
(a) Change in ∆ε.

(b) Change in ε.

Figure 10.13: Change in ∆ε and ε with a 90% reduction in stiffness in an eye-bar element
in the stairs downstream position.
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is to solve for the unknown displacement vector. To solve for the unknown displacements,
the inverse of the stiffness matrix is calculated and the stiffness formulation is rewritten:

K−1P = u (10.16)

In this formulation, K−1 could also be called the flexibility matrix, F. For the matrix to be
invertible it must, among other conditions, be square and nonsingular (i.e., the determinant
of the matrix (det A) cannot be zero). The stiffness matrix, after applying the boundary
conditions, is a square non-singular matrix that can be inverted to solve for the unknown
displacements.

Once calculated, the displacement vector can be used to determine the member forces
according to the relationship:

pij = suij (10.17)

where s is the vector that transforms the displacements into the member forces.
If the stiffness in the structure were never to change, then the above formulations would

be sufficient. However, in the real world, the stiffness matrix of the identified structure
undergoes changes due to various forms of “damage.” Damage in this sense is typically
discussed in terms of a decrease in the stiffness (e.g., due to corrosion, etc.) but can also
represent an increase in stiffness (e.g., retrofitting that adds capacity to a member, etc.).
Thus, a formulation for the damaged/altered stiffness matrix, Kd, can be written in terms
of the undamaged stiffness matrix, Ku, and a change in stiffness matrix, ∆K.

Kd = Ku + ∆K (10.18)

The change in stiffness matrix can be written as a summation of changes to the elemental
stiffness matrices that are aggregated to formulate the stiffness matrix:

∆K =
n∑

j=1

αiKui (10.19)

where n is the number of elements, αi is a scalar that represents the degree of change to the
original elemental stiffness and can vary between -1 (i.e., a complete loss of stiffness) and
+∞ (i.e., the member becomes infinitely stiff), and Kui is an m×m stiffness matrix where
m is the size of the full stiffness matrix that is zero except for the local stiffness matrix for
the ith undamaged element. An αi > 0 represents an increase in stiffness and an αi < 0
represents a decrease in stiffness.

To determine the displacements in the damaged state, Equation (10.19) is substituted
into Equation (10.16) to yield:

(Ku + ∆K)−1 P = ud (10.20)

In this formulation ∆K is not guaranteed to be non-singular and therefore to solve for the
vector ud, a formulation for determining (Ku + ∆K)−1 is necessary. Miller [147] derived
the following lemma for calculating the inverse of the sum of two matrices that meet the
specified conditions.
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Lemma. Let G and (G + E) be nonsingular matrices where E is a matrix of rank one.
Let g = tr EG−1. Then g 6= −1 and

G−1 − 1

1 + g
G−1EG−1 = (G + E)−1 (10.21)

The lemma requires some restrictions to the ∆K matrix. The requirement in the lemma
that E be a matrix of rank one limits the problem to allow just one element to be damaged.
The rank one requirement also limits the problem to an one dimensional spring problem or
a two-dimensional, statically determinate truss problem. For an series of one dimensional
springs, the elemental stiffness matrix is

Ki =

[
ki −ki
−ki ki

]
(10.22)

The elemental stiffness matrix is a rank one matrix with the basis being the vector u =[
1 −1

]T so that Ki can be decomposed such that

Ki = ki

[
1
−1

] [
1 −1

]
(10.23)

Therefore, if only one spring or truss element is allowed to be damaged, such that ∆K =
αiKui, then Equation (10.21) from the lemma is applicable. As a result, a formulation for
the damaged stiffness matrix can be derived as follows:

Kd
−1 = (Ku + αiKui)

−1 = Ku
−1 − 1

1 + tr
(
αiKuiKu

−1
)Ku

−1αiKuiKu
−1 (10.24)

Notice that the formulation does not require the inversion of the non-singular Kui matrix.
Equation (10.24) can be further simplified by noting that for the statically determinate

truss
tr
(
αiKuiKu

−1
)

= αi (10.25)

such that
(Ku + αiKui)

−1 = Ku
−1 − αi

1 + αi
Ku
−1KuiKu

−1 (10.26)

Therefore, to solve for the damaged deflections ud and assuming that the loads, P, have
not changed6, then Equation (10.26) can be substituted into Equation (10.20) to yield:

ud =

(
Ku
−1 − αi

1 + αi
Ku
−1KuiKu

−1

)
P (10.27)

By noting that the undamaged displacements, uu,can be written as,

uu = Ku
−1P (10.28)

6This assumption is valid for the Rock Island bridge where the strains are measured when the bridge is
carrying just the dead load. The dead load will not change significantly for small changes to the stiffness
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then Equation (10.27) can be simplified after multiplying the load vector into the paren-
thetical expression:

ud = uu −
αi

1 + αi
Ku
−1Kuiuu (10.29)

Measuring the displacement vectors in both the undamaged and damaged conditions is
not a trivial task. Measuring strains in the member is more easily accomplished so the
results of Equation (10.29) need to be transformed into strain values. To do so, Equa-
tion (10.17) is used, and the vector s needs to be determined. For a truss element, the strain
in the kth element in terms of the displacement of its end nodes i and j is:

εk =
1

L

[
1 0 −1 0

]
Tuij (10.30)

where L is the element length and T is the element transformation matrix to change from
global to local coordinates. In this expression 1

L

[
1 0 −1 0

]
is the s vector from Equa-

tion (10.17).
Equations 10.30 and 10.29 are then used to calculate the strains in the damaged condition

as follows:

