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ABSTRACT 

 

Hybridization is a pervasive evolutionary phenomenon in plant and animal taxa.  

Understanding the evolutionary consequences of hybridization is dependent upon the ability to 

adequately detect genetically admixed individuals, characterize the maternal contribution and 

structure of hybrid zones, and understand post-zygotic selection acting on recombinant 

genotypes.  Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are U.S. 

federally injurious species, and although suspected to be reproductively isolated in their native 

range in eastern Asia, form multi-generational hybrids within the Mississippi River Basin 

(MRB).  My dissertation explores the complexity and structure of bighead and silver carp 

hybridization in the MRB through molecular marker development, implementing those markers 

to test for the extent of hybridization, and to assess post-zygotic effects of hybridization.  I used 

restriction-associated DNA sequencing to develop fifty-seven species-diagnostic single 

nucleotide polymorphisms (SNPs) to distinguish parental bighead and silver carp from their 

hybrids in the MRB and China.  All SNPs were isolated from conserved regions of the genome 

and thirty-two of fifty-seven were annotated to functional gene loci.  During validation, evidence 

of hybridization in the Amur River, China was first documented.  I developed a diagnostic 

mtDNA SNP and applied the nuclear SNP assay developed earlier to determine the prevalence 

and degree of introgression of bighead and silver carp introgression at nine locations throughout 

the MRB.  Bighead and silver carp hybrids were present among all MRB locations (45%) and a 

silver carp maternal bias was present in 13 of 21 (62%) F1 hybrids, all silver carp backcrosses 

and maintained throughout many bighead carp backcrosses.  Bighead and silver carp hybrids 

contained bighead and silver carp mitochondrial DNA and followed a bimodal distribution 

consisting primarily of parental or parental-like genotypes and phenotypes.  All described hybrid 
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categories were present among individuals from 1999-2008, with parents and late generation 

backcrosses representing the largest proportion of individuals.  I compared body condition and 

reproductive potential of bighead and silver carp hybrids to test for their post-zygotic success in 

the MRB.    Body condition (Wr) decreased as bighead and silver carp species-specific allele 

frequencies became more distant from parental allele frequency.  Mean Wr was lowest in early 

generation bighead and silver carp hybrids (F1, F2, first generation backcross) compared with 

their respective parentals and late generation backcrosses.  Despite an initial reduction in hybrid 

body condition, females displaying stage IV and V gonads (spawning stage gonads containing 

mature oocytes) and mean gonadosomatic index (GSI) of spawning stage females did not differ 

between parentals and hybrids throughout the MRB.  Bimodal hybrid distribution indicated high 

densities of parentals and late generation hybrids and low densities of early generation hybrids.  

My results suggest that hybrids have the same reproductive potential as parents and the low 

frequency of early generation hybrids in the MRB is likely attributed to reproductive behavioral 

isolation or poor body condition, rather than genetic incompatibility.  Overall, my findings 

provide a spatial and temporal examination of bighead and silver carp introgression in the MRB 

and demonstrate the importance of molecular and ecological influences in shaping this hybrid 

swarm.   
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CHAPTER 1:  INTRODUCTION 

 Bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are large-bodied 

cyprinid planktivores, occurring sympatrically in eastern Asian, but suspected to be 

reproductively isolated in their native range (Kolar et al. 2007).   Bighead and silver carp hybrids 

have been artificially propagated in aquaculture to explore the outcomes of heterosis.  

Experimental crosses resulted in faster growth, increased body condition, greater food 

conversion efficiency, and decreased disease resistance in reciprocal F1 hybrids compared with 

parentals (Voropaev 1978, Green & Smitherman 1984, Issa 1986).  Their popularity as food fish 

for propagation and culture has led to their introduction worldwide and resulted in the dissolution 

of reproductive barriers where co-introduction has occurred in lotic systems (Lamer et al. 2014).   

Intentional introduction of bighead and silver carp into the United States and subsequent 

escapement, rapid expansion, and proliferation in the Mississippi River Basin (MRB) has 

resulted in listing them as “injurious” under federal law (Lacy Act, USC Section 42(a)(1) of title 

18), warranting a large multi-agency control response.   Despite expansive monitoring and 

control efforts, hybridization between bighead and silver carp was not genetically confirmed in 

the MRB until 2006 (Lamer et al. 2010).  Due to the paucity of information on bighead and 

silver carp hybrids, their biology has been of little use to inform management and control 

policies.  Bighead and silver carp reciprocal F1 hybrids were present in the MRB (Lamer et al. 

2010).  Post-F1 hybrids were also present; however, often not morphologically discernible from 

their parent species (12.5%) (Lamer et al. 2010).  Introgressive hybrids (23%), consisting 

primarily of silver carp maternal ancestry (88%), were identified from Pool 26, Mississippi River 

and a small section of the Alton Reach, Illinois River (Lamer et al. 2010).  Lamer et al. (2010) 

showed that bighead and silver carp hybridization occurs and introgression proceeds beyond the 
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F1 generation in the MRB, but their power of resolution (i.e., power to identify parents from later 

generation hybrids and power to characterize the complexity and proportion of hybrid genotypes 

throughout the MRB) was limited by the number of diagnostic markers available (four allozyme 

loci, (Brummett et al. 1988)).    

Detection of hybrids in the MRB was the foundation for this dissertation research.  I 

address the following needs and questions pertaining to bighead and silver carp introgressive 

hybridization in the MRB: 1) To increase the power of hybrid detection, reveal masked 

introgression, and increase the speed of diagnostic screening with high-throughput technology, a 

large set of evolutionary conserved, species-diagnostic markers were needed to identify bighead 

and silver carp from their hybrids in the MRB and China (Chapter 2); 2) Are bighead and silver 

carp hybrids restricted to Pool 26, Mississippi River and Alton Reach, Illinois River or is this a 

broader phenomenon throughout the MRB (Chapter 3)?; 3)  How advanced is introgression and 

how is this hybrid zone structured throughout the MRB (Chapter 3)?; 4.) How long has 

introgression been occurring and what is the predominant maternal species contribution to 

hybrids throughout the MRB (Chapter 3)?; and 5) How does post-zygotic selection influence 

body condition and reproductive potential of bighead and silver carp hybrids in the MRB 

(Chapter 4)? 

In chapter 2, I used putative bighead and silver carp parentals from China and allozyme-

verified parental species from Lamer et al. (2010) to generate restriction-associated DNA (RAD) 

libraries for sequencing following digestion with the restriction enzyme, SbfI.  Sequences were 

bioinformatically filtered and aligned to the silver carp transcriptome (Fu & He 2012) producing 

highly conserved single nucleotide polymorphisms (SNPs) at annotated gene loci, which I used 

to detect bighead and silver carp hybridization in the United States and China.  I selected fifty-
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seven SNPs after validation and testing, providing a powerful number of diagnostic loci, critical 

for the thorough characterization of the bighead and silver carp hybrid swarm in the MRB.  My 

SNP assay provided a powerful and valuable tool for all interested in bighead and silver carp 

genetics.  Results of chapter 2 have been published in Molecular Ecology Resources with co-

authors Greg Sass, Jason Boone, Zarema Arbieva, Stefan Green, and John Epifanio (Lamer et al. 

2014).       

In chapter 3, I used the bighead and silver carp hybrid SNP panel created by Lamer et al. 

(2014) to determine the extent and structure of hybridization throughout the MRB, to identify 

parentals needed for mtDNA SNP development, and to identify known age fish to characterize 

hybrid structure through time.  I used allele frequencies for homozygous and heterozygous 

genotypes to assign parentals and hybrids to distinct categories across nine locations among the 

lower Mississippi River, upper Mississippi River, Missouri River, and Illinois River (n=2,798).   

Using randomly selected parentals, confirmed at 57 nuclear loci from all locations, I was able to 

use Sanger sequencing to sequence, align, and identify a species diagnostic SNP from the COII 

mitochondrial domain.  Nuclear and mtDNA SNP information were then used to characterize the 

hybrid swarm (multigenerational hybrid complex) and determine the directionality present 

among hybrids.  Finally, in order to determine if the presence of all hybrid classifications were 

present during 1999-2008, birth year of all individuals were determined from sectioned, 

postcleithrum annuli counts.  This chapter provided a comprehensive characterization of bighead 

and silver carp hybridization in the MRB and has been submitted to Molecular Ecology with co-

authors Blake Ruebush, Mike McClelland, Zarema Arbieva, John Epifanio, and Greg Sass 

(Lamer et al. in review).   
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In chapter 4, I implemented the SNP panel created by Lamer et al. (2014) and allele 

frequencies/ hybrid assignment generated by (Lamer et al. in review) to determine post-zygotic 

selection on bighead and silver carp hybrid body condition and reproductive potential in the 

MRB.  Body condition was expressed as relative weight (Wr) and calculated from all individuals 

using total length (mm) and weight (g), compared to a species-specific standard weight (Lamer 

et al. unpublished data).  Body condition and mean body condition was then directly compared 

to species-specific allele frequency and hybrid category to test whether heterosis observed in 

experimental settings (Issa 1986) persisted in a natural environment prone to exogenous selection 

(Marseilles Reach, Illinois River).   I also tested whether reproductive potential, measured as the 

presence of female spawning stage gonads and gonadosomatic index (GSI), differed between 

parentals and hybrids throughout the MRB.  Chapter 4 used the natural hybrid zone within the 

MRB, consisting of multiple generations of complex genotypes, to test for the effects of 

environmentally- mediated selection on ecological traits of bighead and silver carp hybrids and is 

being prepared for submission to Evolutionary Ecology with co-authors Blake Ruebush, Mike 

McClelland, John Epifanio, and Greg Sass.   

Overall, my findings provide a spatial and temporal examination of bighead and silver 

carp introgression in the MRB and demonstrate the importance of molecular and ecological 

influences in shaping this hybrid swarm.  I have created and implemented tools to better 

understand and establish a foundation for bighead and silver hybrid dynamics in the MRB; 

however, future research and monitoring is critically needed to continue to explore the 

evolutionary fate of this hybrid swarm. 
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1This chapter is modified from: Lamer JT, Sass GG, Boone JQ et al. (2014) Restriction site-associated DNA 
sequencing generates high-quality single nucleotide polymorphisms for assessing hybridization between 
bighead and silver carp in the United States and China. Molecular Ecology Resources, 14, 79–86. 

CHAPTER 2:  RESTRICTION SITE-ASSOCIATED DNA SEQUENCING GENERATES 

HIGH-QUALITY SINGLE NUCLEOTIDE POLYMORPHISMS FOR ASSESSING 

HYBRIDIZATION BETWEEN BIGHEAD AND SILVER CARP IN THE UNITED 

STATES AND CHINA1 

 Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are invasive 

species and listed as U.S. federally injurious species under the Lacy Act. They have established 

populations in much of the Mississippi River Basin (MRB; Mississippi, Illinois, and Missouri 

rivers), and are capable of producing fertile hybrids and complex introgression.  Characterizing 

the composition of this admixture requires a large set of high quality, evolutionarily conserved, 

diagnostic genetic markers to aid in the identification and management of these species in the 

midst of morphological ambiguity.   Restriction site-associated DNA (RAD) sequencing of 45 

barcoded bighead  and silver carp from the United States and China produced reads that were 

aligned to the silver carp transcriptome yielding 261 candidate single nucleotide polymorphisms 

(SNPs) with fixed allelic differences between the two species.  I selected the highest quality 112 

SNP loci for validation using 194 putative parental-species and F1 hybrids from the MRB and 

putative bighead carp and silver carp parental-species from China (Amur, Pearl, and Yangtze 

rivers).  Fifty SNPs were omitted due to design/amplification failure or lack of diagnostic utility.  

A total of 57 species-diagnostic SNPs conserved between carp species in US and Chinese rivers 

were identified; 32 were annotated to functional gene loci.   Twenty-seven of the 181 (15%) 

putative parental-species were identified as hybrid backcrosses after validation, including three 

backcrosses from the Amur River, where hybridization has not been documented previously.  

The 57 SNPs identified through RAD sequencing provide a diagnostic tool to detect population 
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admixture and to identify hybrid and parental-species Asian carps in the United States and 

China.  

Introduction 

Species translocations and habitat fragmentation have led to an increase in interspecific 

hybridization among a variety of taxa, which is of global concern to conservation biologists, 

taxonomists, and resource managers (Allendorf & Luikart 2007).  Hybridization and 

introgression are observed in fishes more than any other vertebrate taxa (Allendorf & Waples 

1996).  The prevalence of hybridization and introgression in fishes has been attributed to external 

fertilization, weak behavioral isolating mechanisms, competition for spawning habitat, habitat 

homogenization, and the propensity for secondary contact between recently diverged species 

(Scribner et al. 2001).  Introgression poses a threat to coadapted gene complexes (Edmands et al. 

2009), morphological discernment (Leary et al. 1996), local adaptation (Martinsen et al. 2001), 

and the genetic integrity of unique phylogenetic lineages (Rhymer & Simberloff 1996).    

Hybrids are often misclassified and may complicate research efforts in the absence of genetic 

validation (Leary et al. 1996).   

Bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (collectively, Asian 

carps) have been introduced worldwide (silver carp, 88 countries and territories; bighead carp, 73 

countries and Guam) and have co-established populations in thirteen of these countries (Kolar et 

al. 2007).  Of these established populations, hybridization between bighead and silver carp has 

been reported in the United States (Kolar et al. 2007, Lamer et al. 2010) and the Syr’Darya River 

(western Asia) (Kolar et al. 2007) with the potential to hybridize in other introduced regions.   

Hybridization events resulting from translocations are frequently observed between an 

introduced exotic species and a native species (Mooney & Cleland 2001). Natural hybridization 
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and the admixture between two introduced species within their invaded range are less well 

documented.  A unique situation exists throughout the Mississippi River Basin (MRB) in the 

United States, where two sympatric Asian carps remain genetically isolated within their native 

range, but have hybridized when both were introduced to a new environment (Lamer et al. 

2010).  

A suite of molecular techniques have been used to identify bighead carp, silver carp, and 

their hybrids, including chromosomal analysis (Almeida-Toledo et al. 1995), microsatellites 

(Mia et al. 2005, King et al. 2011), and allozymes (Brummett et al. 1988, Lamer et al. 2010).  

Although interspecific hybridization between bighead carp and silver carp occurs beyond the F1 

generation, power to detect the extent of backcrossing and subsequent hybridization events with 

these techniques is limited due to the low number and lack of discriminating power of the 

diagnostic loci available (Boecklen & Howard 1997).  Single nucleotide polymorphisms (SNPs) 

are ideal markers distributed throughout the genome to investigate admixture between divergent 

taxa and have been applied to a number of organisms (Wiley et al. 2009, Stephens et al. 2009, 

Twyford & Ennos 2011, Hohenloe et al. 2011).   Single nucleotide polymorphisms evolve with 

predictable rates of substitution (Vignal et al. 2002), are diagnostically species-specific, can be 

mapped to specific regions of the genome, and provide a revolutionary new tool to explore the 

genomic architecture of hybridization. 

 Until recently, SNP discovery has been a laborious and cost-intensive process in the 

absence of a reference genome.  The advent of restriction site-associated DNA (RAD) 

sequencing technology reduces the complexity of the genome to specific cleavage sites to 

facilitate discovery of species-specific SNPs (Baird et al. 2008).   Restriction site-associated 

DNA sequencing of barcoded individuals allows for the screening of thousands of candidate loci 
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capable of distinguishing parental and hybrid individuals and detecting patterns of introgression, 

natural selection, and isolation of select loci.  Complete genome sequencing facilitates SNP 

mapping and annotation by providing a scaffold for RAD tag alignment, but is not required to 

produce markers for hybrid analysis.  For example, the utility of RAD sequencing in the absence 

of a reference genome has been demonstrated in hybrid detection between westslope cutthroat 

trout (Oncorhynchus clarki lewisi) and rainbow trout (O. mykiss), yielding 46 species-diagnostic 

SNPs (Hohenloe et al. 2011, Amish et al. 2012).   Recent annotation of the silver carp 

transcriptome (Fu & He 2012), combined with RAD sequencing, provides the tools for species-

diagnostic SNP discovery at annotated gene loci within the admixed genome of Asian carps. 

