GENERATION OF TREES
AND COMPLETE TREES
Wataru Mayeda

REPORT R-284

APRIL, 1966
This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28 043 AMC 00073(E).

This work was also supported by the Air Force Office of Scientific Research, United States Air Force, under Grant AF AFOSR 931.65.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.
GENERATION OF TREES AND COMPLETE TREES

Wataru Mayeda

Abstract

A method of generating all complete trees of a pair of linear graphs which can represent active networks is given. This method consists of two parts, one of which is to obtain one complete tree and the other is to generate all possible complete trees of distance one from that already determined.

All complete trees of distance one from a given tree \(t_0 = \{a_1, a_2, \ldots, a_n\} \) can easily be obtained by

\[
\bigcup_{p=1}^{n} T^P(t_0) = \bigcup_{p=1}^{n} \{t| t = t_0 \oplus \{a_p e\}, e \in S_a(t_o, G_i) \cap S_a(t_o, G_v)\}
\]

where \(S_a(t_o, G_i) \) is a fundamental cut set containing edge \(a_p \) with respect to tree \(t_0 \) in \(G_i \), \(S_a(t_o, G_v) \) is a fundamental cut set containing edge \(a_p \) with respect to \(t_0 \) in \(G_v \), and \(G_i \) and \(G_v \) are the pair of linear graphs representing an active network. When we have cut set matrices \(A_i \) and \(A_v \) corresponding to \(G_i \) and \(G_v \) respectively, we can find a tree \(t_o \) by changing these matrices to the fundamental form as \([A_i U]_{11}\) and \([A_v U]_{11}\) in which the edges corresponding to the unit matrix \(U \) form a complete tree.

These two processes are easily carried out by the use of computers. There will be no duplications when complete trees are generated by this method. Furthermore, complete trees are generated by sets of complete trees...
classified by edges in initial complete tree t_0. Thus it will be easy to factorize according to the weights of these edges.
Introduction

Whether or not the use of computers for analysis of electrical networks is useful and an important part of modern electronic industry depends on the computer time necessary to analyze such networks. One way of saving computer time is to find an effective method of generating all possible trees in the case of passive networks, and to generate all possible complete trees in the case of active networks and networks with transformers.

There are several methods available at present. However, none of them is satisfactory for generating all complete trees by computers. Obviously, if a method can generate all complete trees effectively, the same method can generate all trees effectively. On the other hand, even though a method can generate all trees effectively, to obtain all complete trees by simply modifying the method is not generally very effective.

It has been known for a long time that to generate all trees which are distance one from a given tree is easy. Also it is easily seen that generating all complete trees of distance one from a given complete tree is likewise simple. Hence if a method can generate all possible complete trees by generating complete trees of distance one from some set of complete trees, the method will be a desirable one. Here such a method is introduced, and a computer program using this method is in preparation. This method is simple in technique and no difficult theories are involved. Also finding the sign of each complete tree can be found without any additional computations.
Generation of Trees

Let $A = [A_{ij}]$ be the fundamental cut set matrix of a connected linear graph G consisting of v vertices. Also let t_o be the tree corresponding to the unit matrix in $[A_{11}]$. Consider another tree t in G. Let

$$t - t_o = \{e_1, e_2, \ldots, e_n\}$$

and

$$t_o - t = \{a_1, a_2, \ldots, a_n\}.$$

Then

$$t_o \cap t = \{a_{n+1}, \ldots, a_{v-1}\}$$

be the edges in both t_o and t. Notice that $t - t_o$ is a set of edges in t but not in t_o. For convenience, let P and Q be sets of edges such that $P \cap Q = \emptyset$. We define the symbol $G(P;Q)$ to represent the linear graph obtained from G by shorting all edges in P and opening all edges in Q. With this definition, $G(t_o \cap t; t_o - t)$ is a linear graph obtained from G by shorting all edges in $t_o \cap t$ and opening all edges in $t_o - t$.

Theorem 1: Let t_o and t be trees in G. Then $t - t_o$ is a tree in $G(t_o \cap t; t_o - t)$.

Proof: Since t is a tree of G, shorting any edge a in t makes $t - \{a\}$ a tree of $G(\{a\}; \emptyset)$. Also opening any edge $e \notin t$ does not destroy t as a tree of $G(\emptyset; \{e\})$. Q.E.D.

We define a distance between two trees t_o and t as the number of edges in $t_o - t$. The symbol $T_{t_o}^{a_1a_2\ldots a_n}$ is the set of all possible trees t such that

$$t_o - t = \{a_1, a_2, \ldots, a_n\}.$$
Thus any tree t in $T_{a_{1}a_{2}\ldots a_{n}}[t_{o}]$ is distance n from t_{o}.

Theorem 2: Let $t \in T_{a_{1}a_{2}\ldots a_{n}}[t_{o}]$. Then $t - t_{o}$ is a tree in $G(t_{o} \cap t; t_{o} - t)$. Furthermore, any tree t' in $G(t_{o} \cap t; t_{o} - t)$ with all edges in $t_{o} \cap t$ is a tree in $T_{a_{1}a_{2}\ldots a_{n}}[t_{o}]$.

Proof: The first part of this theorem follows directly from Theorem 1. The proof of the second part is as follows: If $t' \cup (t_{o} \cap t)$ is not a tree of G, then it must contain at least one circuit. Since t' is a tree in $G(t_{o} \cap t; t_{o} - t)$ and $t_{o} \cap t$ is part of t_{o}, both subgraphs themselves do not contain any circuit. Thus only the circuits which possibly exist in $t' \cup (t_{o} \cap t)$ will be those consisting of some of edges in $t_{o} \cap t$ and some of edges in t'. However, if this is the case, when all edges in $t_{o} \cap t$ are shorted, those edges in t' must form circuits including self-loops which contradicts the assumption that t' is a tree in $G(t_{o} \cap t; t_{o} - t)$. Q.E.D.

It is known that to obtain $T^{a_{i}}[t_{o}]$ where $a_{i} \in t_{o}$ is easily done by the scheme

$$T^{a_{i}}[t_{o}] = \{t|t = t_{o} \oplus \{ae\}, \ e \in S_{a}(t_{o})\}.$$

That is, we can obtain $T^{a_{i}}[t_{o}]$ directly from the fundamental cut set matrix

$$A = [A_{11}U]$$

by taking edge e whose corresponding row in A_{11} is non-zero at the column corresponding to the cut set $S_{a}(t_{o})$. The following example will illustrate this point.
Example 1: Let fundamental cut set matrix A of the linear graph shown in Figure 1 be

$$
A = \begin{bmatrix}
 e_1 & e_2 & e_3 & e_4 & a_1 & a_2 & a_3 & a_4 \\
 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
$$

![Figure 1. A linear graph G](image)

where $t_0 = \{a_1 a_2 a_3 a_4\}$. Then $T^1_{a_1}[t_0]$ can be obtained from t_0 by replacing edge a_1 by edge e_1 because only column e_1 which is non-zero at the first row corresponding to $S_{a_1}(t_0)$. $T^2_{a_1}[t_0]$ can be obtained from t_0 by changing edge a_2 by edges e_2, e_3 and e_4 one at the time because columns e_2, e_3 and e_4 have non-zero at the second row. Thus

$$
T^2_{a_1}[t_0] = \{\{e_2 a_1 a_3 a_4\}, \{e_3 a_1 a_3 a_4\}, \{e_4 a_1 a_3 a_4\}\}.
$$

Similarly

$$
T^3_{a_2}[t_0] = \{\{e_2 a_1 a_2 a_4\}, \{e_4 a_1 a_2 a_4\}\}
$$

and

$$
T^4_{a_3}[t_0] = \{\{e_1 a_1 a_2 a_3\}, \{e_3 a_1 a_2 a_3\}, \{e_4 a_1 a_2 a_3\}\}.
$$
Thus to obtain all possible trees which are distance one from \(t_0 \) is a very simple task. The problem is to obtain trees which are not distance one from \(t_0 \).

From Theorems 1 and 2, the following process will give \(\mathcal{T}_{t_0}^{a_1a_2} \) from \(G(t_0 - \{a_1a_2\};\{a_1a_2\}) \).