εdk = sudij (10.31)

εdk = s

(
uuij −

(
αi

1 + αi
Ku
−1Kuiuu

)

ij

)
(10.32)

εdk = suuij −
αj

1 + αj
sKu

−1Kujuuij (10.33)

εdk = εuk −
αj

1 + αj
sKu

−1Kujuuij (10.34)

Note that the damaged strain in the kth element, εdk, can be written in terms of the un-
damaged strain, εuk, and a term that represents the change in strain due to the change in
stiffness of the member. The negative sign indicates that the relationship between a change
in stiffness and the change of strain is inversely proportional. This is intuitive because an
increase in stiffness, given the load is constant, will yield smaller strains; likewise, a de-
crease in stiffness, given the load is constant, will yield higher strains. For an αj value of
0%, representing no damage, εdk and εuk are equivalent as expected.

Further note that for different changes in stiffness only the alpha changes. Thus Equa-
tion (10.34) is of a linear form y = mx + b where y is equivalent to εdk, m is equivalent
to sKu

−1Kujuuij , and b is equivalent to εuk. Therefore, the variable x is equivalent to
−αj/ (1 + αj)

Lemma 10.21 needs to be extended to allow for a a matrix with a rank greater than one in
order for this derivation to work for multiple damage locations. Miller [147] again derived
the following theorem to calculate the inverse of the sum of two matrices with less strict
conditions.

Theorem. Let G and (G + H) be nonsingular matrices and let H have a positive rank r.
Let H = E1 + E2 + · · ·+ Er where each Ek has rank one and Ck+1 = G + E1 + · · ·+ Ek
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is nonsingular for k = 1, . . . , r. Then if C1 = G,

C−1
k − νkC

−1
k EkC

−1
k k = 1, . . . , r (10.35)

where
νk =

1

1 + tr C−1
k Ek

(10.36)

In particular
(G + H)−1 = C−1

r − νrC−1
r ErC

−1
r (10.37)

The theorem above loosens the restrictions on the singular matrix being added so that it
can have a rank r so that the ∆K matrix can represent damage to more than one member.
As seen in Equation (10.23), the individual elemental stiffness matrices have rank one and
they can be combined to form the ∆K matrix as follows:

∆K =
n∑

i=1

αiKui (10.38)

Therefore, making the appropriate substitutions into Equations 10.35–10.37 such that C1 =
Ku, then:

C−1
k − νkC

−1
k KukC

−1
k k = 1, . . . , n (10.39)

where n is the number of damaged elements Kuk is the individual stiffness matrix for the
kth element and

νk =
1

1 + tr C−1
k Kuk

(10.40)

So that after n iterations

(Ku + ∆K)−1 = C−1
n − νnC−1

n KunC
−1
n (10.41)

Because Equation (10.41) represents the end of an iterative process, the results are more
easily seen in a simple example. Consider a truss structure that has two damaged elements
such that:

∆K = α1Ku1 + α2Ku2 (10.42)

Then, using the theorem to calculate the inverse of the Kd matrix in terms of the αi yields
the expression:

(Ku + α1Ku1 + α2Ku2)−1 = Ku
−1 − α1

1 + α1

Ku
−1Ku1Ku

−1 − α2

1 + α2

Ku
−1Ku2Ku

−1

+
α1α2

(1 + α1) (1 + α2)
Ku
−1Ku1Ku

−1Ku2Ku
−1

+
α1α2

(1 + α1) (1 + α2)
Ku
−1Ku2Ku

−1Ku1Ku
−1

− α2
1α2

(1 + α1)2 (1 + α2)
Ku
−1Ku1Ku

−1Ku2Ku
−1Ku1Ku

−1

(10.43)
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Note that if α2 = 0, then Equation (10.43) simplifies to Equation (10.26) as derived for the
case of only one damaged element. Also note that this equation includes higher-order terms
that involve both Ku1 and Ku2. The number of terms needed to calculate the inverse of Kd

will increase with each additional damage element that is considered. In a large structure
or model, the number of terms becomes unwieldy.

Remembering that the ultimate goal is to calculate the deflections and forces in the dam-
aged state, the presence of higher-order terms in Equation (10.43) signifies that there is
a relationship between the change in stiffness in one element and the change in strain of
another. However, for a determinate truss, a change in stiffness does affect the strain in the
other elemenrs. Because the loads in a determinate truss are not dependent on the cross-
sectional or material properties of the members, changing the properties of one member
will not have any effect on the others. Thus, in a determinate truss, the higher-order terms
disappear. Therefore, Equation (10.43), in the case of a determinate truss can be simplified
so that:

(Ku + ∆K)−1 = Ku
−1 −

n∑

j=1

αj
1 + αj

Ku
−1KujKu

−1 (10.44)

where n is the number of elements. This equation is the basis for the first-order flexibility
method. The assumption will be that even in indeterminate trusses and frames only the
first-order terms are significant. Investigations into the validity of this assumption will be
presented in the next section.

