A MULTIPLE SEPARATION FUNCTION FOR PATTERN CLASSIFICATION

Kikumi Tatsuoka

REPORT R-313 AUGUST, 1966
This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28 043 AMC 00073(E); and in part by the Office of Education OE-6-10-184.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies of this report from DDC.
ABSTRACT

In this paper we develop a method for classifying any object which can be represented as a point in n-space into one of m given subsets by constructing a linear function which is derived from the support function in linear topological space, an approach hitherto unexplored in this connection.

Greenberg and Konheim (1964) discussed this problem of classification scheme by presenting two possible procedures: one is to use pairwise class separation, and the other is to construct m linear functions which separate one of the sets from all the others. The former requires the construction of m(m-1)/2 linear functions, and the latter places more stringent restrictions on the m subsets than the former. We show, in this report, how to construct m instead of m(m-1)/2, linear functions under the more liberal assumptions of the first procedure, thus combining the merits of both procedures.

The application of our procedure to a problem in the classification of sequences of student responses on the PLATO teaching system is discussed. In that connection, a possible further development, an even simpler method requiring only one linear function, was explored. The validity of this simpler method could, however, be established only under rather restrictive conditions.
ACKNOWLEDGMENT

I gratefully acknowledge the helpful advice and encouragement given by Dr. Sylvian R. Ray in discussing an earlier version of this paper. Dr. John A. Easley and my husband Maurice Tatsuoka made many helpful suggestions concerning expository style in preparing the current draft.
0. INTRODUCTION

Greenberg and Konheim [1] discuss a technique for pattern classification of alphabetic characters described by the output of a transducer -- a computer program that converts the sensed arrays of light and dark signals derived from a character to a vector in n-dimensional space. The output of their processor program, simply operated, was the identification of the class to which the input (unknown) pattern belonged. However, they also employed their program iteratively to determine the boundaries which best separated representative patterns used for "training" the pattern classification system. We have in mind a more general class of uses which includes the classification of sequences of events ("dope records") obtained while students are interacting with the PLATO instructional system. This use constitutes a case of fact retrieval, since information (how many, who, when, in what order, etc.) can be requested regarding response-sequence categories, specified in advance either by their boundaries or by giving examples. For many uses it is anticipated that a simpler procedure which is broader in scope of applicability can be employed and will have considerable practical value for computational purposes.

More precisely, denote by Ω the space of patterns, in which it is assumed that m mutually disjoiing patterns, Ω₁, ..., Ωₘ have been identified a priori corresponding to the distinct responses required of the classification system. Let (α₁, α₂, ..., αₙ) be the vector (set of measurements produced by the transducer) corresponding to a given pattern and Rⁿ be a linear vector space whose base is (e₁, e₂, ..., eₙ), the usual standard orthogonal coordinate system.
By the operation of the transducer, each \(\Omega_i \) will be put into correspondence with a subset of \(\mathbb{R}^n \), say \(A_1 \ (i = 1, \ldots, m) \) and \(A_1, A_2, \ldots, A_m \) will be mutually disjoint. The processor must then be able to classify any \(\omega \) in \(\Omega \) by operating the output \(x(\omega) \) of the transducer "measurement" of \(\omega \).

Linear separability in pattern classification refers to the feasibility of classifying objects in \(\Omega \) by constructing linear boundaries between the sets \(A_1, \ldots, A_m \). Greenberg and Konheim [1] mentioned two possibilities for solving this problem. One of these calls for the construction of \(m \) linear functions \(L_1, L_2, \ldots, L_m \) which are to separate the sets \(A_1 \) and \(\bigcup_{i \neq j} A_j \), provided \(A_1 \) and \(\bigcup_{i \neq j} A_j \) are convex disjoint finite sets. This assumption becomes too stringent for practical applications because in applying the construction method of linear functions they must assume that the complement of every subset in the set of categories is itself convex.

In Section 1, the mathematical foundations of our method are presented. Most of the proofs are omitted, for they may be found in any treatise on linear operators, Banach space, and Hilbert space.

In Section 2 of this paper we introduce and discuss a method of constructing a linear separation function in the case when only two sets are given, by using the support function, which is different from the method Greenberg and Konheim constructed which used a training set to establish boundaries.

In Section 3, we develop our method of constructing a linear separation function in the case when \(m \) convex disjoint sets are given.
In Section 4, we discuss the application of our method to the classification of sequences of student responses made on the PLATO instructional system. (See Bitzer, Lyman, and Easley [4].)

1. MATHEMATICAL FOUNDATIONS

Let \(\mathbb{R}^n \) be an \(n \)-dimensional Euclidean space.

Definition: A set \(K \subseteq \mathbb{R}^n \) is convex if and only if \(x, y, \in K \) and \(0 \leq a \leq 1 \) imply \(ax + (1-a)y \in K \).

Property 1: The intersection of an arbitrary family of convex subsets of the linear space \(\mathbb{R}^n \) is convex.

Property 2: Let \(x_1, x_2, \ldots, x_n \) be points in the convex set \(K \) and let \(a_1, a_2, \ldots, a_n \) be non-negative numbers such that \(\sum a_i = 1 \). Then, \(\sum a_i x_i \in K \).

Lemma 1: If \(K_1 \) and \(K_2 \) are arbitrary convex subsets of \(\mathbb{R}^n \), then for any real numbers \(\alpha \) and \(\beta \), \(\alpha K_1 + \beta K_2 \) is also convex. More generally, \(TK \) is convex if \(T \) is an arbitrary linear mapping of \(\mathbb{R}^n \) onto itself.

Definition: Support function of \(K \)

Let \(K \) be a convex set in \(\mathbb{R}^n \) and let \(K \) contain the origin \(0 \).

For each \(x \in \mathbb{R}^n \), let \(I(x) = \{ a : a > 0, x/a \in K \} \) and \(k(x) = \inf a : a \in I(x) \) then \(k(x) \) is called the support function of \(K \).

Examples: Consider the real line \(\mathbb{R}^1 \); then any convex set in \(\mathbb{R} \) is an interval

\[
\begin{array}{cccccccccccc}
-7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

\(A = [-1, 2] \), (where \([...]\) denotes a closed interval)

A support function for \(A \) may be defined as follows:

\(\forall x \in \mathbb{R}^n \), let \(I(x) = [a : |x/a| < \text{dist}(0,2)] \);

\(\inf I(x) = k(x) \) take \(x = 8 \), then \(k(8) = 8/2 = 4 \).

Lemma 2: Let \(K \) contain 0 and \(k \) be its support function. Then:
(1) \(k(x) \geq 0 \)

(2) \(k(x) < \infty \)

(3) \(k(ax) = ak(x) \) for \(a > 0 \)

(4) if \(x \in K \) then \(k(x) \leq 1 \)

(5) \(k(x + y) < k(x) + k(y) \)

(6) The set of internal points of \(K \) is characterized by the condition \(k(x) < 1 \); the set of boundary points by the condition \(k(x) = 1 \); and the set of points outside of \(K \) by the condition \(k(x) > 1 \).