 My objectives were twofold: 1) to develop a large number of species-diagnostic SNPs to 

investigate the extent and architecture of introgression among Asian carps in their native range in 

China and their recently introduced range in the MRB; and 2) to isolate species-diagnostic SNPs 

for future investigation into natural selection and reproductive isolation of functional genes 

within the Asian carp hybrid genome.  My research provides the framework and methodology 

for admixture testing applicable to a wide variety of taxa and specifically provides a diagnostic 

tool to examine the complexity of Asian carp introgression within the MRB and Chinese rivers. 

Methods 

RAD Library Construction and Sequencing 

I extracted genomic DNA (gDNA) from 45 individuals (10-60 ng/µl) with the Maxwell 

16 Tissue kit (Promega, Madison, WI) using the Maxwell automated nucleic acid extraction 

instrument.   Twenty wild bighead carp and 19 wild silver carp from the United States and two 

bighead carp and four silver carp from the Yangtze River, China were chosen for library 

preparation (Table 2.1.).  Samples were submitted to Floragenex (Eugene, OR), who generated 
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and sequenced RAD tags using methods similar to those of Baird et al. (2008).  Briefly, 

sequencing adapters and multiplex sample indices (barcodes) were ligated to SbfI-digested 

gDNA.  Fragment libraries were synthesized through pooling of individual digestions followed 

by a series of previously described polishing steps. RAD fragment libraries were sequenced on 

the Illumina HiSeq2000 platform with single-end 100 base pair (bp) chemistry using the 

manufacturer’s recommended protocol. FASTQ sequence data from the sequencing machine was 

de-multiplexed and segregated by individual barcode and trimmed to 90bp (Table 2.2.).     

Data analysis 

RAD tag sequence processing, reference mapping, and SNP calling and filtering.  

Because there is not an available reference genome for silver carp, I chose to align RAD 

sequence reads to the silver carp transcriptome (Fu & He 2012) for reference mapping and SNP 

variant identification. I used BOWTIE (version 0.11.3; Langmead et al. 2009) and SAMTOOLS 

(0.0.12a; Li et al. 2009) algorithms and custom scripts (Floragenex, Inc., Eugene, OR) for 

alignment and SNP variant identification. Alignment to the transcriptome with BOWTIE used 

sequence quality information during alignments allowing up to three mismatches (4.28%) 

between each read and the reference transcriptome, ignoring reads that aligned to more than one 

single position. The program SAMTOOLS tabulated SNP variants for all individuals (using the 

‘pileup’ module) and collected data for sequence coverage for each SNP.  

 To further qualify genotypes for downstream analysis, only SNPs that met assay design 

parameters for the MassARRAY 4 analyzer system (Sequenom, Inc., San Diego, CA) were 

selected (50 bp of sequence is required on either side of a candidate SNP; additionally 25bp on 

either side of a SNP must be free of additional polymorphisms).  Next, I used custom perl scripts 

(Floragenex, Inc., Eugene, OR) to filter loci where alleles were fixed within one species, but 
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different between species. For this filtering step, I selected the three following criteria: 1) no 

heterozygote alleles present in both species; 2) no more than four heterozygotes in any one 

species; and 3) no more than two missing data points for both species.  After these filtering steps, 

I sorted the remaining SNPs by overall locus Phred-based quality scores (Ewing et al. 1998), and 

the first 112 loci and SNPs were selected for validation.   

SNP validation.  

I used 194 wild individuals from three rivers in the United States (Illinois, Mississippi, 

Missouri) and three rivers in China (Amur, Pearl, and Yangtze) for the validation of the 112 

selected SNPs on the MassARRAY 4 analyzer system (Table 2.3.).  Putative parental-species 

and F1 individuals from the Alton Reach of the Illinois River and Pool 26 of the Mississippi 

River were chosen based on previous analyses: 4-locus allozyme assignment and COII 

mitochondrial domain concordance (Lamer et al. 2010).  I selected putative-parental species and 

F1 individuals from the Missouri River and the LaGrange Reach of the Illinois River and putative 

parental-species from the Pearl, Amur, and Yangtze Rivers based on morphological diagnostic 

characteristics between parental-species and F1 fish (Lamer et al. 2010).  F1 individuals were 

verified by heterozygous genotypes present at all loci and parental-species identified by 

homozygous genotypes present at all loci and any deviations from these criteria were considered 

advanced generation hybrids (post-F1 hybrids).   

Results 

SNP calling 

Restriction site-associated DNA sequencing of bighead and silver carp yielded an 

average of 36,791 RAD loci per individual with a median depth of 94 sequences (Table 2.2.). A 

total of 324,248,505 reads were generated after RAD sequencing and deposited in the NCBI 
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Sequence Read Archive (Accession no. SRP026178). Alignments to the reference transcriptome 

of silver carp averaged 4.2-5.8% (n= 45) of reads per sample.  High-quality SNPs then were 

extracted that met the MassARRAY 4 analyzer system design (50 bp of sequence on each side of 

SNP), yielding 600-700 candidate SNPs.  A total of 261 (236 non-duplicate) high quality loci for 

purpose of hybrid detection were identified. 

High-quality SNPs were ordered based on overall locus quality and 112 SNPs were 

chosen for validation using individuals from the United States and China.  Forty-six of the 194 

individuals used for validation also were used for RAD library construction.  Four U.S. 

individuals used in RAD library construction before SNP verification were assigned as silver 

carp based on allozyme criteria (Lamer et al. 2010).  After finer examination with additional loci, 

these individuals were determined to be advanced generation silver carp backcrosses.  Data from 

these four individuals were removed from the data set to avoid false positives when choosing 

high quality SNPs for validation. 

Fifty-seven high quality SNPs were selected from the original panel of 112 (Table 2.4.), 

genotypes validated for 194 individuals (Dryad: doi:10.5061/dryad.5j2v6), and ENSDART 

numbers were annotated to the zebrafish genome for 28 SNPs (Table 2.5.).  Twenty-eight SNPs 

either failed to amplify in most individuals or had failures due to the design process (e.g., 

paralogous regions, sequence errors).  Six SNPs from the Chinese populations were removed due 

to unique geographic polymorphisms not present in US populations. Twenty-one additional loci 

were removed to fit the specified well design required for MassArray 4 analyzer system and the 

funding constraints of processing an additional well.  Genotypes of thirty-one of the 194 (16%) 

putative parental-species used for validation were consistent with advanced-generation 

backcrosses and were removed from validation procedures (four from allozyme-derived 
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genotypes and 27 from morphologically-identified parental-species).  Three of 16 Amur River 

fishes identified morphologically as bighead carp were resolved during validation as bighead 

carp backcrosses, which provides the first documented evidence of natural hybridization among 

these species in China. 

Discussion 

Restriction site-associated DNA sequencing resulted in the development of a panel of 

efficient, reliable SNP assay capable of distinguishing parental-species bighead carp, silver carp, 

and their hybrids.  The highly conserved nature of individual SNPs within coding regions of the 

Asian carp transcriptome resulted in high quality SNPs applicable over an expansive geographic 

range.  The 57 SNP panel that I developed has several advantages over previously used markers 

that address limitations in Asian carp hybrid analyses, including: 1) lack of morphological 

markers to distinguish backcrosses from parental-species individuals; 2) insufficient number of 

loci to assess deep levels of introgression; 3) limitations in the diagnostic power of current 

molecular screening techniques is limited to isolated geographic regions due to high mutation 

rate or low number of available markers; and 4) current molecular probes only reflect mutations 

within non-coding regions of the genome.  Although not directly applied within my study, SNPs 

located within described gene loci will be genotyped to investigate the role of natural selection 

and post-zygotic isolation on functional gene loci and biological processes.  

Until the 1960s, the detection of hybrid fishes was based solely on morphological 

characters with the presumption that hybrids would be phenotypically intermediate to both 

parental species (Smith 1992).  Such morphological characteristics are consistent among F1 

progeny of Asian carps, as described by intermediate keel position, pectoral fin versus pelvic fin 

overlap, and coloration (Marian et al. 1986).  Allozyme analysis also indicated that twisted gill 
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rakers serve as a useful marker to identify F1 hybrids in the Mississippi and Illinois rivers, but 

not with 100% accuracy (Lamer et al. 2010).  Later-generation hybrids (post-F1 hybrids) 

exhibited a variety of gill raker deformations, from complete twisting to no twisting present, and 

12.5% of backcrossed individuals were indistinguishable from parental-species by standard 

morphological criteria (Lamer et al. 2010).  This observation is further substantiated after 

validation with my SNP assay, which resulted in 31 of 194 (16%) morphologically identified 

putative parental-species displaying hybrid genotypes. This outcome is not surprising given that 

meiotic recombination can produce a myriad of parental genotypes and subsequent phenotypes 

and unequal gene transmission can produce offspring phenotypically indistinguishable from the 

parental-species taxon (Leary et al. 1996).  Given the large proportion of post-F1 hybrid 

individuals (23%) discovered in the MRB (Lamer et al. 2010), my SNP assay can assign genetic 

identity to provide insight into Asian carp hybrid morphology. The high number of markers can 

serve as a diagnostic tool to unveil hybridization in the absence of morphological discernment.  

Additionally, I am currently using these tools to provide genetic validation to facilitate the 

screening of morphological characters in concert with geometric morphometrics and truss 

analyses to assist with field identification and understanding the actions of natural selection of 

morphological characters resulting from Asian carp introgression.  

Asian carp hybrids are fertile and capable of advanced introgression beyond the F1 

generation (Lamer et al. 2010). The extent of backcrossing and subsequent hybridization events, 

however, can be masked by an inadequate number of loci examined (Boecklen & Howard 1997), 

as evidenced by the discovery of four misidentified putative parental-species used for RAD 

sequencing and SNP discovery.  Four fish that were characterized as parental-species silver carp 

at four diagnostic allozyme loci and one mitochondrial locus were identified as silver carp 
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backcrosses after genotyping at 57 SNP loci.  Given this evidence, allozyme analysis lacks the 

discriminating power to adequately represent the depth of introgression occurring among Asian 

carps within the MRB.  The application of my multi-locus, species-specific SNP assay is critical 

for resolving parental-species Asian carp from advanced-generation hybrids.  Asian carp were 

introduced to the MRB in the United States in the early 1970’s.  They have been designated as 

“injurious” under federal law (Lacy Act, USC Section 42(a)(1) of title 18) and have warranted a 

large multi-agency control response (Asian Carp Regional Coordinating Committee 2012).  The 

multi-generational and high rates of Asian carps hybridization in the MRB (23%) (Lamer et al. 

2010) can complicate morphological identification and result in unpredictable behavior and life 

history characteristics.   Thus, my hybrid assay will facilitate identification of hybrid individuals 

to assist with the implementation of ongoing Asian carp management strategies. 

Bighead carp and silver carp are co-established in thirteen countries worldwide (Kolar et 

al. 2007).  Confirmed introgression has been reported in at least two invaded waterways (Kolar 

et al. 2007, Lamer et al. 2010), but has been minimally investigated in other introduced regions.   

Kolar et al. (2007) suggested that exposure to unfamiliar environmental cues within their 

invaded range (Kolar et al. 2007) may contribute to inter-specific hybridization among Asian 

carps, making hybridization in other co-established regions likely.  Species-diagnostic markers 

located within conserved regions of the genome make global screening of Asian carp hybrids 

achievable.  Single nucleotide polymorphism-based validation of Amur, Pearl, and Yangtze river 

Asian carps revealed evidence of advanced hybridization within the Amur River, China. 

Although silver carp are believed to be native to the Amur River (Kolar et al. 2007), bighead 

carp are suspected to be introduced (Kolar et al. 2007). This observation is consistent with the 

hypothesis that translocations to non-native habitats may induce hybridization in Asian carp.  My 
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discovery is the first known evidence of natural Asian carp hybridization within China and 

warrants further investigation into the genetic integrity of parental Asian carp populations within 

their native range.  The utility of my SNP assay in resolving parental-species and hybrid Asian 

carp in three Chinese rivers and the MRB provides the foundation for investigating Asian carp 

hybridization throughout their introduced range; all Asian carps from countries of co-

introduction originate either directly or indirectly from Chinese waters and hatcheries (years 

1898, 1951-1980) (Kolar et al. 2007).   

Hybridization has been empirically demonstrated as an important evolutionary 

mechanism for adaptive selection, reproductive isolation, and species divergence (Gompert et al. 

2012).  The advent of RAD technology (Baird et al. 2008) and next-generation sequencing 

(Twyford & Ennos 2011) has greatly facilitated the detection of admixture and inference of the 

genomic architecture of natural selection and reproductive isolation between divergent taxa 

(Gompert & Buerkle 2009, Stapley et al. 2010, Gompert et al. 2012).  The characterization of the 

silver carp transcriptome (Fu & He 2012) provided us with a blueprint to isolate species-specific 

SNPs within functional gene loci.  The characterization of natural selection and reproductive 

isolation operating on a genic scale was demonstrated by Lamaze et al. (2012) using genomic 

clines analysis (Gompert et al. 2010) at 27 coding loci in brook charr (Salvelinus fontinalis).  

Outlier loci, deviating from neutrality, contain an excess of heterozygotes (natural selection) or 

deficit of heterozygotes (reproductive isolation).  Application of my SNP assay and future 

discovery of additional species-specific functional gene loci to complex, multi-generational 

hybridizing populations of Asian carps within their established range will offer insight into the 

depth and complexity of introgression and can detail the dynamics of genetic variants under 

selection and isolation within a natural hybrid zone.     
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My results provide a set of high quality, highly conserved, species-diagnostic markers to 

distinguish parental-species bighead carp and silver carp from their hybrids in the MRB and the 

Amur, Pearl, and Yangtze rivers in China.  The silver carp transcriptome facilitated alignment 

and provided high quality SNPs based on stringent filtering criteria, but limited SNP discovery to 

only transcribed regions of the genome.  Restriction site-associated DNA sequences generated 

can be further filtered bioinformatically when the entire silver and bighead carp genomes 

become available from the Beijing Institute of Genomics to yield additional species-diagnostic 

SNPs.  Although the use of a single restriction enzyme and stringent filtering limits functional 

genome representation, additional candidate genes can be isolated through the use of multiple 

alternate restriction enzymes and additional RAD sequencing to comprehensively investigate the 

evolutionary genomics of Asian carp introgression.  I conclude that RAD sequencing now makes 

it feasible to identify cost-effective, species-informative SNPs located within the Asian carp 

transcriptome to identify admixture between bighead and silver carp in the United States and 

China.
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CHAPTER 3:  DIAGNOSTIC SNPS REVEAL WIDESPREAD INTROGRESSIVE 

HYBRIDIZATION BETWEEN INTRODUCED BIGHEAD AND SILVER CARP IN THE 

MISSISSIPPI RIVER BASIN 

Abstract 

Hybridization among conspecifics in native and introduced habitats has important implications 

for biological invasions in novel ecosystems.  Bighead (Hypophthalmichthys nobilis) and silver 

carp (H. molitrix) are sympatric and genetically isolated within their native range.  Following 

their introduction to North America, however, introgressant hybrids have been reported 

throughout their expanded range within the Mississippi River Basin (MRB).  The extent of 

introgression, both spatially and generationally, is largely unknown but important to inform 

management and understand the evolutionary consequences of this unique hybrid zone in the 

MRB.  Therefore, I examined mixed-species populations from across the MRB to characterize 

the extent of interspecific gene flow.  I assayed 2798 individuals from nine locations with a suite 

of species-diagnostic SNPs (57 nuclear and one mitochondrial).  Nearly 45% (n=1,244) of 

individuals displayed hybrid genotypes.  Moreover, the composition of hybrid genotypes varied 

among locations and represented complex hybrid swarms with multiple generations of gene flow 

between species.  Introgressive hybrids were identified from all locations, were bi-directional, 

and followed a bimodal distribution consisting primarily of parental or parental-like genotypes 

and phenotypes.  All described hybrid categories were present among individuals from 1999-

2008, with parents and later generation backcrosses representing the largest proportion of 

individuals among years. A mitochondrial SNP (COII), tested on a subset of 730 individuals, 

revealed a silver carp maternal bias in 13 of 21 (62%) F1 hybrids, in all silver carp backcrosses 

and maintained throughout many of the bighead carp backcrosses.  The application of this suite 
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of diagnostic markers and the spatial coverage permits a deeper examination of the complexity in 

hybrid swarms between two invasive, introduced species and offers and in-depth examination of 

a hybrid zone across an entire river basin between two species that are thought to be 

reproductively isolated in their native range. 