Once again, finding the inverse of the Kd matrix in terms of the αi is not the ultimate
goal. What is needed is an equation to calculate first the damaged displacements, and then,
ultimately, the damaged strains. Substituting Equation (10.44) into Equation (10.20) the
following expression is derived:

ud =

(
Ku
−1 −

n∑

j=1

αj
1 + αj

Ku
−1KujKu

−1

)
P (10.45)

ud = Ku
−1P−

n∑

j=1

αj
1 + αj

Ku
−1KujKu

−1P (10.46)

ud = uu −
n∑

j=1

αj
1 + αj

Ku
−1KujKu

−1P (10.47)

Finally, substituting Equation (10.47) into Equation (10.17) and solving yields:

εd i = siudab (10.48)

εd i = si


uuab −

(
n∑

j=1

αj
1 + αj

Ku
−1KujKu

−1P

)

ab


 (10.49)

εd i = siuuab −

(
n∑

j=1

αj
1 + αj

siKu
−1KujKu

−1P

)

ab

(10.50)
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εd i = εu i −
n∑

j=1

αj
1 + αj

si
(
Ku
−1KujKu

−1P
)
ab

(10.51)

εd i − εu i = −
n∑

j=1

αj
1 + αj

si
(
Ku
−1KujKu

−1P
)
ab

(10.52)

∆ (εi) =
{
si
(
Ku
−1KujKu

−1P
)
ab

}{ −αj
1 + αj

}T
(10.53)

Equation (10.53) shows the change in strain in the ith element (∆ (εi)) between the un-
damaged and damaged state as a function of the α terms. Note that the subscript ab indicate
the displacements or terms associated with the degrees of freedom at the ends of the ith el-
ement. Equation (10.53) is of the same form as Equation (10.14) meaning that the row
vector

{
si
(
Ku
−1KujKu

−1P
)
ab

}
represents the basis of strains caused by changes in the

stiffness of the other elements. Equation (10.53) is not linear in terms of αj , but can be
linearized with respect to αj/ (1 + αj).

In matrix form for all changes in strain Equation (10.53) becomes:

∆ (ε) =




s1

(
Ku
−1Ku1Ku

−1P
)
ab
· · · s1

(
Ku
−1KunKu

−1P
)
ab... . . . ...

sm
(
Ku
−1Ku1Ku

−1P
)
ab
· · · sn

(
Ku
−1KunKu

−1P
)
ab








−α1

1+α1...
−αn

1+αn





(10.54)

Equation (10.54) is of the form Ax = b and the matrix, which will be referred to as S,
has a number of interesting properties. First, for determinate trusses S is non-singular and
square and therefore is invertible. The matrix S is also computed from only information
about the undamaged state. Therefore, it can be calculated once at the beginning from
experimentally derived flexibility matrices or a calibrated FE model. The inverse of the S
matrix can be used to determine the damage in the structure given the measured changes in
strain experienced from the undamaged to the damaged state.

∆ (ε) = Sβ (10.55)
S−1∆ (ε) = β (10.56)

where
βi =

αi
1 + αi

(10.57)

For indeterminate trusses, S is not of full rank and is therefore not invertible. However,
the pseudo inverse of S can be used to give the “best fit” estimation of the α values given
the measured strains. Because the S matrix in not full rank, its null space exists and is
the size of the number of indeterminacies in the structure. The actual damage scenario is
therefore the “best fit” calculated from the pseudo inverse plus a linear combination of the
null space of S as follows.

β = S+∆ (ε) + Null (S)γ (10.58)

where γ is a vertical vector the length of the nullity of S that contains the coefficients for
the linear combination of null space vectors. The γ coefficients can be calculated based on
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Figure 10.14: Determinate Warren truss.

probabilities or expectations as will be shown in an example in the next section.

10.2.3 Verification of the FOrFlex Method

To verify the validity of the first order flexibility method as an approximate method to
simply calculate estimates of the change in stiffness of structural elements, two simple
models are used. The first model, is a simply supported, determinate, five-bay Warren truss
as shown in Figure 10.14. The members in the figure have been numbered to simplify the
discussion of the example. All members have the same initial cross-section and material
properties.

The stiffness of member 5 of the determinate truss was varied from a 50% decrease to a
50% increase from the initial stiffness (−0.5 ≤ α ≤ 0.5). The strains in the elements in the
undamaged and damaged states were calculated exactly by inverting Kd to calculate the
displacements according to Equation (10.16). The displacements were used to calculate the
member forces and the strains using Equation (10.17). The change in strain due to damage
was then calculated by simple subtraction for comparison with the estimation provided by
the FOrFlex method.

To calculate the FOrFlex estimation, Equation (10.54) was used to calculate the S matrix
which, in the case of one damaged element, is a column vector. The change in strain, ∆ (ε),
due to the change in stiffness was then calculated by multiplying S by the appropriate β
value for each α evaluated.

Figure 10.15 shows a graphical representation of the results of the analysis for the “dam-
aged” member, element 5. When the ∆ (ε) of both the exact value and FOrFlex estimate
are plotted with α value on the abscissa as in Figure 10.15(a), the two are indistinguishable.
The plot of the percent error shown in Figure 10.15(c) confirms the visual evidence. As
noted in the derivation, for a determinate truss the FOrFlex method is an exact solution.

Figure 10.15(a) further demonstrates that the relationship between ∆ (ε) and α is not
linear. When β, as defined by Equation (10.57), is used on the x-axis instead as in Fig-
ure 10.15(b), the linear relationship between ∆ (ε) and β is clear. In physical terms, α is
easier to understand because a loss of stiffness has physical meaning whereas β is an ab-
stract, mathematical construction. Nevertheless, the linear relationship that the strains, and
therefore the changes in strain, have with β that is employed here.

