permutation $\epsilon(t_1t_2)$ of any two complete trees t_1 and t_2 of a pair of linear graphs G_1 and G_2.
Consider a pair of linear graphs G_1 and G_2 in Fig. 2. Let

$t_0 = \{a_1a_2a_3\} \text{ and } t_1 = \{e_1e_2a_3\}$, then $t_0 - t_1 = \{a_1a_2\}$, $t_1 - t_0 = \{e_1e_2\}$

and the edge permutation $\varepsilon(t_0t_1)$ is

$$\varepsilon(t_0t_1) = \begin{pmatrix} e_1 & e_2 \\ e_2 & e_1 \end{pmatrix}$$

Since t_1 and t_2 are trees of G_1, it is easily seen that we can assign each edge e_p to only one of fundamental cut sets $S^{1}_{a_p}(t_1)$ ($p = 1, 2, \ldots, m$) such that every fundamental cut set has exactly one of edges e_1, e_2, \ldots, e_m and each edge e_p ($1 \leq p \leq m$) is assigned to exactly one of the fundamental cut sets. This is also true for G_2. Thus we can always obtain an edge permutation $\varepsilon(t_1t_2)$ of any two complete trees t_1 and t_2 of a pair of linear graphs G_1 and G_2.

![Fig. 2. Complete tree $t_0 = \{a_1a_2a_3\}$](image)
Elementary Common Tree Transformation

An elementary tree transformation is defined to be

\[t_2 = f_1 \oplus \{ ea \} \]

where \(a \in t_1 \), \(t_2 \cdot t_1 = e \) and \(t_1 \) and \(t_2 \) are trees of a linear graph. However, if \(t_1 \) is a complete tree of a pair of linear graphs, there may exist no edge \(e \) such that \(t_1 \oplus \{ ea \} \) is a complete tree. Hence, an elementary complete tree transformation is defined in such a way to include transformation \(t_1 \oplus \{ ea \} \) if \(t_1 \oplus \{ ea \} \) is a complete tree. The formal definition is given as

Definition 2: Let \(t_1 \) and \(t_2 \) be complete trees of a pair of linear graphs \(G_1 \) and \(G_2 \). Also let

\[t_1 - t_2 = \{ a_1 a_2 \ldots a_m \} \]

and

\[t_2 - t_1 = \{ e_1 e_2 \ldots e_m \} \]

Then

\[t_1 \oplus \{ a_1 a_2 \ldots a_m e_1 e_2 \ldots e_m \} = t_2 \]

is an elementary complete tree transformation if there exists no complete tree \(t' \) of \(G_1 \) and \(G_2 \) such that

\[t_1 \oplus \{ a_1 a_2 \ldots a_p e_1 e_2 \ldots e_p \} = t' \]

and \(\{ a_1 a_2 \ldots a_p e_1 e_2 \ldots e_p \} \) is a proper subset of \(\{ a_1 a_2 \ldots a_m e_1 e_2 \ldots e_m \} \).

With this definition, we have an important property of elementary complete tree transformations given by the following theorem.

Theorem 1: Let \(t_0 \) and \(t_m \) be complete trees of a pair of linear graphs \(G_1 \) and \(G_2 \). Also let

\[t_0 - t_m = \{ a_1 \ldots a_m \} \]
and
\[t_m - t_0 = \{e_1 \ldots e_m\} . \]

Then
\[t_m = t_0 \oplus \{a_1 \ldots a_m e_1 \ldots e_m\} \]

is an elementary complete tree transformation if and only if the following two conditions are satisfied:

Condition 1: An edge-permutation \(\varepsilon(t_0, t_m) \) is not factorizable.

Condition 2:
\[e_p \in S^1_p(t_0) \cup \bigcup_{j=1}^{m} S^1_p(t_0) \]
\[e'_p \in S^2_p(t_0) \cup \bigcup_{j=1}^{m} S^2_p(t_0) \]

for all \(p = 1, 2, \ldots, m \) where \(\{e'_1 \ldots e'_m\} = \{e_1 \ldots e_m\} \).

Before proving Theorem 1, we will study about elementary tree transformations of a linear graph.