Step 1: Take one tree of \(G(t_0 - \{a_1a_2\};\{a_1a_2\}) \). Let this tree be \(t_0(a_1a_2) = \{e_1e_2\} \).

Step 2: Since \(\mathcal{T}_{t_0}^{a_1a_2} \) can be obtained by knowing \(\mathcal{T}_{t_0}^{e_1}(a_1a_2) \), \(\mathcal{T}_{t_0}^{e_2}(a_1a_2) \) and \(\mathcal{T}_{t_0}^{e_1e_2}(a_1a_2) \) which are the set of all trees in \(G(t_0 - \{a_1a_2\};\{a_1a_2\}) \), we first obtain \(\mathcal{T}_{t_0}^{e_1}(a_1a_2) \) and \(\mathcal{T}_{t_0}^{e_2}(a_1a_2) \) which consists of trees of distance one from \(t_0(a_1a_2) \). Notice that to obtain these trees, we only need to know the fundamental cut sets with respect to tree \(t_0(a_1a_2) \). To obtain \(\mathcal{T}_{t_0}^{e_1e_2}(a_1a_2) \), we go back to Step 1 using (i) tree \(t'(a_1a_2) \) which consists of edges in \(t_0 - \{a_1a_2\} \) and edges \(e_1 \) and \(e_2 \), (ii) edges \(e_1 \) and \(e_2 \) rather than \(a_1 \) and \(a_2 \), and (iii) linear graph \(G(t_0 - \{a_1a_2\};\{a_1a_2\}) \) rather than \(G \).

When we use a cut set matrix rather than a linear graph to obtain all trees, with the definition given below, the above process becomes simply as follows:

Definition 1: A matrix \(Q \) is said to be a fundamental form if \(Q \) is expressed as \([Q_{11}U] \) where \(U \) is a unit matrix. Notice that the rank of \(Q \) must be the same as the number of rows in the matrix.

Suppose a cut set matrix \(A \) is given. Then first we change it to a fundamental form of \([A_{11}U] \) by elementary row operations. Notice that all edges in tree \(t_0 \) correspond to the columns of \(U \) in \([A_{11}U] \).
Step 1: Let \(A(a_1 a_2) \) be the submatrix of \(A_{11} \) obtained by deleting all rows which do not have non-zero at the columns corresponding to \(a_1 \) and \(a_2 \) in \([A_{11} U]\), and delete all columns of \(U \). It can be seen that \(A(a_1 a_2) \) is a cut set matrix of the linear graph \(G(t_0 - \{a_1 a_2\};\{a_1 a_2\}) \).

Step 2: By elementary row operations, change \(A(a_1 a_2) \) into a fundamental form as \([A(a_1 a_2)_{11} U] \) which is a fundamental cut set matrix of \(G(t_0 - \{a_1 a_2\};\{a_1 a_2\}) \), and the columns corresponding to \(U \) represents edges \(e_1 \) and \(e_2 \) which form tree \(t_0(a_1 a_2) \) in this modified linear graph. If we can not obtain a fundamental form of \(A(a_1 a_2) \) by the elementary row operations, then we know that there is no tree in the linear graph \(G(t_0 - \{a_1 a_2\};\{a_1 a_2\}) \).

Each tree in \(T^{e_1}[t_0(a_1 a_2)] \) can be obtained by replacing edge \(e_1 \) by edge \(e_p \) whose corresponding column of \(A(a_1 a_2)_{11} \) has a non-zero at the first row which represents \(S_{e_1}[t_0(a_1 a_2)] \). Similarly, we replace edge \(e_2 \) by edge \(e_q \) whose corresponding column of \(A(a_1 a_2)_{11} \) has a non-zero at the second row to obtain \(T^{e_2}[t_0(a_1 a_2)] \). To obtain trees in \(T^{e_1 e_2}[t_0(a_1 a_2)] \), we go back to Step 1 by (i) using \(A(a_1 a_2) \) rather than \(A \), and (ii) considering edges \(e_1 \) and \(e_2 \) rather than \(a_1 \) and \(a_2 \). Notice that there is no rows to remove in order to obtain a new cut set matrix. Actually, \(A(a_1 a_2)_{11} \) is a new cut set matrix to be considered next. The next example will illustrate the above process.

Example 2: For a given linear graph shown in Figure 2, a cut set matrix with the corresponding tree \(t_0 = \{a_1 a_2 a_3 a_4\} \) is
To obtain $T_{a_1a_2}[t_0]$, we only need to consider linear graph $G(t_0 - \{a_1, a_2\}; \{a_1, a_2\})$. A cut set matrix $A(a_1a_2)$ corresponding to this linear graph is the first two rows of A without columns a_1, a_2, a_3 and a_4; that is

$$A(a_1a_2) = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

By rearranging rows, we have

$$A(a_1a_2) = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$
Thus tree $t_o(a_1 a_2)$ of $G(t_o - \{a_1 a_2\};\{a_1 a_2\})$ will be $\{e_3 e_4\}$. Since each row in the above matrix represents a fundamental cut set with respect to this tree $t_o(a_1 a_2)$,

$$T^{e_4}[t_o(a_1 a_2)] = \{e_1 e_3\}$$

which is obtained according to Step 2 in the above process. That is, since only column e_1 has a non-zero at the first row which represents cut set $S_{e_1}^{t_o(a_1 a_2)}$, only edge e_1 can replace edge e_4 in order to obtain $T^{e_4}[t_o(a_1 a_2)]$. Similarly, both edges e_1 and e_2 can replace edge e_3 because columns e_1 and e_2 have non-zero at the second row,

$$T^{e_3}[t_o(a_1 a_2)] = \{\{e_1 e_4\},\{e_2 e_4\}\}.$$

To obtain $T^{e_3 e_4}[t_o(a_1 a_2)]$, we use the cut set matrix $A(a_1 a_2 e_3 e_4)$ obtained from $A(a_1 a_2)_{11} U$ by deleting all columns belonging to U, i.e.,

$$A(a_1 a_2 e_3 e_4) = \begin{bmatrix} e_1 & e_2 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

This matrix can easily be changed into a fundamental form which is just a unit matrix. Notice that this matrix is a cut set matrix of a linear graph $G(t_o - \{a_1 a_2\};\{a_1 a_2\} U \{e_3 e_4\})$. Also there is only one tree in this graph which is $t_o(a_1 a_2 e_3 e_4) = \{e_1 e_2\}$. Hence all possible trees of linear graph $G(t_o - \{a_1 a_2\};\{a_1 a_2\})$ are $\{e_3 e_4\}$, $\{e_1 e_3\}$, $\{e_1 e_4\}$, $\{e_2 e_4\}$, and $\{e_1 e_2\}$. Thus we can obtain all trees in $T^{a_1 a_2}[t_o]$ by replacing edges a_1 and a_2 by edges in each one of the above trees as

$$T^{a_1 a_2}[t_o] = \{\{e_3 e_4 a_3 a_4\}, \{e_1 e_3 a_3 a_4\}, \{e_1 e_4 a_3 a_4\}, \{e_2 e_4 a_3 a_4\}, \{e_1 e_2 a_3 a_4\}\}.$$
In general, we can obtain $T^{a_1a_2...a_p}$ of linear graph G by the following process, where $t_o = \{a_1, a_2, ..., a_n\}$ and $1 < p \leq n$.

Step 1: Form a new linear graph $G(t_o - \{a_1, a_2, ..., a_p\}; \{a_1, a_2, ..., a_p\})$ from G. Then pick a tree in this graph. Let this be $t' = \{e_1, e_2, ..., e_p\}$. If it is impossible to pick a tree, there is no tree in $T^{a_1a_2...a_n}$.

Step 2: The all possible trees in $G(t_o - \{a_1, a_2, ..., a_p\}; \{a_1, a_2, ..., a_p\})$ are those in

\[T^{e_1}[t_o'], T^{e_2}[t_o'], ..., T^{e_p}[t_o'] \]

\[T^{e_1e_2}[t_o'], T^{e_1e_3}[t_o'], ..., T^{e_1e_p}[t_o'], T^{e_2e_3}[t_o'], ..., T^{e_p-1e_p}[t_o'] \]

\[\ldots \ldots \]

\[T^{e_1e_2...e_p}[t_o'], \ldots, \text{where } 1 \leq j_1 < j_2 < \ldots < j_q < p \]

\[\ldots \ldots \]

\[T^{e_1e_2...e_p}[t_o'] \].