Only the damaged element in the determinate truss experiences a change in strain, be-
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Figure 10.15: Comparison between exact and estimated ∆(ε) for determinate truss:
Element 5.
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cause the load and material properties in the other elements do not change. Figure 10.16
shows the results for element 6. Element 6 shares a node with the damaged element 5,
however, regardless of the level of damage in element 5, the strain levels in element 6 do
not change. The other members in the truss exhibit the same behavior.

The determinate truss proved that a basis for determining the changes in strain of a
structure is possible and this basis is linear in terms of β. To demonstrate the effect of
indeterminacy on the FOrFlex method, a twelfth member was added to the determinate
Warren truss. The new structure, shown in Figure 10.17 has a diagonal that crosses over,
but does not intersect, the diagonal element 6. The material properties and dimensions were
the same for every member and also the identical to those used in the determinate truss.

A change in stiffness that ranged from a 50% decrease to a 50% increase from the initial
stiffness (−0.5 ≤ α ≤ 0.5) was imposed on element 5. The exact and estimated strains
were calculated as described for the determinate truss. Figure 10.18 shows the results of
the analysis for the damaged element 5 of the indeterminate truss. For small changes in
stiffness, the estimation using the first order flexibility method very closely matches the
exact value. The indeterminacy of the structure implies that the strain in other members
will be affected by the change in stiffness of the members. Figures 10.19, 10.20, and 10.21,
show the results for elements 4, 6, and 12, respectively. The elements all show a different
change in strain levels that reflect the element’s role in carrying compression or tension
in the truss. Elements 3 and 7 are also diagonals and have results identical to element
6. Elements 1, 2, and 8–11 are not influenced by the indeterminacy in the structure and
therefore, they behave as if the truss were determinate and are not affected by the change
in stiffness in element 5.

Though the change in strain levels in the various members affected by the change in
stiffness in element 5 have different numerical values, the percent error of all elements
show a similar pattern. The percent error in the estimation is only zero when α equals zero
signifying the undamaged sate. As α decreases, representing degradation of the element,
the percent error increases. In looking to reduce the error in the estimation seen in the plots
for the indeterminate truss, an alternative formulation for S, denoted S∗ will be derived.

The desire is to have S∗ have the same matrix properties as S but yield zero error at a
given level of damage. To formulate S∗, begin by substituting S∗ into Equation (10.55) as
follows:

S∗β = ∆ (ε) (10.59)

Expanding the change in strain to include the undamaged and damaged strain vectors
yields.

S∗β = εd − εu (10.60)

The implications of Equation (10.60) is that if a calibrated model exists, then S∗ can be
computed by determining the strains, εd, at a given level of damage, β.

S∗ =

[
εd,i − εu,i

βj

]
(10.61)

Here i is the number of elements in the structure and j is the number of damaged elements
and therefore also the number of columns in S∗. Equation (10.61) therefore consists of
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Figure 10.16: Comparison between exact and estimated ∆(ε) for determinate truss:
Element 6.
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Figure 10.17: Indeterminate truss.
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Figure 10.18: Comparison between exact and estimated ∆(ε) for indeterminate truss:
Element 5.
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Figure 10.19: Comparison between exact and estimated ∆(ε) for indeterminate truss:
Element 4.

298



−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Damage Level - α (%)

∆
(
ε
)
(
µ
ε
)

 

 

Exact

FOrFlex

(a) ∆(ε) v. Damage change percent.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

β

∆
(
ε
)
(
µ
ε
)

 

 

Exact

FOrFlex

(b) ∆(ε) v. Linearized β factor.

−50 −40 −30 −20 −10 0 10 20 30 40 50
−5

0

5

10

Damage Level - α (%)

∆
(
ε
)
E
r
r
o
r
(
%
)

(c) Percent error v. Damage change percent.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−5

0

5

10

β (%)

∆
(
ε
)
E
r
r
o
r
(
%
)

(d) Percent error v. Linearized β factor.

Figure 10.20: Comparison between exact and estimated ∆(ε) for indeterminate truss:
Element 6.
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Figure 10.21: Comparison between exact and estimated ∆(ε) for indeterminate truss:
Element 12.
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columns that represent the change in strain induced in the structure for a given change in
stiffness divided by the beta value associated with that change in stiffness. Essentially this
process is defining the slope of a line that passes through the points (0, 0), representing the
undamaged structure, and (β∗, ∆(ε)), representing the damaged structure at a given set of
β values. Doing so guarantees that the estimate of ∆ (ε) in Equation (10.59) will be exact
for the undamaged case and also for the stiffness changes designated in β. Any value of β
can be used for this linearization.

For the case of the indeterminate truss shown in Figure 10.17, S∗ was prepared for the
case of damage to element 5 at a 15% reduction in the stiffness. The S∗ matrix was then
used to estimate the change in strain in the structure for other values of α. Figure 10.22
shows the results of the estimation for element 5. The difference in the estimation on the
∆ (ε) when compared to the plots in Figure 10.18 are imperceptible. The main difference
appears in the plots of the percent error. Whereas in the estimate using just S there is 0%
error at 0% degradation as seen in Figure 10.18(c); with the S∗ estimate, the plot of the
percent error (Figure 10.22(c)) crosses the x-axis at 15% degradation (i.e., the level used
in preparing S∗). Thus the absolute value of the percent error is less over a longer range of
the abscissa. The plot of the simple error, not the percent error, of the estimate shown in
Figure 10.22(e) clarifies what the S∗ estimate does. As the figure shows, the simple error
has a zero value twice: first with 0% reduction and again with 15% reduction. The scale of
Figure 10.22(e) shows that the simple errors are very small.

