A DESCRIPTIVE LIST OF PLATO PROGRAMS

Elisabeth R. Lyman

REPORT R-296 JUNE, 1966
This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28 043 AMC 00073(E); and in part by the Advanced Research Projects Agency through the Office of Naval Research under Contract No. Nonr 3985-(08); and in part by the United States Office of Education under Contract No. OE-6-10-184.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies from DDC.
Introduction

For the past six years, the Coordinated Science Laboratory has been developing an automatic teaching system called PLATO (Programmed Logic for Automatic Teaching Operation) in order to explore the possibilities of automation in individual instruction. In the course of development over 200 programs (using 25 logics) have been written for the system to illustrate or demonstrate its flexibility for teaching as well as for educational and other research.

The PLATO system utilizes a high speed digital computer as the central control element for teaching a number of students simultaneously. The rules governing the teaching process are included in the program read into the central computer. A complete set of rules is referred to as a "teaching logic." Experiments have been made with several different types of teaching logics significant among which are a "tutorial logic" and an "inquiry logic." 4,5,7

This report supersedes CSL Report R-186. 8 It lists with brief descriptions the teaching lesson sequences which have been using tutorial logics, inquiry logics, or combinations thereof. The version of the PLATO system for which the lessons were written is specified in each instance. PLATO I and PLATO II lessons are no longer operable because the PLATO I and PLATO II systems are now obsolete, but several of these lessons have been rewritten for the present version of the software and hardware of the system, PLATO III.

In addition to the instructive uses of the PLATO system, the system has also found application in other areas of research. These programs each of which has its own logic, are listed in the report as research programs. They include learning theory experiments, psycholinguistic studies, on-line analysis of real experiments etc.

TEACHING PROGRAMS

A. Tutorial Logics

1. Perimeter of Polygons (PLATO I, II, III). A simple geometry demonstration lesson on perimeters designed to illustrate all the features of the PLATO system (i.e., control keys, help sequences, judging, evaluating, etc.), updated for each new version of the PLATO system.

2. Addition of Fractions (PLATO I, III). A demonstration lesson on fractions showing the use of the PLATO keyset and improvements (PLATO III version) in the flexibility of the teaching logic.

3. Introduction to Automatic Digital Computing (PLATO II). 9,10 Three lessons comprising the first week of material taught in Math 195 (U of I): I. The Word as a Number; II.A. The Biquinary Code, B. The Storage Unit; III.A. The Arithmetic Unit, B. Instruction Format, C. The Control Unit, D. Execution of Single Instructions. Data collected from student runs provided material for studying the learning ability of each student, lesson effectiveness, and data rate requirements of the PLATO system.

4. Introduction to Computer Programming (PLATO II). Seven lessons designed to teach programming for the ILLIAC computer and written with PLATO tutorial logic. Chapter titles included: I. Number Representations; II. Binary Arithmetic; III. Negative Number Representation; IV. The ILLIAC Order Code (Part 2); VII. The ILLIAC Order Code (Part 3).
5. **Network Synthesis (PLATO II).** Two short lessons in network synthesis for electrical engineering students demonstrating circuit diagram construction by means of the PLATO keyset and a judging routine allowing a tolerance in numerical answers and a degree of freedom in the answer form.

7. **Things and Their Names (PLATO II).** Two lessons in introductory secondary mathematics dealing with the subject of "Things and Their Names", designed for incoming sub-freshmen at University High School.

8. **CHAOs (PLATO II).** An exercise on number sequences written for use with the studies on physiological correlates of mathematical discovery in which student heart rates were recorded along with the lesson responses.

9. **ZOO (PLATO II).** A second grade level mathematics demonstration lesson (with a zoo theme) written for primary school children visiting the PLATO project.

10. **TEXT TESTER (PLATO III).** A program designed to test new text-books in which text materials are reproduced on slides with student answers inserted from the keyboard. Teacher comments and lesson modifications are also able to be inserted on line. TEXT TESTER has been used to present lessons in the following areas: a) Remedial Arithmetic from the University of Illinois Committee on School Mathematics 7th grade course (20 lessons); b) Politics Unit from the experimental materials of the Social Sciences Curriculum Center (20 lessons).

