Center for Reliable and High Performance Computing

Tight Upper Bound on Useful Distributed System Checkpoints

Yi-Min Wang, Pi-Yu Chung and W. Kent Fuchs

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.
Optimal garbage collection for distributed system checkpoints had remained an open problem. Existing algorithms may need to retain an unbounded number of non-obsolete checkpoints. We derive a polynomial-time optimal garbage collection algorithm, and prove that the number of useful checkpoints is bounded by $N(N + 1)/2$, where N is the number of processes, and the bound is tight. Experimental results based on real programs demonstrate the significant advantage of the algorithm.
Tight Upper Bound on Useful Distributed System Checkpoints

Yi-Min Wang
AT&T Bell Laboratories
ymwang@research.att.com

Pi-Yu (Emerald) Chung
AT&T Bell Laboratories
emerald@research.att.com

W. Kent Fuchs
University of Illinois at Urbana-Champaign
fuchs@crhc.uiuc.edu

Abstract

Optimal garbage collection for distributed system checkpoints had remained an open problem. Existing algorithms may need to retain an unbounded number of non-obsolete checkpoints. We derive a polynomial-time optimal garbage collection algorithm, and prove that the number of useful checkpoints is bounded by $N(N + 1)/2$, where N is the number of processes, and the bound is tight. Experimental results based on real programs demonstrate the significant advantage of the algorithm.

1 Introduction

A checkpoint is a snapshot of process state, saved on non-volatile storage to survive failures. A process periodically takes checkpoints during its execution so that when its volatile state is lost due to a failure, the execution can resume from a checkpointed state (an action called rollback recovery) instead of from the very beginning. In a distributed system, two checkpoints c_1 and c_2 of two processes p_1 and p_2 are inconsistent if a message was sent from p_1 after c_1 and received by p_2 before c_2, i.e., c_1 happened-before c_2 [1, 2], or vice versa. When a failure occurs, the unique best consistent set of states which minimizes the amount of rollbacks\footnote{More generally, the unique set minimizes all reasonable cost functions [3].} needs to be calculated based on the recorded dependencies so that the state of the entire system can be restored to a state that could have happened. In this paper, we refer to such a set as the recovery line.

The purpose of garbage collection is to discard those garbage checkpoints that can never be useful for any recovery in order to reclaim the non-volatile storage space they occupied. A garbage collection algorithm is optimal if it can discard all garbage checkpoints, and any checkpoint that it does not discard must be a useful checkpoint for some future recovery. Optimal garbage collection is a hard problem because one in general cannot predict future message dependencies, checkpoints and recoveries. Over the past decade, a simple sufficient condition based on the notion of obsolete checkpoints has been used [4–6]: the most recent set of consistent checkpoints, C, is calculated; all the checkpoints taken before C are obsolete...
and can be discarded; all non-obsolete checkpoints taken after C (including checkpoints of C) are retained because they may be combined with some future checkpoints to form a better set of consistent checkpoints than C. If processes are allowed to take their checkpoints independently without any coordination with each other, it has been shown that [7] C may always consist of the same set of old checkpoints no matter how many new checkpoints have been taken. Therefore, the number of non-obsolete checkpoints and hence the space overhead for storing them are unbounded.

The major challenge of the optimal garbage collection problem is that it requires the consideration of an infinite number of possible future failure scenarios, including an arbitrary number of recoveries. The main contribution of our work is to prove that it suffices to consider a finite number of immediate failure scenarios [8]. We formulate recovery line calculation as a reachability analysis problem on a rollback dependency graph. Given a current graph G, we prove that every checkpoint useful for a future recovery must also be useful for one of the 2^N immediate failure scenarios where N is the number of processes and each of the 2^N scenarios is defined by the failure of a particular subset of the N processes. We further show that N out of the 2^N recovery lines contain all of the checkpoints in the 2^N recovery lines. The optimal garbage collection algorithm is therefore a polynomial-time algorithm for calculating these N recovery lines, and the number of useful checkpoints is therefore bounded by N^2 since each recovery line contains at most N checkpoints. By exploiting an inherent constraint among the N recovery lines, we refine the bound to be $N(N + 1)/2$ and prove that it is tight by constructing a worse-case graph to achieve the bound, given any N.