The above examples of the indeterminate truss both deal only with one “damaged” el-
ement in the structure. Nevertheless, because S∗ can be formulated according to Equa-
tion (10.61) for any number of damaged elements, the method is scalable. Figure 10.23
shows a plot that evaluates the maximum percent error in the structure when two (or one
member on the main diagonal) elements of the indeterminate truss have a 15% reduction
in stiffness. The color of the square is scaled so that the highest observed percent error
(2.4%) is black and combinations with exact estimations are in white. The most error oc-
curs when elements 5 and 6 are damaged in combination. These elements share a node
and serve as a principle path for the internal forces. When both are damaged, the effects
of the indeterminacy are essentially doubled causing the larger, but still reasonable error.
In a larger structure such as the Rock Island Bridge, where the points of indeterminacy are
farther apart, a reasonable expectation is that the error in estimating the change in strain
caused by stiffness changes in members would remain small regardless of the number of
elements affected.

Up until this point, the examples have been to prove that the first order flexibility approx-
imations can, given a set of stiffness changes, reproduce with acceptable error the change
in strain that would be expected to be measured in the structural members. However, in
structural health monitoring, the reverse process is what is desired. For SHM, the change
in strain is what is measured and the estimate of the change in stiffness is what is desired.
As an example, the indeterminate truss used previously and shown in Figure 10.17 will be
used again. Given the undamaged stiffness matrix, the S matrix was calculated assuming
damage could occur in every member according to Equation (10.54). Note that S is not
invertible and the pseudo inverse will have to be used.

To simulate corrosion in the structure, two members had their stiffness reduced by the
percentages given in the second column of Table 10.1. Element 8 was given an 8% reduc-
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Figure 10.22: Comparison between exact and estimated ∆(ε) for indeterminate truss using
S∗ set at 15% reduction: Element 5.
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Figure 10.23: Maximum percent error for 15% reduction in stiffness for given member
combinations.

Table 10.1: Estimation of damage in 2D indeterminate truss.

Member Actual (%) S+ (%) S+ + γNull(S) (%)

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 -0.66 0.00
4 0.00 0.42 0.00
5 0.00 -0.46 0.00
6 0.00 -4.57 0.00
7 0.00 1.81 0.00
8 -8.00 -8.00 -8.00
9 0.00 0.00 0.00

10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 -10.00 -5.85 -10.05

γ = −0.0655

303



tion in stiffness and element 12 was given a 10% reduction. The strains in the damaged
and undamaged cases were calculated to simulate measurement of these values in the two
states. Subtraction of the undamaged strains from the damaged strains yielded the change
in strain.

Therefore, knowing both S and the measured changes in strain, ∆ (ε), Equation (10.58)
can be used to solve for the β values. The third column in Table 10.1 is the result7 of
multiplying the pseudo inverse of S by the ∆ (ε) vector. The stiffness reduction in element
8 is properly identified without further manipulation because, as noted previously, it is not
affected by the indeterminacy in the structure. Elements 1, 2, 9, 10, and 11 are also not
affected by the indeterminacy and are therefore properly identified as having no change in
stiffness. However, the reduction estimated for element 12 is only half of the actual value
and the values in elements 3–7 are not zero as expected.

The use of the pseudo inverse of S in calculating the β vector means that the solution in
the third column of Table 10.1 is a least squares fit of all the infinite number of solutions.
To better match the actual imposed stiffness reductions, Equation (10.58) uses the Null (S)
multiplied by a factor, γ. The null space of S for the indeterminate truss with one degree of
indeterminacy is rank one and therefore there is only one γ factor. To solve for γ, a restraint
or restriction needs to be imposed. The restriction arises from the fact that corrosion only
reduces the stiffness in members. Thus, all estimations for stiffness changes necessarily
must be less than zero. Yet, elements 4 and 7 are estimated to have positive changes in
stiffness using the pseudo inverse alone. The γ factor can then be determined through an
iterative process to eliminate the positive values beginning with the largest. Eventually, the
positive values disappear and the estimate of the change in stiffness in the last column of
Table 10.1 is the result. At the end of the iterative process, the estimate for the change in
stiffness for element 12 is off by only 0.05% and γ was calculated to be -0.0665.

10.2.4 Application to Rock Island Bridge

The examples in the previous section were all for simple trusses with few members and
only one cross section. The Rock Island Bridge and its model is much more complicated.
Therefore, to be useful, the FOrFlex method has to be scalable.

Using the Rock Island Bridge FE model, the S∗ matrix was calculated for the damage
scenario previously presented in Figure 10.9, where one of the bottom chord elements is
damaged. The S∗ matrix was calculated using a β value equivalent to a 15% reduction
as done in the case of the indeterminate truss in the previous section. The fact that the
Rock Island Bridge FE model is a frame model adds another layer of complexity to the
method. The rank of the elemental stiffness matrix for a two dimensional truss is one
whereas the rank of the elemental stiffness matrix for a frame structure is not. However, the
theorem used to derive the FOrFlex method stipulated that the elemental stiffness matrices
have a rank of one. Therefore, to compute the S matrix would require that the number
of β factors exceed the number of elements and they would begin to lose some of their
physical meaning. However, by using the calibrated model to construct the S∗ matrix, as in

7The β values have been transformed to percent reduction values using Equation (10.57).
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Figure 10.24: Comparison between exact and estimated ∆(ε) for Rock Island FE model:
Strain R02.