Obtain each tree in $T^{e_1}[t_o'], T^{e_2}[t_o'], \ldots, T^{e_p}[t_o']$ which is a tree of distance one from t_o in $G(t_o - \{a_1, a_2, ..., a_p\}; \{a_1, a_2, ..., a_p\})$. Obtaining trees in $T^{e_1e_2...e_p}[t_o']$ is the same as obtaining trees in $T^{a_1a_2...a_n}[t_o]$. Thus we go back to Step 1 by considering t_o' rather than t_o as a given tree and $G(t_o - \{a_1, a_2, ..., a_p\}; \{a_1, a_2, ..., a_p\})$ rather than G as a given linear graph.

With cut set matrix A rather than linear graph G to obtain all trees, the above process becomes as follows: Let A be a given cut set matrix of a given linear graph G. First we change A into a fundamental form as $[A_{11}U]$ by elementary operations. Let $t_o = \{a_1, ..., a_n\}$ be a tree corresponding to the unit matrix U in $[A_{11}U]$. The following steps gives all trees in $T^{a_1...a_p}[t_o]$ where $1 < p \leq n$.
Step 1: Form a cut set matrix $A(a_1...a_p)$ obtained from $A = [A_{11}U]$ by deleting all rows corresponding to fundamental cut sets $S_{ar}(t_o)$ for all edges a_r in $t_o - \{a_1...a_p\}$, (notice that the row corresponding to $S_{ar}(t_o)$ has 1 at the column representing a_r) and deleting all columns of the unit matrix U in $[A_{11}U]$. Change $A(a_1...a_p)$ into a fundamental form as $[A(a_1...a_p)_{11}U]$. Suppose the tree t'_o consists of edges $e_1,e_2,...,e_p$ corresponding to columns of U in $[A(a_1...a_p)_{11}U]$.

Step 2: Obtain $T_{er}(t'_o)$ for $r = 1,2,...,p$ by replacing edge e_r by edge e' whose corresponding column has a non-zero at the row representing fundamental cut set $S_{er}(t'_o)$. Notice that row representing $S_{er}(t'_o)$ has 1 at the column corresponding to edge e_r.

In order to obtain $T_{ej_1}^e_{j_u}(t'_o)$, we go back to Step 1 considering $A(a_1...a_p)$ rather than A as a given cut set matrix, t'_o rather than t_o as a tree and edges $e_{j_1},...,e_{j_u}$ rather than $a_1,...,a_p$ as edges to be replaced.

The following example will illustrate the above process.

Example 3: Suppose a linear graph G shown in Figure 3 is given. A fundamental cut set matrix A with respect to tree $t_o = \{a_1a_2a_3a_4\}$ is

$$A = \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & a_1 & a_2 & a_3 & a_4 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
3 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
4 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}$$
Then trees in $T^{1\text{a}}_{t_0}$ are those obtained from t_0 by replacing edge a_1 by edges which has 1 at row 1 representing $S^{a_1}_{a_1}(t_0)$. Those edges are e_1 and e_2. Thus

$$T^{1\text{a}}_{t_0} = \{e_1a_2a_3a_4, e_2a_2a_3a_4\}.$$

Similarly

$$T^{2\text{a}}_{t_0} = \{\{a_1e_1a_3a_4, \{a_1e_2a_3a_4, \{a_3e_4a_3a_4\}\}}\}$$

$$T^{3\text{a}}_{t_0} = \{\{a_1a_2e_1a_4, \{a_1a_2e_3a_4\}\}}\}$$

and

$$T^{4\text{a}}_{t_0} = \{\{a_1a_2a_3e_2, \{a_1a_2a_3e_3, \{a_1a_2a_3e_4\}\}\}}\}$$

To obtain $T^{1a_2}_{a_1}[t_0]$, we consider a new cut set matrix $A(a_1a_2)$ from A by deleting row 3 and row 4 and columns belonging to the unit matrix; that is,

$$A(a_1a_2) = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 1 \end{bmatrix}$$
by elementary row operations and rearranging columns, we can change the matrix into a fundamental form as

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

Thus

\[
t_o(a_1a_2) = \{e_2e_4\},
\]

\[
T^4[t_o(a_1a_2)] = \emptyset
\]

and

\[
T^2[t_o(a_1a_2)] = \{e_1e_4\}
\]

which gives

\[
T^{a_1a_2}[t_o] = \{\{e_2e_4a_3a_4\}, \{e_1e_4a_3a_4\}\}.
\]

To obtain \(T^{e_1e_2}[t_o(a_1a_2)]\), we consider a new cut set matrix \(A(a_1a_2e_1e_2)\) obtained from \([A(a_1a_2)_{11U}]\) by deleting all columns in \(U\) as

\[
\begin{bmatrix}
e_1 & e_3 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\]

Notice that in this case, there is no row to be deleted because edges \(e_1\) and \(e_2\) form \(t_o(a_1a_2)\). This matrix, obviously, can not be changed into a fundamental form. Thus

\[
T^{e_1e_2}[t_o(a_1a_2)] = \emptyset.
\]

To obtain \(T^{a_1a_3}[t_o]\), we consider a matrix \(A(a_1a_2)\) obtained from \([A_{11U}]\) by deleting rows 2 and 4 (because these rows correspond to \(S_{a_2}(t_o)\) and \(S_{a_4}(t_o)\) where \(a_2\) and \(a_4\) are in \(t_o - \{a_1a_3\}\)), and deleting all columns.
belonging to \(U \) in \([A_{11}U]\) corresponding to edges \(a_1, a_2, a_3, \) and \(a_4 \).

\[
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
1 & 1 & 0 & 0 \\
3 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

\(A(a_1a_3) = \)

This matrix can be changed into a fundamental form as

\[
\begin{bmatrix}
e_1 & e_4 & e_2 & e_3 \\
1 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{bmatrix}
\]

\([A(a_1a_3)_{11}U]\) =

Then

\[
t_o(a_1a_3) = \{e_2e_3\},
\]

\[
T^{e_2}[t_o(a_1a_3)] = \{e_1e_3\}
\]

and

\[
T^{e_3}[t_o(a_1a_3)] = \{e_1e_2\} .
\]

Furthermore from \(A(a_1a_3e_2e_3) \)

\[
\begin{bmatrix}
e_1 & e_4 \\
1 & 1 & 0 \\
3 & 1 & 0
\end{bmatrix}
\]

which is obtained from \([A(a_1a_3)_{11}U]\) by deleting columns belonging to \(U \),

we can see that

\[
T^{e_2e_3}[t_o(a_1a_3e_2e_3)] = \emptyset .
\]

Thus

\[
T^{a_1a_3}[t_o] = \{\{e_2a_2e_3a_4\}, \{e_1a_2e_3a_4\}, \{e_1a_2e_2a_4\}\} .
\]
For $a_1a_4[t_0]$, we consider $A(a_1a_4)$ obtained from $[A_{11}U]$ by deleting row 2 and 3 and columns belonging to U as

$$A(a_1a_4) = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 0 & 1 & 1 & 1 \end{bmatrix}$$

which can be written as

$$[A(a_1a_4)_{11U}] = \begin{bmatrix} e_2 & e_3 & e_1 & e_4 \\ 1 & 1 & 0 & 1 & 0 \\ 4 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Thus

$$t_0(a_1a_4) = \{e_1e_4\},$$

$$T^1[t_0(a_1a_4) = \{e_2e_4\}$$

$$T^4[t_0(a_1a_4) = \{\{e_2e_1\},\{e_3e_1\}\}.$$

In order to obtain $a_1a_4[t_0]$, we must obtain $T^1e_4[T^0(a_1a_4)]$ which can easily be found by considering the following matrix $A(a_1a_4e_1e_4)$

$$A(a_1a_4e_1e_4) = \begin{bmatrix} e_2 & e_3 \\ 1 & 0 \\ 4 & 1 \end{bmatrix}$$

which can be changed into a fundamental form as

$$[A(a_1a_4e_1e_4)_{11U}] = \begin{bmatrix} e_2 & e_3 \\ 1 & 0 \\ 4 & 1 \end{bmatrix}$$
Hence \(t_0(a_1a_4e_1e_4) = \{e_2e_3\} \) and \(T^{e_1e_4}[t_0(a_1a_4)] = \{e_2e_3\} \). Thus

\[
T^{a_1a_4}[t_0] = \{\{e_1a_2a_3e_4\}, \{e_2a_2a_3e_4\}, \{e_1a_2a_3e_2\}, \{e_1a_2a_3e_3\}, \{e_2a_2a_3e_3\}\}
\]