(7) For any linear transformation \(T \) from \(\mathbb{R}^n \) into \(\mathbb{R}^n \), \(k(Tx) = k(x) \).

Hahn-Banach Theorem: Let the real function \(k \) on the real linear space \(\mathbb{R}^n \) satisfy the conditions:

\[
 k(x + y) \leq k(x) + k(y) , \quad k(\alpha x) = \alpha k(x) ; \quad \alpha \geq 0 , \ x, y \in \mathbb{R}^n .
\]

Let \(f \) be a real linear function on a subspace \(H \) of \(\mathbb{R}^n \) with

\[
 f(x) \leq k(x) , \ x \in H .
\]

Then there is a real linear function \(F \) on \(\mathbb{R}^n \) for which

\[
 F(x) = f(x) , \ x \in H , \text{ and } F(x) < k(x) , \ x \in \mathbb{R}^n .
\]

Definition: A linear function \(F \) separates sets \(M \) and \(N \) if and only if there exists a real number \(c \) such that \(F(m) > c \) and \(F(n) < c \) for all \(m \in M, n \in N \).

Theorem I The Basic Separation Theorem

Let \(M \) and \(N \) be disjoint convex subsets of \(\mathbb{R}^n \) and let \(M \) have an internal point. Then there exists a non-zero linear function \(F \) which separates \(M \) and \(N \).

Theorem II A linear function separates \(M \) and \(N \) in \(\mathbb{R}^n \) if and only if it separates the subsets \(M-N \) and zero in \(\mathbb{R}^n \). It is a separation function of \(M \) and \(N \).
Proof of Theorem I

We may let M contain the origin 0 of \mathbb{R}^n without loss of generality. Assume M contains the origin.

Let p be any point of N then $-p \in (M - N)$, $0 \notin (M - N + p)$, but $p \notin (M - N + p)$ because $M - N$ does not contain 0, since $N \cap M = \emptyset$.

Let $K = M - N + p$, and k be a support function of K. Then $k(p) > 1$ and $k(x) < 1$ for $x \notin K$.

If we put $F_1(\alpha p) = \alpha k(p)$, then F_1 is a linear function defined on the one-dimensional subspace of \mathbb{R}^n which consists of real multiples of p.

Moreover $F_1(\alpha p) \leq k(\alpha p)$ for all real α. Since $\alpha \geq 0$ we have $F_1(\alpha p) = k(\alpha p)$, while for $\alpha < 0$ we have $F_1(\alpha p) = \alpha F_1(p) < 0 \leq k(\alpha p)$.

Using the Hahn-Banach Theorem, F_1 can be extended to a linear function F on \mathbb{R}^n such that $F(x) \leq k(x)$ for all $x \in \mathbb{R}^n$. It follows that $F(x) \leq k(x) < 1$ for $x \in K$ while $F(p) > 1$. Thus F separates K and $\{p\}$. Therefore F separates $N - N$ and $\{0\}$ and hence F separates M and N.

2. CLASSIFYING A PATTERN INTO ONE OF TWO CLASSES

Let M and N be two sets of real valued attribute vectors in n-dimensional Euclidian space:

$$M = \{m = (m_{11}, m_{12}, \ldots, m_{1n}) : m_{1i} \in \mathbb{R}^n \text{ for } i = 1, \ldots, l\}$$

$$N = \{n = (n_{11}, n_{12}, \ldots, n_{1n}) : n_{1i} \in \mathbb{R}^n \text{ for } i = 1, \ldots, k\}$$

and denote their convex hulls by $Co(M)$ and $Co(N)$, respectively.

Suppose $Co(M)$ has an internal point, and $Co(M) \cap Co(N) = \emptyset$; that is the convex hulls of M and N are disjoint, and also assume they are bounded.

We may assume a priori that M contains the origin 0 of \mathbb{R}^n, and that N intersects the e_1-axis. For, letting a be any point in M, the set...
\[M-a = \{ x : x = m_i - a, \forall m_i \in M \} \] contains the origin 0.

Next, by a suitable rotation of the coordinate system, \(N-a \) may be made to intersect with the \(e_1 \)-axis. We may assume \(M \) has the origin and \(N \) intersects with the \(e_1 \)-axis. If the original \(M \) and \(N \) are disjoint convex sets, then, by Lemma 1, the new \(M \) and \(N \) are disjoint convex sets also.

Hereafter, we simplify the notation by writing \(M \) for \(\text{Co}(M) \), \(N \) for \(\text{Co}(N) \).

The problem can be dealt with in two steps:

1. What conditions on \(M \) and \(N \) insure that there exists a linear separation function in \(\mathbb{R}^n \) which separates \(M \) and \(N \)?

2. If \(M \) and \(N \) are separated by the separation function \(f \), how can we find \(f \)?

The answer to question [1] is given by the Hahn-Banach Theorem, and may be summarized as follows: \(f \) separates \(M \) and \(N \) if and only if \(t \) separates \(M-N + p \) and \(\{ p \} \) for \(\forall p \in N \). First define a support function of \(K \) and then construct the linear separation function on \(\mathbb{R}^n \) which satisfied

\[f(x) \leq k(x) \quad \forall x \in \mathbb{R}^n, \]

where \(k(x) \) is the support function. Since, for any element \(x \) of \(k \),

\[k(x) < 1, \quad f(m-n) < 1-f(p), \quad \forall m \forall n \quad (m-n) \in (M-N). \]

But \(f \) was chosen so that \(f(p) > 1 \). Therefore, \(f(m-n) < f(m) - f(n) < 0 \) \(f(m) < f(n) \).

Therefore, by the continuity axiom that exists a \(c \) such that \(f(m) < c < f(n) \).

The answer to question [2] (i.e. how \(f \) is to be found) is as follows: One way to solve this problem is to construct \(F_i(x_i) \) on \(\mathbb{R}^i \) inductively for \(i = 1, 2, \ldots, n \).
We assumed that M contains 0 and that N has a non-empty intersection with the e_1-axis. So we may take $p \in N \cap [e_1$-axis], and let $K = M - N + p$. Then, as argued earlier, K contains 0 but not p. For reasons that will subsequently become apparent, it is convenient to shrink K so that it lies within a sphere with center at 0 and radius $\frac{\sqrt{2}}{2}$. This can be accomplished by applying a transformation

$$S = \begin{bmatrix} \frac{\sqrt{2}}{2L} & 0 \\ 0 & \frac{\sqrt{2}}{2L} \end{bmatrix}$$

where $L = \max (|x|)$ on \mathbb{R}^n.

I. Construction of R^1 and $F_1(x_1)$.

Define $R^1 = \{\alpha_1 p\}$ where α_1 is a real number. Then R^1 will be the e_1-axis. Define $F_1(x_1) = F_1(\alpha_1 p) = \alpha_1 c_1$. But according to the proof of Theorem 1, c_1 may be chosen so that

$$F_1(x_1) \leq k(x_1) \quad \forall x_1 \in R^1$$

$$F_1(x_1) < 1 \quad \text{if } x_1 \in k \cap R^1$$

and $F_1(p) > 1$.