Equation (10.61), the method is still viable. After constructing the S∗ matrix for the Rock
Island Bridge FE model, the ∆ (ε) for α values ranging from 0% to 30% were calculated.

Figures 10.24–10.28 show the results of the FOrFlex estimation when compared to the
expected values for the sensors near the damaged element. The percent errors are also plot-
ted with respect to both α and β. Overall the graphs show that even for stiffness reductions
of 30% the estimated values have an acceptable error level.

After confirming that the FOrFlex method could predict the change in strain for a large
structure like the Rock Island Bridge, the FOrFlex method was used to simulate the use
of the method as part of the SHM system. Four elements, as shown by the red spheres in
Figure 10.29, were damaged with the stiffness reductions shown in the second column of
Table 10.2. The full S∗ matrix was constructed that allowed for stiffness changes to occur
in every element. Thus, every member in the model had a corresponding α. The S∗ was
tuned to 15% reduction in stiffness for every element in the model. After computing the
pseudo inverse of S∗, Equation (10.58) and the calculated changes in strain for the given
damage scenario were used to compute the estimated β values.

The third column of Table 10.2 shows the estimated stiffness reduction percentages for
the four damaged elements using just the pseudo inverse term. The estimates in the table
are less than 7% off from the actual values. The largest difference is in member L4-L5 that
also had the greatest change in stiffness. Not listed in the table were those elements that
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Figure 10.25: Comparison between exact and estimated ∆(ε) for Rock Island FE model:
Strain R03.

Table 10.2: Estimation of damage in Rock Island FE model.

Member Actual (%) S+ (%) S+ + γNull(S) (%)

L2-L3 -7.00 -7.02 -7.18
L3-L4 -10.00 -9.96 -10.11
L4-L5 -16.00 -14.95 -15.27
L5-L6 -13.00 -12.50 -12.75
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Figure 10.26: Comparison between exact and estimated ∆(ε) for Rock Island FE model:
Strain R04.
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Figure 10.27: Comparison between exact and estimated ∆(ε) for Rock Island FE model:
Strain R05.
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Figure 10.28: Comparison between exact and estimated ∆(ε) for Rock Island FE model:
Strain R08.

Figure 10.29: Damage scenario and estimated damages using FOrFlex method.
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were not damaged in the scenario. Using just the pseudo inverse term, the FOrFlex method
estimated that 1,004 of these elements had a stiffness increase of which none had stiffness
increases of more than 1.0%. Excluding the four damaged elements, three elements had
estimated stiffness decreases of more than 1.0%.

To improve the estimate, the null space term of Equation (10.58) was calculated. The
null space of the S∗ matrix contains 496 columns,8 so 496 γ values need to be determined.
To calculate the γ values, an optimization objective function was established. Relying on
the assumption that there were no stiffness increases in the structure, the objective function
was the sum of all α values greater than zero, as follows:

f (γ) =
n∑

i=1

max {0, αi} (10.62)

To minimize the objective function, the fminsearch function provided by MATLAB.
The fminsearch function implements the Lagarias simplex search method and is a form
of unconstrained linear optimization. The optimization was seeded with a zero vector start-
ing point and ran until convergence was achieved.

Using both the pseudo inverse and null space terms, final estimates for the change in
stiffness of the elements were computed. The last column in Table 10.2 shows the final
estimations for the change in stiffness of the four elements in the damage scenario. Though
the estimate for elements L2-L3 and L3-L4 have gotten worse due to a move away from
the least squars fit provided by the pseudo inverse, the other two estimates have improved
significantly. The maximum percent error is now 4.5% and the total error has decreased as
well.

The situation with the undamaged elements has also improved, now only 842 elements
have stiffness increases though two elements had stiffness changes greater than 1.0%. Fig-
ure 10.29 shows the location of the two members with greater than 1.0% stiffness increases
were the deck stringer located in the same bay as, and parallel too, the damaged member
L3-L4. In addition, only two elements, excluding the four in the damage scenario, experi-
enced stiffness decreases greater than 1.0%. Figure 10.30 shows a histogram of the change
in stiffness estimates for the elements not damaged in the scenario. 95% of the undamaged
members have an estimated stiffness change of ±0.2% and would fall below a reasonably
set threshold.

10.3 Summary

The multimetric SHM system installed on the Rock Island Bridge has been designed to use
statistical process control methods to determine when the monitored features indicate that
the structure has changed enough to warrant a more in depth investigation. Two damage lo-
cating algorithms, the Damage Locating Vector (DLV) method and a First Order Flexibility
(FOrFlex) method, which can be used after the control charts indicate structural changes,

8Reminder, there are 1,764 elements in the model.
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Figure 10.30: Histogram of the estimated stiffness changes in undamaged members of the
Rock Island FE model.

were tested numerically for suitability to detect uniform gross cross section loss in mem-
bers of the Rock Island Bridge. The FOrFlex method has the advantage in that it locates and
quantifies damage while the DLV just locates it. The DLV method was primarily designed
for using the acceleration measurements and the FOrFlex method is designed exclusively
for strain measurements. This chapter has shown, using the Rock Island FE model, the
applicability of both to a structure as complex as the Rock Island Bridge. While both the
DLV and FOrFlex methods can detect damage as well as locate it, the SPC methods are
simpler for real-time detection.