Definition 3: Let \(t_0, t_1, \) and \(t_2 \) be trees of a linear graph \(G \). Then the transformation
\[t_2 = t_1 \oplus \{ae\} \]

where \(\{a\} = t_1 - t_2 \) and \(\{e\} = t_2 - t_1 \), is a M-tree transformation under tree \(t_0 \) if
\[e \in S_a(t_1) \wedge S_a(t_0) . \]

Definition 4: A sequence of trees \(t_1, t_2, \ldots, t_m \) is a fundamental tree sequence from \(t_1 \) to \(t_m \) under \(t_0 \) in \(G \) if \(t_p \) is obtained from \(t_{p-1} \) by a M-tree transformation under \(t_0 \) for \(p = 1, 2, \ldots, m-1 \).
Consider two trees \(t_0 \) and \(t_m \) in \(G \). Suppose

\[
t_0 - t_m = \{a_1 \ldots a_m\}
\]

and

\[
t_m - t_0 = \{e_1 \ldots e_m\}
\]

Then it is known \(^2\) that for any given sequence of \(a \)'s, such as \(a_1 a_2 \ldots a_m \), there exists a fundamental tree sequence from \(t_0 \) to \(t_m \) under \(t_0 \). Also we know that if sequence \(a_1 a_2 \ldots a_m \) is a M-sequence, there exists exactly one fundamental tree sequence from \(t_0 \) to \(t_m \) under \(t_0 \). In the other words, if we give a sequence \(a_1 a_2 \ldots a_m \). Then there exists a fundamental tree sequence \(t_0 t_1 \ldots t_m \) under \(t_0 \) such that

\[
t_p = t_{p-1} \oplus \{a_p e_p\}
\]

where

\[
e_p \in S_{a_p} (t_{p-1}) \cap S_{a_p} (t_0)
\]

for \(p = 1, 2, \ldots, m \). This means that for a given sequence \(a_1 a_2 \ldots a_m \), there exists a sequence \(e_1 e_2 \ldots e_m \) such that the sequence of pairs \(\{a_1 e_1\} \{a_2 e_2\} \ldots \{a_m e_m\} \) gives a fundamental tree sequence \(t_0 t_1 \ldots t_m \) under \(t_0 \) by

\[
t_p = t_0 + \{a_1 e_1\} \oplus \ldots \oplus \{a_p e_p\}
\]

for \(p = 1, 2, \ldots, m \).

Suppose we give a sequence \(e'_1 e'_2 \ldots e'_m \) of edges \(e_1 e_2 \ldots e_m \) where \(\{e'_1 e'_2 \ldots e'_m\} = \{e_1 e_2 \ldots e_m\} \). The question is whether there exists a sequence \(a'_1 a'_2 \ldots a'_m \) where \(\{a'_1 a'_2 \ldots a'_m\} = \{a_1 a_2 \ldots a_m\} \) such that the sequence of pairs \(\{a'_1 e'_1\} \{a'_2 e'_2\} \ldots \{a'_m e'_m\} \) gives a fundamental tree sequence which satisfy Eq. (17). In order to answer the above question, we will form a fundamental tree sequence \(t_0 t_1 \ldots t_m \) backward as follows: Suppose a sequence \(e'_1 e'_2 \ldots e'_m \) is given. Let \(G^0 \) be a linear
graph obtained from G by shorting all edges in $t_0 \cap t_m$ and opening all edges in $G - \{t_0 \cup t_m\}$. Also let t_0^0 and t_m^0 be obtained from t_0 and t_m by shorting all edges in $t_0 \cap t_m$ respectively. Notice that t_0^0 and t_m^0 are trees in G^0.

For example, from G, t_0 and t_m given in Fig. 3a, b, and c, we can obtain G^0, t_0^0, and t_m^0 given in Fig. 3d, e, and f respectively.

Let $S_{e_m}(t_m^0) = \{e_{a_1}a_2...a_k\}$ in G^0 where $k' \leq m$. Then at least one of $S_{e_j}^i(t_0^0)$ in G^0 ($i = 1, 2, ..., k$) contains e_m because $S_{e_m}(t_m^0)$ can be expressed as

$$S_{e_m}(t_m^0) = S_{a_1}^1(t_0^0) \oplus S_{a_2}^1(t_0^0) \oplus ... \oplus S_{a_k}^1(t_0^0) \quad (18)$$

Suppose $e_m \in S_{a_m}(t_0^0)$ where $a_m \in \{a_1...a_k\}$. Then

$$t_{m-1}^0 = t_m^0 \oplus \{e_{a_m}\} \quad (19)$$

is a M-tree transformation under t_0^0 in G^0. Thus there exist a tree t_{m-1}^0 in G such that

$$t_m = t_{m-1}^0 \oplus \{e_{a_m}\} \quad (20)$$

is a M-tree transformation under t_0^0 in G.