Therefore we choose c_1 as follows:

$$1 < c_1 \leq k(p)$$

II. Construction of a separation function F_2 on R^2 and R^2.

In R^1, p was a single base of R^1 instead of $e_1 = (1, 0, \ldots, 0)$ and obviously R^1 does not contain $e_2 = (0, 1, 0, \ldots, 0)$ which is an element of the base of n-dimensional vector space. Every vector in the subspace R^2 spanned by R^1 and e_2 has a unique representation in the form $x_1 + \alpha_2 e_2$ with x_1 in R^1. We want to get a real linear extension F_2 of F_1 for which the inequality holds $F_2(x_2) \leq k(x_2)$ for $\forall x_2 \in R^2$ and also $F_2(x_1) = F_1(x_1)$.
for $\forall x_1 \in \mathbb{R}^1$, hence $F_2(x_2) < 1$ if $x_2 \in K \cap \mathbb{R}^2$.

For any constant c_2, the function F_2 defined on \mathbb{R}^2 by the equation $F_2(x_1 + \alpha_2 e_2) = F_1(x_1) + \alpha_2 c_2$ is a proper extension of F_1. The desired function F_2 we will be able to get by choosing a suitable c_2 which satisfies the inequalities given by the Hahn-Banach Theorem:

$$-k(-e_2 - x_1) - F_1(x_1) \leq c_2 \leq k(e_2 + x_1) - F_1(x_1) \quad \forall x_1 \in \mathbb{R}.$$

The Hahn-Banach Theorem is of basic importance in the analysis of questions concerning the existence of a continuous linear function. The answer to question [1] was given by this theorem when we want to classify a pattern into one of two classes. But the answer to the question [2] is not so easy: the inequalities given in the Hahn-Banach Theorem do not help us in practice, because the value of $k(e_2 + x_1)$ cannot be determined, due to the possibly irregular shape of the convex set K. It was, in fact, for the purpose of replacing these by a pair of inequalities that we applied the transformation S on \mathbb{R}^n so that K would be confined within a circle of radius $\sqrt{2}/2$ centered at 0. The radius was chosen on the basis of the following considerations.

In Figure 1, TT' is the tangent from point $e_2 = (0,1,0,0,\ldots)$ to the confining circle, T' being its e_1-axis intercept. The radius r was chosen so that $OT' = 1$. It then follows from Figure 1 that

$$r^2 = 1 - \frac{(TT')^2}{2}$$

$$= 1 - \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2},$$

and hence $r = \sqrt{2}/2$.
But $K = y$, $k(e^2 + x) = 1 + (\alpha^p)$.

Since $y < OT' = 1$, it follows that $\frac{1}{y} > 1$, and hence $k(e_2 + x_1) = 1 + \frac{\alpha^p}{y} > 1 + |\alpha^p|$. Since $k(x_1 + e_2) > F_1(x_1)$ according to the construction of $F_1(x_1)$, $F_1(x_1 - y_k)$ is smaller than $k(x_1 - y_k)$ for any s_1 and y_1 in \mathbb{R}^1. From the property of the support function k, we get
Therefore, by virtue of the linearity of F_1, we get the Hahn-Banach inequality on \mathbb{R}^2

$$-k(-y_1 - e_2) - F_1(y_1) \leq k(x_1 + e_2) - F(x_1).$$

This inequality is satisfied for arbitrary choices of x_1, y_1 in \mathbb{R}^1, and the variable y_1 in the left side of this is independent of the choice of x_1 in the right side of the inequality. Therefore we can say that there always exists a constant real number c_2 between them. That is,

$$-k(-x_1 - e_2) - F_1(x_1) \leq c_2 \leq k(x_1 + e_2) - F(x_1).$$

If $1 + |\alpha_1 p| > F_1(x)$, then there must always exist a constant c_2 such that

$$c_2 \leq 1 + |\alpha_1 p| - F_1(x_1) \leq k(x_1 + p_2) - F_1(x_1)$$

and

$$-k(-x_1 - e_2) - F_1(x_1) \leq c_2.$$

For such a constant c_2, the linear extended function of $F_1(x_1)$ on \mathbb{R}_1 to \mathbb{R}^2 will be given by the proper form

$$F_2(x_2) = F_1(x_1) + c_2 x_2,$$

where $x_2 = x_1 + \alpha_2 e_2$.

This new real linear function on \mathbb{R}^2 will take a smaller value than the value of the support function $k(x_2)$. That is, $F_2(x_2) \leq k(x_2)$.

Thus, the second inequality in (2) may be replaced by

$$c_2 \leq 1 + |\alpha_1 p| - \alpha_1 c_1 \leq k(p_2 + x_1) - F_1(x_1) \quad (2a)$$

Similarly, the first inequality in (2) is replaced by

$$-k(-x_1 - e_2) - F_1(x_1) \leq -1 - |\alpha_1 p| \leq c_2 \quad (2b)$$

From (2a) and (2b) we get

$$-k(-e_2 - x_1) - F_1(x_1) > -1 - |\alpha_1 p| - \alpha c_1 \leq c_2 \leq 1 + |\alpha_1 p| - F_1(x_1) < k(e_2 + x_1) - F_1(x_1). \quad (2)$$
Thus, if we choose c_2 to satisfy the inequalities (2), then for any x_2 in \mathbb{R}^2, the value of $F_2(x_2)$ is less than the value of $k(x_2)$ by the Hahn-Banach Theorem. That is, $F_2(x_2) < k(x_2)$ for all $x_2 \in \mathbb{R}^2$.

Therefore, if $x_2 \in K \cap \mathbb{R}^2$, then $F_2(x_2) \leq k(x_2) < 1$.

\[F_2(m - n + p) - F_2(m) - F_2(n) < 1 - F_2(p) \]

\[F_2(p) = F_1(p) > 1 \]

\[1 - F_2(p) < 0 \]

\[F_2(m) > F_2(n) \]

That is, F_2 separates $M \cap \mathbb{R}^2$ and $N \cap \mathbb{R}^2$.

Similarly, we can construct \mathbb{R}^3 including \mathbb{R}^2 as its subspace and define F_3 on \mathbb{R}^3 which is linear, takes the same value as F_2 on \mathbb{R}^2, and separates $M \cap \mathbb{R}^3$ and $N \cap \mathbb{R}^3$. That is,

\[F_3(x_3) = F_3(x_2 + \alpha_3 e_3) = F_2(x_2) + \alpha_3 c_3 \]

where $x_2 \in \mathbb{R}^2$

\[x_3 = x_2 + \alpha_2 e_3 = x_1 + \alpha_2 e_2 + \alpha_3 e_3 \]

and $e_3 = (001...)$.

\[F_3(x_3) \leq k(x_3) \text{ for all } x_3 \in \mathbb{R}^3 \]

where c_3 was chosen from the region between

\[-1 - |\alpha_1 p + \alpha_2 e_2| - F_2(x_2) \quad \text{and} \quad +1 + |\alpha_1 p + \alpha_2 e_2| - F_2(x_2) \]

or

\[c_3 = c_3 - F_2(x_2) \quad \text{where} \quad -1 - |\alpha_1 p + \alpha_2 e_2| \leq 1 + |\alpha_1 e + \alpha_2 e_2| \]

We can construct \mathbb{R}^n and F_n successively,

\[F_n(x_n) = F_n(x_{n-1} + \alpha_n e_n) = F_{n-1}(x_{n-1}) + \alpha_n c_n \]

\[= F_{n-2}(x_{n-2}) + \alpha_{n-1} c_{n-1} + \alpha_n c_n \]

\[= \alpha_1 c_1 + \alpha_2 c_2 + \ldots + \alpha_n c_n \]
where

\[-k(-x_{i-1} - e_i) - F_{i-1}(x_{i-1}) \leq C_i \leq k(x_{i-1} + e_i) - F_{i-1}(x_{i-1})\]

and

\[x_n = x_{n-1} + \alpha_n e_n = x_{n-2} + \alpha_{n-1} e_{n-1} + \alpha_{n-2} e_{n-2} + \ldots = \alpha_1 p + \ldots + \alpha_n e_n\]

where

\[e_i = (0, \ldots, 0, 1, 0, \ldots, 0), \alpha_i \in \mathbb{R}.