 

Introduction 

Hybridization is pervasive among plant and animal taxa worldwide (Mallet 2005, 

Schwenk et al. 2008) and has been recognized as a potential mechanism for evolutionary 

novelty, divergent selection, and speciation (Dowling & Secor 1997, Seehausen 2004, Abbott et 

al. 2013).   Among vertebrate taxa, fishes are particularly susceptible to inter-specific matings 

and resulting genome introgression (Leary et al. 1995) due to weakly reinforced behavioral 

isolating mechanisms, external fertilization (Scribner et al. 2001), and susceptibility to 

anthropogenic disturbance and translocation (Rahel 2002, Seehausen 2008).  Hybrid offspring 

from divergent taxa can be restricted to a first or second generation cross due to a combination of 

pre- and post-zygotic mechanisms (Maheshwari & Babesh 2011, Burke & Arnold 2001).  

However, many taxa, including fishes within the family Cyprinidae, introgress for multiple 

generations (Hubbs 1955, Scribner et al. 2001, Broughton et al. 2011).  Introgression may 

increase the evolutionary rate of selection through an increase in genetic diversity and is further 

accelerated by high fecundity and the short generation times typified by cyprinids.   

Inter-specific genetic admixture typically follows species that have evolved in allopatry 

coming into secondary contact or anthropogenic habitat disturbance causing the breakdown of 

reproductive isolation in species that have diverged in sympatry (Hasselman et al. 2014).  A less 

frequently observed mechanism occurs when two species that have diverged in sympatry 
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undergo genetic exchange when introduced into novel environments (Lamer et al. 2014).  This 

situation is typified by two cyprinid species complexes resulting in hybrids between introduced 

common carp (Cyprinus carpio) and goldfish (Carassius auratus) (Haynes et al. 2012) in the 

Murray-Darling Basin, Australia; and between introduced bighead carp (Hypophthalmichthys 

nobilis) and silver carp (H. molitrix) (Lamer et al. 2010, Lamer et al. 2014) in the Mississippi 

River Basin (MRB), United States.   Introgression in each case is hypothesized to result from a 

lack of native environmental cues that reinforce pre-zygotic reproductive isolation.  Gene flow 

can be an adaptive mechanism for rapid evolution to overcome low propagule pressure, to 

increase genetic diversity, and to adapt to novel environments (Arnold et al. 2008, Arnold & 

Martin 2010, Baskett & Gomulkiewicz 2011).  Initial hybridization may thus serve as a catalyst 

for invasion success and a platform for genetic adaptation (Ellstrand & Schierenbeck 2000, 

Prentis et al. 2008). 

Bighead and silver carp are large-bodied planktivores, which occur sympatrically and are 

reproductively isolated within native rivers of China.  After intentional introduction to the United 

States in the early 1970’s for algal control in aquaculture ponds (Freeze & Henderson 1982), 

both species escaped confinement in the early 1970s and established high density populations in 

the MRB (Pegg and Chick, 2001; Sass et al. 2010).  Invasion success was likely facilitated by 

their high reproductive potential (Schrank & Guy 2002) and ability to disperse long distances 

rapidly (DeGrandchamp et al. 2008).  Bighead and silver carp are highly invasive throughout the 

MRB and pose a threat to native biodiversity and food webs (Irons et al. 2007, Sampson et al. 

2009, Sass et al. 2014), which has warranted their listing as “Injurious” within the context of 

United States federal law (i.e., the Lacey Act; USC Section 42(a) (1) of title 18).  
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Bighead and silver carp have been imported worldwide.  Their hybrids have also been 

purposely bred and propagated in captivity to explore potential benefits in growth and 

performance related to stocking, harvest, polyculture, and the ecological services provided by 

their planktivorous diets (Issa et al. 1986, Marian et al. 1986, Zhang 1994, Hulata 2001).  

Examination of second and subsequent generations of interbreeding; however, has been 

hampered by an insufficient pool of diagnostic markers necessary to resolve the extent of multi-

generational introgression in any continually hybridizing population.  Thus, time and cost 

requirements to propagate multiple generations of hybrid offspring in captivity have limited most 

studies of bighead carp x silver carp hybrids to F1 and first generation backcrosses.   

Hybrids between bighead and silver carp in the MRB were first detected morphologically 

in the Missouri River in 2005 (Kolar et al. 2007) followed by genetic confirmation in the 

Mississippi and Illinois rivers in 2006 (Lamer et al. 2010).  Lamer et al. (2010) estimated that 

about 23% of “bighead carp” and “silver carp” were of mixed ancestry. Their results consisted of 

F1 hybrids, evidence of advanced introgression, cryptic hybrid morphology, and a strong 

maternal silver carp bias (88%) within the hybrids.  Although multiple generations of hybrids 

were identified, finer-scale architecture of the hybrid swarm was not possible due to an 

insufficient number of diagnostic molecular markers available.  

To increase the detectability of hybrids, Lamer et al. (2014) isolated 261 species-specific 

single nucleotide polymorphisms (SNPs) using RAD-seq technology capable of more clearly 

distinguishing parental bighead carp, parental silver carp, and their hybrids in United States and 

Chinese rivers.  Using SNPs as probes for hybrid detection is a recent innovation that has been 

applied to a wide variety of model and non-model taxa (Wiley et al. 2009, Stephens et al. 2009, 

Twyford & Ennos 2012, Lamer et al. 2014).   SNPs are abundant throughout the genome, bi-
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allelic, evolve according to a simple mutational model (Vignal et al. 2002) with predictable rates 

of substitution, and are highly conserved over the geographical range of an organism, thus 

providing ideal markers for hybrid analysis.  Application of SNPs to bighead and silver carp 

hybridization overcomes limitations encountered by Lamer et al. (2010) and Brummett et al. 

(1988) using allozymes (i.e., inadequate number of loci may mask the extent of backcrossing and 

advanced hybridization) and that of Mia et al (2005) and King et al. (2011) using microsatellites 

(i.e., high mutation rates, homoplasy, and a high proportion of shared alleles).  Extensive spatial 

coverage throughout the MRB and the application of bighead and silver carp diagnostic SNPs 

now afford the opportunity to better understand hybrid dynamics as they respond to selective 

forces within a natural, invaded environment. 

The objectives of my research were to test for 1) the frequency of hybridization and 

advanced introgression between bighead and silver carp throughout their range in the MRB; 2) 

the maternal directionality of hybridization throughout their range in the MRB; and 3) the change 

and persistence of hybrids over time (1999 -2008) throughout their range in the MRB.  I tested 

these hypotheses using a panel of 57 diagnostic SNPs (Lamer et al. 2014) and one mtDNA SNP 

to genetically identify putative hybrids throughout the MRB by assignment using NewHybrids 

version 1.1 beta (Anderson & Thompson 2002) and dating the respective hybrid classes to their 

birth year to determine hybrid persistence over time.   Collectively, my research uses a powerful 

set of diagnostic markers to detail the structure of a large, introgressed hybrid zone occurring 

throughout the third largest river basin in the world between two species that only hybridize with 

each other after introduction into a non-native location.  
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Methods 

Specimen Collection 

I collected bighead carp, silver carp, and their putative hybrids annually during April-

November (2009-2011) from nine locations throughout the MRB including Hickman and 

Laketon, KY (MKY) and Steele Bayou backwater lake north of Vicksburg, MS (MMS) on the 

Lower Mississippi River; Blair, NE on the Missouri River (MOO); Alton, IL (Pool 26) and 

Keokuk, IA (Pool 20) on the Upper Mississippi River; and the Marseilles Reach at Morris, IL 

(IMAR), the Peoria Reach at Chillicothe, IL (IPEO), the LaGrange Reach at Havana, IL (ILAG), 

and the Alton Reach at Grafton, IL (IALT) on the Illinois River (Figure 3.1.).  These sites were 

selected through cooperation with various agency personnel, due to ease of access, and the 

ability to efficiently capture bighead and silver carp.  I captured about 96% of the individuals in 

monofilament trammel nets (45.7 cm outer bar mesh, 7.62-10.16 cm inner bar mesh, 100 m long, 

2.4 m deep).  Trammel netting targeted bighead and silver carp > 400 mm.  Bighead and silver 

carp < 300 mm were collected by the Long Term Resource Monitoring Program field stations 

from Pool 26, Mississippi River and the LaGrange Reach, Illinois River using mini-fyke nets and 

pulsed-DC electrofishing.  I also retained and processed all specimens that leapt into the 

watercraft.  All fishes captured (n=2,798) were analyzed regardless of their putative field 

identification because advanced hybrids are often morphologically indistinguishable from 

parental species based on conventional morphological criteria.  I recorded total length (mm), 

weight (g), and gender. An aging structure (postcleithrum) was also removed and a 1 cm x 1 cm 

tissue biopsy was excised from the distal end of the caudal fin and preserved in 95% ethanol.   I 

recorded sex of each individual after gonad inspection and about 94% of the specimens were 

identified as male, female, or juvenile, with the remaining 6% unclassified.   
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DNA Extraction and Genotyping 

I extracted DNA from 2,798 individuals using the Agencourt DNAdvance genomic DNA 

extraction kit (Beckman Coulter, Danvers, Massachusetts) according to the manufacturer’s 

instructions. Genomic DNA was eluted from the magnetic particles in 150 ml of elution buffer 

and reactions were performed in 96-well plates.  I tested genomic DNA for quantity using the 

Qubit 2.0 Fluorometer (Life Technologies, Grand Island, NY) and quality using agarose gel 

electrophoresis.  DNA aliquots of 2,798 samples were genotyped at 57 species-diagnostic SNPs 

(Lamer et al. 2014) using the MASSARRAY 4 analyzer system (Sequenom, Inc., San Diego, 

CA, USA) according to the manufacturer’s instructions using primer sets provided by Lamer et 

al. (2014).   Genotypes have been archived at www.datadryad.org (Dryad: 

doi:10.5061/dryad.kp6j2). 

Genealogical Classification 

I coded diagnostic alleles (SNPs) at each locus into a binary format corresponding to 

either bighead or silver carp.   I analyzed genotypes by computing the posterior distribution of 

individual assignment into hybrid categories implementing the algorithm as computed by 

NewHybrids version 1.1 beta (Anderson & Thompson 2002).  The following classes were set 

using “Jefrey’s-like priors” (Anderson & Thompson 2002) in NewHybrids; parental bighead 

carp, parental silver carp, F1 hybrids (parental species x parental species), first generation 

backcross (F1 hybrid x either parental species), second generation backcross (first generation 

backcross x either parental species), third generation backcross (second generation backcross x 

either parental  species), fourth generation backcross (third generation backcross x either parental 

species), and F2 hybrids (F1 x F1) (Table 3.1.).  I did not include simulations for possible 

backcross x backcross or backcross x F1/F2 scenarios; differences in individual genotype 

http://www.datadryad.org/
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probabilities are very low between respective classes, making assignment and distinction 

between classes impractical.  Individuals displaying genotypes consistent with later-generation 

hybrids (i.e., backcross x backcross hybrids), containing a mixture of homozygous loci for each 

species, and heterozygous loci were independently assigned to a generic “Fx” category (“FxSV” 

consisting of primarily silver carp homozygous loci and “FxBH” consisting primarily of bighead 

carp homozygous loci) with the exception of those consistent with F2 proportions.   F2 genotypes 

are indistinguishable from F3, F4, and beyond without specific linkage information.  I used an 

initial burn-in time of 100,000 steps and 100,000 replicates.  I calculated relative proportions of 

hybrids for each hybrid category per location.   

Maternal Lineage Assignment 

Following SNP genotyping of all individuals, I selected a subset of “parental” individuals 

of each species (homozygous at all 57 loci) from all geographic locations sampled and sequenced 

them at the cytochrome oxidase II (COII) mitochondrial domain (Table 3.2.) following protocols 

described in Lamer et al. (2010).  I used Clustal X2 to align 65 parental bighead carp and 78 

parental silver carp COII sequences to visually identify a species-specific SNP at this domain 

(Dryad: doi:10.5061/dryad.kp6j2).   Maternal lineage was resolved for 730 additional individuals 

across all sampling locations and hybrid categories by genotyping one mitochondrial SNP for 

each individual on  the MASSARRAY 4 analyzer system (Sequenom, Inc., San Diego, CA, 

USA) using the following primer sequence:  5’-

TAACAATCAAAGC(T/C)AT(G/A)GGACATCAATGATACTGAAG(T/C)TACGAGTACAC

AGACTATGAAGA(T/C)(C/T)TGGGCTTCGACTCCTACATA(A/G)TCCCAACCCAAGACC

T(G/A)ACACCAGGCCAATTCCGGCTCCTAGAAACAGACCACCGAATAGTAGTCCCCA

TA(G/A)AATCGCCAGTTCGTGTTCTAGTATCCGCCGAA(G/A)ATGTATTACAC – 
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3’(Diagnostic SNP in bold: G= bighead carp, A= silver carp).  All hybrids were genotyped from 

the F1, F2, Fx-, Bx-, Bx2-, and Bx3- categories.  Due to the large proportion of parentals and Bx4- 

individuals, a maximum of ten individuals were chosen randomly from these categories from 

each location.  

Age Estimation 

I estimated ages for 2,577 fish (1,633 silver carp/silver carp- like individuals, 916 

bighead carp/bighead carp-like individuals, 21 F1 hybrids, and seven F2 hybrids).  I dried and 

sectioned the left postcleithrum from each fish into three, 500 µm sections using a Buehler 

isomet low-speed sectioning saw.  Sections were mounted to glass slides with cyanoacrylate and 

visualized using transmitted light under a stereoscope to estimate the age of each fish.  Median 

age was used from three independent assessments to estimate age.   Birth year was calculated by 

subtracting the estimated age from the year captured. 

Results 

Hybridization between bighead and silver carp was observed in all sampled locations.  