Shorting a_m and opening e_m in G^0, we obtain a linear graph G'. Let t_{m-1}' and t_0' be obtained from t_{m-1}^0 and t_0^0 by shorting a_m. Then t_0' and t_{m-1}' are trees in G'. Let $S_{e_{a_m-1}'}(t_{m-1}') = \{e_{a_{m-1}''}a''_m\}$ in G'. Then there exists at least one cut set in $S_{a_{m-1}''}(t_0')$, ..., and $S_{a_m''}(t_0')$ in G' which contains edge e_{m-1}. Let $e_{m-1} \in S_{a_{m-1}'}(t_0')$ where $a_{m-1} \in \{a_1''...a_m''\}$. Then

$$t_{m-2}' = t_{m-1}' \oplus \{e_{m-1}a_{m-1}'\} \quad (21)$$

is a M-tree transformation under t_0' in G'. Hence, there exists t_{m-2} in G such that

$$t_{m-1} = t_{m-2} \oplus \{e_{m-1}a_{m-1}'\} \quad (22)$$
Fig 3. Example of G, t_0, t_n, G^0, t_0^0 and t_n^0.

(a) G
(b) t_0
(c) t_n
(d) G^0
(e) t_0^0
(f) t_n^0
is a M-tree transformation under \(t_0 \) in \(G \).

The above process called a "backward M-process" can be continued for any sequence of \(e_1, e_2, \ldots, e_m \). Thus for any sequence \(e_1 e_2 \ldots e_m \), there exists a sequence \(a_1 a_2 \ldots a_m \) such that the sequence of pairs \(\{e_1 a_1\}, \{e_2 a_2\}, \ldots, \{e_m a_m\} \) gives a fundamental tree sequence \(t_0 t_1 \ldots t_m \) under \(t_0 \) given by Eq. (17).

Now we are ready to discuss the properties of elementary complete tree transformations. For convenience, the symbol \(W \) indicates a two rows matrix

\[
W = \begin{bmatrix}
a_1' e_1' \ldots a_m' e_m' \\
e_1' e_2' \ldots e_m'
\end{bmatrix}
\]

(23)

where \(\{a_1' a_2' \ldots a_m'\} = t_0 - t_m \), \(\{e_1' e_2' \ldots e_m'\} = t_m - t_0 \) and \(t_0 \) and \(t_m \) are complete trees of a pair of linear graphs \(G_1 \) and \(G_2 \).

Definition 5: A matrix \(W \) is a 1 FTS (Fundamental Tree Sequence) matrix of \(t_0 \) and \(t_m \) if

1. \(t_{p-1} \oplus \{e'_p a'_p\} = t_p \) \(\text{for } p = 1, 2, \ldots, m-1 \)

 \[
 t_{m-1} \oplus \{e'_1 a'_1\} = t_m
 \]

 (25)

which are M-tree transformations under \(t_0 \) in \(G_1 \) and

2. \(t_{p-1} \oplus \{e'_p a'_p\} = t_p \) \(\text{for } p = 1, 2, \ldots, m \)

 \[
 t_m \oplus \{e'_1 a'_1\} = t_m
 \]

 (26)

which is a M-tree transformation under \(t_0 \) in \(G_2 \).

Definition 6: A matrix \(W \) is a k FTS matrix if \(W \) can be partitioned as

\[
W = \begin{bmatrix} W_1 & W_2 & \ldots & W_k \end{bmatrix}
\]

(27)

such that each \(W_i \) \((i = 1, 2, \ldots, k) \) is a 1 FTS matrix.

Consider two complete trees \(t_0 \) and \(t_m \) of a pair of linear graphs \(G_1 \) and \(G_2 \). Let

\[
t_0 - t_m = \{a_1 \ldots a_m\}
\]

(28)
and

\[t_m - t_0 = \{e_1 \ldots e_m\} \] \hspace{1cm} (29)

Then from any edge in \(\{e_1 \ldots e_m\} \), we can form a k FTS matrix by the following process:

Step 1: For edge \(e \), we can find an edge, say edge \(a_m \), in \(\{a_1 \ldots a_m\} \) by a backward M-process such that there exists \(t_{m-1} \) in \(G_1 \) and

\[t_{m-1} \oplus \{ea_m\} = t_m \] \hspace{1cm} (30)

is a M-tree transformation under \(t_0 \) in \(G_1 \). We put an edge \(a_m \) in (1,m) position of \(W \).

Step 2: With \(a_m \), we can find an edge in \(\{e_1 \ldots e_m\} \), say \(e_m \), such that there exists \(t_{m-1}' \) in \(G_2 \) and

\[t_{m-1}' \oplus \{a_m e_m\} = t_m \] \hspace{1cm} (31)

is a M-tree transformation under \(t_0 \) in \(G_2 \). We put \(e_m \) in (2,m) position of \(W \). If \(e_m = e \), we pick a new edge in \(\{e_1 \ldots e_m\} \) which has not been used before and back to Step 1. If there is no new edge, the process will terminate, otherwise, we proceed to Step 3.