It is clear that \(\mathbb{R}^n = \mathbb{R}^n \), thus \(F_n \) can be considered the required separation function of \(M \) and \(N \) or \(\mathbb{R}^n \). Therefore for any element \(x \) of \(\mathbb{R}^n \),

\[F_n(x) = F_{n-1}(x_{n-1}) + \alpha_n C_n\]

if \(\alpha_n = 0 \),

\[F_n(x) = F_{n-1}(x_{n-1}) \leq k(x_{n-1})\]

if \(\alpha_n > 0 \), replace \(x_{n-1} \) by \(x_{n-1}/\alpha_n \),

and we have

\[F_{n-1}(x_{n-1}) + \alpha_n C_n < F_{n-1}(x_{n-1}) + \alpha_n (kC_n + \frac{x_{n-1}}{\alpha_n}) - F_{n-1}(\frac{x_{n-1}}{\alpha_n})\]

\[= \alpha_n k\left(e_n + \frac{x_{n-1}}{\alpha_n}\right) = k(\alpha_n + x_{n-1})\]

\[\therefore F_n(x) < k(x_n)\]

\(F_n \) is the required linear separation function, because for \(\forall x_n = m - n + p \),

\[F_n(x) = F_n(m - n + p) = F_n(m) - F_n(n) + F_n(p) \leq k(x_n) < 1\]

\[F_n(m) - F_n(n) \leq 1 - F_n(p)\]

Since \(F_n(p) = F_1(p) = C_1 > 1, 1 - F_n(p) < 0\)

\[\therefore F_n(m) < F_n(n)\] for any \(m \in M \) and \(n \in N \).

Therefore, \(\max F_n(m) < \min F_n(n) \)

\[m \in M \quad n \in N\]

Therefore, there exists a \(C \) such that \(\max F_n(m) < C < \min F_n(n) \)

\[m \in M \quad n \in N\]
Let us say we want to know whether a given vector x belongs to M or to N. We need only calculate the value of $F_n(x)$ and compare with C; i.e.,

- if $F_n(x) < C$ then $x \in M$
- if $F_n(x) > C$ then $x \in N$

The steps are summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Summary of Method: I. Two Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M, N Given in \mathbb{R}^n, $0 \in M$, $M \cap N = \emptyset$, convex, $N \cap {x: y = 0} \neq \emptyset$.</td>
</tr>
<tr>
<td>2. $K = M - N + P \forall P \in N \cap {x\text{-axis}}$ then $K \ni 0$, $P \notin K$.</td>
</tr>
<tr>
<td>3. Construct $R^1 = {\alpha_1 p}; \alpha_1$ is any real number.</td>
</tr>
<tr>
<td>4. Define F_1 on R^1, $F_1(x_1) = F_1(\alpha_1 p) = \alpha_1 c_1$ where $1 < c_1 \leq k(p)$</td>
</tr>
<tr>
<td>$k(p)$ is a support function of $K \ni k(K) \leq 1$, $k(\overline{K}) > 1$.</td>
</tr>
<tr>
<td>5. Define F_2 on R^2, $R^2 = {\alpha_1 p + \alpha_2 e_2} = {x_1 + \alpha_2 e_2}$ $e_2 = (0, 1, \ldots)$</td>
</tr>
<tr>
<td>$F_2(x_2) = F_2(x_1 + \alpha_2 e_2) = F_1(x_1) + \alpha_2 c_2$</td>
</tr>
<tr>
<td>$-1 -</td>
</tr>
<tr>
<td>then $F_2(x_1) = F_1(x_1)$ $F_2(x_2) \leq k(x_2)$ $\forall x_2 \in R^2$.</td>
</tr>
<tr>
<td>6. Define F_3 on R^3, ..., F_n on R^n</td>
</tr>
<tr>
<td>$-1 -</td>
</tr>
<tr>
<td>$1 +</td>
</tr>
<tr>
<td>7. Then F_n separates M and N, $F_n(M) < F_n(N)$.</td>
</tr>
<tr>
<td>8. Max $F_n(M) = S_1$, min $F_n(N) = S_2$ then for any unknown vector</td>
</tr>
<tr>
<td>if $F_n(x) < \frac{S_1 + S_2}{2}$ then $x \in M$.</td>
</tr>
<tr>
<td>if $F_n(x) > \frac{S_2 + S_1}{2}$ then $x \in N$.</td>
</tr>
</tbody>
</table>
Let M be a square region whose sides are of unit length.

Let N be the interval $[3, 4]$.

Choose p in N as $p = 3$.

Figure 3.

1. $M - N + p = \left\{ z \mid z = m - n + 3 \right\} = \left\{ z \mid z = (m_1, m_2) - (n_1, 0) + (3, 0) \right\}$

$-N + 3 = [-1, 0]$

$K = M - N + 3$ is a rectangular region which is represented by dots (\ldots).

2. Since maximum $(|z|) = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{10}{2}} > \frac{\sqrt{2}}{2}$,

we have to multiply the base of R^n by

$$\frac{1}{\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{10}}{2}}$$

That is, consider the transformation $T = \begin{bmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix}$, and $R^n = TR^n$

$TK = \sqrt{5} M - \sqrt{5} N + 3\sqrt{5}$, $e_1 = (1, 0)$, $e_2 = (0, 1)$

Figure 4.
3. Determine F_2.

Let $p = \frac{3}{\sqrt{3}}$, define R^1 and F_1 as follows:

$$R^1 = \{\alpha_1 p\} = \{x_1\}$$

$$F_1(x_1) = \alpha_1 C_1$$

where $1 > C_1 \leq k(p) \frac{3}{1/2} = 6$.

If we take $C_1 = 6$, then

$$F_1(x_1) = 6\alpha_1.$$

Take any element $m-n+p$ in $K \cap R^1$. Then F_1 has to classify m and n in $K \cap R^1$. In order for F_1 to be a separation function of $M \cap R^1$ and $N \cap R^1$, first decide the number c such that

$$\max F_1(m) \leq c \leq \min F_1(n).$$

$m \in M \cap R^1$, $n \in N \cap R^1$

Since

$\max F_1(m) = 1$ when $\alpha_1 = \frac{1}{6}$

$\min F_1(n) = 6$ when $\alpha_1 = 1,$

we can take any c from the interval $(1, 6)$ to construct F_2 on R^2.