11. **Circuit Analysis (PLATO III).** Lessons written for use in a University of Illinois course for junior year electrical engineering students (Electrical Engineering 322). The course has been presented for three semesters each time in a different manner: a. Spring 1965. Twice a week in the classroom, twice a week using PLATO (18 lessons). b. Fall 1965. Once a week using PLATO, three times a week in the classroom (9 lessons). c. Spring 1966. 4 times a week for a three week period in the middle of the semester, half the class using a tutorial presentation of the material, half an inquiry approach (12 consecutive PLATO lessons, no intervening classroom work).

12. **ARITH DRILL (PLATO III).** Arithmetic drill sequences for low achievers from sixth and seventh grades.

13. **LIBUSE (PLATO III).** 14 units (28 lessons) comprising a one semester course, "An Introduction to the Use of the Library," given to non-library science majors at the University of Illinois (Library Science 195).

14. **Fortran Programming (PLATO III).** Ten lessons on the Fortran programming language written for students in business and commerce in which the material is presented so as to be incorporated eventually into a programmed textbook.

15. **Special Demonstration (PLATO III).** A program illustrating various possible functions of the keys of a PLATO keyset, written as the preface to some of the courses given on the PLATO system.

16. **ARRAYS (PLATO III).** Four lessons for fourth grade pupils (about one hour each) using arrays of symbols.
17. **SEQUENCES (PLATO III)**. Nine one-hour lessons on recursive definitions for high school students.

18. **QUANTITIES (PLATO III)**. Test development and studies of quantitative aptitude in higher education students.

19. **TEXT EDIT (PLATO III)**. (Some versions called BRaille). A tutorial type teaching logic that permits textual slides, questions stored in memory and plotted on the "blackboard", and student inputs from an auxiliary device (such as a BRaille typewriter), as well as on-line editing.

B. **Inquiry Logics**

1. **REPLAB** (Responsive Environment Programmed Laboratory) (PLATO II and III). A lesson in scientific inquiry based on the properties of a bimetal strip in which the students inquire into the physical phenomenon in order to describe, analyze, predict, control and explain it. Important data is provided from student input for the multidimensional analysis of the inquiry process. The lesson uses an auxiliary film sequence to show the bimetal strip experiment.

2. **PROOF (PLATO II and III)**. A program (with several versions) which enables students to compose proofs of mathematical problems in a logical manner, each solution or proof being judged only for violations in logic. The most recent version of the program allows for insertion of lemmas in the proofs. The program provides a system for collecting data on thought processes during mathematical problem-solving or for preparing instructional programs in the mechanics of rigorous mathematical proof.

3. **MEDICARE (PLATO II)**. A lesson for student nurses in the care of a patient with myocardial infarction using an auxiliary film sequence to provide the background material for the problem posed the students. Student input provided data for analysis of each student's approach to the solution of the problem.

4. **ORDER (PLATO II)**. A timed exercise in numerical pattern recognition (more simple than CHAOS) used with the studies on physiological correlates of mathematical discovery.

5. **ARCH (Archimedes) (PLATO II and III)**. A demonstration lesson using PLATO as a simulated laboratory in which experiments based on Archimedes' Principle can be performed such as making volume or weight measurements.

6. **ALPHABAT (Alphabet Automatic Teaching) (PLATO III)**. A program designed for experimenting with the teaching by PLATO of the letters of the alphabet to two- and three-year old children.

7. **MAKING THINGS MOVE (PLATO II)**. An elementary science lesson based on a second grade science unit written as a demonstration for primary school children.

8. **TEACHER (PLATO III)**. A lesson designed to demonstrate the operation of the PLATO system to non-technical persons interested in preparing lessons for PLATO.

9. **Circuit Analysis (PLATO III)**. See # 11c under **Tutorial Logic**.
RESEARCH PROGRAMS

1. TALK (PLATO III). Short program to demonstrate communication between student stations.

2. EXPERIMENT (PLATO III). A program which controls real-time on-line experiments in a secondary emission surface physics study and immediately analyzes the experimental data, displaying the desired analysis on the PLATO screen.

3. VERBOSE (PLATO III). A program making possible an elementary analysis, in real time, of a word chain generated by a subject's free association.