2 Models and Protocols

Checkpointing

Let N be the number of processes in a distributed system. Let $c_{i,x}$, $0 \leq i \leq N - 1$, $0 \leq x$, denote the xth checkpoint of process p_i. (Checkpoint $c_{i,0}$ represents the state before p_i's execution.) The checkpoint interval between $c_{i,x-1}$ and $c_{i,x}$ is the xth checkpoint interval of p_i and is denoted by (i, x). When a message is sent from (i, x), it is tagged with the pair of integers i and x so that the dependency can be tracked at the receiver side. We define a rollback dependency graph (or R-graph) in which each node represents a checkpoint. If there exists a message m sent from (i, x) and received in (j, y), an edge is drawn from node $c_{i,x}$ to node $c_{j,y}$. Basically, such an edge indicates that if p_i rolls back to a state before $c_{i,x}$, then the effect
of \(m \) should be undone and so \(p_j \) needs to roll back to a state before \(c_{j,y} \). When checkpoint \(c_{j,y} \) is taken, the process state of \(p_j \) and all the recorded incoming edges of node \(c_{j,y} \) are sent to a central non-volatile storage server.

Rollback recovery

When a subset of processes fails, the central server constructs an R-graph to calculate the recovery line. In addition to using the **non-volatile checkpoints**, the server treats the volatile states of surviving processes as **volatile checkpoints** and requests the up-to-date dependency information to be included in the graph. Figure 1(a)-(c) give an example of recovery line calculation when \(p_0 \) and \(p_1 \) fail. The volatile checkpoints of \(p_0 \) and \(p_1 \) are *initially marked* to indicate the fact that they have to be rolled back, i.e., \(p_0 \) and \(p_1 \) have to roll back to some checkpointed states before them, because the failure has destroyed the volatile states. A search is performed starting from the initially marked nodes, and all the reachable nodes are also marked to indicate that their corresponding checkpoints should also be rolled back due to message dependencies. It is not hard to see that, after the search, the *set of the last unmarked node of each process* forms the recovery line. We will refer to the above algorithm as the *recovery line algorithm*. In the Figure 1(b) example, checkpoints \(c_{0,2} \) and \(c_{1,2} \) belong to the recovery line, which means \(p_0 \) and \(p_1 \) need to roll back to the states saved in \(c_{0,2} \) and \(c_{1,2} \), respectively. Processes \(p_2 \) and \(p_3 \) can simply continue their executions without any rollbacks because their volatile checkpoints are on the recovery line. Figure 1(c) shows the R-graph immediately after the recovery.

Garbage collection

The central server periodically executes a garbage collection algorithm in order to reclaim the storage space occupied by checkpoints that will never be useful. To minimize the interference with normal process executions, garbage collection is performed based on the server’s local non-volatile dependency information. For example, suppose the failure in Figure 1(b) does not occur and a garbage collection algorithm is invoked. Figure 1(d) illustrates the **non-volatile R-graph** which excludes the incoming edges of the volatile checkpoints (dotted edges) from the R-graph in (b). Traditional garbage collection algorithms work as follows: a search is started by initially marking all volatile checkpoints so that the calculated recovery line \(C \) involves only non-volatile checkpoints; all the obsolete checkpoints before \(C \) can be discarded; all the non-obsolete checkpoints must be retained.
Figure 1: (a) Example checkpoint and message pattern; (b) R-graph and recovery line (thick solid line); (c) R-graph immediately after recovery; (d) non-volatile R-graph for garbage collection.