NewHybrids assigned 2,798 fish into the following hybrid categories:  parental species (SV, 

BH), F1, first generation backcross (BxSV, BxBH), second generation backcross (Bx2SV, 

Bx2BH), third generation backcross (Bx3SV, Bx3BH), fourth generation backcross (Bx4SV, 

Bx4BH), and F2.  Because SNP loci assayed are species diagnostic, hybrid category assignments 

were based on a range of heterozygote and homozygote proportions allowing us to establish a 

foundation of frequencies to manually assign hybrid categories (Table 3.1.).  Specimen 

genotypes containing heterozygous loci and loci homozygous for both species were manually 

reassigned to a generic Fx category, representing the progeny from the mating of two advanced 

hybrid categories.  Specimen assigned to the Fx category varied in heterozygote and homozygote 



 

26 
 

composition and were consistent with probabilities expected between various Bx combinations 

within the same species (Table 3.1.). Two of eight FxBH consisted of high heterozygote 

frequency and low bighead and silver carp homozygote frequencies consistent with probabilities 

expected for crosses between bighead carp backcrosses and silver carp backcrosses.  Combining 

NewHybrid and manually assigned categories provided a convenient classification system 

representing a distribution of homozygous and heterozygous frequencies (Table 3.1.).   

Homozygous genotypes for individuals consisting of one or two heterozygotes were re-analyzed 

to confirm that no genotyping errors or contamination had occurred.  Across all locations, about 

44% (1,244 of 2,798) of the fish were of mixed ancestry.  Remaining fish were resolved as 

parental bighead or parental silver carp (homozygous at all loci) (Table 3.3.).  Hybridization was 

detected at each location and ranged from about 28% in the Missouri River at Omaha to about 

69% within the Alton reach of the Illinois River.   Hybridization was > 50% in four of nine 

locations sampled (Table 3.3.).   

Advanced stages of hybridization were the most commonly observed categories of fishes 

in all sampled locations.  Only populations in the Marseilles and La Grange reaches of the 

Illinois River contained fish in all categories.  F1 hybrids represented <1% of the total fish and 

<2%) of total hybrids sampled (Table 3.3.).  Early generation hybrids (F1, BxSV, BxBH) 

represented about 3% of the total fish sampled and about 7% of the total hybrids sampled.  Late 

generation hybrids (Bx2, Bx3, Bx4, F2, and Fx) were dominated by fourth generation backcrosses 

represented by Bx4BH (14% of hybrids) and Bx4SV (59% of hybrids) and decreased in 

frequency with a decline in introgression forming a bimodal distribution (Figure 3.2.). 

Sex-specific directionality of hybridization was biased towards female silver carp.  Maternal 

inheritance of 730 parental and hybrid specimens from all locations was resolved at the described 
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mitochondrial SNP locus within the COII domain (Dryad: doi:10.5061/dryad.kp6j2).   All 

specimens genotyped as parental bighead carp (n=117) or silver carp (n=148) contained bighead 

and silver carp mitochondrial DNA, respectively (Table 3.4.).   A directional silver carp maternal 

bias existed among the hybrids with the silver carp female x bighead carp male cross most 

prevalent among F1 hybrids (13 of 21, 62%).  Bighead carp mtDNA was present in one of 18 

(<6%) BxSV and not represented in the remaining silver carp backcrosses.  However, silver carp 

mtDNA was present in all bighead carp backcross categories and was dominant within BxBH (28 

of 42, 67%) and decreasingly persistent with each bighead carp backcross generation.  All hybrid 

categories were present among year classes and parents and later generation backcrosses were 

the predominant categories for all (Figure 3.3.). 

 

Discussion 

Introduction of bighead and silver carp into the United States has broken down 

reproductive isolation observed in their native sympatric range.   By examining a large number 

of individuals from nine locations, I observed that introgressive hybridization was common 

throughout this non-native range of bighead and silver carp in the MRB (44%).  Early generation 

hybrids occurred in low proportions throughout the system along with higher than expected 

proportions of hybrids carrying a silver carp maternal lineage. 

Hybridization between bighead and silver carp was observed at all nine locations sampled 

throughout the MRB.  Spread of gene flow and persistence of an extensive hybrid swarm 

throughout the MRB may be explained by at least three mechanisms: 1) their capacity for long 

distance movements (Peters et al. 2006, DeGrandchamp et al. 2008); 2) the highly connected 

nature of the MRB (Junk et al. 1989); and 3) the transport of eggs and larvae downstream 
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following spawning (Kolar et al. 2007).  These potential mechanisms suggest that release from 

environmental cues that reinforce reproductive isolation has occurred among all locations 

sampled and/or the high mobility of bighead and silver carp has resulted in an unconventional 

hybrid zone.  Unlike hybrid zone models (Harrison 1993), bighead and silver carp hybridization 

in the MRB is not restricted to narrow zones of secondary contact between species diverged in 

allopatry (Allendorf & Luikart 2007).  The exchange of genetic material in the MRB is 

ubiquitous throughout their novel range.   Bighead and silver carp have diverged in sympatry, 

but the mechanisms that restricted gene flow in their native range were apparently lost once 

introduced to the MRB.   Coupled with the size and complexity of the prevailing MRB bighead 

and silver carp hybrid zone, my findings make this a unique phenomenon among described 

hybrid models.    

My assessment of Asian carp hybridization and the ability to detect advanced stages of 

introgression has been strengthened through the use of SNPs and their ability to greatly increase 

the number of diagnostic markers available.   My SNP panel detected about 45% hybridization 

throughout the MRB and the greatest observed hybridization estimates documented in wild 

populations of bighead and silver carp.  My current estimate is almost double that of Lamer et al. 

(2010) and four times as great as Kolar et al. (2007) using microsatellites.  Limited to only four 

diagnostic loci, the number of hybrids was likely underestimated by Lamer et al. (2010) due to a 

lack of power to distinguish advanced generation hybrids from parental species.  This lack of 

diagnostic power could also explain the greater percentage of F1 fish reported in Pool 26 of the 

Mississippi River and the Alton Reach of the Illinois River by Lamer et al. (2010) (7%) versus 

that observed in the current study throughout the MRB (0.8%).   Application of SNPs has not 

only allowed us to increase the number of diagnostic markers available, but has also increased 
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my power to detect later generation backcrosses and advanced introgression revealing a better 

understanding of the genetic architecture of bighead and silver carp hybridization as influenced 

by selective forces within the MRB.   

NewHybrids produced a complex combination of hybrid categories indicating that most 

hybrids were fertile and capable of natural reproduction.  Bimodal hybrid zones result in two 

strong clusters of individuals around the parental species or parental species-like genotypes with 

few early generation hybrids present (Jiggins & Mallett 2000). In freshwater fishes, bimodal 

hybrid zones typically result from pre-zygotic isolation (Bierne et al. 2002, Crespin et al. 2002), 

gamete recognition (Palumbi 2009), reproductive behavior (Costedoat et al. 2007), and/or post-

zygotic isolation (Rogers & Bernatchez 2006).  Bimodal hybrid zones have been observed in 

Iberian cyprinids, where later generation backcrosses were persistent in the population, but early 

generation crosses represented only a small proportion of the total hybrid population (Aboim et 

al. 2010).  Bimodal bighead and silver carp hybridization in the MRB likely indicates that F1  

and F2 hybrids are the least persistent hybrid combination and thus selected against either 

behaviorally or intrinsically.    My results also suggest that spawning between hybrids (FxBH, 

FxSV) is less frequent than hybrids spawning with more genetically similar parental species.  

This lack of reproductive success suspected from hybrid x hybrid spawning is likely associated 

with genetic incompatibilities from disrupted gene complexes as observed in advanced 

introgression or through a lack of detection based on the current number of loci examined.  

Backcrossing to a parent species was the most observed hybrid interaction between bighead and 

silver carp hybrids.  Each reproductive event between a parent and backcross yields progeny 

more genetically similar to the respective parent.  This facilitates the process of future 
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backcrossing by alleviating difficulties in overcoming genetic incompatibilities with each 

successive generation.   

Given the high percentage of later generation backcrosses observed (92%), I expected to 

see a greater number of individuals displaying genotypes consistent with the Fx category.  

Conversely, Fx categories only represented about 5% of all hybrids, ranging in genotype 

probabilities consistent with F1 x Bx, early generation Bx x early generation Bx, late generation 

Bx x early generation Bx, late generation Bx x late generation Bx, and late generation 

backcrossing of bighead and silver carp backcrosses.  Plausible explanations for this discrepancy 

include a lack of resolution to detect the progeny of later generation backcross spawning due to  

the low frequency of the homozygous loci of the least genetically represented species (i.e., 

Bx3SV x Bx3SV produces an average frequency of 0.0039% or 0.22 of 57 loci homozygous for 

bighead carp).  If the low frequency of homozygous loci masked the presence of Fx, then these 

individuals were likely assigned as a later generation backcross.  An alternate explanation could 

be the result of endogenous selection against these crosses resulting in low fertility or 

reproductive success.  Additional markers could provide insight into the mechanism involved; 

however, advanced introgression in the system appears to be selected against resulting in a 

bimodal distribution.  

Genetic admixture through time, as inferred from back-calculated birth year from 1999-

2008, is represented by all NewHybrids categories.  Parental species and later generation 

backcrosses make up the greatest proportion of individuals in all years.  My observation suggests 

that first generation hybridization events either occur as an infrequent phenomenon and/or as a 

result of hybrid mortality.  This is likely a factor of selection pressure or genetic incompatibilities 

that is greater than that of either parental species or later generation backcrosses.  The greatest 
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proportion of F1 and early generation hybrids were observed in the Marseilles Reach of the 

Illinois River, which along with the Dresden Reach is currently the leading edge of the bighead 

and silver carp invasion front in the Illinois River and has the lowest observed densities 

throughout the system (Sass et al. 2014).  One plausible explanation for the high rates of F1 and 

early generation hybrids is that low densities can promote hybridization to overcome Allee 

effects (Deredec & Courchamp 2007).  As parental species may have more difficulty in finding 

mates, they might be more likely to mate with a very similar species with similar spawning 

behavior, especially in new environments with ambiguous spawning cues and habitats.  

Maintenance of late generation hybrids in long-established populations may be a remnant from 

initial invasion and a means to overcome low propagule pressure.   

Although reciprocal crosses are possible, my results suggest that silver carp♀ x bighead 

carp♂ is the dominant cross.  Silver carp mtDNA is predominant within silver carp-like hybrids 

and also maintains a strong presence, albeit to a lesser extent, in bighead carp backcrosses.  My 

results are consistent with Lamer et al. (2010), where 88% of hybrids contained silver carp 

mtDNA.  Although beyond the scope of my study, a possible explanatory hypothesis to explain 

this pattern may be because bighead carp females require a substantial flow velocity/flood event 

to trigger female estrous and spawning, whereas silver carp can be induced to spawn by lesser 

flow events (Yan 1994).  Therefore, a two-fold mechanism within the MRB may explain the 

silver carp mtDNA directionality bias by: 1) providing more opportunity for silver carp to spawn 

than bighead carp, leading to higher densities of silver carp in the system; and 2) during low-

flow spawning events, although female bighead carp are not triggered to spawn, male bighead 

carp can produce semen and are capable of fertilizing silver carp eggs.  Since reciprocal crosses 

have been produced with equal success in experimental settings (Green & Smitherman 1984), 
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directionality bias may be a factor of demographics and behavioral cues rather than genetic 

incompatibility between mitochondrial-nuclear communications (Ryan & Hoogenraad 2007).    

My study revealed that introgressive hybridization between bighead and silver carp 

occurs more extensively and the resulting hybrid swarm is more complex than has been 

previously expected or demonstrated in the MRB.  Introduction of bighead and silver carp to this 

highly-connected waterway, coupled with their capacity for long range movements and similar 

reproductive life histories, has resulted in a breakdown of reproductive isolation and a dilution of 

their unique phylogenetic lineages.  Propensity to hybridize in the absence of native cues 

necessary for reproductive isolation has been observed for these species in other introduced 

systems (Lamer et al. 2014). However, the magnitude of genetic complexity and geographic 

scale observed within the MRB (the third largest drainage basin in the world) is unique among 

this hybrid complex and freshwater hybrids in general.  Dominance of parental and parental-like 

genotypes/phenotypes and the paucity of early generation hybrids within the MRB indicate 

selection against hybrids, but those that do persist predominantly contain a silver carp maternal 

lineage. Maintenance of this hybrid swarm over time may provide the genetic resiliency these 

species require for adaptation and contribute to their invasion success in the MRB.   Their 

ambiguous phylogeny may potentially hinder the national campaign for control and management 

of these highly invasive species.   This unique hybrid dynamic, operating within a natural 

laboratory, warrants additional research to explore additional markers, loci responsible for 

reproductive isolation and natural selection, fitness related traits, and hybrid morphology. 
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CHAPTER 4:  BODY CONDITION (Wr) AND REPRODUCTIVE POTENTIAL OF 

BIGHEAD AND SILVER CARP HYBRIDS: POST-ZYGOTIC SELECTION IN THE 

MISSISSIPPI RIVER BASIN 

Abstract 

Fitness-related traits observed in hybrids, such as body condition and reproductive 

potential; arise from the interaction of genetic and environmental factors.  Bighead carp 

(Hypophthalmichthys nobilis) and silver carp (H. molitrix) are believed to be reproductively 

isolated in their native range, but form a bimodal, multi-generational hybrid swarm within the 

Mississippi River Basin (MRB).  Despite observed F1 hybrid superiority in experimental settings, 

effects of post-zygotic selection on bighead and silver carp hybrids have not been tested in a 

natural system.  Individual parental and hybrid genotypes were resolved at 57 species-specific 

loci and used to evaluate post-zygotic selection in body condition (Wr) and female reproductive 

potential (presence of spawning stage gonads and gonadosomatic index (GSI)) in the MRB.  

Body condition in the Marseilles Reach, Illinois River was negatively correlated with species-

specific allele frequency from 1.0 to 0.4 for each species.  Early generation hybrids (F1, F2, and 

first generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation 

backcrosses) and parentals.  Proportion of stage IV and V (spawning stage) female gonads 

differed significantly between bighead and silver carp, but not among parentals and their early 

and late generation hybrids within the MRB.  Mean GSI did not differ between parentals and 

hybrids.   Because reproductive potential did not differ between hybrids and parentals, my results 

suggest that early generation hybrids occur in low frequency with poor condition (Wr) and post- 

reproductive survival, infrequent reproductive encounters by parental bighead and silver carp, 

and/or selection pressures acting on juvenile or immature life stages as plausible mechanisms.    
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My results may suggest that a combination of genetic and environmental factors contribute to the 

post-zygotic success of bighead and silver carp hybrids in the MRB.  This does not seem like all 

that exciting a result. Would not this be the case with any number of hybrid systems?   

Introduction 

Hybridization and introgression are pervasive evolutionary events common to many 

animal and plant taxa worldwide (Arnold 1997, Mallet 2005).  At one extreme, hybrid progeny 

have low viability, infertility, poor development, and decreased fitness through the expression of 

partially recessive alleles and disruption of co-adapted gene complexes (Breeuwer & Werren 

1995, Presgraves 2003, Coyne and Orr 2004).  In contrast, introgression can also be a catalyst for 

species divergence and evolutionary novelty through heterosis, transgressive segregation, or 

filtering of adaptive characters (Dobzhansky 1970, Rieseberg et al. 1999, Martinsen et al. 2001).   