As with any damage detection algorithm, the DLV method and the FOrFlex method
have their limitations. Both methods were demonstrated to work for damage that can be
best represented as a uniform gross cross section loss in the individual bridge members.
Cracks that may form in the members, as discussed in the introduction to this chapter do
not affect the overall stiffness of the member but can cause large strains and stresses locally.
Therefore, it is unlikely that either method would detect a crack unless it forms near the
strain sensor or has grown to such an extent that the overall capacity of the member has
been reduced. Likewise, the development of the FOrFlex method has shown that away
from the indeterminate locations in the truss, even a complex structure like the Rock Island
Bridge will behave as a determinate structure would be expected to behave. A change to
the cross section of the member will change the strain observed on the member but will
not alter the load carried by the member so the neighboring members will experience no
observable changes. Therefore, small changes will only be observable on instrumented
members.
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While mindful of the limitations of the methods, like all damage detection methods, a
level of “art” or “experience” helps the DLV and FOrFlex algorithms work properly. In a
real-world setting, selecting a threshold for the DLV method that is too low might mean that
a false negative is detected. The FOrFlex method assumes that reliable strain readings can
be determined. Averaging of data in both cases would help reduce the noise in the methods
and improve the reliability of the methods. Thus, the definition of “real-time” needs not to
be confused with the definition of “instantaneous” in the discussion of a structural health
monitoring system for a complex structure like the Rock Island Bridge. As long as the
expectations of the damage detection algorithms is to confirm the results of one another
and provide a bridge inspector with a better idea of where to look, then both the DLV and
FOrFlex methods are suitable for the Rock Island Bridge.
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Chapter 11

CONCLUSIONS AND FUTURE WORK

The process of creating a structural health monitoring system has four primary steps: a) ac-
quire data b) identify metrics c) evaluate data statistically d) interpret data. Each of these
steps includes many significant sub-steps that require a broad range of knowledge. Each
step is essential in creating a structural health monitoring system that can do more than
collect data and display it on a screen. Engineering knowledge and decision making need
to be an essential part of any SHM framework so that it can serve as a useful tool in the
management of bridge resources.

In this research, a structural health monitoring framework that addresses all four primary
SHM steps has been developed for the Rock Island Government Bridge. The framework
was developed using a pre-existing fiber optic network of strain and temperature sensors.
Observations of the fiber optic system indicated that supplementary sensors were necessary.
A network of wireless smart sensors was installed to provide acceleration measurements.
System identification was performed using the wireless sensor network to determine the
natural frequencies and mode shapes of the bridge. The identified dynamic properties were
used to update a finite element model of the bridge.

A digital compass was also installed on the bridge to supplement the fiber optic system.
The compass and the fiber optic system were used together to identify in real time the
position of the bridge, when the bridge opens and closes, and when trains pass over the
bridge. The event detection algorithm was programmed as part of an integrated SHM
program that is capable of collecting and storing data from all three sensor systems.

The Integrated SHM Data Collection Program stored the data it collected in databases
before it was analyzed manually. The observed net coefficient of thermal expansion could
serve as an indicator of both changes in the structure and whether the sensors have remained
attached to the bridge. The change in strain when the bridge opens and closes was also
shown to be robust to changes in the sensors and sensitive to changes in the structure.
The control charts established for the ∆ε demonstrated the importance of multi-sensor
correlation in determining the significance of changes in the metrics. The control charts
also showed that the structure changes between certain geometric configurations due to
the looseness in the pinned joints. Gaussian mixture models were used to determine the
appropriate acceptance band and control limits for each sensor.

This research demonstrated the effectiveness of two damage detection algorithms that
utilize the wireless and fiber optic sensors on the bridge that can be implemented in the
SHM framework for the Rock Island Bridge. A numerical simulation of the damage lo-
cating vector method successfully identify damage locations even in limited sensor groups
that are part of a hierarchical sensor arrangement. Likewise, the first order flexibility matrix
was able to locate and give severity estimates for simulated corrosion damage introduced
to the finite element model.
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Figure 11.1: Three state Markov Chain.

11.1 Future Work

The continued operation of the Rock Island SHM system will provide plentiful opportu-
nities for continued research. One use is as a test bed for other damage detection algo-
rithms. The two damage detection algorithms developed for this research are not individu-
ally multimetric; the DLV method, as presented, uses only acceleration measurements and
the FOrFlex method is derived exclusively for strain measurements. However, other re-
searchers [30,146] have developed damage detection algorithms that utilize both strain and
acceleration measurements simultaneously. The multimetric approach has been shown to
improve the sensitivity and reliability of the acceleration-only DLV method and decrease
both false positives and false negatives. A multimetric DLV method, and other methods that
can be developed, can be included in software updates to the Rock Island SHM system.

The data collected from the Rock Island Bridge SHM system has provided valuable
insight into the behavior and health of the bridge. Further research will benefit from the
data that will continue to be collected. The observations about the behavior the eye bar
members that led to the use of acceptance control charts in Section 9.4 has some interesting
consequences that warrant future research. The bridge appears to have a few “states” that
it can occupy. These states are the combinations that the bridge members that, like the
eye-bars, can shift in their joints. The bridge can transition, given the right conditions and
forces, from one state to another based on the state that it currently occupies. Observations
have shown that every time the bridge swings, a train traverses the bridge, or the bridge
experiences differential heating a chance exists that the bridge will change states. However,
the change in state does not depend on what state the bridge has been in previously but only
on its current state. A Markov Chain can be used to describe the state changing behavior
of the bridge.