Figure 2: Program execution model: normal and recovery sessions.
3 Optimal Garbage Collection and Tight Upper Bound

Given a non-volatile R-graph, an optimal garbage collection algorithm must guarantee that any garbage
checkpoint it discarded must not be useful for any future recovery, and any useful checkpoint it retained
must be useful for some future recovery. A program execution can be modeled as consisting of an arbitrary
number of alternating normal sessions and recovery sessions, as shown in Figure 2. In a normal session, new
checkpoints are taken and new dependencies are recorded. A normal session ends and a recovery session
starts when a rollback is initiated. In a recovery session, the recovery line is calculated and the checkpoints
beyond the recovery line are removed from the R-graph. A recovery session ends and a new normal session
starts when the system finishes its recovery by rolling back to the recovery line.

Notations

The following notations will be used throughout the rest of the paper:

- \(I(G, T) \): given a R-graph \(G \), we define a set of \(2^N \) immediate recovery lines, \(I(G, T) \), each of which is obtained by initially marking a subset \(T \) of volatile checkpoints, i.e., \(T \subseteq V \) where \(V \) denotes the set of all \(N \) volatile checkpoints;
- \(R(T) \): the set of nodes that are reachable from a node in the set \(T \);
- \(T \leadsto c \): node \(c \) can be reached from a node in the set \(T \);
- \(T \not\leadsto c \): node \(c \) cannot be reached from any node in the set \(T \);
- \(\nu_i \): the volatile checkpoint of process \(p_i \);
- \(k_{i,x+1} \): the checkpoint of \(p_i \) immediately following \(c_{i,x} \); \(k_{i,x+1} \) can be a non-volatile \(c_{i,x+1} \) or a volatile \(\nu_i \);
- \(V_r \): the set of all \(N \) volatile checkpoints of a R-graph \(G_r \).

Lemma 1: mapping from \(G_f \) to \(G_n \)

Let \(G_f \) be a R-graph in a normal session and \(G_n \) be the R-graph at the beginning of that session.
Any non-volatile checkpoint of \(G_n \) which appears in an immediate recovery line of \(G_f \) must also
belong to an immediate recovery line of \(G_n \). Formally, given \(c_{i,x} \in I(G_f, T_f) \) for some \(T_f \subseteq V_f \), if \(c_{i,x} \)
is a non-volatile checkpoint of \(G_n \), then \(c_{i,x} \in I(G_n, T_n) \) for some \(T_n \subseteq V_n \).

Proof. In \(G_f \), given \(c_{i,x} \in I(G_f, T_f) \) and \(c_{i,x} \) is a non-volatile checkpoint of \(G_n \), we first partition
\(I(G_f, T_f) = C_1 \cup C_2 \) where \(C_1 \) consists of non-volatile checkpoints of \(G_n \) and \(C_2 = I(G_f, T_f) \setminus C_1; \)
Figure 3: Lemma 1.
so $c_{i,x} \in C_1$. Then, corresponding to C_1 and C_2, we partition into $F_1 \cup F_2$ the set of checkpoints which immediately follows the last non-volatile checkpoint of each process of G_n, as shown in Figure 3. Clearly, checkpoints in $F_1 \cup F_2$ can be non-volatile or volatile, and they must have “evolved” from the volatile checkpoints of G_n and hence must contain the dependency edges that already existed in G_n. Also, $F_1 \subseteq R(T_f)$.

According to the recovery line algorithm, if $c_{i,x} \in I(G_f, T_f)$, then there exists $x \in T_f$ such that $x \not\to c_{i,x}$ and $x \to k_{i,x+1}$. Consider the case where $k_{i,x+1}$ is a non-volatile checkpoint of G_n, i.e., $k_{i,x+1} = c_{i,x+1}$. By construction, all incoming edges of $c_{i,x+1}$ must have existed in G_n. Therefore, in order for x to reach $c_{i,x+1}$, the path $x \to c_{i,x+1}$ must go through some $y \in F_1 \cup F_2$. (If the path $x \to c_{i,x+1}$ contains multiple nodes from $F_1 \cup F_2$, we choose y to be the last one of them on the path.) Since x cannot reach any checkpoint in C_2, we must have $y \in F_1$. Also, the path $y \to c_{i,x+1}$ must have existed in G_n as $v \to c_{i,x+1}$ where v is a volatile checkpoint of G_n.