Step 3: With edge \(e_p \) which has been obtained by the previous step, we can obtain an edge in \(\{a_1 \ldots a_m\} \) which has not been used in the 1st row of \(W \), say \(a_{p-1}' \), by a backward M-process so that we can find \(t_{p-2}' \) which satisfies

\[t_{p-2}' \oplus \{ea_{p-1}\} = t_{p-1} \] \hspace{1cm} (32)

is a M-tree transformation under \(t_0 \) in \(G_1 \). We put \(a_{p-1} \) in (1,p-1) position of \(W \). With \(a_{p-1} \), we can obtain an edge, say \(e_{p-1} \), in \(\{e_1 \ldots e_m\} \) which has not been used in the 2nd row of \(W \), such that

\[t_{p-2}' \oplus \{e_{p-1}a_{p-1}\} = t_{p-1}' \] \hspace{1cm} (33)
is a M-tree transformation under t_0 in G_2. We put e_{p-1} in $(2,p-1)$ position of W.

If $e_{p-1} = e$, we pick a new edge in $\{e_1 \ldots e_m\}$ which has not been used in the 2nd row of W and go back to Step 1. If every edge in $\{e_1 \ldots e_m\}$ is used in the 2nd row of W, the process is terminated. Otherwise, we repeat Step 3.

When the above process is terminated, a matrix W is formed. It is clear by the above process, the resultant matrix is a k FTS matrix.

Consider a pair of linear graphs G_1 and G_2 as shown in Fig. 4.

Let complete trees t_0 and t_m be $t_0 = \{a_1,a_2,a_3\}$ and $t_m = \{e_1,e_2,e_3\}$. Suppose edge e_1 is chosen to start the process in order to obtain a matrix W. By Step 1, we can choose any one of a_1, a_2, and a_3. Suppose we choose a_3. Then by Step 2, we can use either e_2 or e_3. Suppose we choose e_3. At this point, we obtain a part of W as

$$W = \begin{bmatrix}
1 & 2 & 3 \\
1 & & a_3 \\
2 & & e_3
\end{bmatrix}$$

(34)
By Step 3 with \(e_3 \), we obtain \(a_2 \) and \(e_2 \). Then by \(e_2 \), we obtain \(a_1 \). Finally by \(a_1 \) we obtain \(e_1 \), all of which are by Step 3. The resultant matrix \(W \) is

\[
W = \begin{bmatrix}
1 & 2 & 3 \\
1 & a_1 & a_2 & a_3 \\
2 & e_1 & e_2 & e_3
\end{bmatrix}
\]

(35)

Instead of choosing \(a_3 \), if we choose \(a_1 \) at the first part of the above process and choose \(a_1 \) in Step 2, we have the situation to choose a new edge from \(\{e_2, e_3\} \). By choosing \(e_2 \) to start the process again, we have the following matrices depending on the choice we made at the second step.

\[
\begin{align*}
1 & 2 & 3 \\
1 & a_2 & a_3 & a_1 \\
2 & e_3 & e_2 & e_1
\end{align*}
\]

\[
\begin{align*}
1 & 2 & 3 \\
1 & a_2 & a_3 & a_1 \\
2 & e_2 & e_3 & e_1
\end{align*}
\]

Now we are ready to prove Theorem 1.

Proof: Case 1 - Suppose Condition 2 does not satisfy: Let edge \(e_j \) is in \(S^1(t_0) \) for \(j = 1, 2, \ldots, r \) but not in any other fundamental cut sets \(S^1_{a_j}(t_0) \) for \(r < q \leq m \) in \(G_1 \). By starting with edge \(e_j \), we can form a \(k \) FTS matrix by the previously described process. Suppose \(k > 1 \). Let

\[
W = [W_1, W_2, \ldots, W_k]
\]

(36)

and

\[
W_1 = \begin{bmatrix}
a_1' & \ldots & a_k' \\
e_1' & \ldots & e_k'
\end{bmatrix}
\]

(37)

is a 1 FTS matrix. This means that in \(G_1 \), there exists a fundamental tree sequence \(t_0t_1\ldots t_u \) under \(t_0 \) such that
\[t_p = t_{p-1} \oplus \{ e^{'}_{p+1} a^{'}_p \} \quad \text{for} \ p = 1, 2, \ldots, u-1 \quad (38) \]

and

\[t_u = t_{u-1} \oplus \{ e^{'}_u a^{'}_u \} \quad (39) \]

Similarly, there exists a fundamental tree sequence \(t_0' = t_0', t_1', \ldots, t_{u-1}', t_u' \) under \(t_0 \) in \(G_2 \) such that

\[t_p' = t_{p-1}' \oplus \{ e^{'}_p a^{'}_p \} \quad \text{for} \ p = 1, 2, \ldots, u \quad (40) \]

Furthermore it is clear from Eq. (17) that \(t_u = t_u' \). Thus there exists a complete tree \(t_u \) such that

\[t_0 \oplus \{ e_1' \ldots e_u' a_1' \ldots a_u' \} = t \quad (41) \]

and \(\{ e_1' \ldots e_u' a_1' \ldots a_u' \} \) is a proper subset of \(\{ e_1 \ldots e_u a_1 \ldots a_u \} \). Hence the theorem is true for \(k > 1 \).