For \(T^{a_2a_3}[t_0] \), we change a matrix \(A(a_2a_3) \)

\[
A(a_2a_3) = \begin{bmatrix}
2 & 1 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

as

\[
[A(a_2a_3)_{11}] = \begin{bmatrix}
2 & 1 & 1 & 1 & 0 \\
3 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Hence

\[
t_0(a_2a_3) = \{e_3e_4\},
\]

\[
T^{e_4}[t_0(a_2a_3)] = \{\{e_1e_3\}, \{e_2e_3\}\}
\]

\[
T^{e_3}[t_0(a_2a_3)] = \{e_1e_4\}.
\]

Furthermore, \(T^{e_3e_4}[t_0(a_2a_3)] \) can be obtained by considering matrix \(A(a_2a_3e_3e_4) \)

\[
A(a_2a_3e_3e_4) = \begin{bmatrix}
2 & 1 & 1 \\
3 & 1 & 0
\end{bmatrix}
\]

which can be changed into a fundamental form as

\[
[A(a_2a_3e_3e_4)_{11}] = \begin{bmatrix}
3 & 1 & 0 \\
2 & 0 & 1
\end{bmatrix}
\]
Hence $T^{e_3 e_4} [t_0 (a_2 a_3)] = \{e_1 e_2\}$. Thus

$$\begin{align*}
T^{a_2 a_3} [t_0] &= \{\{a_1 e_3 e_4 a_4\}, \{a_1 e_1 e_3 a_4\}, \{a_1 e_2 e_3 a_4\}, \{a_1 e_1 e_4 a_4\}, \\
&\{a_1 e_1 e_2 a_4\}\}.
\end{align*}$$

For $T^{a_2 a_4} [t_0]$, we consider $A(a_2 a_4)$ as

$$A(a_2 a_4) = 2 \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}
\quad 4 \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$$

which can be rewritten as

$$[A(a_2 a_4)]_{11} = 2 \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}
\quad 4 \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$$

Hence $t_0 (a_2 a_4) = \{e_1 e_3\}$,

$$T^{e_1}[t_0 (a_2 a_4)] = \{\{e_2 e_3\}, \{e_4 e_3\}\}$$

and

$$T^{e_3}[t_0 (a_2 a_4)] = \{\{e_2 e_1\}, \{e_4 e_1\}\}.$$

Since $A(a_2 a_4 e_1 e_3)$ for $T^{e_1 e_3} [t_0 (a_2 a_4)]$

$$A(a_2 a_4 e_1 e_3) = 2 \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$$

cannot be changed into a fundamental form, there is no tree in $T^{e_1 e_3} [t_0 (a_2 a_4)]$.

Hence
For $T^{a_3a_4}[t_o]$, matrix $A(a_3a_4)$ which is

$$
A(a_3a_4) = \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
3 & 1 & 0 & 1 \\
4 & 0 & 1 & 1
\end{bmatrix}
$$

will be changed into a fundamental form as

$$
[A(a_3a_4)_{11}U] = \begin{bmatrix}
e_3 & e_4 & e_1 & e_2 \\
3 & 1 & 0 & 1 \\
4 & 1 & 1 & 0
\end{bmatrix}
$$

Thus $t_0(a_3a_4) = \{e_1e_2\}$ and we have

$T^{e_1}[t_0(a_3a_4)] = \{e_3e_2\}$

$T^{e_2}[t_0(a_3a_4)] = \{\{e_3e_1\},\{e_4e_1\}\}$

and for $T^{e_1e_2}[t_0(a_3a_4)]$, we consider

$$
A(a_3a_4e_1e_2) = \begin{bmatrix}
e_3 & e_4 \\
3 & 1 \\
4 & 1
\end{bmatrix}
$$

which can be changed to

$$
[A(a_3a_4e_1e_2)_{11}U] = \begin{bmatrix}
e_3 & e_4 \\
3 & 1 \\
4 & 0
\end{bmatrix}
$$

Hence

$T^{e_1e_2}[t_0(a_3a_4)] = t_0(a_3a_4e_1e_2) = \{e_3e_4\}$.

$T^{a_2a_4}[t_o] = \{\{a_1e_1a_3e_3\},\{a_1e_2a_3e_3\},\{a_1e_3a_3e_4\},\{a_1e_1a_3e_2\},\{a_1e_1a_3e_4\}\}$.
Thus
\[T^{3a_4}[t_0] = \{a_1a_2e_1e_2, a_1a_2e_2e_3, a_1a_2e_1e_3, a_1a_2e_1e_4, a_1a_2e_3e_4 \}. \]

Now to obtain \(T^{1a_2a_3}[t_0] \), we consider matrix \(A(a_1a_2a_3) \) obtained from \([A_{11}U] \) by deleting row 4 and columns belonging to \(U \) as
\[
A(a_1a_2a_3) = \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

This can be changed into a fundamental form as
\[
[A(a_1a_2a_3)_{11}U] = \begin{bmatrix}
e_1 & e_2 & e_4 & e_3 \\
1 & 1 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Thus \(t_0(a_1a_2a_3) = \{e_2, e_3, e_4\} \) and we have
\[
T^{2e_2}[t_0(a_1a_2a_3)] = \{e_1e_3e_4\}
\]
\[
T^{e_1}[t_0(a_1a_2a_3)] = \emptyset
\]
\[
T^{e_3}[t_0(a_1a_2a_3)] = \{e_1e_2e_4\}
\]

For \(T^{e_2e_4}[t_0(a_1a_2a_3)] \), we consider matrix
\[
A(a_1a_2a_3e_2e_4) = \begin{bmatrix}
e_1 \\
1 \\
2 & 0
\end{bmatrix}
\]
obtained from \([A(a_1 a_2 a_3)]_{11} U\) by deleting row 3 and all columns belonging
to U. It is clear that this matrix cannot be a fundamental form. Thus
\[T^{e_2 e_4}[t_0(a_1 a_2 a_3)] = \emptyset.\] Similarly,
\[T^{e_2 e_3}[t_0(a_1 a_2 a_3)] = T^{e_3 e_4}[t_0(a_1 a_2 a_3)] = T^{e_4 e_3}[t_0(a_1 a_2 a_3)] = \emptyset.\]
Hence
\[T^{a_1 a_2 a_3}[t_0] = \{e_2 e_3 e_4 a_4, e_3 e_4 a_4, e_1 e_2 e_4 a_4\}.