In G_n, let T_n denote the set of volatile checkpoints corresponding to F_1. We then have $v \in T_n$. Our goal is to show that $c_{i,x} \in I(G_n, T_n)$ by proving that $T_n \to k_{i,x+1}$ and $c_{i,x} \not\in R(T_n)$. If $k_{i,x+1} = c_{i,x+1}$ is a non-volatile checkpoint of G_n, then $v \to c_{i,x+1}$ leads to $T_n \to c_{i,x+1}$; otherwise, $k_{i,x+1} = v_i \in T_n$ and so $T_n \to v_i$ trivially. Therefore, $T_n \to k_{i,x+1}$ in G_n.

Since $c_{i,x} \in R(T_n)$ in G_n would imply $c_{i,x} \in R(F_1)$ in G_f which would lead to a contradiction $c_{i,x} \in R(T_f)$, we must have $c_{i,x} \not\in R(T_n)$ in G_n. Therefore, we have proved that $c_{i,x} \in I(G_n, T_n)$. □

LEMMA 2: mapping from G_n to G_r

Let G_n be the R-graph at the beginning of a normal session after a recovery, and G_r be the R-graph at the end of the previous normal session, as shown in Figure 4(a) and (b). Any non-volatile checkpoint which appears in an immediate recovery line of G_n must also belong to an immediate recovery line of G_r. Formally, given a non-volatile checkpoint $c_{i,x}$, if $c_{i,x} \in I(G_n, T_n)$ for some $T_n \subseteq V_n$, then $c_{i,x} \in I(G_r, T_r)$ for some $T_r \subseteq V_r$.

Proof. First, we partition $I(G_n, T_n) = C_1 \cup C_3$ where C_1 consists of non-volatile checkpoints of G_n and $C_3 = I(G_n, T_n) \setminus C_1$. Clearly, the size of T_n is no greater than the size of C_1. If any process p_j has a non-volatile checkpoint c_j in C_1 but its volatile checkpoint v_j is not in T_n, then we add v_j to T_n and call the new set T'_n. The recovery line $I(G_n, T'_n)$ is the same as $I(G_n, T_n)$ because the fact that T_n can reach at least one checkpoint of p_j implies that $T_n \to v_j$ and so $R(T'_n) = R(T_n) \cup R(v_j) = R(T_n)$. We repeat the
Figure 4: Lemma 2.
same procedure for every such p_j until the size of T'_n is the same as the size of C_1, i.e., until T'_n and C_1 span the same subset of processes. Since we do not change the recovery line, we will use such a T'_n as the new T_n in the proof.

Next, we analyze the relationship between G_r and G_n. Let T denote the set of initially marked volatile checkpoints of G_r which starts the recovery session that ends with G_n, as shown in Figure 4(a). The recovery line $I(G_r, T)$ is calculated and the set of checkpoints taken after the recovery line, i.e., $R(T)$, is removed from G_r. The remaining graph is G_n excluding the new set of volatile checkpoints, denoted by T' in Figure 4(b), which is added to represent the volatile states of rolled-back processes immediately after the recovery. Every volatile checkpoint of T' has only one incoming edge and no outgoing edge because previous execution has been rolled back and new execution has not started yet.