Suppose \(k = 1 \). Let fundamental tree sequence of \(G_1 \) and \(G_2 \) corresponding to 1 FTS matrix \(W \)

\[W = \begin{bmatrix}
 a_1' & a_2' & \ldots & a_m' \\
 e_1' & e_2' & \ldots & e_m'
\end{bmatrix} \quad (42) \]

be

\[t_0', t_1', \ldots, t_m \]

and

\[t_0' = t_0', t_1', \ldots, t_m' \]

respectively, where \(e_1 = e_1' \).

For fundamental cut set \(S_{a_j}^1 (t_0) \), let \(a_j = a_j' \) for \(j = 1, 2, \ldots, r \). Notice that \(e_1 \in S_{a_j}^1 (t_0) \) by assumption. Furthermore, \(e_1' \) is the edge among \(a_1', a_2', \ldots, a_r' \) appearing first in the sequence \(a_1'a_2' \ldots a_r' \) which is the first row of \(W \).
Consider tree \(t_{u_1} \) in \(G_1 \) which is
\[
t_{u_1} = t_{u_1-1} \oplus \{e'_{u_1+1} a'_{u_1} \}
\] (43)

Since \(e_1 = e'_1 \) is not in any fundamental cut set \(S_{a'}^1(t_0) \) for \(p = 1,2,...,u_1-1 \), it is clear that
\[
S_{a'}^1(t_{u_1-1}) = S_{a'}^1(t_0)
\] (44)

Thus edge \(e_1 \) satisfies that
\[
e_1 \in S_{a'}^1(t_0) \cap S_{a'}^1(t_{u_1-1})
\] (45)

which means that we can use \(e_1 \) rather than \(e'_{u_1+1} \) to obtain \(t_{u_1} \) from \(t_{u_1-1} \). By doing so, we have the fundamental tree sequence \(t_0 t_1 ... t_{u_1-1} t'' \) under \(t_0 \) in \(G_1 \) where
\[
t''_{u_1} = t_{u_1-1} \oplus \{e'a'_1 \}
\] (46)

Compare with the subsequence \(t_0 t'_1 ... t'_u \) of fundamental tree sequence \(t'_0 = t'_0 t'_1 ... t'_m \) under \(t_0 \) in \(G_2 \), we can see that
\[
t''_{u_1} = t'_{u_1}
\] (47)

Thus \(t'_{u_1} \) is a complete tree where
\[
t'_{u_1} = t_0 \oplus \{e'_{u_1} e'_{u_1+1} a_{u_1} a'_{u_1} \}
\] (48)

and \(\{e'_{u_1} e'_{u_1+1} a_{u_1} a'_{u_1} \} \) is a proper subset of \(\{e'_{u_1} e'_{u_1+1} e'_{m+1} a_1 a'_{u_1} a'_{m+1} \} \). Thus the theorem is true for \(k = 1 \).

Case 2 - Suppose Condition 2 is satisfied but Condition 1 does not satisfy:
Suppose the edge permutation $\xi(t_0 t_m)$ can be factorized as
\[
\xi(t_0 t_m) = \begin{pmatrix}
e_1 e_2 \ldots e_u \\
e'_1 e'_2 \ldots e'_u \\
e_{u+1} \ldots e_m \\
e'_{u+1} \ldots e'_m
\end{pmatrix}
\] (49)
where $\begin{pmatrix} e_1 e_2 \ldots e_u \\ e'_1 e'_2 \ldots e'_u \end{pmatrix}$ is not factorizable. Without the loss of generality, suppose the columns of $\xi(t_0 t_m)$ represent edges a_1, a_2, \ldots, a_m. In G_1, we can form a fundamental tree sequence under t_0 as $t_0 t_1 t_2 \ldots t_u$ where
\[
t_p = t_{p-1} \oplus \{ e_a \} \\
p = 1, 2, \ldots, u.
\] (50)
These trees satisfy the definition of M-tree transformation under t_0 because e_p is not in any of the fundamental cut sets $S^1_{a_j}(t_0)$ for $j = 1, 2, \ldots, m$ except $j = p$. Thus
\[
S^1_{a_j}(t_0) = S^1_{a_j}(t_p)
\] (51)
for $j = p+1, \ldots, u$.