Despite these extremes, hybrids often have variable fitness resulting in an intermediate 

evolutionary response to natural selection inferred from experimental and natural environments 

(Pfennig 2007, Arnold & Martin 2010, Roe et al. 2014).  Evolutionary responses in hybrid 

populations are governed by the interaction of endogenous and exogenous selection through 

genetic incompatibilities (Maheshwari & Barbash 2011) or relative fitness and adaptation within 

a specific environment (Arnold et al. 2008, Arnold & Martin 2010, Baskett & Gomulkiewicz 

2011).  Pre-zygotic selection determines which hybrid combinations are produced and which 

genomic combinations will prevail in the hybrid zone.  Post-zygotic selection is determined by 

the interaction of endogenous (intrinsic) and exogenous (extrinsic) selection and measured in 

terms of relative fitness or fitness-related traits.  Fitness-related traits of hybrid individuals are 

essential for understanding the maintenance and architecture of natural hybrid zones (Day & 

Schluter 1995). 
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Advances in understanding the evolutionary potential of hybridization have largely been 

discovered through artificial crosses and direct measures of fitness.  Although artificial crosses 

are useful to identify genomic regions associated with hybrid inferiority and divergence, they do 

not represent genomic regions driven by selection that limit or enhance gene flow under natural 

conditions.  Hybrid zones can serve as “natural laboratories” (Hewitt 1988, Sweigart 2009), 

which allow for investigation of advanced, multi-generational introgression.  Hybrid zones also 

provide greater resolution for genetic incompatibilities and post-zygotic isolation (Maheshwari & 

Barbash 2011), and are not constrained by the size or generation time of the organism as are 

many artificial cross investigations.  Under natural conditions, post-zygotic selection is difficult 

to assess, but has been successfully studied by choosing empirical measures of fitness, growth, 

and survival in several organisms (Vamosi et al. 2000, Wiley et al. 2009, Stolzenberg et al. 

2009, Roe et al. 2014).    Comparing fitness-related traits of hybrids to those of parental species 

is critical to understand the structure of hybrid zones (Stolzenberg et al. 2009).  Mechanisms 

shaping a hybrid zone can be further refined by comparing fitness-related traits of laboratory 

raised individuals and wild individuals to isolate intrinsic versus ecologically-dependent 

influences or interactions.   

Lamer et al. (2015b) described a hybrid swarm between two invasive cyprinid fishes 

within the Mississippi River Basin (MRB).  Bighead carp, Hypophthalmichthys nobilis, and 

silver carp, H. molitrix, have produced multi-generation introgressive hybrids throughout the 

MRB (Lamer et al. 2015b), despite being reproductively isolated in their native range of China 

(Lamer et al. 2014).  This hybrid swarm is bimodal and characterized by low frequencies of early 

generation hybrids (F1, F2, early generation backcross) and high frequencies of late generation 

backcrosses and parentals.  Bighead and silver carp have been established in the MRB since their 



 

36 
 

aquacultural escapement in the 1970’s and multiple generations of their hybrids have been 

present for greater than twenty years (Lamer et al. 2015b).  Persistence of introgression and the 

bimodal structure of bighead and silver carp hybrids in the MRB provide a unique system to test 

for the effects of ecological-dependent hybrid post-zygotic selection. 

Bighead and silver carp F1 hybrids have been artificially propagated to explore heterosis 

for growth, disease resistance, harvestability, survival, and body condition (Voropaev 1978, 

Green & Smitherman 1984, Issa et al. 1986).  Logistical constraints of culturing multiple 

generations of hybrids in the laboratory have restricted most studies to reciprocal F1 crosses.  

Consistent among studies, reciprocal F1 hybrid progeny exhibit superior growth, food conversion 

efficiency, body condition, survival, and production yield over their parental species (Voropaev 

1978, Green & Smitherman 1984, Issa 1994).  However, hybrid superiority for growth and 

fitness observed in F1’s was reduced in all post-F1 progeny (Voropaev 1978).   These studies 

have demonstrated that F1 progeny were spawned with equal success and have superior 

ecological traits compared to their parental species within controlled settings.  Despite their 

success in aquaculture, F1 hybrids only made up 0.08 % of all individuals sampled in the MRB 

(Lamer et al. 2015b) and little is known about their ecological traits within this invaded habitat.  

Pre-zygotic barriers to zygote formation and intrinsic barriers to post-zygotic development were 

not observed under controlled settings.  However, previous studies did not account for the 

extrinsic factors that may affect hybrid propagation and ecological fitness.  Genotype-

environment interactions can structure hybrid zones and result in differential survival of 

genotypes (Slatkin 1973, Moore 1977, Springer & Heath 2007) as influenced by natural selection 

and gene flow within a natural environment.      
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Here, I focus on a unique multi-generational hybrid zone between invasive bighead and 

silver carp in the MRB.  This hybrid complex provides an opportunity to test for ecologically-

dependent post-zygotic effects and natural selection influences on this hybrid swarm with the 

following hypotheses: 1) bighead and silver carp hybrid body condition, as inferred from relative 

weight (Wr), differs from their respective parentals; 2)  capacity of female bighead and silver 

carp hybrids to develop mature spawning stage oocytes/gonads differs from their respective 

parentals; and 3) amount of gonad mass relative to body mass, gonadosomatic index (GSI), 

differs between parentals and their respective hybrids.  Heterosis and environmental dependent 

selection are tested as prevailing mechanisms supporting post-zygotic isolation in body condition 

and reproductive potential. 

 

Methods 

Specimen Collection 

I collected bighead carp, silver carp, and their putative hybrids (n = 2,798) annually 

during April-November, 2009-2011 from nine locations throughout the Mississippi River Basin 

including: Hickman, KY/Laketon, KY (MKY) and Steele Bayou, Vicksburg, MS (MMS) on the 

Lower Mississippi River; Blair, NE, Missouri River (MOO); Alton, IL (Pool 26) and Keokuk, IA 

(Pool 20) on the Upper Mississippi River; and the Marseilles Reach, Morris, IL (IMAR), the 

Peoria Reach, Chillicothe, IL (IPEO), the LaGrange Reach, Havana, IL (ILAG), and the Alton 

Reach, Grafton, IL (IALT) on the Illinois River.  I captured all fish >400 mm in monofilament 

trammel nets (45.7 cm outer bar mesh, 7.62-10.16 cm inner bar mesh, 100 m long, 2.4 m deep).  

All fish were weighed to the nearest (g) and total length measured to the nearest (mm). 

Genetic analysis 
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Hybridization is frequent among bighead and silver carp in their non-native range, and 

often morphologically cryptic (Lamer et al. 2010).  Therefore, individual identities of each fish 

were determined genetically.  Genetic data and techniques used in this study were previously 

analyzed and described by Lamer et al. (2015b).  Briefly, DNA was extracted from 2,798 fish 

using the Agencourt DNAdvance genomic DNA extraction kit (Beckman Coulter, Danvers, 

Massachusetts).  Genetic identification was determined using a panel of 57 species-diagnostic 

single nucleotide polymorphisms (SNPs) and one species-diagnostic mtDNA SNP (COII) 

resolved on the MASSARRAY 4 analyzer system (Sequenom, Inc., San Diego, CA, USA) using 

primer sets in Lamer et al. (2014).  These markers were used to define bighead carp, silver carp, 

or hybrid and to determine the species-specific mtDNA of each individual (Lamer et al. 2015b).  

I calculated the allele frequencies of the bighead carp diagnostic allele (b’) and the silver carp 

diagnostic allele (a’) for each individual.  I defined parental bighead carp as having an allele 

frequency of b’ = 1.0, b = 0.5 for F1 hybrids, and b’ = 0 for parental silver carp and vice versa for 

(a’) between species. 

Body condition 

I used relative weight (Wr) to assess body condition of bighead carp, silver carp, and their 

hybrids.  Relative weight is a ratio of the observed weight of the individual and the species 

standard weight (Ws), multiplied by 100 (Murphy et al. 1991).  Relative weight has been 

correlated with available food resources, food preference, reproductive condition, and/or habitat, 

and may also vary between geographic locations (Blackwell et al. 2000).  I used a bighead carp 

Ws equation (tl=mm, w=g),  ὰέὫὡ τȢφυππφ ςȢψψωστὰέὫὸὰ , to calculate Wr for 

individual bighead carp alleles ranging in frequency from 0.4 to 1.0 (Lamer et al. 2015a).  I used 

a silver carp Ws equation (tl=mm, w=g), ὰέὫὡ υȢρυχυφ σȢπφψτςὰέὫ ὸὰ, to calculate 
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Wr for silver carp alleles ranging in frequency from 0.4 to 1.0 (Lamer et al. 2015a).    All silver 

carp <160 mm total length and bighead carp < 290 mm total length were omitted from Wr 

calculations in accordance with Ws assumptions (Lamer et al. 2015a).   Lamer et al. (2015a) 

developed the Ws equations using the 50th regression line percentile technique (Wege and 

Anderson 1978), which defines a Wr of 100 as an average condition fish.  Values below 100 

indicate a below average condition fish and those above, an above average condition fish. 

Among locations, I used ANOVA in SAS v9.4 and a Tukey-Kramer post hoc test to control the 

experiment-wise error, to test for differences in mean Wr  among locations (α = 0.05).   No 

populations were determined to be from the same sampling distribution and therefore no 

locations could be pooled.  The IMAR sample was the only population selected to test for allele 

frequency effects on Wr (n=536).  The IMAR population was selected based upon its large 

sample size, distribution of individual hybrid classifications, and the collection of all individuals 

within a sixth month period.  Remaining populations were omitted from this analysis due to 

failure to meet one or more of the above criteria.  I used correlation and simple linear regression 

(α = 0.05) to test for relationships between Wr (dependent variable) and allele frequency 

(independent variable) for each species.   Relative weight was log10 transformed for bighead and 

silver carp regression analyses to satisfy the assumptions of ANOVA and simple linear 

regression.  

   I used ANOVA in SAS v9.4 and a Tukey-Kramer post hoc test to control the experiment-

wise error, to test for differences in mean Wr  among hybrid categories at the IMAR location (α 

= 0.05).  I grouped NewHybrid categories to produce the following variables for Wr comparison: 

bighead carp; silver carp; earlyBH (F1 and BxBH-first generation bighead carp backcross); 

lateBH (F2, FxBH- fish genotypes containing heterozygous loci and homozygous loci of both 
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species, but predominantly bighead carp, Bx2BH-second generation bighead carp backcross, 

Bx3BH-third generation bighead carp backcross, and Bx4BH-fourth generation bighead carp 

backcross); earlySV (F1 and BxSV-first generation silver carp backcross); and lateSV (F2, FxSV- 

fish genotypes containing heterozygous loci and homozygous loci of both species, but 

predominantly silver carp, Bx2SV-second generation silver carp backcross, Bx3SV-third 

generation silver carp backcross, and Bx4SV-fourth generation silver carp backcross) (Lamer et 

al. 2015b).  

Reproduction: 

I determined sex by visual inspection of the gonads and the gonadosomatic index (GSI) 

was calculated for females.  GSI is calculated as gonad mass, divided by body mass, and 

multiplied by 100.  All individuals were dissected and visual inspection of the gonads was used 

to determine sexual maturity.  Fish identified as juveniles were omitted from subsequent 

analyses.  I determined stage of gonad maturity in females based upon visual characteristics 

described in Yan (1994).  Stage IV and V female gonads (hereafter, spawning stage gonads) 

occur just prior to and during spawning.  Spawning stage gonads are characterized by white 

colored eggs, surface of ovaries filled with blood vessels, and ovaries occupying the entire 

coelomic cavity (Figure 4.1.).  Only spawning stage female gonads were used for GSI analysis.  

Spawning stage female gonads are distinct among all gonad stages, easily recognizable in the 

field, are at their maximum weight prior to spawning, and serve as the best field estimate of 

reproductive potential.    

I used a chi-square test (α = 0.05) to compare male and female parents to male and 

female hybrids to test whether a hybrid sex bias existed (i.e., Is the ratio of males:females 

proportional among hybrids?).  Among locations, ANOVA was used in SAS v9.4 using a Tukey-
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Kramer post hoc test to control the experiment-wise error,  to test for differences in mean GSI 

among locations (α = 0.05).  No significant differences were detected between populations, thus 

all locations were pooled together.  I used multiple pairwise chi-square tests at α = 0.05, with a 

Bonferroni correction for 15 comparisons (α = 0.05/15 = 0.0033), to test for differences in the 

proportion of parentals containing spawning stage gonads compared to hybrids (i.e., Do hybrids 

have the same reproductive potential as parentals?).  I used the same grouping described earlier 

(BH, SV, earlyBH, earlySV, lateBH, lateSV) as variables for spawning stage gonad 

comparisons.  I used correlation and simple linear regression (α = 0.05) to test for a relationship 

between GSI (dependent variable) and allele frequency (independent variable) for each species 

within the pooled sample.  I used ANOVA in SAS v9.4 and a Tukey-Kramer post hoc test to 

control the experiment-wise error, to test for differences in mean GSI among groupings (BH, SV, 

earlyBH, earlySV, lateBH, lateSV) from my pooled sample (α = 0.05). 

Results 

Body condition 

Relative weight of bighead carp, silver carp, and their hybrids was positively correlated 

with allele frequency and early stage hybrids had significantly lower Wr compared to parentals or 

late hybrids.  Silver carp and hybrid log10 Wr was positively correlated with a’ (F(1, 343) = 46.95, 

p<0.0001, with an R2 of 0.12) for the IMAR population (Figure 4.2.).   EarlySV had the lowest 

mean Wr of about 91, which was significantly less than lateSV and parental SV, which both had 

Wr > 100 (Table 4.1.) (F(2, 342) = 23.77,  p<0.0001).  Bighead carp and hybrid log10 Wr was also 

positively correlated with b’ (F(1, 209) = 68.77, p<0.0001, with an R2 of 0.25) for the IMAR 

population (Figure 4.2.).    Mean Wr for earlyBH was about 95, and was significantly less 
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compared to lateBH (Wr = 105) and parental BH (Wr = 109) (Table 4.1.) (F(2, 208) = 23.88, 

p<0.0001).  

Reproduction 

Sex ratios did not differ between parentals and hybrids, advanced stage gonads were 

more prevalent in early hybrids, and no significant relationships were observed for GSI.  The 

proportion of males:females did not differ between hybrids and pure species among locations (X2 

(1, N=2,266) = 0.02, p>0.05).  Percentage of bighead carp advanced stage gonads relative to 

early stage gonads was significantly different between bighead carp/bighead carp hybrids 

(earlyBH, late BH) and silver carp/silver carp hybrids (earlySV, lateSV) (X2 (5, N=1,106) = 

111.44, p>0.05) (Table 4.2.).   Percent of spawning gonads present within any species groups 

(i.e., parental, early, or late) for either species did not differ (p>0.05) (Table 4.2.).   

Regression analysis of GSI and allele frequency was inconclusive due to low sample 

sizes of low frequency alleles of bighead and silver carp spawning stage females.   Mean GSI 

among predefined groups (BH, SV, earlyBH, earlySV, lateBH, lateSV) was not significantly 

different (F (5,363) = 2.00, p=0.0775) (Table 4.1.). 

 Discussion 

Previous research has shown that bighead and silver carp hybrids are pervasive 

throughout the Mississippi River Basin, follow a bimodal distribution, are multi-generational, 

and consist primarily of silver carp mtDNA genetic lineage (Lamer et al. 2015b).   My study 

provides a better understanding of post-zygotic success of bighead and silver carp hybrid body 

condition and reproductive potential.  My findings suggest that:  1) body condition is greatest in 

parental species and decreases as parental allele frequency decreases and genetic admixture 

increases (i.e., Wr decreases from parent → late generation backcrosses → early generation 
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backcross and F1); 2) all female bighead and silver carp hybrid crosses have reproductive 

potential and are capable of producing spawning stage  gonads at the same frequency as each 

respective parental; and 3) GSI of female hybrid individuals did not differ from their respective 

parental species.  Together, my findings suggest that post-zygotic mechanisms constrain body 

condition, but it is not sufficient to prevent formation of mature gonads of equal GSI to their 

respective parents. 

Bighead and silver carp Wr was positively correlated with species-specific allele 

frequencies and early generation hybrids had significantly lower mean Wr than parentals or later 

generation hybrids for the IMAR location.   Although statistically significant, allele frequency 

only explained a low amount of variability in bighead and silver carp Wr.  This finding is not 

unexpected because the variance observed in life history trait values is likely a reflection of the 

diversity of possible hybrid genome recombinations and independent assortment (Rieseberg et 

al. 1999). This is particularly true for multigenerational hybrids observed in nature.   