We now proceed to define F_2 and R^2 as follows:

$$F_2(x_2) = F_1(x_1) + \alpha_2 c_2$$

where $-1 < c_2 \leq 1$

$$c_2 = c'_2 - F_1(x_1) = c'_2 = 6\alpha_1.$$

If we take $c'_2 = 6\alpha_1$, then

$$F_2(x_2) = 6\alpha_1 + \alpha_2 (1-6\alpha_1).$$

To let F_2 separate M and N, we determine c so that

$$\max F_2(m) \leq c \leq \min F_2(n).$$

$n \in N$
Therefore it is enough to find what \(\max c_2 \alpha_2 \) is, i.e., \(\max \alpha_2(1-6\alpha_1) \).

Since
\[
\max (\alpha_2) = \frac{1}{2}, \\
(x_1 + \alpha_2 e_2) \in M \\
\max \alpha_2(1-6\alpha_1) = \frac{1}{2} (1 - 1) = 0
\]

Therefore, \(\max F_2(m) = 1 \)
\[
m \in M
\]

Further, since \(\min (\alpha_2) = 0, \)
\[
x_1 + \alpha_2 \in N \\
\min F_2(n) \geq \min F_1(n) + \alpha_2(1 - 6\alpha_1) \\
n \in N
\]

Therefore \(c \) must be taken from the interval \((1, 6)\).

Thus, we finally get the separation function which we want.

We show that this \(F_2 \) is indeed the separation function of \(M \) and \(N \).

For any element \(m \) in \(M \), \(m = \alpha_1 p + \alpha_2 e_2 \)
\[
\begin{align*}
-\frac{1}{2} & \leq \alpha_1 \leq \frac{1}{6} \\
-\frac{1}{2} & \leq \alpha_2 \leq \frac{1}{2}
\end{align*}
\]

\[
F_2(m) = 6\alpha_1 + \alpha_2(1 - 6\alpha_1)
\]

\(F_2(m) \leq 1 < c \).

Next let us check an element of \(N \). For any element \(n \) in \(N \)
\[
n = \alpha_1 p + 0e_2
\]

\(F_2(n) = 6\alpha_1 > 6 > c. \)

3. CLASSIFYING PATTERNS INTO ONE OF A FINITE NUMBER OF CLASSES

In the previous section, we have demonstrated the existence of a real linear function which separates the convex and bounded disjoint sets \(M \) and \(N \) in \(\mathbb{R}^n \), and shown how to find such a separation function. In this section we are going to discuss the existence of a separation function and the extension of the method to obtain this function in the case when there are a
finite number of subsets, (say at most \(n \) in \(\mathbb{R}^n \)) which we want to discriminate from one another.

We shall use the letters \(A_i \), \(i = 1 \ldots n \) instead of using the letters \(M, N \) as the sets to be discriminated in \(\mathbb{R}^n \) hereafter.

We assume these sets \(A_i \), \(i = 1, \ldots n \) must be mutually disjoint, convex and bounded (not necessarily finite sets); that is, \(A_i \cap A_j = \emptyset \) for \(i \neq j \), the diameters of \(A_i \) are finite numbers, where the diameter of \(A_i = \text{dia} (A_i) = \sup (|a_{i} - a'_{i}|) \)

\[a_i, a' \in A_i \]

Definition: A real linear function \(F_n \) defined on \(\mathbb{R}^n \) separates the set \(A_i \) from \(\bigcup_{j \neq i} A_j \) if and only if \(F_n \) separates \(A_i \) and \(A_j \) for all \(j \) such that \(i \neq j \).

Theorem: If the sets \(A_1, A_2, \ldots, A_n \) are convex, bounded and mutually disjoint subsets of \(\mathbb{R}^n \), then there exists a non-zero real linear function \(F_n \) on \(\mathbb{R}^n \) which separates \(A_1 \) and \(\bigcup_{i \neq 1} A_i \).

In order to prove this theorem, we consider a dummy circle, set \(C' \), whose radius is a sufficiently small real number \(\epsilon \) and the distances from any one of the given sets \(A_i \), \(i = 1, \ldots, n \) are strictly greater than the total sum of diameters of \(A_i \) and \(\epsilon \); i.e., distance \((C', A_i) \geq \sum_{i=1}^{n} \text{dia} (A_i) + \epsilon \), \(C' \cap A_i = \emptyset \) for \(i = 1, \ldots, n \).

Without loss of generality, we can assume the center of this circle to be the origin of \(\mathbb{R}^n \). In the previous section the support function of the convex set \(K = M - L + p \) was used to obtain the separation function of \(M \) and \(L \) in \(\mathbb{R}^n \). In this section we consider a circle \(K \) concentric to \(C' \) whose radius is \(r = \sum_{i=1}^{n} \text{dia} (A_i) + \epsilon \) as the convex
set which has the same role as \(M - L + p \) in section 2.

Property 1: The set \(K \) and \(A_i \), \(i = 1, 2, \ldots, n \) are disjoint,

\[K \cap A_i = \emptyset \quad \text{for} \quad i = 1, \ldots, n. \]

Property 2: Let \(p_i \) be an arbitrary point in \(A_i \) and let

\[A_i - p_i = \{ x_i : x_i = y_i - p_i \quad \forall y_i \in A_i \} \]

\[-A_i = \{ w_i : w_i = -y_i \quad \forall y_i \in A_i \} \]

\[-A_i + p_i = \{ v_i : v_i = -y_i + p_i \quad \forall y_i \in A_i \}. \] Then \(K \) contains \(A_i - p_i, -A_i + p_i, \quad A_i - p_i + A_i - p_i, \) and \(C' - A_i + p_i \).

Property 3: Each \(p_i \) is not in \(A_i \); \(p_i \notin A_i \).

Property 4: Let \(k(x) \) be a support function of \(K \).

\(k(x) \) will be given by \(k(x) = |x|/r \) where \(|x| \) is the absolute value of the vector \(x \) in \(\mathbb{R}^n \).

\(k(x) < 1 \) characterizes the internal point of \(K \),

\(k(x) > 1 \) characterizes the outside point of \(K \), and

\(k(x) = 1 \) characterizes the boundary point of \(K \).

This function \(k(x) \) satisfies the all properties of the support function represented in the previous section.

We shall complete the proof by constructing the non-zero real linear function \(F_n \) on \(\mathbb{R}^n \) which separates the sets \(A_i \) and \(\bigcup_{i \neq 1} A_i \).

We first construct a one-dimensional subspace \(\mathbb{R}^1 \) in \(\mathbb{R}^n \) and the linear function \(F_1 \) on \(\mathbb{R}^1 \) which separates \(A_1 \cap \mathbb{R}^1 \) and \(C' \cap \mathbb{R}^1 \).