Similarly in G_2, a fundamental tree sequence $t'_0 = t_0, t'_1, t'_2, \ldots, t'_u$ where
\[
t'_p = t'_{p-1} \oplus \{ e'_a \} \\
p = 1, 2, \ldots, u
\]
can be formed. Since $\{ e_1 \ldots e_u \} = \{ e'_1 \ldots e'_u \}$,
\[
t' = t_u.
\] (52)
Hence t_u is a complete tree which can be expressed as
\[
t_u = t_0 \oplus \{ e_1 e_2 \ldots e_u a_1 a_2 \ldots a_u \}
\] (53)
where $\{ e_1 e_2 \ldots e_u a_1 a_2 \ldots a_u \}$ is a proper subset of $\{ e_1 e_2 \ldots e_m a_1 a_2 \ldots a_u \ldots a_m \}$.
Thus the theorem is true for this case. By Cases 1 and 2, we prove the half
of the theorem. The remaining to be proven is that if

\[t_m = t_0 \oplus \{ e_1 \ldots e_m a_1 \ldots a_m \} \tag{54} \]

is not an elementary complete tree transformation, then either Condition 1 or Condition 2 will be violated.

Suppose \(t_0 \oplus \{ e_1 \ldots e_m a_1 \ldots a_m \} \) is not an elementary complete tree transformation. Then there exists a complete tree \(t_u \) such that

\[t_0 \oplus \{ e'_1 \ldots e'_u a'_1 \ldots a'_u \} = t_u \tag{55} \]

where \(\{ e'_1 \ldots e'_u a'_1 \ldots a'_u \} \) is a proper subset of \(\{ e_1 \ldots e_m a_1 \ldots a_m \} \). This means that there exists an edge-permutation which is factorizable if Condition 2 is satisfied. Thus either Condition 1 or Condition 2 will be violated. Q.E.D.

Consider a pair of linear graphs \(G_1 \) and \(G_2 \) in Fig. 5.

![Fig. 5. A pair of linear graphs \(G_1 \) and \(G_2 \).](image)

Let \(t_0 = \{ a_1 a_2 \} \) and \(t_2 = \{ e_1 e_3 \} \). Then

\[t_0 \oplus \{ e_1 e_2 a_1 a_2 \} = t_2 \]

is not an elementary complete tree transformation because in \(G_1 \), \(e_1 \) and \(e_3 \) are in \(S_{a_1} t_0 \) which violate Condition 2 in Theorem 1.
However, for $t_3 = \{e_1e_2\}$,

$$t_0 \oplus \{e_1e_2, a_1a_2\} = t_3$$

is an elementary complete tree transformation. Theorem 1 gives the following Lemma.

Lemma 1: Any complete tree can be obtained from a complete tree by successive elementary complete tree transformations.

Remarks

It can be seen that if two linear graphs G_1 and G_2 are identical, an elementary complete tree transformation becomes a known elementary tree transformation. An important future problem is to generate all possible complete trees without duplications by the use of elementary complete tree transformations.

References

Distribution list as of March 1, 1965

<table>
<thead>
<tr>
<th>Agency/Institution</th>
<th>Address</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Research Projects Agency</td>
<td>1777 North Kent Street, Arlington, Virginia 22209</td>
<td>Dr. Chalmers Sherwin</td>
</tr>
<tr>
<td>National Security Agency</td>
<td>Fort Meade, Maryland 20755</td>
<td>Mr. Charles Yost</td>
</tr>
<tr>
<td>U.S. Army Munitions Command</td>
<td>300 N. Washington Street, Washington, D.C. 20360</td>
<td>Mr. George C. Francis</td>
</tr>
<tr>
<td>Naval Electronics Laboratory</td>
<td>2300 Army Street, San Diego, California 92102</td>
<td>Lt. S. J. Kahne, CRB</td>
</tr>
<tr>
<td>Walter Reed Army Medical Center</td>
<td>1902 West Minnehaha Avenue, Minneapolis, Minnesota 55404</td>
<td>Don E. Hanley</td>
</tr>
<tr>
<td>U.S. Army Electronics Laboratories</td>
<td>Fort Monmouth, New Jersey 07703</td>
<td>Attn: PMG</td>
</tr>
<tr>
<td>Department of Defense</td>
<td>Washington, D.C. 20315</td>
<td>Attn: ODP-07</td>
</tr>
</tbody>
</table>

Continued next page
Distribution list as of March 1, 1965 (Cont'd.)