  Body condition (Wr) has been positively correlated with crude lipid, crude protein, and 

gross energy content (Pangle & Sutton 2005, Brown & Murphy 1991a).  This metric has also 

been used as a noninvasive surrogate for growth (Guy & Willis 1995), fish health, prey 

availability, or the  ability to use prey efficiently (Blackwell et al. 2000).   Direct correlations to 

growth were strongest for samples within a single season, thus avoiding inter-annual variability 

(Willis et al. 1991).  The IMAR sample was collected within a six month period suggesting that 

Wr differences observed between parentals and hybrids were biologically significant and not 

biased by inter-annual variability.     

Few studies have used Wr to assess the performance of hybrids compared to parental 

species (Maceina & Murphy 1988, Hooe & Buck 1991, Brown & Murphy 1991b) and most have 
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been restricted to comparisons with the F1 generation only.   However, growth, which is often 

directly correlated with Wr (Guy & Willis 1995), has been used as a metric to gauge hybrid 

fitness in many studies (Green & Smitherman 1984, Tymchuk & Devlin 2005, Stolzenberg et al. 

2009).    In contrast to my results, experiments conducted in earthen ponds and concrete tanks by 

Green & Smitherman (1984) determined that F1 progeny of bighead carp ♀ x silver carp ♂ 

exhibited more rapid growth than both parental species and the reciprocal cross greater than that 

of only silver carp.  Issa et al. (1986) reported strong heterotic effects in bighead and silver carp 

reciprocal hybrids for survival, production yield, and food conversion efficiency compared to the 

parental species and condition factor was similar to silver carp.  The consensus among studies of 

laboratory and aquaculture reared F1 bighead and silver carp hybrids was that F1 hybrids exhibit 

better growth and condition compared with parental species, which then breaks down as 

additional introgression proceeds (Voropaev et al. 1978, Issa et al. 1986, Marian et al. 1986).  

These differences were observed in controlled settings accounting for intrinsic mechanisms of 

selection, absent the extrinsic perturbations present in wild populations.   The decrease in body 

condition in wild populations compared to laboratory/aquaculture reared bighead and silver carp 

hybrids is consistent with lower growth, fitness (Hatfield & Schluter 1997), and survival 

(Vamosi et al. 2000) in wild versus laboratory reared stickleback hybrids.  Observed 

discrepancies between wild and laboratory body condition is likely therefore, ecological rather 

than due to intrinsic genetic incompatibilities.  

Of all areas sampled, the IMAR reach had the lowest bighead and silver carp density on 

the inhabited portion of the IL River (Sass et al. 2014) and consequently the highest Wr of 

parentals.  Therefore, the low Wr of bighead and silver carp early generation hybrids (Wr<100), 

relative to later generation hybrids and parental fish (Wr>100), is likely not a response to lack of 
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food availability.   Poor adaptation in hybrids is frequently related to feeding difficulty.  Hybrid 

feeding difficulty has been observed in sticklebacks (Hatfield 1997) and whitefishes (Bernatchez 

et al. 1999) due to alimentary specialization and in bighead and silver carp hybrids attributed to 

pharyngeal teeth structure and gill raker deformation (Marian et al. 1986).   

The gill raker and pharyngeal apparatus of bighead and silver carp is a highly specialized 

system for filtering and funneling food particles into the pharynx (Wilamovski 1972, Walleser et 

al. 2014, Hansen et al. 2014).  Up to 88% of early generation bighead carp hybrids have 

deformed gill rakers (Marian et al. 1986, Lamer et al. 2010).  Marian et al. (1986) 

microscopically determined that early generation silver carp hybrids also exhibited deformed gill 

rakers.  Furthermore, intermediate pharyngeal teeth structure of bighead and silver carp hybrids 

has been attributed to poor efficiency in mastication of food particles and the lysis of 

phytoplankton cell walls (Marian et al. 1986).  Given these maladaptive morphological 

consequences of hybridization, the efficiency of food capture and processing may be hindered 

and account for the lower body condition of early generation hybrids.   As a hybrid continues to 

backcross with parentals, the resulting progeny become more genetically and phenotypically 

similar to the parent with each generation (species-specific allele frequency moves closer to 1.0), 

which may explain the similar body condition between parentals and later generation hybrids.   

A frequently observed phenomenon, among a wide range of hybrid taxa (Laurie 1997), is the 

absence, rarity, or sterility of the heterogametic sex in the offspring of two different species 

(Haldane 1922).  This is referred to as Haldane’s rule and my results did not support this rule.  

The sex ratio of parentals did not differ from that of hybrids among all locations.    This 

deviation from Haldane’s rule and resulting introgression indicates that there is no ecological or 

intrinsic bias between male and female bighead and silver carp hybrids.     
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The presence of female spawning stage gonads indicates the ability to produce eggs with 

a potential to spawn.   Stage IV and stage V female gonads are dominated by late stage, mature 

primary oocytes at their maximum size.  In the absence of increased water velocity (i.e., 

flooding), stage IV gonads do not develop and are eventually reabsorbed.  Stage V gonads were 

not frequently observed because bighead and silver carp are only at this stage for about 60 

minutes just prior to spawning (Yan 1994).  I used spawning stage gonads as a surrogate for 

reproductive potential since actual harvest of spawned eggs and determination of hatch and 

survival would be impractical in a natural setting.  Therefore, the viability of the eggs is 

unknown.  However, multiple levels of introgression (Lamer et al. 2015b) indicated that hybrids 

are fertile and egg viability does exist among many hybrid categories.   

I observed no differences between the proportion of hybrids (early or late) containing 

spawning stage gonads and their genotypically similar parental species.  My finding may indicate 

that all hybrid combinations are equally likely to possess spawning stage gonads and therefore, 

have equal reproductive potential.  Even though egg viability and/or spawning success cannot be 

determined, reciprocal bighead and silver carp F1 hybrids have been hatched with equal success 

to parents (Green & Smitherman 1984, Issa et al. 1986).  However, these data are restricted to 

F1s with only anecdotal evidence available for subsequent generations (Zhang 1994).  Legendre 

et al. (1992) documented mature oocytes in the gonads of Clarias catfish F1 hybrids, but upon 

microscopic examination, discovered numerous gonad abnormalities.  Microscopic and 

histological confirmation is critically needed to determine the integrity of bighead and silver carp 

hybrid gonads.   

Bighead carp and their hybrids were less likely to contain spawning stage gonads than 

silver carp and their hybrids.    This difference is likely attributed to variation in the hydrological 
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cues required to induce spawning and oocyte maturation between the species.  Bighead carp 

require a more substantial flow event to induce estrous and mature oocyte formation than silver 

carp (Yan 1994).  Yet, this difference may explain the maternal silver carp mtDNA bias 

acknowledged in Lamer et al. (2015b).  If the frequency of female bighead carp/bighead carp 

hybrids queued to spawn is less than female silver carp/ female silver carp hybrids, then 

probability would suggest that maternally inherited silver carp mtDNA would predominate 

among the hybrids as long as bighead carp males were still viable.   

Mean GSI of spawning stage gonads did not differ between parentals and their hybrids 

(early and late), despite the lower body condition observed in early generation hybrids.    

Because body condition is typically dependent upon food availability and the efficiency to use 

food resources, a decrease in body condition and somatic growth can result in a decrease in 

reproductive growth or gonadal growth (i.e., GSI).  I did not observe this in early bighead or 

silver carp hybrids.  Instead, I observed a bioenergetics trade-off between somatic growth and 

gonadal growth in early generation bighead and silver carp hybrids.    If their gonads are viable, 

then the early generation hybrids have the same reproductive potential as late generation hybrids 

and parental species and the capacity to disseminate an equal proportion of potentially viable 

hybrid progeny.  Production of spawning stage gonads, in spite of low body condition, can have 

substantial survival costs.  Iteroparous fish can deplete as much as 25-60% of their energy 

reserves during reproductive events (Diana 2004).  Although Wr is relatively high in the IMAR 

location, in areas with less abundant food supply and higher fish density (e.g., PL26, mean Wr= 

80), low condition coupled with high GSI may lead to an overall decrease in early generation 

hybrid survival. 
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My results suggest that a combination of genetic and environmental factors may 

contribute to the post-zygotic success of bighead and silver carp hybrids in the Mississippi River 

Basin.  The bimodal hybrid zone of adult bighead and silver carp in the Mississippi River Basin 

consists of few early generation hybrids and many late generation hybrids and parents (Lamer et 

al. 2015b).  I showed that the number of individuals with spawning stage gonads and GSI values 

were equal between hybrids and parents.  This indicates that the low number of early hybrids in 

the system is not due to reproductive failure or intrinsic genetic incompatibility.  My finding is 

further substantiated by the success of laboratory reared bighead and silver carp hybrids (Green 

& Smitherman 1984, Issa et al. 1986) and the high number of late generation hybrids present 

within the system.  This suggests that early generation hybrids occur in low frequency either as a 

factor of their observed poor condition (Wr) and post- reproductive survival, infrequent 

reproductive encounters by parental bighead and silver carp, or selection pressures acting on 

juvenile or immature life stages.  Maintenance of this hybrid dynamic has been occurring since at 

least 1998 (Lamer et al. 2015b) and the post-zygotic isolating mechanisms have left the 

frequency of hybrids relatively unchanged throughout this time period.  Future research testing 

for survival of wild, young of the year fishes and histological gonad examination of mature 

hybrids could help determine the frequency of spawning events between bighead and silver carp 

and the viability of hybrid eggs to further isolate the life stages most vulnerable to post-zygotic 

isolation.  The third largest drainage basin in the world, the Mississippi River Basin, is a large, 

atypical, natural hybrid zone and offers a unique opportunity to study hybrid speciation and 

evolution between two invasive, interbreeding species. 
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CHAPTER 5:  SUMMARY AND CONCLUSIONS   

 My dissertation has contributed to the characterization and understanding of bighead and 

silver carp hybridization in the Mississippi River Basin (MRB) by developing a powerful, 

universal, single nucleotide polymorphism (SNP) assay capable of detecting advanced levels of 

introgression.  This assay was also instrumental for characterizing the structure, spatial and 

temporal extent of this unique hybrid dynamic, determining hybrid directionality, and examining 

body condition and reproductive potential of hybrids under natural selection in the MRB.  Each 

sequential step of my dissertation research makes a needed contribution towards a better 

understanding of bighead and silver carp hybridization in the MRB; however, the mechanistic 

and evolutionary implications only come into focus after the synthesis of this body of research as 

a whole.   

 My results suggest that the interaction of genetic, behavioral, and environmental factors 

are critical to the formation, maintenance and evolution of bighead and silver carp hybridization 

in the MRB.  An in-depth look at hybrid structure and extent, through the application of my SNP 

assay, revealed a bimodal hybrid distribution throughout the MRB.  This consisted primarily of 

parentals and late generation backcrosses with the maintenance of few early generation hybrids 

(F1, F2, and first generation backcrosses).   Closer examination of this structure revealed a lack of 

complex genotypes (Fx) containing diagnostic homozygous loci for bighead and silver carp, 

despite the abundance of backcrosses in the system.  Complex genotypes arise following the 

spawning of two hybrid individuals (e.g., backcross x backcross, F1 x backcross).  Bighead and 

silver carp hybrids consist primarily of backcrosses, which are formed following the spawning of 

a backcross with a genetically similar parental, and result in progeny becoming more genetically 

similar to the parent species with each successive generation.  As later generation backcrosses 
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become more genetically similar to the parent they also become morphologically indiscernible 

from their parents, which should increase the probability for spawning among late generation 

backcrosses.  Low frequencies of Fx individuals among hybrids (about 4%) indicate that intrinsic 

and/or the combination of intrinsic and extrinsic mechanisms are selecting against complex 

genotypes.  Complex genotypes that do persist have likely been heavily filtered by natural 

selection acting on several hundred thousand recombinant genotype possibilities per individual.  

My results showed that female backcrosses have the ability to produce mature oocytes and 

gonadosomatic (GSI) values similar to their respective parentals, but viability of eggs, sperm, 

and meiotic compatibility is unknown and warrants further study. Multi-generation crosses 

manipulated in the laboratory could test whether genetic incompatibility is responsible for the 

absence of complex genotypes or if the lack of complex genotypes is a manifestation of the 

inability to genetically differentiate Fx from late generation backcrosses using the current number 

of loci available.   If success of hybrid x hybrid spawning is intrinsically compromised, the high 

frequency of backcrosses in the MRB may limit the reproductive potential and the number of 

individuals able to recruit to the system as a form of hybrid control.  Monitoring the percentage 

of parentals and backcrosses over time, coupled with increasing the number of diagnostic loci 

and monitoring recruitment, could support/fail to support this hypothesis.   

 Early generation hybrids only represented about 7.5% of all hybrids in the MRB and 

were most abundant in the Marseilles Reach, Illinois River (13.5 % of hybrids).   Experimental 

spawning of parental bighead and silver carp have yielded viable F1 and first generation 

backcross progeny at the same frequency as traditional parental x parental spawning.  Therefore, 

low abundance of early generation hybrids is likely not attributable to genetic incompatibility 

and hatch failure, but plausibly from behavioral reproductive isolation and infrequent mating 
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events between parental bighead and silver carp.   Early generation hybrid events that do occur 

are primarily maternally driven by silver carp (about 72%) and this mtDNA bias is propagated 

through all of the silver carp backcrosses and many of the bighead carp backcrosses.  Behavioral 

isolation preventing the genetic admixture between bighead and silver carp and the formation of 

early generation hybrids may be driven by density-dependence.  Bighead and silver carp exhibit 

similar spawning behavior and use similar spawning habitats (broadcast spawners triggered by 

high flow events).  In search of available mates in low density populations (e.g., Marseilles 

Reach, Illinois River), the frequency of hybridization may increase as a product of chance or 

purposeful encounters to disseminate genetic material and have fitness.  As population densities 

increase, the number of genetically similar species increases, which may lead to a decrease in 

parental hybridization and a decrease in the proportion of early generation hybrids formed.   

 Another plausible explanation for the low frequency of early generation hybrids could be 

attributed to their poor condition (Wr) compared to parentals and late generation hybrids.  

Observation of hybrid superiority for body condition in experimentally reared F1 hybrids 

indicates the importance of exogenous selection in the MRB. Low body condition observed in 

early generation hybrids compared with late generation hybrids and parents in the Marseilles 

Reach, Illinois River is likely correlated with insufficient food handling and conversion as a 

result of speculated gill raker or pharyngeal teeth malformation.  Despite no difference in 

parental and hybrid reproductive potential (GSI or percentage of individuals containing 

spawning stage gonads), bighead and silver carp early generation hybrids appear to undergo a 

penalty in body condition.  This may indicate that a bioenergetic tradeoff is likely occurring as 

early generation hybrids sacrifice somatic growth for gonadal growth.  This could potentially 

leave early generation hybrids nutritionally depleted and decrease survival.  Because most 
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individuals analyzed in my study were adults, it is unknown whether poor body condition affects 

post-reproductive survival and selection pressures acting on juvenile or immature life stages.  

Future research testing for survival and the percentage of early generation hybrids in wild, young 

of the year fishes could help to address this question.   

Bighead and silver carp were introduced to the MRB and were later established from 

several small founder events starting of very low propagule pressure.  Hybridization as a 

mechanism to overcome low propagule pressure to find mates may have been the impetus for 

successful establishment in the MRB.  This founder population would have been hatchery raised, 

absent knowledge or exposure to environmental cues necessary for spawning in their native 

habitats, and disposed to mate with any individual they encountered with a similar spawning 

strategy.  Hybridization in these founder populations may have also alleviated negative effects of 

low genetic diversity commonly observed in hatchery populations and low propagule pressure.  