For \(T^{a_1 a_2 a_4}[t_0]\), we consider
\[
\begin{array}{cccc}
e_1 & e_2 & e_3 & e_4 \\
1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 \\
4 & 0 & 1 & 1 & 1 \\
\end{array}
\]
\[A(a_1 a_2 a_4) =
\]
By changing this matrix into a fundamental form as
\[
\begin{array}{cccc}
e_1 & e_2 & e_4 & e_3 \\
1 & 1 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
4 & 1 & 0 & 0 & 1 \\
\end{array}
\]
\[[A(a_1 a_2 a_4)]_{11} U\] we have \(t_0(a_1 a_2 a_4) = \{e_2 e_3 e_4\},\)
\[T^{e_2}[t_0(a_1 a_2 a_4)] = \{e_1 e_3 e_4\}.
\]
\[T^{e_4}[t_0(a_1 a_2 a_4)] = \emptyset\]
and
\[T^{e_3}[t_0(a_1 a_2 a_4)] = \{e_1 e_2 e_4\}.
\]
Because $A(a_1 a_2 a_4)_{11}$ consists of one column,

$$e^2 e^4_{[t_0(a_1 a_2 a_4)]} = e^2 e^3_{[t_0(a_1 a_2 a_4)]} = e^4 e^3_{[t_0(a_1 a_2 a_4)]}$$

$$= T e^2 e^4 e^3_{[t_0(a_1 a_2 a_4)]} = \emptyset .$$

Hence

$$T a^2 a^4_{[t_0]} = \{e^2 e^3 e^4, e_1^3 e_3 e_4, e_1 e_2 e_4\} .$$

For $T a^3 a^4_{[t_0]}$, we consider

$$A(a_1 a_3 a_4) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 \\ 4 & 0 & 1 & 1 & 1 \end{bmatrix}$$

which can be changed into a fundamental form as

$$[A(a_1 a_3 a_4)_{11}] = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence

$$t_0(a_1 a_3 a_4) = \{e_1 e_3 e_4\}$$

$$T e^2_{[t_0(a_1 a_3 a_4)]} = \{e_1 e_3 e_4\}$$

$$T e^3_{[t_0(a_1 a_3 a_4)]} = \{e_1 e_2 e_4\}$$

and

$$T e^4_{[t_0(a_1 a_3 a_4)]} = \emptyset .$$

Furthermore

$$T e^2 e^3_{[t_0(a_1 a_3 a_4)]} = T e^2 e^4_{[t_0(a_1 a_3 a_4)]} = T e^3 e^4_{[t_0(a_1 a_3 a_4)]}$$

$$= T e^2 e^3 e^4_{[t_0(a_1 a_3 a_4)]} = \emptyset .$$
Hence
\[T_{a_1a_2a_3a_4}^{t_o} = \{e_2a_2e_3e_4, e_1a_2e_3e_4, e_1a_2e_2e_4\}. \]

To obtain \(T_{a_2a_3a_4}^{t_o} \), we use matrix

\[
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
2 & 1 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

which can be changed into

\[
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
2 & 1 & 1 & 0 & 0 \\
3 & 1 & 0 & 1 & 0 \\
4 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

which contains a row of zeros. Thus, there is no trees in \(T_{a_2a_3a_4}^{t_o} \).

Finally, to obtain \(T_{a_1a_2a_3a_4}^{t_o} \), we consider

\[
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 \\
3 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

This can be changed to

\[
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
which contains a row of zeros. Thus there is no tree in $T^{a_1a_2a_3a_4}[t_o]$. The trees obtained by the above process are all trees in the given linear graph G.

Generation of Complete Trees

Let A_i and A_v be cut set matrices of the current graph G_i and voltage graph G_v of a given network G. Also let the ith column of both A_i and A_v represent edge e_i of G.

With matrices A_i and A_v, the following operations are called elementary operations,

1. Adding and subtracting one row from another
2. Multiplying a row by (-1)
3. Interchanging rows
4. Interchanging columns.

Associated with operations (2) and (3), we define a number N called a "M-number" which indicates the number of times we use these two operations in order to make a given matrix to a desired form. The M-number N_i and N_r which are respectively necessary in order to change given pair of cut set matrices A_i and A_r into a fundamental form as $[A_{i11}, U]$ and $[A_{v11}, U]$ are called fundamental M-numbers with respect to tree t_o where t_o corresponds to the unit matrix of $[A_{i11}, U]$ and $[A_{v11}, U]$. Notice that t_o is a complete tree in G. The sign of t_o which is important for topological analysis of such networks is given by $(-1)^{N_i + N_v}$.

Example 4: Let A_i and A_v of a given network G be
We can change these into a fundamental form as

\[
\begin{align*}
A_i &= \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
1 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & -1 & 1 \\
3 & 0 & -1 & 0 & 0 \\
\end{bmatrix} \\
A_v &= \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
1 & 1 & -1 & -1 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & -1 & 0 & 0 & -1 \\
\end{bmatrix}
\end{align*}
\]

with fundamental M-numbers \(N_i = 1\) and \(N_v = 4\). Thus the sign of \(t_\circ = \{e_3, e_4, e_5\}\) is \((-1)^{N_i+N_v} = -1\).

For convenience, the sign of a complete tree \(t_\circ\) is given by the superscript as \(t_\circ^\pm\). For example, since the sign of \(\{e_3, e_4, e_5\}\) is \(-1\), we express it as \(\{e_3, e_4, e_5\}^-.\)

It is clear that all complete trees of distance one from \(t_\circ\) are in the set

\[
\bigcup_{a \in t_\circ} T^a[t_\circ] = \bigcup_{a \in t_\circ} \{t | t = t_\circ \oplus \{ae\}, e \in S_{a}^{(i)}(t_\circ) \cap S_{a}^{(v)}(t_\circ)\}
\]

where \(S_{a}^{(i)}(t_\circ)\) is a fundamental cut set containing edge \(a\) with respect to \(t_\circ\) in current graph \(G_i\) and \(S_{a}^{(v)}(t_\circ)\) is a fundamental cut set containing \(a\) with respect to \(t_\circ\) in voltage graph \(G_v\) for all \(a \in t_\circ\). In order to obtain these complete trees directly from matrices \(A_i\) and \(A_v\), we define the following operation.

Definition: The operation \(\Theta\) of two matrices \(P = [p_{ij}]\) and \(Q = [q_{ij}]\) of order \(m\) and \(n\) is the product of corresponding entries of \(P\) and \(Q\), i.e.,

\[
P \Theta Q = [p_{ij}q_{ij}]
\]
For example, if P and Q are

$$P = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \quad \text{and} \quad Q = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$$

Then $P \odot Q$ is

$$P \odot Q = \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

With this definition, all complete trees of distance one from t_o can be obtained by the following steps when $[A_{i_{11}} U]$ and $[A_{v_{11}} U]$, with t_o corresponding to the unit matrix U, are given:

Step 1: Form $[A_{i_{11}} U] \odot [A_{v_{11}} U]$. Notice that each row j of $[A_{i_{11}} U] \odot [A_{v_{11}} U]$ can represent $S_{a_j}^{(i)}(t_o) \cap S_{a_j}^{(v)}(t_o)$ where row j of $[A_{i_{11}} U]$ and $[A_{v_{11}} U]$ represent respectively $S_{a_j}^{(i)}(t_o)$ and $S_{a_j}^{(v)}(t_o)$.

Step 2: Form all complete trees in $T_{a_j}[t_o]$, where $a_j \in t_o$, by replacing a_j by edge e whose corresponding column in $[A_{i_{11}} U] \odot [A_{v_{11}} U]$ has a non-zero at row j which represents $S_{a_j}^{(i)}(t_o) \cap S_{a_j}^{(v)}(t_o)$. If this non-zero is +1, the sign of the newly obtained complete tree is the same as that of t_o. Otherwise, the sign of the new complete tree is opposite from that of t_o. The following example will illustrate this point.

Example 5: All complete trees of distance one from t_o in the linear graph in Example 4 can be obtained by first forming $[A_{i_{11}} U] \odot [A_{v_{11}} U]$ as

\[
\begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}
\]

\[
\begin{bmatrix} A_{i_{11}} U \odot A_{v_{11}} U = 2 & 1 & 0 & 0 & 1 & 0 \\ 3 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}
\]
Notice that \(t_o \) in Example 4 is \(\{e_3e_4e_5\}^- \). (The sign of \(t_o \) is -1.) \(T^{e_3}[t_o] \) is obtained from \(t_o \) by replacing edge \(e_3 \) by edge \(e_1 \) because only column \(e_1 \) has non-zero at the first row representing \(S_{e_3}^{(i)}(t_o) \cap S_{e_3}^{(v)}(t_o) \). Thus

\[
T^{e_3}[t_o] = \{e_1e_4e_5\}^+
\]

The sign of \(\{e_1e_4e_5\} \) is the opposite of the sign of \(t_o \) because of the non-zero entry being -1. Similarly,

\[
T^{e_4}[t_o] = \{e_1e_3e_5\}^-
\]

and

\[
T^{e_5}[t_o] = \{e_2e_3e_4\}^-
\]

All complete trees in \(T^{a_1a_2\ldots a_p}(t_o) \) can be obtained by the following steps where \(t_o = \{a_1a_2\ldots a_n\} \) and \(1 < p \leq n \).