4. TEXTDOPE (PLATO III). An inquiry-type logic for author use in analysis of student dope. Author can request graphs of latency or number of errors, lists of answers, or can specify other statistics in which he is interested, or sequential traces of individual student histories.

5. KEYSET 1 (PLATO III). A program to provide data for assessment of the relative efficiency of different configurations of the keys on the keyset so as to compare keyset input with input by long-hand writing.

6. CENCODE (PLATO III). A general paired-associate learning computer program providing an almost unlimited variety of configurations for paired learning and response situations. The program has been used in studies of the use of concepts and word-meaningfulness in verbal learning.

7. CIRCLE (PLATO III). Program designed for use in the production with the PLATO system of short, animated films for a language-free test of interpersonal norms. Each film strip, or scenario, portrays an interpersonal intention composed of discrete sequences of visual events identified with abstract, theoretical components.

8. CONCEPT (PLATO III). A general concept attainment program allowing up to three logical types of concept rules and four methods of presenting stimuli.

9. GIN-1 (PLATO III). A general program written to facilitate group interaction studies such as Inter-nation Simulation and Security-Game studies. Messages can be written, edited, read, sent and retrieved, the latter two under communication rules controlled by decision makers.

10. VRBADV (PLATO III). A program designed to test C. E. Osgood's theory of meaning by satiating components of denoted meanings, the effects of satiation being demonstrated by disturbed performance on a non-related task. The program individually administers experimental sequences and allows measurements of latencies in situations where the speed of presentation is critical.
BIBLIOGRAPHY

Distribution list as of May 1, 1966

1 AFDC (PCPS-12) Eglin AFB, Florida 32542
1 AFETL Technical Library (ETV, MN-155) Patrick AFB, Florida 32923
1 AFETL (ETLGL-1) STINFO Officer (for Library) Patrick AFB, Florida 32923
1 AFWAL (LCSS) AFWAL Research Library, Stop 29 AFCRL Research Library, Stop 29 L. G. Hanscom Field Bedford, Massachusetts 01731
2 ASD (ESTI) L. G. Hanscom Field Bedford, Massachusetts 01731
1 ASDC (ARO, INC) Attn: Library/Documents Arnold AFB, Tennessee 37389
2 European Office of Aerospace Research Shell Building 47 Rue Cantonnier Brussels, Belgium
1 U. S. Army Research Office Attn: Physical Sciences Division 3045 Columbia Pike Arlington, Virginia 22204
1 Research Plans Office U. S. Army Research Office 3045 Columbia Pike Arlington, Virginia 22204
1 Commanding General U. S. Army Materiel Command Attn: ANCRD-MS-FP-5 Washington, D. C. 20315
1 Commanding General U. S. Army Strategic Communications Command Washington, D. C. 20315
1 Commanding Officer U. S. Army Materials Research Agency Watertown Arsenal Watertown, Massachusetts 02172
1 Commanding Officer U. S. Army Ballistics Research Laboratory Attn: W. V. Richards Aberdeen Proving Ground Aberdeen, Maryland 21005
1 Commandant U. S. Army Defense School Attn: Missile Science Division Cad Dept. P. O. Box 5930 Fort Bliss, Texas 79916
1 Commanding General U. S. Army Missile Command Attn: Technical Library Redstone Arsenal, Alabama 35809
1 Commanding General Frankford Arsenal Attn: SMDEP-16000 (Dr. Sidney Ross) Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command Attn: Technical Information Branch Fiscal Arsenal Dover, New Jersey 07801
1 Commanding Officer Harry Diamond Laboratories Attn: Mr. Berthold Altman Connecticut Avenue & Van Ness Street N. W. Washington, D. C. 20036
1 Commanding Officer U. S. Army Security Agency Arlington Hall Arlington, Virginia 22212
1 Commanding Officer U. S. Army Limited War Laboratory Attn: Technical Director Aberdeen Proving Ground Aberdeen, Maryland 21005
1 Commanding Officer Human Engineering Laboratories Aberdeen Proving Ground, Maryland 21005
1 Director U. S. Army Engineer Geodyssey, Intelligence and Mapping Research and Development Agency Fort Belvoir, Virginia 22060
1 Commander U. S. Army Command and General Staff College Attn: Secretary Fort Leavenworth, Kansas 66270
1 Dr. H. Kohl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CH, Duke Station Durham, North Carolina 27706
1 Superintendent U. S. Army Military Academy West Point, New York 10996
1 The Walter Reed Institute of Research Walter Reed Medical Center Washington, D. C. 20012
1 Commanding Officer U. S. Army Electronics R&D Activity Fort Huachuca, Arizona 85613
1 Commanding Officer U. S. Army Engineer R&D Laboratory Attn: DTDIF Branch Fort Belvoir, Virginia 22060
1 Commanding Officer U. S. Army Electronics R&D Activity White Sands Missile Range, New Mexico 88002
1 Dr. S. Benedict Levin, Director Institute for Exploratory Research U. S. Army Electronics Command Fort Monmouth, New Jersey 07703
1 Chief of Naval Research Department of the Navy Washington, D. C. 20360 Attn: Code 427
1 Chief, Bureau of Ships Department of the Navy Washington, D. C. 20360
1 Chief, Bureau of Weapons Department of the Navy Washington, D. C. 20360
2 Commanding Officer Office of Naval Research Branch Office Box 39, Navy No. 100 F.P.O. New York, New York 09510
3 Commanding Officer Office of Naval Research Branch Office 219 South Dearborn Street Chicago, Illinois 60606
1 Commanding Officer Office of Naval Research Branch Office 1030 East Green Street Pasadena, California
1 Commanding Officer Office of Naval Research Branch Office 207 West 24th Street New York, New York 10011
Distribution list as of May 1, 1966 (cont'd.)