The diversity of recombinant genotypes produced through hybridization may have increased the 

speed of evolution and added the genetic resiliency needed for these species to adapt and 

establish high density populations throughout the MRB.  My hypothesis is further supported by 

the high proportion of later generation hybrids in the system, indicating that hybridization has 

been occurring for a long time and a larger percentage of early generation hybrids likely once 

persisted in the population.  My results suggest that late generation hybrids have been maintained 

in the MRB for nearly 20 years.  Bighead and silver carp reach sexual maturity between three 

and four years of age and at 5 generations, initial hybridization events date back at least 15-20 

years (about 1979) and near the time of initial introduction in 1972 and 1973 (Kolar et al. 2007).  

To test my hypothesis, extensive sampling and long-term monitoring is needed at leading edge 

populations (e.g., upper Ohio River, above Lock and Dam 19 on the Upper Mississippi River).   
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Directionality observed in bighead and silver carp hybrids appears to be driven primarily 

by silver carp maternal inheritance (72%).  Experimental crosses have demonstrated that 

reciprocal F1 hybrid progeny are as equally viable, and in many cases exhibit faster growth and 

better body condition, than their parental species.  Bias observed in my study is therefore likely 

attributed to environmental, rather than genetic factors.  One plausible explanation relates to the 

magnitude of water flow necessary to induce spawning for each species.  Female bighead carp 

require a much more substantial flow event to induce estrous than silver carp, increasing the 

frequency of reproductively viable silver carp females compared to bighead carp on average 

(Yan 1994).  Assuming bighead carp males are capable of producing milt in the absence of 

bighead carp female estrous; this would increase the probability of female silver carp mtDNA 

being propagated through hybrid descendants.  Another plausible explanation for the silver carp 

maternal directionality bias is my observation of a significantly greater proportion of stage IV 

and V gonads (spawning stage gonads containing mature oocytes) present in silver carp/silver 

carp hybrids than bighead carp/bighead carp hybrids from 2009-2012.  Probability alone would 

suggest that fewer reproductively active female bighead carp would result in fewer hybrids 

containing bighead carp mtDNA.    

Being the third largest drainage basin in the world, the Mississippi River Basin is an 

unprecedented natural hybrid zone and natural laboratory that offers a unique opportunity to 

study hybrid speciation and evolution between two invasive, interbreeding species.  This system 

provides an ideal natural laboratory for hybrid exploration, allowing for the limitless, encouraged 

removal of these invasive fishes for study.  My dissertation research provides a solid foundation 

for future research endeavors investigating bighead and silver carp hybridization in the MRB.  

Future research is critically needed to build upon this foundation would include increasing the 
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power of resolution even further by developing, testing, and implementing additional hybrid 

markers, using gene annotation and gene expression at specific loci to determine genes and gene 

networks contributing to natural selection and reproductive isolation, propagating multi-

generation experimental crosses to empirically test for intrinsic versus extrinsic selection, 

determining morphological selection, and testing for changes in this hybrid swarm through time.   
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FIGURES AND TABLES 

Table 1.1.  Identification number, species identification resolved at four diagnostic allozyme loci, 

species identification resolved at the COII mitochondrial domain, morphological species 

identification, and location of collected fishes used for RAD sequencing and identification of 

species specific SNPs.  Identification number followed by (*) were identified as pure-species by 

allozyme and mitochondrial DNA analysis, but assigned as backcross hybrids upon SNP 

screening.  These four fishes then were removed before validation procedures. 

 
ID Allozyme ID mtDNA ID Field ID Location River Country Source 

TEST 002 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 004 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 008 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 009 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 010 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 013* H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 015 H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 017 H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 021 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 022 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 024* H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 028 H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 030 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 031 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 033 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 039 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 040 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 059 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 060 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 065 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 066 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 069 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 089 H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 092 H. nobilis H. nobilis H. nobilis Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 094* H. molitrix H. molitrix H. molitrix Alton Reach-Swan Lake Illinois River USA Lamer et al. 2010 

TEST 095 H. nobilis H. nobilis H. nobilis Pool 26-Ellis Bay Mississippi River USA Lamer et al. 2010 

TEST 097 H. nobilis H. nobilis H. nobilis Pool 26-Ellis Bay Mississippi River USA Lamer et al. 2010 

TEST 101 H. molitrix H. molitrix H. molitrix Pool 26-Ellis Bay Mississippi River USA Lamer et al. 2010 

TEST 108 H. molitrix H. molitrix H. molitrix Pool 26-Ellis Bay Mississippi River USA Lamer et al. 2010 

TEST 109 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 113 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 114 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 115 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 116 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 117* H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 118 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 119 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 120 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

TEST 121 H. molitrix H. molitrix H. molitrix Pool 26-Piasa Island Mississippi River USA Lamer et al. 2010 

CHINA 01 . . H. molitrix . Yangtze River China Shanghai Ocean University 

CHINA 02 . . H. molitrix . Yangtze River China Shanghai Ocean University 

CHINA 03 . . H. molitrix . Yangtze River China Shanghai Ocean University 

CHINA 20 . . H. molitrix . Yangtze River China Shanghai Ocean University 

CHINA 41 . . H. nobilis . Yangtze River China Shanghai Ocean University 

CHINA 42 . . H. nobilis . Yangtze River China Shanghai Ocean University 
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Table 1.2.  Summary statistics for RAD sequencing of 45 individuals. 

 

Description Quantity 

Mean number of RAD loci per individual 36,791 

Median depth 94 

Mean Number of Sequence Reads per Sample 5,346,527 

Total Number of Sequence Reads in Dataset 245,940,258 

 

 

Table 1.3.  Collection and characterization of putative H. nobilis, putative F1, putative H. 

molitrix, and putative pure-species identified as hybrids after SNP screening, and total 

morphologically identified putative pure-species for the screening panel used to validate species-

specific SNPs.  Numbers followed by (*) were identified as pure-species Asian carps at four 

allozyme loci and the COII mitochondrial domain (Lamer et al. 2010). 

 

Country Location H. nobilis F1 H. molitrix 
Hybrids 

identified 
Total 

China Amur River 8 . 8 3 16 

China Pearl River 6 . 10 0 16 

China Yangtze River 10 . 10 0 20 

United States Illinois River - Alton Reach 54* 5 15* 12 74 

United States Illinois River - LaGrange Reach 10 3 10 6 23 

United States Missouri River - Omaha 10 2 10 4 22 

United States Mississippi River - Pool 26 9* . 14* 2 23 

       

Total  107 10 74 27 194 
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Table 1.4.  NCBI accession number, unique assay number, H. molitrix species-diagnostic SNP, 

H. nobilis species-diagnostic SNP, Phred quality score, Number of RAD individuals used for 

SNP isolation, and the primer sequences with the species-informative SNPs enclosed within 

brackets. 

 

Assay 

# 

H. 

molitrix  

H. 

nobilis 

Quality 

Phred 

score 

RAD 

samples 
Primer sequence 

1 A G 228.37 43 

ACATTGAGCTGGGCTTTTCTCTCCTGCATACTGTGCATCACTCTCTGTAC[A/G] 

CACACGCAGTTTTCAGTACGGTAGGGTCGTGGAGCGTCAATGGCCACCAA 

4 G A 225.38 45 

TATTCTACCACAGCACAGCCTCAGACTGCCATCTACTATCAAGGCCAGCC[G/A] 

TGCCAGACCATCTATAGCATTCCTGCAGGCTACCCACAGACCAGCACTCC 

6 C G 224.44 43 

ATCTTACATGCCTGCAGGGATTCGGTAACACTCCCGATCTGGTTGACTTT[C/G] 

AGCAACAGGCAGTTGCAAGCCTTGTTCTCCACTGCATTAGCAATGCGTTT 

7 A G 222.8 44 

GATAAACCTAAGTGGTATGCACACCAGTTACAGCCAGTATTCTACCGTGT[A/G] 

TACGACGGAAACTCACGTTTGGCGGAGGCATTGAGTGGACCCCTGCAGGA 

8 A T 222.45 44 

GCACGCGGGTCTTTCACGACGGCTGTCTGCAGGAGATGGGCTGCCTGAGC[A/T] 

CTGAAGCCCTGCAGGAAATGAGAGAGACAGCCCCCACCACCACCGGCTGG 

9 A C 221.44 45 

CCCAGCTTGAGCTACAGGGCCTTCAAAGAGCACAGCAGCAGGGCCAGAGG[A/C] 

GAGAAGACGACCTGGCCCGAGCAAACCAGCGCCTCCAGGCTGACCCGCAA 

13 G A 219.64 45 

CCAAGAGCCAGTCAGAGACCAGCGCTGCCAACACCACCTAGAAACCACAC[G/A] 

CAAACATACAGACACACACACAATATCACAGCACTGTAAAACACAACAAT 

14 A G 219.44 43 

GAACTGAAGAACTGACCAGTCTTCACTTTGAACTTATGCTGCATGCAAGT[A/G] 

TCTCTCCATGTCTCTGTCACTATCCCATCACTGCATGTCACCTGCAGGCC 

16 T C 218.57 44 

CGCATCATACAAGTACAATACAACACGAACCTTCTGCATTCTGTGTAGAG[T/C] 

GTGTATCATCTGTGGAACTGTTTAAAGCTGCAGACATCCCCGCTTCTGTT 

17 C T 218.14 42 

AGAGAGGTCCCGAGCTGGGACTCCCTGCAGGATGGGGAGGATGCTCTGGA[C/T] 

GAGATGCTGCAGTACCTGGGATGCTCCAGCCCAGAGTGCCTACAGTGTAC 

18 G A 217.91 45 

TCGTCCTCTGAGACCAGGCAGTAAAAGTAGTAAAAGTCTGTGCGGGCGGC[G/A] 

TAGTTCCTTGAGCCAAGGTCAGACACATCTATCTCTGGGGGCTTGGGTTC 

20 T G 216.57 44 

TCCTGAGGACATCCTGCAGGAGCTGCTGGACGGCGAGAAGCTGTGACCGC[T/G] 

CGCGCTCAAAACACGCACCAAAGGGAGACTTCGATCGCCATCGAGTGCCA 

21 T C 216.35 43 

GGTTGTCCATAACCTCCATATGGACCACCTGGAGCTTGGCCCCCACCGTA[T/C] 

GGCGCTCCTGGTCTGGGTTGTCCATAAGACCCATATGGAACCCCTCCACC 

22 A G 215.93 44 

AGTGCATTGTTACCCCCACTGGCCATGCACAGTAAAGCTGAAAGTGTCGC[A/G] 

TCTGTCACCTCCCAGTGTAGTTTCAGCAGCACCATCGTCCATGTGGGGGA 

24 C T 215.42 45 

GTGGCACTGCGGGCACGGCAGGTTCTCATCGCTTCTCACCTTCCCTCATA[C/T] 

GAGCTGCGACACAATCAGGTGGAATCCATCTTCCTGTCCGCCATTGACAT 

26 C T 214.95 43 

AGAGAAATGAGGCGCTCTGCATCTGAGCAGGCACCCCATGTTCCTCAACA[C/T] 

GTTAACCTTATTAAGGAAACTCGCAGTAAGTCATTTGACTTCAGCAGTTT 

28 T C 214.72 43 

GCAGCCTTCATTCATTTCTATGGAGTGTCCAACCTGCAGGAGTTCCGCTA[T/C] 

GGCCTTGAGGGAGGCTGCACTGATGACACTCTCCTCTGAGAGCTCTACAA 

29 T C 214.71 45 

CCACTGCCACAGAGAGCTCCTCAGTGCCCCCTAAGAACAACCAGATGCTA[T/C] 

TAGAGTTTAATTTTGACGATGGAGCTGAAGTCAAGCGCAAACCTCCTCCA 

32 T C 213.7 44 

TCATTCGTCTTGCCTGGTGCCGTGCTCCTGCAGGCATCTTTTGCGTATGA[T/C] 

GGGCAGCGGGTGAGCCTCCGTGTTAAACACCCAGTCCTCAAGCGGCAGCA 

33 G A 213.51 45 

TCGGGAGCAGGGAAGAGCACTCTGGTGGAGTCTTTGAAGTGTGGCATCTT[G/A] 

CGGAGTTTCTTCAGGAGGAGAAGGACCAGGCTGACCAACCCTGTACGACA 

36 G C 212.93 44 

GTTCACATGACCGGAGCAATGGGTTGGTCATCCCTCTCACCTCATCTGCA[G/C] 

CAGGACTTCCTGGTCCACCTGGACCTCCAGGTAAAGCAGGTCCTCCTGGC 

38 T C 212.91 44 

GCAGGGGCGATCCGGGGCCGAGCCGCTCGTGTGGTGCACATTATTAATGC[T/C] 

GAGATGGAGAACTATGAACCTGGCGTTTACACTGAGCGTGTTCTCGAGTC 

40 A G 212.47 43 

GGTTCGCCGGGGCTGAACGGACGCTATATTTACCCATCGCTGCCCTACTC[A/G] 

CCAATCACCTCCCCTCACTCGTCTCCACGCCTCCCTCGAAGACCAACCGT 

41 T C 212.43 42 

CCAGGGAAGAAGAAGGTCCTGCAGGAGGCAGCACTGTCCCTTCTGAGGAG[T/C] 

GACAACACAGTGTTTGACAAGGCCCTGGTGCTCTGCCAGATGCACAACTT 

46 T C 211.32 44 

ATCCCTGAGAACACACACGTGGGTGTGCTATTCTCAATTCCTGTGGCCAC[T/C] 

GACAAGGATTCTGGAAGCAATGGCATCGCAGATTATGCGCTAACGACTGG 

47 C A 210.93 45 

CTGTTCAGACTGCAGCTTTTGGCACAGTCCGAGTACCGCCTGAGTGACGT[C/A] 

ATGAGGGAATCCCTCTCCCGAGACCCTCTGACGCCAGTGTTGACTGAGGA 

49 T G 210.4 42 

GTACGAACTGCAGATGAAGGTGTACAACAGCGCCGGACTAGCTGAGAAAC[T/G] 

AGTCAAATTTGCTACTCTGAACTACGACGGCAGCACCATTCCTCCGCTGG 

50 A C 210.09 44 

TGGCAGCCACTACTCCGGAAATACCAAATGCACCAGTTGCCCAGCAGTAT[A/C] 

CTCTTTCCAACTCCACTGATGGGATGACTTCTCGAGAGCAGCGGGTCTCA 

52 G T 209.49 43 

CCCAGCTGGCCAGGAGTGTACAGATTGAGTTTGTCTCTGATGGAAAGTCT[G/T] 

CTGAAAACTCTCCGTTACAACTTCATTAATGAAGCGCTCGACTTTGTGGG 

53 T G 209.44 43 

CGCTTCTGTCTGATCTCAGAGTGGGAGGAGCCATATTTCTCCTGCAGGTA[T/G] 

CGGTAGTGGAAGTTTGGGTACGGAGAGGGAGTCGGGAAGGAGCCGGATTT 

55 A G 208.6 45 

AGTCTAGACTGCATGAGGAGGCTCATAGATCAAGGAGTGGGCCTGGCACC[A/G] 

CACTCCTGTGTGGAAAGAACCATGGCCCGCCTGCAGGAGCTGCTCACTGT 

57 G C 207.87 45 

CCAGAGGATGTATGATATTGAAAATCACGCATAGTAATAGATCATAGTTA[G/C] 

AATGTTGCTTAATTTCATGGCCTTTGGATCAAAATAGACCTAAACCAGAG 

58 C A 207.61 44 

TGCTGGACACTCAGGGGCGGGATGTGGCCACTATCCTGCAGGTGGAGGAC[C/A] 