Step 1: From \([A_{v,11}] \) and \([A_{v,11}] \), form matrices \(A_v(a_1\ldots a_p) \) and \(A_v(a_1\ldots a_p) \) respectively by deleting all rows representing \(S_{a_r}^{(i)}(t_o) \) and \(S_{a_r}^{(v)}(t_o) \) for all \(r = p+1, p+2, \ldots, n \) and deleting all columns belonging to the unit matrix \(U \). Notice that the row representing \(S_{a_r}^{(i)}(t_o) \) in \([A_{v,11}] \) has 1 at the column corresponding to edge \(a_r \). Similarly, the row representing \(S_{a_r}^{(v)}(t_o) \) in \([A_{v,11}] \) has 1 at the column corresponding to edge \(a_r \).

Step 2: Change \(A_v(a_1\ldots a_p) \) and \(A_v(a_1\ldots a_p) \) into fundamental forms as \([A_{v,11}(a_1\ldots a_p)11U] \) and \([A_{v,11}(a_1\ldots a_p)11U] \). Notice that jth columns in both of these matrices must represent edge \(e_j \) for all columns. Suppose columns of the unit matrix \(U \) in these matrices represent edges \(e_1, e_2, \ldots, e_p \), that is, \(t_o' = \{e_1\ldots e_p\} \). The sign of \(t_o' \), by definition, is the same as that of \(t_o' \cup (t_o-\{a_1\ldots a_p\}) \) which is a complete tree in a given network \(G \).
Let the fundamental M-numbers be \(N_1(a_1...a_p) \) and \(N_v(a_1...a_p) \) which are necessary to change \(A_1(a_1...a_p) \) and \(N_v(a_1...a_p) \) in fundamental forms. Then if \((-1)^{N_1(a_1...a_p)+N_v(a_1...a_p)} \) is -1, the sign of \(t^i_o \) is opposite from that of \(t_o \). Otherwise, the sign of \(t^i_o \) is the same as that of \(t_o \). Since all complete trees in the resultant current and voltage graphs whose fundamental cut set matrices are \([A_1(a_1...a_p)_{11} U]\) and \([A_v(a_1...a_p)_{11} U]\) respectively are in

\[
T^1_{[t^i_o]}, T^2_{[t^i_o]}, ..., T^p_{[t^i_o]}
\]

\[
T^e_1 e^2_{[t^i_o]}, ..., T^e_1 e^j_{2_{[t^i_o]}}, ..., T^e_p e^p_{2_{[t^i_o]}}
\]

\[
T^e_j e^j_{1_{[t^i_o]}}, ..., T^e_j e^j_{r_{[t^i_o]}}, ..., T^e_j e^r_{p_{[t^i_o]}}
\]

\[
T^e_j e^j_{1_{[t^i_o]}}, ..., T^e_j e^j_{r_{[t^i_o]}}, ..., T^e_j e^r_{p_{[t^i_o]}}
\]

\[
T^e_j e^j_{1_{[t^i_o]}}, ..., T^e_j e^j_{r_{[t^i_o]}}, ..., T^e_j e^r_{p_{[t^i_o]}}
\]

The complete trees in \(T^u_{[t^i_o]} \) for \(u = 1, 2, ..., p \) are of distance one from \(t^i_o \). Thus these can be obtained by the process discussed previously. The process of obtaining complete trees in \(T^e_j e^j_{1_{[t^i_o]}}, ..., T^e_j e^j_{r_{[t^i_o]}} \) is exactly the same as that of complete trees in \(T^a_1...a_p_{[t^i_o]} \). Thus we go to Step 1 by using (1) \(t^i_o \) as \(t^i_o \), (2) \(e_1, e_2, ..., e_r \), and (3) \([A_1(a_1...a_p)_{11} U]\) and \([A_v(a_1...a_p)_{11} U]\) as \([A_1 U]\) and \([A_v U]\).

Example 6: The following steps will give all complete trees of a linear graph corresponding to \(A_1 \) and \(A_r \) where...
We can make A_i and A_v in a fundamental form as

$$
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
1 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
\quad \quad
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
1 & -1 & -1 & 0 & 0 \\
\end{bmatrix}

\quad \quad
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
3 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\quad \quad
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
2 & -1 & 0 & 0 & -1 \\
\end{bmatrix}
$$

with $N_i = 1$ and $N_v = 4$. Thus the sign of $t_o = \{e_3 e_4 e_5\}$ is $(-1)^{N_i+N_v}$ which is -1, or $t_o = \{e_3 e_4 e_5\}$.

To obtain all complete trees of distance one from t_o, we operate

$$
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
1 & -1 & 0 & 1 & 0 \\
\end{bmatrix}
\quad \quad
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
2 & 1 & 0 & 0 & 1 \\
\end{bmatrix}

\quad \quad
\begin{bmatrix}
e_1 & e_2 & e_3 & e_4 & e_5 \\
3 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
$$

Then

$$
T^3[t_o] = \{e_1 e_4 e_5\}
$$

$$
T^4[t_o] = \{e_1 e_3 e_5\}
$$

and

$$
T^5[t_o] = \{e_2 e_3 e_4\}
$$

To obtain $T^3 e_4[t_o]$, we consider $A_i(e_3 e_4)$ and $A_v(e_3 e_4)$ where

$$
A_i(e_3 e_4) =
\begin{bmatrix}
e_1 & e_2 \\
1 & 1 \\
\end{bmatrix}
\quad \quad
A_v(e_3 e_4) =
\begin{bmatrix}
e_1 & e_2 \\
1 & -1 \\
\end{bmatrix}
$$
which can be changed into a fundamental form as

\[
[A_1(e_3 e_4)]_{11} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \quad \quad [A_v(e_3 e_4)]_{11} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}
\]

with \(N_1(e_3 e_4) = 0 \) and \(N_v(e_3 e_4) = 1 \). Thus \(t_0(e_3 e_4) = \{e_1 e_2\} \) with the sign

\[
N_1(e_3 e_4) + N_v(e_3 e_4)
\]

which is \((-1)\) times the sign of \(t_0 \), which is \(-1\). Thus \(t_0(e_3 e_4) \) is \(+1\), or \(t_0(e_3 e_4) = \{e_1 e_2\} \). Hence \(T^{e_3 e_4}[t_0] = \{e_1 e_2 e_5\} \).

To obtain \(T^{e_3 e_5}[t_0] \), we form

\[
A_1(e_3 e_5) = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} \quad \quad A_v(e_3 e_5) = \begin{bmatrix} 1 & -1 \\ 3 & -1 \end{bmatrix}
\]

Since \(A_v(e_3 e_5) \) is singular, it is impossible to change it into a fundamental form. Thus \(T^{e_3 e_5}[t_0] = \emptyset \).

To obtain \(T^{e_4 e_5}[t_0] \), we consider

\[
A_1(e_4 e_5) = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \quad \quad A_v(e_4 e_5) = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}
\]

which can be changed into a fundamental form by elementary operations as

\[
[A_1(e_4 e_5)]_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \quad [A_v(e_4 e_5)]_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]
with fundamental M-numbers being $N_1(e_4 e_5) = 0$ and $N_v(e_4 e_5) = 0$. Thus $t_0(e_4 e_5) = \{e_1 e_2\}^-$ (the sign of $t_0(e_4 e_5)$ is the same as that of t_0 which is -1). Hence

$$T_4^5[t_0] = \{e_1 e_2 e_3\}^-.$$

The matrix $A_1(e_4 e_5)$ for $T_3^4 e_5 \{t_0\}$ consists of two columns and three rows which is impossible to change into a fundamental form. Thus $T_3^4 e_5 \{t_0\} = \emptyset$.