Figure 11.1 illustrates a simple three state Markov chain. If the system described in
Figure 11.1 is in state s0 then there exists a probability, Ps0→s0 , that the system will remain
in state s0 and also probabilities, Ps0→s1 and Ps0→s2 , that the state will change to s1 or s2

respectively. For the Rock Island Bridge, the number of states, the probabilities for state
change, and what factors influence those probabilities are not known. Initial observations
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indicate that the bridge is more likely to change its state on sunny afternoons when a train
passes over the bridge than at night regardless of any trains or swings. Most ∆ε recorded on
any given night showed small variation. It is the variation of the values from night to night
that indicates the presence of the states and that the probability of transition is affected by
differential temperature changes. The data collected and used in this research however, is
insufficient to calculate the transition probabilities or fully identify the possible states the
bridge exhibits. Continued data collection by the Rock Island Bridge SHM system and
analysis could potentially better define the Markov chain that describes the bridge system
and thus provide greater insight into its normal behavior.

The apparent use of a Markov chain to describe the behavior of the structure could also
lead to the creation of a multi-scale finite element model of the bridge. The current FE
model was designed to simulate the global dynamic properties and axial strains of the truss
members. A multi-scale model can be developed that accounts for the effects of temper-
ature differentials, eye-bar elongations, and friction in pin joints among other behaviors.
This model could also then be developed to account for the probabilities of change of state
in the observed Markov chain model. Accounting for the changes in states would create a
statistical mechanics model that would provide further insight into the bridge behavior un-
der operational conditions. This model could be used to aid in the development of damage
detection algorithms or SHM techniques that are suited for the complex behavior of real
structures.

11.2 Discussion

Some aspects of the SHM framework devoloped in this reasearch are by necessity custom
to the Rock Island Government Bridge. For example, the strain levels that signal an event
in the event detection algorithm will need to be adjusted for other movable bridge or even
more so for bridges whose primary loads are vehicular. However, the principle of using
pattern recognition to detect loadings that can then be used to determine changes in strain
that can be fit to a model will be the same for any bridge. The use of statistical process
control methods, multiple metrics, and complementary damage detection algorithms can
also be used for any bridge. In addition, some of the lessons learned are most applicable to
the development of SHM systems for other bridges.

Among the lessons learned is that the Rock Island Bridge SHM system has shown that
data quality is important to the success of the system. To ensure data quality it is nec-
essary to understand exactly what is being measured and correct for external factors that
can pollute the data. For example, the issues that were discovered with the temperature
compensation of the fiber optic strain sensors during the daylight hours are not necessarily
unique to the Rock Island Bridge. Other SHM systems on bridges with surface mounted
sensors will experience similar behavior if the sensors are not sufficiently insulated from
all sources of heat other than conduction from the structural member. Without the swings
of the Rock Island Bridge, this issue might have gone unnoticed and the changes in the
measured result assumed to due to changes in the forces in the bridge.

Another important lesson is that understanding the limitations of the installed sensors
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and how that influences data quality is important. The fiber optic accelerometers proved to
be inadequate for SHM applications because the necessary anti-aliasing filtering could not
be provided. Other sensors may not be sensitive enough and quantization errors can occur
as the fiber optic accelerometers also demonstrate. Therefore it is imperative to install the
right sensor, with the right capabilities, at the right location to ensure data quality.

In the long term, measures need to be taken to ensure that the reliability of the sensors
exceeds the rate of inspection of the bridge so data from past inspection cycles can be used
in tracking the health of the structure. Not only do the sensors need to be able to survive the
environmental conditions to which they will be exposed to over years of service, methods
need to be implemented that can detect when the sensor is returning erroneous data. The
use of the observed coefficient of thermal expansion, developed in this research for use
in the Rock Island SHM framework, is one example of detecting when a sensor is not
performing as expected. With each layer of complexity that is added to the system, more
things can go wrong and the SHM system needs to be able to detect these issues so that
false alarms about the failure of members are not common.

The most important part of creating an SHM system is to know what you want to learn
from the system at the start of the development process. Doing so requires an understanding
of the structural behavior and expected responses to loading conditions. This knowledge
will lead to a better understanding of what can be measured and lead to the selection of
appropriate sensors. In-depth structural knowledge will also help identify critical members
whose failure could lead to catastrophic failure of the bridge. Visual inspections focus on
these critical members and an SHM system should as well. Communication between the
bridge manager and the parties responsible for the design and installation of the system is
essential to creating the most useful SHM system.

Throughout the whole process of monitoring a structure, it is requisite to have reasonable
expectations of what the SHM system can do. The scope of any SHM system is limited.
More and better sensors can always provide more detailed information but there are costs
associated with both “more” and “better”. An SHM system with limited sensors cannot be
expected to detect every type of damage that can occur at any location in the bridge. Full
disclosure of the limitations associated with any SHM system is important for establishing
an appropriate bridge management strategy that integrates the SHM system and traditional
bridge inspections. In addition to the limitations on an SHM system imposed by the hard-
ware selection and quantity, the software and algorithms also have their own limitations.
No one damage detection method is going to be the perfect solution for every situation; all
methods have their strengths and weaknesses. Using a variety of sensors and a variety of
methods that can complement each other is the best way to create a system.

Each structural health monitoring system will need to be adapted to the individual bridge.
The system created for the Rock Island Bridge did its best to use the resources available
to provide the most useful information it could. The distinctive history and function of the
Rock Island Government Bridge provided a unique opportunity to create a framework that
can help preserve the bridge for many more generations to come.
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