1 Commanding Officer
 Office of Naval Research Branch Office
 495 Summer Street
 Boston, Massachusetts 02110

8 Director, Naval Research Laboratory
 Technical Information Officer
 Washington, D. C.
 Attn: Code 2000

1 Commander
 Naval Air Development and Material Center
 Johnsville, Pennsylvania 18976

2 Librarian
 U. S. Naval Electronics Laboratory
 San Diego, California 92152

1 Commanding Officer and Director
 U. S. Naval Underwater Sound Laboratory
 New London, Connecticut 06360

1 Librarian
 U. S. Navy Post Graduate School
 Monterey, California

1 Commander
 U. S. Naval Air Missile Test Center
 Point Magu, California

1 Director
 U. S. Naval Observatory
 Washington, D. C.

2 Chief of Naval Operations
 OP-07
 Washington, D. C.

1 Director, U. S. Naval Security Group
 Attn: G43
 Washington, D. C.

1 Commanding Officer
 Naval Ordnance Laboratory
 White Oak, Maryland

1 Commanding Officer
 Naval Ordnance Laboratory
 Corona, California

1 Commanding Officer
 Naval Ordnance Test Station
 China Lake, California

1 Commanding Officer
 Naval Research Laboratory
 Indianapolis, Indiana

1 Commanding Officer
 Naval Training Device Center
 Orlando, Florida

1 U. S. Naval Weapons Laboratory
 Dahlgren, Virginia

1 Weapons Systems Test Division
 Naval Air Test Center
 Patuxent River, Maryland
 Attn: Library

1 Mr. Charles P. York
 Special Assistant to the Director of Research
 National Aeronautics and Space Administration
 Washington, D. C.

1 Dr. R. Harrison, Code XEX
 Chief, Electrophysics Branch
 National Aeronautics and Space Administration
 Washington, D. C.

1 Goddard Space Flight Center
 National Aeronautics and Space Administration
 Attn: Library, Documents Section Code 251
 Greenbelt, Maryland 20771

1 NASA Lewis Research Center
 Attn: Library
 21000 Brookpark Road
 Cleveland, Ohio 44135

1 National Science Foundation
 Attn: Dr. John R. Lehmann
 Division of Engineering
 1800 G Street, N. W.
 Washington, D. C.