An important operation in this technique is to change matrices into a fundamental form. There are several ways of doing this. One way is as follows:

1. Take any column in A_1, say e, which (i) has non-zero in A_v and (ii) has a non-zero at the first row of A_1. Move this column in both A_1 and A_v to the first column of the place for U in a fundamental form. If this non-zero is -1, multiply this row by -1.

2. Let Kth row of A_v be a non-zero at column e. Move this Kth row to the first row. Remove all other non-zeros in A_1 and A_v in column e by elementary operations.

3. Now we consider submatrices A_1 and A_v obtained from A_1 and A_v by deleting the first row and column e, and go back to (1) except when all other non-zeros are to be removed in (2), we consider A_1 and A_v rather than A_1 and A_v.
References

<table>
<thead>
<tr>
<th>Distribution list as of March 1, 1965 (Cont'd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lincoln Laboratory Massachusetts Institute of Technology P.O. Box 73 Lexington, Massachusetts Attn: Mr. Robert Kingston</td>
</tr>
<tr>
<td>1 APG (MAPF) Eglin Air Force Base Florida</td>
</tr>
<tr>
<td>1 Mr. Alan Kornon Research Development Center Griffiss Air Force Base Rome, New York 13442</td>
</tr>
<tr>
<td>1 Director Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>1 Polytechnic Institute of Brooklyn 53 Johnson Street Brooklyn, New York 11201 Attn: Mr. Jerome Fox Research Coordinator</td>
</tr>
<tr>
<td>1 Director Dynamics Laboratory Columbia University 138 West 100th Street New York, New York 10027</td>
</tr>
<tr>
<td>1 Director Coordinated Science Laboratory University of Illinois Urbana, Illinois 61801</td>
</tr>
<tr>
<td>1 Director Stanford Electronics Laboratories Stanford University Stanford, California</td>
</tr>
<tr>
<td>1 Director Electronics Research Laboratory University of California Berkeley, California</td>
</tr>
<tr>
<td>1 Professor A. A. Boulag, Director Laboratories for Electronics and Related Science Research University of Texas Austin, Texas 78712</td>
</tr>
<tr>
<td>1 Professor J. K. Aggarwla, Director Department of Electrical Engineering University of Texas Austin, Texas 78712</td>
</tr>
<tr>
<td>1 Director of Engineering & Applied Physics 210 Pierce Hall Harvard University Cambridge, Massachusetts 02138</td>
</tr>
<tr>
<td>1 Capt. Paul Johnson (USN Ret.) National Aeronautics & Space Agency 1320 R. Street, N.W. Washington 25, D.C.</td>
</tr>
<tr>
<td>1 NASA Headquarters Office of Applications 400 Maryland Avenue, N.W. Washington 25, D.C.</td>
</tr>
<tr>
<td>1 Office Opened P.O. Box Mr. A. M. Greg Andres</td>
</tr>
<tr>
<td>1 National Bureau of Standards Research Information Center and Advisory Serv. 1800 Constitution Avenue, N.W. Washington 25, D.C.</td>
</tr>
<tr>
<td>1 Dr. Wallace Nelson Institute for Defense Analyses Research & Eng. Support Div. 1466 Connecticut Avenue, N.W. Washington 9, D.C.</td>
</tr>
<tr>
<td>1 Data Processing Systems Division National Bureau of Standards 615 Maryland Avenue, N.W. Washington 25, D.C.</td>
</tr>
<tr>
<td>1 Laboratory for Electronics Research University of Chicago 5350 South Dearborn Street Chicago, Illinois 60637</td>
</tr>
<tr>
<td>1 Liberal Arts School of Electrical Engineering Purdue University Lafayette, Indiana</td>
</tr>
<tr>
<td>1 Donald L. Epley Dept. of Electrical Engineering State University of Iowa Iowa City, Iowa</td>
</tr>
<tr>
<td>1 Instrumentation Laboratory Massachusetts Institute of Technology 20 Albany Street Cambridge, Massachusetts Attn: Library M-109</td>
</tr>
<tr>
<td>1 Sylvan Electric Products, Inc. Electronic Systems Institute Waltham Labs. Library Waltham 56, Massachusetts</td>
</tr>
<tr>
<td>1 Hughes Aircraft Company Grumman & West Street Culver City, California Attn: A. L. Rosenbaum, Supervisor Company Technical Document Center</td>
</tr>
<tr>
<td>1 Automotive 9130 East Deerpen Highway Downey, California Attn: Tech. Library, 304-11</td>
</tr>
<tr>
<td>1 Dr. Arnold T. Nordström General Motors Corporation Defense Research Laboratories 6757 Bellflower Avenue Downey, California</td>
</tr>
<tr>
<td>1 Mr. Thomas L. Svatich Aerospace Corporation P.O. Box 90960 Los Angeles 45, California</td>
</tr>
<tr>
<td>1 Lt. Col. Willard Levin Aerospace Corporation P.O. Box 90980 Los Angeles 45, California</td>
</tr>
<tr>
<td>1 Sylvan Electronic Systems-West Electronic Defense Laboratories P.O. Box 205 Mountain View, California Attn: Documents Center</td>
</tr>
<tr>
<td>1 Vortec Associates 611 Menden Way Palo Alto, California 94303 Attn: Tech. Library</td>
</tr>
<tr>
<td>1 Martin Sales Library Supervisor Jet Propulsion Laboratory California Institute of Technology Pasadena, California</td>
</tr>
<tr>
<td>1 Professor Nicholas George California Institute of Technology Electrical Engineering Department Pasadena, California</td>
</tr>
<tr>
<td>1 Space Technology Labs., Inc. One Space Park Redondo Beach, California Attn: Acquisitions Group STL Technical Library</td>
</tr>
<tr>
<td>1 The Arrow Corporation 1720 Main Street Santa Monica, California Attn: Library</td>
</tr>
<tr>
<td>1 Miss F. Cloud Radio Corp. of America RCA Laboratories David Sarnoff Research Center Princeton, New Jersey</td>
</tr>
<tr>
<td>1 Mr. A. A. Landstrom Bell Telephone Laboratories Room 34-127 Whippany Road Whippany, New Jersey</td>
</tr>
<tr>
<td>1 Cornell Aeronautical Laboratory, Inc. 4455 Georges Street Buffalo 4, New York Attn: J. F. Donald, Librarian</td>
</tr>
<tr>
<td>1 Sperry Gyroscope Company Marine Division Library Nautical Library 39 West 63rd Street New York 20, New York Attn: Mrs. Barbara Judd</td>
</tr>
<tr>
<td>1 Library Light Military Electronics Dept. General Electric Company Armament & Control Products Section Johnson City, New York</td>
</tr>
<tr>
<td>1 Mr. E. Howard Holt Director Plumas Research Laboratory Boeing Electronics Institute Troy, New York</td>
</tr>
<tr>
<td>1 Battelle-MENDEL Battelle Memorial Institute 500 King Avenue Columbus, Ohio</td>
</tr>
</tbody>
</table>
REVISED U. S. ARMY DISTRIBUTION LIST

(As received at the Coordinated Science Laboratory 27 July 1965)

1 Dr. Chalmers Sherwin
 Deputy Director (Research & Technology)
 DODAR Rd 381060
 The Pentagon, Washington, D. C. 20301

1 Dr. Edward H. Betley
 Ass'nt. Director (Research)
 CofC of Defense Res. & Eng. Department of Defense
 Washington, D. C. 20301

1 Dr. James A. Ward
 Office of Deputy Director (Research and Information Rd 30107)
 Department of Defense
 The Pentagon, Washington, D. C. 20301

1 Director
 Advanced Research Projects Agency
 Department of Defense
 Washington, D. C. 20301

1 Mr. E. I. Salkovitz, Director
 For Materials Sciences
 Advanced Research Projects Agency
 Department of Defense
 Washington, D. C. 20301

1 Colonel Charles G. Mack
 Headquarters
 Defense Communications Agency (333)
 The Pentagon, Washington, D. C. 20305

20 Defense Documentation Center
 Actn: T710, Cameron Station, Building 5
 Alexandria, Virginia 22314

1 Director
 National Security Agency
 Attn: librarian C-332
 Fort George G. Meade, Maryland 20755

1 U. S. Army Research Office
 Attn: Physical Sciences Division
 3304 Columbia Pike
 Arlington, Virginia 22204

1 Chief of Research and Development
 Headquarters, Department of the Army
 Actn: Mr. L. H. Geiger, Rd 20442
 Washington, D. C. 20310