Suppose \(p_1 \) is an arbitrary point in \(A_1 \). Define \(\mathbb{R}^1 = \{ \alpha_1 p_1 \} = \{ x_1 \} = \{ (\alpha_1) \} \) where \(\alpha_1 \) is a real number, then \(\mathbb{R}^1 \) is the straight line which goes through the origin in \(\mathbb{R}^n \) and the point \(p_1 \). \(p_1 \) constitutes a
single-element of base of the subspace \mathbb{R}^1 in \mathbb{R}^n, and (α) is a component of a vector x_1. Next, as we did in section 2, we define a linear function F_1 on \mathbb{R}^1 such that $F_1(x_1) = F_1(\alpha_1p_1) = \alpha_1c_1$ where c_1 is a real constant. If we choose c_1 as $F_1(p_1) = c_1 = k(p_1)$, then the newly defined linear function $F_1(x_1)$ on \mathbb{R}^1 will have a smaller value on the domain \mathbb{R}^1 than the value of $k(x)$ on \mathbb{R}^1, because $F_1(x_1) = \alpha_1c_1 = \alpha_1k(p_1) - k(\alpha p_1) = k(\alpha_1)$ for $\alpha_1 \geq 0$ while for $\alpha_1 < 0$ while for $\alpha_1 \geq 0$ we have $F_1(\alpha_1p_1) = \alpha_1F_1(1) < 0 < k(\alpha_1p_1)$; i.e., $F_1(x_1) < k(x)$ and $F_1(p_1) > 1$. Moreover if $x_1 \in K \cap \mathbb{R}^1$ then $F_1(x_1) < k(x_1) < 1$.

The value of $F_1(x_1)$ is always positive because, for any element $c_0 - a_1 + p_1$ in the set $C - A_1 + p_1 \subseteq K$ in \mathbb{R}^1 where c_0 is taken from the dummy set circle C' and a from A_1, we have $F_1(c_0 - a_1 + p_1) < 1$. By the linearity of F_1 we have $F_1(c_0) - F_1(a_1) < 1 - F_1(p_1) < 0$. Therefore $F_1(c_0) < F_1(a_1)$. Since F_1 is a linear continuous function and the set A_1 is convex, we get $0 < F_1(a_1)$ for $\forall a_1 \in A_1$.

The next step is to construct a subspace \mathbb{R}^2 of \mathbb{R}^n which includes \mathbb{R}^1 as its subspace, then define the proper extended function F_2 of F_1 on \mathbb{R}^2 which will separate the sets A_1 and A_2 in \mathbb{R}^2 and has the same value as the value of F_1 on \mathbb{R}^1, always $F_2(x_2) < k(x_2)$ where $x_2 \in \mathbb{R}^2$.

First, we choose an arbitrary point p_2 in A_2, then since the sets A_1 and A_2 are disjoint, the point p_1 in A_1 and the point p_2 in A_2 are different, $p_1 \neq p_2$, so if we choose p_2 as the other member of the base to span \mathbb{R}^2 together with p_1, then any element in \mathbb{R}^2 will be expressible in the form $x_2 = \alpha_1p_1 + \alpha_2p_2$ or $x_2 = (\alpha_1, \alpha_2)$ where α_1 and α_2 are real numbers. We must note that this newly extended two-dimensional space
\mathbb{R}^2 of \mathbb{R}^1 in \mathbb{R}^n might not have an orthogonal coordinate system although the original \mathbb{R}^n has.

If we put $F_2(x_2) = F_1(x_1) + \alpha_2c_2$, then $F_2(\alpha_1p_1 + \alpha_2p_2) = F_2(\alpha_1p_1) + F_2(\alpha_2p_2) = \alpha_1F_2(p_1) + \alpha_2F_2(p_2)$ by linearity of F_2.

Therefore we get $F_2(\alpha_1p_1) = F_1(x_1)$ and $F_2(p_2) = c_2$. Since we have not assigned any restriction on c_2 except that it must be a real number, we may choose c_2 so that $F_2(x_2)$ will be the desired separation function of A_1, A_2, and C' in subspace \mathbb{R}^2. That is, by the Hahn-Banach Theorem if we choose c_2 as a real number which satisfied the inequalities

$$-k(-x_1 - p_2) - F_1(x_1) \leq c_2$$

and

$$c_2 \leq k(x_1 + p_2) - F_1(x_1)$$

for any x_1 in \mathbb{R}^1, then the value of the function $F_2(x_2)$ will be always smaller than the value of the given support function $k(x_2)$ of K on \mathbb{R}^2. Moreover, if $F_2(x_2) \leq k(x_2)$ for any x_2 in \mathbb{R}^2, then

$$F_2(a_2 - p_2 - a_1 + p_1) \leq k(a_2 - p_2 - a_1 - p_1) < 1$$

where $(a_2 - p_2 - a_1 + p_1) \in (A_2 - p_2 - A_1 + p_1) \cap \mathbb{R}^2 \subset K \cap \mathbb{R}^2$.

and

$$F_2(a_2) - F_2(a_1) < 1 - F_2(p_1) + F_2(p_2)$$

and

$$F_2(a_2) - F_2(a_1) < 1 + c_2 - c_1.$$

In order to let F_2 separate the sets A_1 and A_2, we have to choose c_2 to be smaller than $c_1 - 1$, that is, $c_2 < c_1 - 1$.

Therefore we get

$$F_2(a_2) < F_2(a_1)$$

for any a_2 in A_2, a_1 in A_1 on the subspace \mathbb{R}^2.
The one thing we have to check is whether or not there exists such a c_2 which satisfies both the Hahn-Banach inequalities and $c_2 < c_1 - 1$. Since c_1 is greater than 1, there always exists c_2 such that

$$k(y_1 + p_2) - F_1(y_1) < c_2 < \min \{k(x_1 + p_2) - F_1(x_1), c_1 - 1\}$$

for all $y_1, x_1 \in \mathbb{R}^1$.

Therefore we can conclude that $F_2(x_2)$ separates the sets A_1 and A_2 in \mathbb{R}^2.

Next, we proceed in the same way as we did before to construct the subspace \mathbb{R}^2 and the separation function of A_1 and A_2 on it until we finally get the space \mathbb{R}^n and the separation function $F_n(x_n)$ of the sets A_1 and A_i ($i = 1, \ldots, n$) on it.

$$\mathbb{R}^n = \{x_{n-1} + \alpha_n p_n\} = \{\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_n p_n\}$$

$$= \{(\alpha_1, \alpha_2, \ldots, \alpha_n)\} = \{x_n\} \text{ where } p_i \in A_i$$

$$F_n(x_n) = F_{n-1}(x_{n-1}) + \alpha_n c_i$$

$$= \alpha_1 c_1 + \alpha_2 c_2 + \ldots + \alpha_n c_n$$

and each c_i has been chosen so that

$$F_i(x_i) \leq k(x_i) \text{ for any } x_i \text{ in } \mathbb{R}^i \text{ (i=1, 2, \ldots, n)}$$

and

$$F_i \text{ separates the sets } A_1 \text{ and } A_i; \quad F(a_i) < F(a_1)$$

where $\forall a_1 \in A_1, \forall a_i \in A_i$.