1 Lincoln Laboratory
Massachusetts Institute of Technology
F. D. Box 73
Lexington 73, Massachusetts
Attn: Dr. Robert Bloom

1 APGC (PGAC)
Polytechnic Institute of Brooklyn
Director
Mr. Alan Barnum
Bome Air Development Center
Griffiss Air Force Base
Syracuse, New York 13204

1 Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
15 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator

1 Director
Columbia Radiation Laboratory
Columbia University
338 West 120th Street
New York, New York 10027

1 Director
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

1 Director
Stanford Electronic Laboratories
Stanford University
Stanford, California

1 Director
Electronics Research Laboratory
University of California
Berkeley 4, California

1 Professor A. A. Dougall, Director
Laboratories for Electronics and Related Science Research
University of Texas
Austin, Texas 78712

1 Professor J. E. Agnew
Department of Electrical Engineering
University of Texas
Austin, Texas 78712

1 Director of Engineering & Applied Physics
210 Pierce Hall
Howard University
Cambridge, Massachusetts 02138

1 Capt. Paul Johnson (USN Ret.)
National Aeronautics & Space Agency
1520 M. Street, N.W.
Washington, D. C.

1 NASA Headquarters
Office of Applications
600 Maryland Avenue, S.W.
Washington, D. C.
Attn: Code FC Mr. A. M. Greg Andrus

1 National Bureau of Standards
Research Information Center and Advisory Serv., on Info. Processing
Data Processing Systems Division
Washington 25, D. C.

1 Dr. Wallace Stehle
Institute for Defense Analyses
1666 Commonwealth Avenue, N. W.
Washington 35, D. C.
Att. A. R. Bellow

1 Data Processing Systems Division
National Bureau of Standards
Conry, at Van Ness
Room 239, Bldg. 10
Washington 25, D. C.
Attn: A. K. Holdow

1 Exchange and Gift Division
The Library of Congress
Washington 25, D. C.

1 Dr. Alan T. Waterman, Director
National Science Foundation
Washington 25, D. C.

1 H. E. Goughan
Oak Ridge National Laboratory
P. O. Box X
Oak Ridge, Tennessee

1 Dr. E. Atomic Energy Commission
Office of Technical Communication
Room 2, Box 62
Oak Ridge, Tennessee

1 Mr. G. D. Ketron
Defense Research Staff
Canadian Joint Staff
3300 Massachusetts Avenue, N. W.
Washington 6, D. C.

1 Martin Company
P. O. Box 1537
Orlando, Florida
Attn: Engineering Library MP-30

1 Laboratories for Applied Sciences
University of Chicago
6125 South Maryland
Chicago, Illinois 60637

1 Librarian
School of Electrical Engineering
Purdue University
Lafayette, Indiana

1 Daniel L. Epler
Dept. of Electrical Engineering
University of Iowa
Iowa City, Iowa

1 Instrumentation Laboratory
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Library W1-109

1 Sylvan J. Electric Products, Inc.
Electro-Mechanical System
Valhalla, New York

1 Director of Engineering & Applied Physics
Data Processing Systems Division
Research Information Center and Advisory Serv., on Info. Processing
Data Processing Systems Division
Washington 25, D. C.

1 Dr. Arnold T. Nordmeyer
Central Motors Corporation
Defense Research Laboratories
6306 Hollister Avenue
Santa Barbara, California

1 University of California
Lawrence Radiation Laboratory
P. O. Box 808
Livermore, California

1 Mr. Thomas L. Bartwich
Aerospace Corporation
P. O. Box 93083
Los Angeles 45, California

1 Lt. Col. William Levin
Aerospace Corporation
P. O. Box 93083
Los Angeles 45, California

1 Solvay Electronic System-West
Electronic Defense Laboratory
P. O. Box 205
Mountain View, California
Attn: Documents Center

1 Varian Associates
611 Hansen Way
Pallo Alto, California 94303
Attn: Tech. Library

1 Huron Division
Library Supervisor
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

1 Professor Nicholas George
California Institute of Technology
Electrical Engineering Department
Pasadena, California

1 Space Technology Labs., Inc.
One Space Park
Redondo Beach, California
Attn: Acquisitions Group
STL Technical Library

1 The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library

1 Miss F. Gleason
Radio Corp. of America
RIA Laboratories
David Sarnoff Research Center
Princeton, New Jersey

1 Mr. A. A. Landstrom
Bell Telephone Laboratories
Room 26-137
Whippany Road
Whippany, New Jersey

1 Cornell Aeronautical Laboratory, Inc.
4455 Genesee Street
Buffalo 21, New York
Attn: J. H. Benedict, Librarian

1 Sperry Gyroscope Company
Marine Division Library
135 Glenn Davis Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd

1 Laboratory
Light Military Electronics Dept.
General Electric Company
Armament & Control Products Section
Johnson City, New York