1 Research Plans Office
 U. S. Army Research Office
 3304 Columbia Pike
 Arlington, Virginia 22204

1 Commanding General
 U. S. Army Material Command
 Actn: AMCM-RD-FE-E
 Washington, D. C. 20315

1 Commanding General
 U. S. Army Strategic Communications Command
 Washington, D. C. 20315

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Watertown, Massachusetts 02172

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Actn: V. W. Richards
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Actn: Keats A. Pullen, Jr.
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005

1 Commanding Officer
 U. S. Army Ballistics Research Laboratory
 Actn: George C. Francis, Computing Lab.
 Aberdeen Proving Ground, Maryland 21005

1 Commandant
 U. S. Army Air Defense School
 Attn: Missile Sciences Division, QTS Dept.
 P. O. Box 9390
 Fort Bliss, Texas 79916

1 Commanding General
 U. S. Army Missile Command
 Attn: Technical Library
 Redstone Arsenal, Alabama 35809

1 Commanding General
 Frankford Arsenal
 Attn: SHFPA-1310
 Philadelphia, Pennsylvania 19137

1 Commanding General
 Frankford Arsenal
 Attn: SHFPA-1300
 Philadelphia, Pennsylvania 19137

1 U. S. Army Munitions Command
 Actn: Technical Information Branch
 Picatinny Arsenal
 Dover, New Jersey 07801

1 Commanding Officer
 Harry Diamond Laboratories
 Attn: Mr. Berthold Altman
 Connecticut Avenue and Van Ness St., N.W.
 Washington, D. C. 20438

1 Commanding Officer
 Harry Diamond Laboratories
 Attn: Library
 Connecticut Avenue and Van Ness St., N.W.
 Washington, D. C. 20438

1 Commanding Officer
 U. S. Army Security Agency
 Arlington, Virginia 22212

1 Commanding Officer
 U. S. Army Limited War Laboratory
 Actn: Technical Director
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005

1 Commanding Officer
 Human Engineering Laboratories
 Aberdeen Proving Ground, Maryland 21005

1 Director
 U. S. Army Engineer Geodesy, Intelligence & Mapping
 Research and Development Agency
 Fort Belvoir, Virginia 22060

1 Commandant
 U. S. Army Command and General Staff College
 Actn: Secretary
 Fort Leavenworth, Kansas 66027

1 Dr. H. Hol, Deputy Chief Scientist
 U. S. Army Research Office (Durban)
 Box CN, Duke Station
 Durham, North Carolina 27706

1 Commanding Officer
 U. S. Army Research Office (Durban)
 Actn: CNO-44-1P (Richard O. Ubel)
 Box CN, Duke Station
 Durham, North Carolina 27706

1 Superintendent
 U. S. Army Military Academy
 West Point, New York 10996

1 The Walter Reed Institute of Research
 Walter Reed Army Medical Center
 Washington, D. C. 20012

1 Commanding Officer
 U. S. Army Engineering R&D Activity
 Fort Bragg, North Carolina 85163

1 Commanding Officer
 U. S. Army Engineering R&D Laboratory
 Actn: STINPO Branch
 Fort Belvoir, Virginia 22060

1 Commanding Officer
 U. S. Army Electronics R&D Activity
 White Sands Missile Range, New Mexico 88002

1 Director
 Human Resources Research Office
 The George Washington University
 330 N. Washington Street
 Alexandria, Virginia 22300

1 Commanding Officer
 U. S. Army Personnel Research Office
 Washington, D. C.

1 Commanding Officer
 U. S. Army Medical Research Laboratory
 Fort Knox, Kentucky 40490

1 Commanding General
 U. S. Army Signal Center and School
 Fort Monmouth, New Jersey 07703

1 Attn: Chief, Office of Academic Operations

1 Dr. S. Benedict Levin, Director
 Institute for Exploratory Research
 U. S. Army Electronics Command
 Fort Monmouth, New Jersey 07703

1 Director
 Institute for Exploratory Research
 U. S. Army Electronics Command
 Fort Monmouth, New Jersey 07703

1 Attn: ANSEL-SC
 RD 0
 RD 1
 RD-MAF 1
 RD-MAT
 RD-MN (Marine Corps LN)

1 Attn: ANSEL-DC
 XL-0
 XL-1
 XL-2
 XL-3
 XL-4

1 Attn: Mr. Charles P. Yost
 Special Assistant to the Director of Research
 National Aeronautics & Space Admin.
 Washington, D. C. 20546

1 Director
 Research Laboratory of Electronics
 Massachusetts Institute of Technology
 Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
 55 Johnson Street
 Brooklyn, New York 11201

1 Attn: Mr. Jerome Fox
 Research Coordinator

1 Director
 Columbia Radiation Laboratory
 Columbia University
 536 West 120th Street
 New York, New York 10027

1 Director
 Stanford Electronics Laboratories
 Stanford University
 Stanford, California 94301

1 Director
 Electronics Research Laboratory
 University of California
 Berkeley, California 94700

1 Director
 Electronic Sciences Laboratory
 University of Southern California
 Los Angeles, California 90007

1 Professor A. A. Dougall, Director
 Laboratories for Electronics Research
 University of Texas
 Austin, Texas 78712

1 Professor J. J. Aggarwal
 Department of Electrical Engineering
 University of Texas
 Austin, Texas 78712

1 Division of Engineering and Applied Physics
 210 Pierce Hall
 Harvard University
 Cambridge, Massachusetts 02138
DOCUMENT CONTROL DATA R&D

1. ORIGINATING ACTIVITY (Corporate author)

University of Illinois
Coordinated Science Laboratory
Urbana, Illinois 61801

2a. REPORT SECURITY CLASSIFICATION

Unclassified

2b. GROUP

GENERATION OF TREES AND COMPLETE TREES

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHOR(S) (Last name, first name, initial)

Mayeda, Wataru

6. REPORT DATE

April 1966

7a TOTAL NO. OF PAGES

32

7b. NO. OF REFS.

5

8a. CONTRACT OR GRANT NO.

DA-28-043 AMC 00073(E)
20014501B31F

8b. PROJECT NO.

8c. Also Air Force Office of Scientific Research under Grant AF

AEROSR 031-65

8d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

R-284

ABSTRACT

A method of generating all complete trees of a pair of linear graphs which can represent active networks is given. This method consists of two parts, one of which is to obtain one complete tree and the other is to generate all possible complete trees of distance one from that already determined.

All complete trees of distance one from a given tree \(t_o = \{a_1, a_2, \ldots, a_n\} \) can easily be obtained by

\[
U \mathcal{T}_P(t_o) = U \{t | t = t_o \oplus \{a_p\}, e \in S_{a_p}(t_o, G_i) \cap S_{a_p}(t_o, G_v)\}
\]

Where \(S_{a_p}(t_o, G_i) \) is a fundamental cut set containing edge \(a_p \) with respect to tree \(t_o \) in \(G_i \), \(S_{a_p}(t_o, G_v) \) is a fundamental cut set containing edge \(a_p \) with respect to \(t_o \) in \(G_v \), and \(G_i \) and \(G_v \) are the pair of linear graphs representing an active network. When we have cut set matrices \(A_i \) and \(A_v \) corresponding to \(G_i \) and \(G_v \), respectively, we can find a tree \(t_o \) by changing these matrices to the fundamental form as \([A_i, U]\) and \([A_v, U]\) in which the
KEY WORDS

<table>
<thead>
<tr>
<th>ROLE</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

- network topology
- graph theory
- trees
- complete trees
- computer analysis of networks
- active network analysis

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ."
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through ."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.
edges corresponding to the unit matrix U form a complete tree. These two processes are easily carried out by the use of computers. There will be no duplications when complete trees are generated by this method. Furthermore, complete trees are generated by sets of complete trees classified by edges in initial complete tree t_0. Thus it will be easy to factorize according to the weights of these edges.