That is,

$$-k(-x_{i-1} - p_{i}) - F_{i-1}(x_{i-1}) < c_i < \min \{k(x_{i-1} + p_{i}) - F_{i-1}(x_{i-1}), c_{i-1}\}$$

Now we have to show that the domain of $F_n(x_n)$ is equal to the originally given Euclid space \mathbb{R}^n. That is, $\mathbb{R}^n = \mathbb{R}^n$. This is clear.
because \(p_i \neq p_j \) for \(i \neq j \) and the number of elements in the new base is \(n \).

Proof that \(F_n(x_n) \) **separates** \(A_1 \) and \(A_i \):

Take \(a_i \) in \(A_i \) and \(a_1 \) in \(A_1 \), then

\[
F_n(a_i - p_i - a_1 + p_1) < k(a_i - p_i - a_1 + p_1)
\]

\[
k(a_i - p_i - a_1 + p_1) < 1 \quad \text{since} \quad a_i - a_1 \in A_i - p_i - A_1 \in p_1 \subseteq K
\]

\[
F_n(a_i) - F_n(a_1) < 1 - F_n(p_1) + F_n(p_i)
\]

\[
= 1 - c_i + c_1 < 0
\]

Therefore we get

\[
F_n(a_i) < F_n(a_1) \quad \text{for} \quad \forall a_i \in A_i, \forall a_1 \in A_1
\]

Q. E. D.

This theorem just gives us the separation function \(F_n \) which separates \(A_1 \) and other \(A_i \)'s. But we can construct the separation function \(G_n \) which separates \(A_2, A_3, A_4, \ldots, A_n \) in \(\mathbb{R}^n \) in the same way as the above except that the last point to be added as the base of \(\mathbb{R}^n \) is \(e_n \), which is the \(n \)th element of the coordinate system in \(\mathbb{R}^n \). By continuing the constructions of \(F_n, G_n, \ldots, H_n \), we will be able to separate the \(A_i \)'s one from another.

4. **APPLICATION TO SORTING PATTERNS OF RESPONSES ON THE PLATO INSTRUCTIONAL SYSTEM**

In this section we discuss some applications of our method to the problem of retrieving information from a "dope" tape on which student records are stored. While particular cases can be handled simply by ordinary methods, it would be extremely useful if a general method
were available. A multiple classification procedure such as discussed in the preceding sections provides one approach to a general retrieval system.

To take a very simple case, suppose that students work on a test which comprises N problems, and that a record of each is stored on a magnetic tape. Suppose the author of this test wants to know how many and which students get the "O.K." signal for the ith problem within time interval Δt and also fails the jth problem. If a student gets "O.K." within the Δt, then the transducer assigns 1, otherwise 0.

We could, of course, comply with the author's request simply by sorting the tape; but we wish to illustrate the method described in this paper. It enables us to find a linear function which separates all 2^N possible classes and determines the boundary points between classes. Here we only discuss the simple case when there are three problems in the test. Then the possible combinations of sets to be classified are $2^3 = 8$ in number, and a transducer program could assign to them the points $(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)$ respectively, as follows: All of the items were failed, No. 1 and No. 2 only were failed, and so on. Let us name these singleton sets, $A_0, A_1, A_2, A_3, \ldots, A_7$. We choose K as a circle around the origin A_0 whose radius is $\frac{1}{2}$, then K is disjoint for each A_i, $i = 1, \ldots, 7$. Let us name $p_1 = (0, 0, 1), p_2 = (0, 1, 0), p_3 = (1, 0, 0)$. (Although in the present, trivial example these are each unique elements of the corresponding sets, in
general, each \(p_i \) may be taken as an arbitrary element of the corresponding \(A_i \).

Since the \(A_i \), for \(i \geq 4 \), are the linear combinations of \(A_1, A_2, A_3 \), with respect to the definition of addition we used in sections 2 and 3, it is enough in this case to consider these three sets in order to classify all eight sets.

In this case, and a good many that arise in this application, classification requires constructing only a single linear function \(F_3 \) on \(\mathbb{R}^3 \). Since \(A_i - p_i \) is 0 for any \(i \), \(F_3(a_i) - F_3(a_j) \) is always smaller than \(F_3(p_j) \). If we choose \(c_i \) and \(c_j \) such that \(F_3(p_i) = c_i < c_j = F_3(c_j) \) then \(F_3 \) will be a single linear function that will classify these given sets.

\[R^1 \text{ will be defined } R^1 = \{ \alpha_1 p_1 \} = \{ (\alpha_1) \} = \{ x_1 \} \text{ and } \]

\[F_1(x_1) = k(p_1) = \alpha_1 c_1 = 2\alpha_1 \text{ where } k(p_1) = 1/2 = 2. \]

\[R^2 \text{ will be given by } R^2 = \{ x_1 + \alpha_2 p_2 \} = \{ (\alpha_1, \alpha_2) \} = \{ x_2 \} \text{ and } \]

\[F_2(x_2) = F_1(x_1) + \alpha_2 c_2 = 2\alpha_1 + 1/100 \alpha_2. \]

\[R^3 \text{ will be given by } R^3 = \{ x_2 + \alpha_3 p_3 \} = \{ (\alpha_1, \alpha_2, \alpha_3) \} = \{ x_3 \} \text{ and } \]

\[F_3(x_3) = F_2(x_2) + \alpha_3 c_3 = 2\alpha_1 + 1/100 \alpha_2 + 2/100 \alpha_3. \]

We selected \(c_2 \) and \(c_3 \) as \(1/100 \), \(2/100 \), but there are many possible values for them which satisfy the inequalities we gave in the previous section. So the particular linear function we get here \(F_3(x_3) \) is just one of the family given by the linear function derived previously to separate one set from all others. Although this is a very trivial case, we can apply the same classification method also to the case when the scores are continuously scaled.
Incidentally, if we consider the elementary function of these sets which corresponds with the binary representation, \((0, 0, 0)\) to 0, \((0, 0, 1)\) to 1, \((0, 1, 0)\) to 2, etc., then this function will be one of the many choices consistent with our linear function which separates these sets.

As another example, suppose that we want to retrieve information concerning how many and which students pressed keys in some specified sequential patterns in which the author is interested. More precisely, let \(c_i\) be constant keys, \(V_i\) be sets of variable keys which are taken from a specified domain including the null element 0 meaning no key was pressed. For example, one of the patterns will be denoted by \(A_i = \{c_1, \ldots, c_k, V_1, c_{k+1}, V_2, \ldots, c_n\}\). If we consider the possible sequences in \(A_i\) as elements of the attribute space whose base is the sequential order of key presses, then the first coordinate is the first key press, the second is the second one, so on. Then in this space, each \(A_i\) will be a rectangular parallelepiped of \(n\) dimensions around \(\mathbf{p}_i = (c_1, \ldots, c_k, 0, \ldots, 0, c_{k+1}, 0, \ldots, 0, \ldots, c_n)\). In this way we can apply our method of constructing a linear function to the problem of separating patterns of sequences of student responses. It is expected that we can also apply our method to many cases which would be all but impossible to discriminate only by sorting the data.
REFERENCES

Distribution list as of May 1, 1966 (cont'd.)