Given a non-volatile checkpoint $c_{i,x} \in I(G_n, T_n)$, $T_n \subseteq V_n$, as shown in Figure 4(b), we have $c_{i,x+1} \in R(T_n)$ and $c_{i,x} \notin R(T_n)$. Define $T_1 = T_n \setminus T'$ and $T'_1 = T_n \setminus T_1$. Since, in G_n, volatile checkpoints in T' do not have any outgoing edge, we have $R(T_n) = R(T_1) \cup R(T'_1) = R(T_1) \cup T'_1$. If $c_{i,x+1}$ is a non-volatile checkpoint in G_n, then $c_{i,x+1} \notin T'_1$ and so $c_{i,x+1} \in R(T_1)$ (Case 1); otherwise, $c_{i,x}$ is p_i's last non-volatile checkpoint in G_n (Case 2).

Now consider G_r in Figure 4(c). Our goal is to show that $c_{i,x} \in I(G_r, T \cup T_1)$ by proving that $k_{i,x+1} \in R(T \cup T_1)$ and $T \cup T_1 \not\supseteq c_{i,x}$. In Case 1, $c_{i,x+1} \notin R(T_1)$ remains true in G_r because all the edges in G_n also exist in G_r (except for the edges pointing to nodes in T'). In Case 2, if p_i is a rolled-back process, then $k_{i,x+1} \in R(T)$; otherwise, $k_{i,x+1}$ is a volatile checkpoint and we have $k_{i,x+1} \in T_1$ by the construction of T_n at the very beginning of the proof. As a result, we have $k_{i,x+1} \in R(T \cup T_1)$ for all cases.

We cannot have $T \rightarrow c_{i,x}$ because that would make $c_{i,x}$ part of $R(T)$. Recall that $T_1 \not\supseteq c_{i,x}$ in G_n. In G_r, some nodes of T_1 may have additional edges pointing into $R(T)$. But since $R(T) \not\supseteq c_{i,x}$, $T_1 \not\supseteq c_{i,x}$ remains true in G_r. In summary, $T \cup T_1 \not\supseteq c_{i,x}$ and thus we have $c_{i,x} \in I(G_r, T_1)$ where $T_r = T \cup T_1 \subseteq V_r$.

Lemma 3: Reduction from 2^N to N

Any non-volatile checkpoint of G which appears in one of G's 2^N immediate recovery lines must also belong to an immediate recovery line obtained by initially marking only one volatile checkpoint. Formally, for any non-volatile checkpoint $c_{i,x}$, if $c_{i,x} \in I(G, T)$, $T \subseteq V$, then $c_{i,x} \in I(G, v)$, $v \in V$.

\footnote{Volatile checkpoints in T' are drawn as horizontal ovals to distinguish from the corresponding volatile checkpoints in T.}
Proof. If $c_{i,x} \in I(G,T)$, then $T \rightarrow k_{i,x+1}$ and $T \not
ightarrow c_{i,x}$. Therefore, there exists $v \in T$ such that $v \rightarrow k_{i,x+1}$ and $v \not
ightarrow c_{i,x}$. We then have $c_{i,x} \in I(G,v)$ where $v \in T \subseteq V$. □

THEOREM 1: optimal garbage collection

Given a non-volatile R-graph G, the set of useful checkpoints is equivalent to the set of non-volatile checkpoints in the union of the N immediate recovery lines $I(G,v), v \in V$.

Proof. If a non-volatile checkpoint c of G is useful, then by definition c must appear in an immediate recovery line of a future graph G_f, and c must exist in every R-graph at the boundary of sessions between G and G_f. By starting with G_f and repeatedly and alternately applying Lemma 1 and Lemma 2, we can show that c must belong to an immediate recovery line of G. From Lemma 3, we have $c \in I(G,v), v \in V$. Conversely, if $c \in I(G,v)$ for some $v \in V$, then clearly c is useful for an immediate failure recovery. □

Figure 5 illustrates the optimal garbage collection for the non-volatile R-graph shown in Figure 1(d). While traditional algorithms can only discard the very first four checkpoints, our algorithm identifies the eight useful checkpoints (as circled by the thick solid lines) and can discard the remaining eight garbage checkpoints. The complexity of the algorithm is $O(Nm)$ where m is the number of edges in a non-volatile R-graph.