1 U. S. Atomic Energy Commission
 Division of Technical Information Extension
 P. O. Box 62
 Oak Ridge, Tennessee 37831

1 Los Alamos Scientific Laboratory
 Attn: Library
 P. O. Box 1683
 Los Alamos, New Mexico 87546

2 NASA Scientific & Technical Information Facility
 Attn: Acquisitions Branch (E/AK/DM)
 P. O. Box 33
 College Park, Maryland 20740

1 Director
 Research Laboratory of Electronics
 Massachusetts Institute of Technology
 Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn
 55 Johnson Street
 Brooklyn, New York 11201
 Attn: Mr. Jerome Fox
 Research Coordinator

1 Director
 Columbia Radiation Laboratory
 Columbia University
 538 West 120th Street
 New York, New York 10027

1 Director
 Coordinated Science Laboratory
 University of Illinois
 Urbana, Illinois 61801

1 Director
 Stanford Electronics Laboratories
 Stanford University
 Stanford, California

1 Director
 Electronics Research Laboratory
 University of California
 Berkeley 4, California

1 Director
 Electronics Sciences Laboratory
 University of Southern California
 Los Angeles, California 90007

1 Professor A. A. Bengal, Director
 Laboratories for Electronics and Related Sciences
 Research University of Texas
 Austin, Texas 78712

1 Division of Engineering and Applied Physics
 210 Pierce Hall
 Harvard University
 Cambridge, Massachusetts 02138

1 Aerospace Corporation
 P. O. Box 90681
 Los Angeles, California 90044
 Attn: Library Acquisitions Group

1 Professor Nicholas George
 California Institute of Technology
 Pasadena, California

1 Aeronautics Library
 Graduate Aeronautical Laboratories
 California Institute of Technology
 1201 E. California Boulevard
 Pasadena, California 91109

1 Director, USAF Project RAND
 Via: Air Force Liaison Office
 The RAND Corporation
 1700 Main Street
 Santa Monica, California 90406
 Attn: Library

1 The Johns Hopkins University
 Applied Physics Laboratory
 8621 Georgia Avenue
 Silver Spring, Maryland
 Attn: Rosa W. Krovitoff
 Document Librarian

1 Hunt Library
 Carnegie Institute of Technology
 Schenley Park
 Pittsburgh, Pennsylvania 15213

1 Dr. Leo Young
 Stanford Research Institute
 Menlo Park, California

1 Mr. Henry L. Bachmann
 Assistant Chief Engineer
 Wheeler Laboratories
 122 Guttenhorn Road
 Great Neck, New York

1 University of Liege
 Electronic Department
 Mathematics Institute
 13, Avenue Des Tilleuls
 Val-Benoit, Liege
 Belgium

1 School of Engineering Sciences
 Arizona State University
 Tempe, Arizona

1 University of California at Los Angeles
 Department of Engineering
 Los Angeles, California

1 California Institute of Technology
 Pasadena, California
 Attn: Documents Library

1 University of California
 Santa Barbara, California
 Attn: Library

1 Carnegie Institute of Technology
 Electrical Engineering Department
 Pittsburgh, Pennsylvania

1 University of Michigan
 Electrical Engineering Department
 Ann Arbor, Michigan

1 New York University
 College of Engineering
 New York, New York

1 Syracuse University
 Department of Electrical Engineering
 Syracuse, New York

1 Yale University
 Engineering Department
 New Haven, Connecticut

1 Airborne Instruments Laboratory
 Deepak, New York

1 Bell Labs
 11600 Shoreway Way
 North Hollywood, California

1 General Electric Company
 Research Laboratories
 Schenectady, New York

1 Lockheed Aircraft Corporation
 P. O. Box 354
 Sunnyvale, California

1 Raytheon Company
 Bedford, Massachusetts
 Attn: Librarian
A DESCRIPTIVE LIST OF PLATO PROGRAMS, 1960-1966

This report supersedes CSL Report R-186. It lists with brief descriptions the teaching lesson sequences which have been using tutorial logics, inquiry logics, or combinations thereof. The version of the PLATO system for which the lessons were written is specified in each instance. PLATO I and PLATO II lessons are no longer operable because the PLATO I and PLATO II systems are now obsolete, but several of these lessons have been rewritten for the present version of the software and hardware, PLATO III.
computer-assisted instruction

teaching programs

tutorial logics

inquiry logics

learning theory experiments