1 Dr. E. Howard Holt
Director
Batelle-Defense
Waltham Labs. Library
Light Military Electronics Dept.
Columbus 1, Ohio

1 Laboratory for Electrosience Research
New York University
University Heights
Bronx 63, New York

1 National Physical Laboratory
Teddington, Middlesex
England
Attn: Dr. A. M. Utley, Superintendent, Astronomy Division

1 Dr. Lee Mait
Behavioral Sciences
Advanced Research Projects Agency
The Pentagon (Room 16173)
Washington, D. C.

1 Dr. Glenn L. Hayse
Head, Personnel and Training Branch
Office of Naval Research
Washington, D. C.

1 Stanford Research Institute
Attn: G-037 External Reports
(For J. Goldberg)
Menlo Park, California 94025
REVISED U. S. ARMY DISTRIBUTION LIST

(As received at the Coordinated Science Laboratory 27 July 1965)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name and Title</th>
<th>Address</th>
<th>City, State Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Chalmers Sherwin, Deputy Director (Research & Technology)</td>
<td>ONR/ R2 310000</td>
<td>The Pentagon, Washington, D.C. 20301</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Edward M. Reilley, Mr. E. I. Salkovitz, Director</td>
<td>U.S. Army Research Office, Director</td>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>1</td>
<td>Mr. Charles F. Yost, Special Assistant to the Director of Research</td>
<td>National Aeronautics & Space Admin., Washington, D.C. 20546</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mr. Robert O. Parker, Executive Secretary, JSTAC (AMEL-XL-D)</td>
<td>U.S. Army Electronics Command, Fort Monmouth, New Jersey 07703</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. S. Benedict Levin, Director</td>
<td>Institute for Exploratory Research, U.S. Army Electronics Command, Fort Monmouth, New Jersey 07703</td>
<td></td>
</tr>
</tbody>
</table>

Note: The list includes multiple entries for various organizations and institutions, including but not limited to:
- U.S. Army Research Office
- Department of Defense
- National Institute of Standards and Technology
- U.S. Army Ballistics Research Laboratory
- U.S. Army Electronics Command
- U.S. Army Missile Command
- U.S. Army Signal Center and School
- U.S. Army Strategic Communications Command
- U.S. Army Materiel Command
- U.S. Army Materiel Research Agency
- U.S. Army Signal Research and Development Agency
- U.S. Army Materials Research Agency
- U.S. Army Ballistics Research Laboratory
- U.S. Army Electronics Research and Development Agency
- U.S. Army Engineering Research and Development Agency
- U.S. Army Military Academy
- Walter Reed Research Institute of Research
- U.S. Army Research Office
- U.S. Army Command and General Staff College

The list contains a variety of addresses, including
- Washington, D.C.
- Alexandria, Virginia
- Arlington, Virginia
- Fort Belvoir, Virginia
- West Point, New York
- Fort Sill, Oklahoma
- Fort Bliss, Texas
- Picatinny Arsenal, New Jersey
- Philadelphia, Pennsylvania
- New York, New York
- Los Angeles, California
- Austin, Texas

This list is a comprehensive distribution list for various entities within the U.S. Army, focusing on research, development, and educational aspects.
It is known that a passive electrical network without mutual couplings can be analyzed by knowing all possible trees of a linear graph corresponding to the network. Since there exists a reasonably simple method of generating all possible trees of a linear graph without duplications, analysis of such a network by a computer becomes indubitably simple.

When a pair of linear graphs is used, an active network can be analyzed by knowing all possible complete trees each of which is a tree of both linear graphs. At present there is no simple method of generating all possible complete trees without duplications. Hence, in order to obtain all possible complete trees by a computer, one of the best available methods at present is to generate all possible trees of each linear graph to obtain two collections of trees, then intersecting the two collections. It is not difficult to design an active network such that there are more than a thousand of trees in each of a pair of linear graphs corresponding to the net, but there are less than one hundred complete trees. Hence to obtain a simple method of generating all possible complete trees is undoubtedly important for analysis of active networks by a computer.

(continued on separate sheet)
linear graphs
active network analysis
tree generation
elementary tree transformation
analysis by computer
ABSTRACT (continued)

Obtaining one tree from another tree which is used to generate all possible trees in a linear graph is accomplished by so-called "elementary tree transformation." In this paper, this transformation is generalized so that a complete tree can be obtained from another complete tree by the generalized transformation, namely an "elementary complete tree transformation."

Furthermore, any complete tree can be obtained from any other complete tree by successive elementary complete tree transformations. The study of the properties of such transformation will hopefully lead to find a method of generating all possible complete trees without duplications in the future.