THEOREM 2: tight upper bound

The number of useful checkpoints is bounded by $N(N+1)/2$, where N is the number of processes, and the bound is tight.

Proof. Each of N immediate recovery lines $I(G,v), v \in V$, consists of N checkpoints, one from each process. First, of these N^2 checkpoints, the checkpoint of p_i in $I(G,v_i)$ must be non-volatile and so N such checkpoints must be useful. Of the remaining $N^2 - N$ checkpoints, we divide them into $(N^2 - N)/2$ pairs where each pair consist of p_i's checkpoint in $I(G,v_j)$ and p_j's checkpoint in $I(G,v_i)$ ($i \neq j$). If $v_j \not
ightarrow v_i$ and $v_i \not
ightarrow v_j$, then the pair does not contribute any non-volatile useful checkpoint; if $v_j \rightarrow v_i$ and $v_i \not
ightarrow v_j$ (or $v_i \rightarrow v_j$ and $v_j \not
ightarrow v_i$), then the pair may contribute one additional useful checkpoint; if $v_j \rightarrow v_i$ and $v_i \rightarrow v_j$, then $R(v_i) = R(v_j)$ and $I(G,v_i) = I(G,v_j)$, and the pair are part of the first N useful checkpoints. Hence, each pair contributes at most one additional useful checkpoint. Therefore, the number of useful checkpoints is bounded by $N + ((N^2 - N)/2) \times 1 = N(N + 1)/2$.

The bound is tight because, given any N, we can construct a non-volatile R-graph with the structure
Figure 5: Optimal garbage collection algorithm.

Figure 6: Worst-case R-graph with $N(N + 1)/2$ useful checkpoints.
shown in Figure 6 to achieve the bound.

4 Experimental Evaluation

We use four real programs to evaluate the performance of the optimal garbage collection algorithm. They are two CAD programs Cell Placement and Channel Router running with eight processes, and two search-type programs Knight Tour and N-Queen running with six processes. Figure 7 compares the numbers of non-obsolete and useful checkpoints as more checkpoints are taken in a typical execution of N-Queen. Clearly, the optimal algorithm outperforms the traditional algorithms in terms of garbage collection capability. Table 1 compares the worst-case and average performance over the entire executions of the four programs\(^3\). Also shown are the numbers of useful checkpoints from an approximate average-case analysis based on the probability that a checkpoint pair in the proof of Theorem 2 may contribute a useful checkpoint. The results demonstrate the capability of the optimal garbage collection algorithm to significantly reduce the non-volatile space overhead for storing useful checkpoints.

Acknowledgement

The authors thank In-Jen Lin, Edith Cohen and Douglas West for their useful discussions and comments.

\(^3\)Note that the number of useful checkpoints should be lower-bounded by \(N\). That Cell Placement and N-Queen have an average number of useful checkpoints less than \(N\) is because the very first checkpoint of each process does not count as a real checkpoint.
Figure 7: Non-obsolete vs. useful checkpoints for N-Queen.

Table 1: Maximum and average number of checkpoints to retain.

<table>
<thead>
<tr>
<th>Programs</th>
<th>Cell Placement</th>
<th>Channel Router</th>
<th>Knight Tour</th>
<th>N-Queen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of processes (N)</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Analytical</td>
<td>$N(N + 1)/2$ bound</td>
<td>36</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Approximate average case</td>
<td>23.5</td>
<td>23.5</td>
<td>14.8</td>
</tr>
<tr>
<td>Experimental</td>
<td>Maximum (# non-obsolete)</td>
<td>39</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Maximum (# useful)</td>
<td>15</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Average (# non-obsolete)</td>
<td>16.5</td>
<td>19.3</td>
<td>11.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Average (# useful)</td>
<td>7.2</td>
<td>11.0</td>
<td>7.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>
References