1. Commanding Officer
 Office of Naval Research
 1400 Summer Street
 Boston, Massachusetts 02110

2. Director, Naval Research Laboratory
 Technical Information Officer
 Washington, D. C.
 Attn: Code 2000

1. Commander
 Naval Air Development and Material Center
 Johnstown, Pennsylvania 15901

2. Librarian
 U. S. Naval Electronics Laboratory
 San Diego, California 92152

1. Commanding Officer and Director
 U. S. Naval Underwater Sound Laboratory
 Port Trumbull
 New London, Connecticut 06360

1. Librarian
 U. S. Navy Postgraduate School
 Monterey, California

1. Director
 U. S. Naval Air Missile Test Center
 Point Mugu, California

1. Director
 U. S. Naval Observatory
 Washington, D. C.

2. Chief of Naval Operations
 OPNAV
 Washington, D. C.

1. Director, U. S. Naval Security Group
 Attn: G3
 3801 Nebraska Avenue
 Washington, D. C.

2. Commanding Officer
 Naval Ordnance Laboratory
 White Oak, Maryland

1. Commanding Officer
 Naval Ordnance Laboratory
 Corona, California

1. Commanding Officer
 Naval Ordnance Test Station
 China Lake, California

1. Commanding Officer
 Naval Avionics Facility
 Indianapolis, Indiana

1. Commanding Officer
 Naval Training Device Center
 Orlando, Florida

1. U. S. Naval Weapons Laboratory
 Dahlgren, Virginia

1. Weapons Systems Test Division
 Naval Air Test Center
 Patuxent River, Maryland
 Attn: Library

1. Mr. Charles F. Yost
 Special Assistant to the Director of Research
 National Aeronautics and Space Administration
 Washington, D. C. 20546

1. Dr. B. Harrison, Code BEE
 Chief, Electrophysics Branch
 National Aeronautics and Space Administration
 Washington, D. C. 20546

1. Goddard Space Flight Center
 National Aeronautics and Space Administration
 Attn: Library, Documents Section Code 252
 Greenbelt, Maryland 20771

1. NASA Lewis Research Center
 Attn: Library
 21000 Brookpark Road
 Cleveland, Ohio 44135

1. National Science Foundation
 Attn: Dr. John B. Lehmann
 Division of Engineering
 1800 G Street, N. W.
 Washington, D. C. 20530

1. U. S. Atomic Energy Commission
 Division of Technical Information Extension
 P. O. Box 62
 Oak Ridge, Tennessee 37831

1. Los Alamos Scientific Laboratory
 Attn: Research Library
 P. O. Box 1663
 Los Alamos, New Mexico 87544

1. NASA Scientific & Technical Information Facility
 Attn: Acquisitions Branch (TIA/STIF)
 P. O. Box 33
 College Park, Maryland 20740

1. Director
 Research Laboratory of Electronics
 Massachusetts Institute of Technology
 Cambridge, Massachusetts 02139

1. Polytechnic Institute of Brooklyn
 55 Johnson Street
 Brooklyn, New York 11201
 Attn: Dr. Jerome Fouquet
 Research Coordinator

1. Director
 Columbia Radiation Laboratory
 Columbia University
 538 West 120th Street
 New York, New York 10027

1. Director
 Coordinated Science Laboratory
 University of Illinois
 Urbana, Illinois 61801

1. Director
 Stanford Electronics Laboratories
 Stanford University
 Stanford, California

1. Director
 Electronics Research Laboratory
 University of California
 Berkeley, California

1. Director
 Electronic Sciences Laboratory
 University of Southern California
 Los Angeles, California 90007

1. Professor A. A. Dougall, Director
 Laboratories for Electronic and Related Sciences Research
 University of Texas
 Austin, Texas 78712

1. Division of Engineering and Applied Physics
 210 Pierce Hall
 Harvard University
 Cambridge, Massachusetts 02138

1. Aerospace Corporation
 P. O. Box 95805
 Los Angeles, California 90063
 Attn: Library Acquisition Group

1. Professor Nicholas George
 California Institute of Technology
 Pasadena, California

1. Aeronautics Library
 Graduate Aeronautical Laboratories
 California Institute of Technology
 1201 E. California Boulevard
 Pasadena, California 91109

1. Director, TRW Project RAND
 Via: Air Force Liaison Office
 The RAND Corporation
 1700 Main Street
 Santa Monica, California 90406
 Attn: Library

1. The John Hopkins University
 Applied Physics Laboratory
 8641 Georgia Avenue
 Silver Spring, Maryland
 Attn: Boris M. Rovshenoff
 Document Librarian

1. Hunt Library
 Carnegie Institute of Technology
 Schenley Park
 Pittsburgh, Pennsylvania 15213

1. Dr. Leo Young
 Stanford Research Institute
 Menlo Park, California

1. Mr. Henry L. Bachmann
 Assistant Chief Engineer
 Wheeler Laboratories
 122 Chittenden Road
 Great Neck, New York

1. University of Liege
 Electronic Department
 Mathematics Institute
 15, Avenue Des Tilleuls
 Val-Sainte, Liege
 Belgium

1. School of Engineering Sciences
 Arizona State University
 Tempe, Arizona

1. University of California at Los Angeles
 Department of Engineering
 Los Angeles, California

1. California Institute of Technology
 Pasadena, California
 Attn: Documents Library

1. University of California
 Santa Barbara, California
 Attn: Library

1. Carnegie Institute of Technology
 Electrical Engineering Department
 Pittsburgh, Pennsylvania

1. University of Michigan
 Electrical Engineering Department
 Ann Arbor, Michigan

1. New York University
 College of Engineering
 New York, New York

1. Syracuse University
 Department of Electrical Engineering
 Syracuse, New York

1. Yale University
 Engineering Department
 New Haven, Connecticut

1. Airborne Instruments Laboratory
 Newport, New York

1. Bendix Pacific Division
 11600 Sherman Way
 North Hollywood, California

1. General Electric Company
 Research Laboratories
 Schenectady, New York

1. Lockheed Aircraft Corporation
 P. O. Box 504
 Sunnyvale, California

1. Raytheon Company
 Bedford, Massachusetts
 Attn: Librarian
In this paper we develop a method for classifying any object which can be represented as a point in n-space into one of m given subsets by constructing a linear function which is derived from the support function in linear topological space, an approach hitherto unexplored in this connection.

Greenberg and Konheim (1964) discussed this problem of classification scheme by presenting two possible procedures: one is to use pairwise class separation, and the other is to construct m linear functions which separate one of the sets from all the others. The former requires the construction of m(-1)/2 linear functions, and the latter places more stringent restrictions on the m subsets than the former. We show, in this report, how to construct m instead of m(m-1)/2, linear functions under the more liberal assumptions of the first procedure, thus combining the merits of both procedures.

The application of our procedure to a problem in the classification of sequences of student responses on the PLATO teaching system is discussed. In that connection, a possible further development, an even simpler method requiring only one linear function, was explored. The validity of this simpler method could, however, be established only under rather restrictive
Linear Separability
Pattern Classification
Support Function
Separation Function
Computer-based Instruction