GGTTGCGGTACAGTTTAACACCTCGATACCGTCAGCTGCTCACGCACATC 

61 G A 207.24 42 

AGTTGTTTGGATCCTCTCTGGTCACTCAACAAAAGCTGAAACAAAACAAC[G/A] 

GAACTCTCTTTTACCTTCTCCGCCACAGGCAGTCCTCTTATGAGCTGCTT 
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Table 1.4. (continued) 
  

Assay 

# 

H. 

molitrix  

H. 

nobilis 

Quality 

Phred 

score 

RAD 

samples 
Primer sequence 

67 G A 206.31 42 

AGCTCAGATATCACATCCAGCATGACGCCCATCTGCCTCACCTGGTCCAA[G/A] 

TCTTCTGGCCGTGTGGCAGTGTACTTTGGAGGCCGCTATAAAGCCAACAC 

68 C T 206.16 45 

AAACTGTCTTTGGATGGCCAGAACATATACAACTCTTGCTGCACTTTGCG[C/T] 

ATTGACTTCTCCAAGCTGGTCAACCTGAACGTAAAATACAACAACGACAA 

71 G A 205.67 45 

AAAGGCTTTTTATTGTCCTGCTTCAAAAAGCTGGGCAGCTCTTCATCATC[G/A] 

TCCTGGTCCTCCTCCTGCATCAAGACAGATTGGTTAAGAGGATGAGGCTC 

74 C A 205.3 44 

CTCTCCACCAACATGGCCAACAGCACCGTCGTCCCTGGCAAAGTCCCAGG[C/A] 

ACCCCTGGACCTGCAGGGAGACTGAGTCCTGAAGGCACTCAGGTGCTCAG 

76 T A 204.63 41 

CGTGAGGGTTTTGTGACCATCTTCAAAGCCAGCAATGAGACCAAGGCTGC[T/A] 

CGCAGTTTGTACCACCTGCAGGCTGCGCACTGCGGCCCCCCTGCTGTGTC 

77 G A 204.28 43 

ACGTTGGGCACATTTCTCTCCAGAATTTCCCCGACCGTCACTAGCAGACC[G/A] 

GACCAGCGCAGGTTATAGTCTGGAGGAGTCAGTGACTGTGCCTGTTGTAC 

79 C T 204 43 

AACCGACCCCACCCAAGTGATCATCCACTCTTGTTTCTCTTCCTGGTGGG[C/T] 

GGGGTCACGCCATCGGAGCTCCGCCTCATTCGTGAAGTTGTCTCTAGCCA 

80 A C 204 44 

CGATCATCGGACATGGGCATCCAGGTGAGGCGACAAATGTTAGGTGACAC[A/C] 

AGGGAGACATTGGCTCGGCGTCTGGTCTCAATTGGTGGGATCATGTGGAC 

82 A G 203.74 43 

GACTGACATCGCCCAAAACTTGCCCAAAACATGCCCACAAAAAGGGCACT[A/G] 

AGCTGGTGGGAGGAAGAAGTCTATCAGTTATCTAGTCTTTTAGAGGGACA 

83 G T 203.25 44 

TGTGCCAATGTTTAATTCAGTCAAAGCTCAGAAAGAAGCAGGTCAATACA[G/T] 

TGTCACTGACCTTCCTTTTAGGACCGGTAGTCTTTTTTACTGTAGGGCTT 

85 A G 202.98 44 

CGGCCCTGCAGGAGAACCAAGAGCTCGAGAAACCCTCTCCGTGCCCTGGC[A/G] 

GCACGAGACGACCTCAGACAGGCTTATACTGAACAGAGACTGAACGTGGC 

87 C A 202.95 44 

ATACAAACACAAACTCTCACATCTCCAAATCAAGCCCTGAGCGCTCACTG[C/A] 

CTCAGCTCCTGAATGACATCCAGGCCTGCAGGTGGAAGTTTTTCCGCCCT 

92 T C 201.91 44 

CTGAGCAGCAACATCAGCGTTCTCCAGCAAGCCCTGCAGGAGATGGAAAC[T/C] 

GATGTTGACTATCTTTATACAGAGTATTACAAGAATATAAGTTCAGCAAG 

94 A G 201.36 44 

TCTCCCTGTCTTTATCCGTCTTTCTCTCTCCCAAGTCTGGCTGTGTGACC[A/G] 

TTTAAATGTTTTATTACCTGTTAGGGCCTATTTATACCTTGCCCTGGCAT 

95 G T 201.32 44 

TTCCTGCAGGAGGCGCTGAAGCTTCCCACCGCCGTGTATGAGGGGCCGTC[G/T] 

TTTGGCTACAAGGATCACTTTGCCAGATCCTGTTTTCCTCAACAAAAGAA 

97 T G 201.14 43 

GCCCAGGGCCTGCAGGCAAAGGACAAGACCGGCTCCAGCGACCCGTATGT[T/G] 

ACGGTGCAAGTAGGCAAGACCAAAAAACGAACCAAGACTATCTACGGCAA 

98 G A 201.02 43 

CTGCCCTCTCATTGGAGCTCAGCAGTGATGTCATTACCAGCCTGGACTTG[G/A] 

TTTTAGAAGGGCTCAATGGTCAGCTGCCCAACCTGGACCTGGCCAATCTC 

109 A G 200.14 44 

TGGATCTGCAGGAGGCATTTGATTCTCTCTCCTGGAGCCATGATGGCCGT[A/G] 

GTGAAAACACCTGACAGCATACCGGCCGCGAACAGCTGCGGATACGTCAG 

110 C T 200 44 

AAAGGGACCGTGTGCGAGAGCTTCGACACGGATGTCTTTGATGAAGAACT[C/T] 

GAAGAGGAACCTGCAGGTGCCACTGGCGGTGTGGACGGAGTTGAAACGGG 

113 C G 198.6 43 

TTCATTTATAATTCATATCAGGTGCACAGCATTTTACTCTCCATGGCAGA[C/G] 

GATTATAGAACAAACCTAAAGCGAAATCTGATATATTTCATTAAACATAT 

114 A T 198.53 45 

CTTCACAGAGAGATATTAGACGCCATTCCTGAAAACCCTTCCCAGCATGC[A/T] 

CCTCTGGTGTTCAAGAAGAAGAAACCCATCCCACTGAAACTCCTCACACC 

117 C T 198.11 44 

ATACGTCATTCGCCCGTGCGTATCACGTCATATCTGCACATAGAGAAAAA[C/T] 

AGCTTTAATTTAAGTTGCTTAAAATTGACTCCAAAACCTTTCAAAATAAT 

118 T C 198.05 43 

CCATTGAGGCAGAGGTACGGCCCACTAAACGTCAGTACCAAAATCAGCAC[T/C] 

TGTTTGTAGTCAAGACCACCACACGCATCTTCTACCTGCTGGCCAAAACA 
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Table 1.5.  SNP ID, Asian carp contig number in Accession no. SRP026178, ENSDART number 

(zebrafish genome), chromosome number (zebrafish genome), starting location of gene 

(zebrafish genome), ending location of gene (zebrafish genome).  A total of 28 SNPs aligned 

within coding regions of the zebrafish genome and corresponding ENSDART numbers allow 

access to detailed information on gene identification and function. 

 

SNP ID Contig ID ENSDART number 
Chromosome 

number Gene start Gene end 

1 contig144080 ENSDART00000142043 18 26623105 26659523 

6 contig109869 ENSDART00000103842 6 40592652 40600272 

13 contig176520 ENSDART00000077215 7 26226942 26266403 

17 contig189096 ENSDART00000112469 17 12631115 12785554 

18 contig141951 ENSDART00000089680 25 22830982 22869648 

20 contig133103 ENSDART00000031676 12 9323887 9333929 

21 contig108885 ENSDART00000032341 19 38669388 38683108 

28 contig164565 ENSDART00000131976 11 25733715 25748096 

32 contig137000 ENSDART00000006423 20 41052785 41287214 

36 contig182062 ENSDART00000063764 20 17080255 17082295 

40 contig185173 ENSDART00000114677 21 11558520 11585150 

41 contig139574 ENSDART00000052787 10 30642285 30659812 

47 contig103226 ENSDART00000112182 12 3498357 3531817 

50 contig115954 ENSDART00000113978 12 27982172 28001307 

53 contig178385 ENSDART00000091991 25 7815234 7842549 

55 contig124069 ENSDART00000135443 11 25754101 25785015 

61 contig100837 ENSDART00000145956 16 43777922 43797153 

67 contig169656 ENSDART00000125854 20 37407642 37494828 

71 contig105011 ENSDART00000085046 2 37170127 37182556 

74 contig126789 ENSDART00000076222 16 39234950 39388045 

77 contig167909 ENSDART00000065045 10 16194107 16215265 

82 contig165645 ENSDART00000145127 5 36025661 36160378 

83 contig109884 ENSDART00000086117 23 21318507 21408874 

92 contig168111 ENSDART00000114773 13 22759192 22786366 

  ENSDART00000026768 13 22696003 22760002 

109 contig140454 ENSDART00000059140 22 203830 208170 

113 contig153559 ENSDART00000106061 17 3050152 3076588 

114 contig181142 ENSDART00000044184 21 452743 479676 

118 contig109114 ENSDART00000136788 5 23674633 23692410 

  ENSDART00000099366 5 23674402 23719089 
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Figure 3.1.  Sampling locations of bighead carp (Hypophthalmichthys nobilis), silver carp (H. 

molitrix), and their hybrids.  Locations, labeled as in Table 3.2., are represented by pie graph 

showing the percentage of bighead carp (BHCP), silver carp (SVCP), and their hybrids for each 

location.  Size of each pie graph is proportionate to the total number of samples analyzed from 

each location. 
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Figure 3.2.  Bimodal distribution of bighead carp (Hypophthalmichthys nobilis), silver carp (H. 

molitrix), and their hybrids showing the total number of fish per hybrid category.  Hybrid 

classification is defined in Table 3.1. 
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Figure 3.3.  Percent bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) parentals 

and hybrids corresponding to birth year showing: a) “silver carp-like” hybrids (n=1661); and b) 

“bighead carp-like” hybrids (n=944). 
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Table 3.1.  Details of assignment criteria for bighead carp (Hypophthalmichthys nobilis) (BH), 

silver carp (H. molitrix) (SV) and their hybrids using NewHybrids and manual assignment at 57 

loci.  Shown are the homozygous and heterozygous probabilities for each hybrid category 

(Parental bighead carp (BH), parental silver carp (SV), parental bighead carp x parental silver 

carp (F1), F1 x F1 (F2), Parental x F1 (Bx-), Parental x Bx- (Bx2-), Parental x Bx2- (Bx3-), Parental 

x Bx3- (Bx4-), and a combination of both homozygous parent genotypes and heterozygous 

genotypes (Fx-).  The H-range is the number of heterozygous loci.  Also shown are some 

theoretical combinations of homozygous and heterozygous probabilities within the Fx category.  

 
NewHybrid 

category 
SV 

(AA) 
H 

(AB) 
BH 

(BB) 
H range NewHybrid category expanded 

BH Parental taxon  0 0 1 . BH 

SV Parental taxon 1 0 0 . SV 

F1 
First generation 

hybrid 
0 1 0 . (BHxSV) 

BxBH 
First generation 

backcross 
0 0.5 0.5 22-55 (BHx(BHxSV)) 

BxSV 
First generation 

backcross 
0.5 0.5 0 22-55 (SVx(BHxSV)) 

F2 
Second Generation 

hybrid 
0.25 0.5 0.25 . ((BHxSV)x(BHxSV)) 

Bx2BH 
Second Generation 

backcross 
0 0.25 0.75 13-21 (BHx(BHx(BHxSV))) 

Bx2SV 
Second Generation 

backcross 
0.75 0.25 0 13-21 (SVx(SVx(BHxSV))) 

Bx3BH 
Third Generation 

backcross 
0 0.125 0.875 6-12 (BHx(BHx(BHx(BHxSV)))) 

Bx3SV 
Third Generation 

backcross 
0.875 0.125 0 6-12 (SVx(SVx(SVx(BHxSV)))) 

Bx4BH 
Fourth Generation 

backcross 
0 0.0625 0.9375 1-5 (BHx(BHx(BHx(BHx(BHxSV))))) 

Bx4SV 
Fourth Generation 

backcross 
0.9375 0.0625 0 1-5 (SVx(SVx(SVx(SVx(BHxSV))))) 

FxSV       

 Bx3SV x Bx3SV 0.8789 0.1172 0.0039  ((SVx(SVx(SVx(BHxSV))))x(SVx(SVx(SVx(BHxSV))))) 

 Bx2SV x Bx3SV 0.8203 0.1719 0.0078  ((SVx(SVx(BHxSV)))x(SVx(SVx(SVx(BHxSV))))) 

 Bx2SV x Bx2SV 0.7656 0.2188 0.0156  ((SVx(SVx(BHxSV)))x(SVx(SVx(BHxSV)))) 

 BxSV x Bx3SV 0.7031 0.2813 0.0156  ((SVx(BHxSV))x(SVx(SVx(SVx(BHxSV))))) 

 BxSV x Bx2SV 0.6563 0.3125 0.0313  ((SVx(BHxSV))x(SVx(SVx(BHxSV)))) 

 BxSV x BxSV 0.5625 0.3750 0.0625  ((SVx(BHxSV))x(SVx(BHxSV))) 

FxBH       

 Bx3BH x Bx3BH 0.0039 0.1172 0.8789  ((BHx(BHx(BHx(BHxSV))))x(BHx(BHx(BHx(BHxSV))))) 

 Bx2BH x Bx3BH 0.0078 0.1719 0.8203  ((BHx(BHx(BHxSV)))x(BHx(BHx(BHx(BHxSV))))) 

 Bx2BH x Bx2BH 0.0156 0.2188 0.7656  ((BHx(BHx(BHxSV)))x(BHx(BHx(BHxSV)))) 

 BxBH x Bx3BH 0.0156 0.2813 0.7031  ((BHx(BHxSV))x(BHx(BHx(BHx(BHxSV))))) 

 BxBH x Bx2BH 0.0313 0.3125 0.6563  ((BHx(BHxSV))x(BHx(BHx(BHxSV)))) 

 BxBH x BxBH 0.0625 0.3750 0.5625  ((BHx(BHxSV))x(BHx(BHxSV))) 

BxBx       

 Bx3BH x Bx3SV 0.0586 0.8828 0.0586  ((BHx(BHx(BHx(BHxSV))))x(SVx(SVx(SVx(BHxSV))))) 

 Bx2BH x Bx3SV 0.1172 0.8281 0.0547  ((BHx(BHx(BHxSV)))x(SVx(SVx(SVx(BHxSV))))) 
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Table 3.2.  Details of bighead carp (Hypophthalmichthys nobilis) (BH) and silver carp (H. 

molitrix) (SV) samples used for mtDNA SNP discovery at the COII domain including the total 

number of each species and the number of total fish sequenced from each location.  Only 

parental fish homozygous at all 57 nuclear loci were used for mtDNA SNP discovery. 

 

Location BH SV  Total 

 n n  n 

Illinois River - Alton Reach (IALT) 4 .  4 

Illinois River - LaGrange Reach (ILAG) 10 8  18 

Illinois River - Peoria Reach (IPEO) . 10  10 

Illinois River - Marseilles Reach (IMAR) 8 10  18 

Mississippi River - Vicksburg, MS (MMS) 10 10  20 

Mississippi River - Kentucky (MKY) 5 10  15 

Mississippi River - Pool 26 (PL26) 10 10  20 

Mississippi River - Pool 20 (PL20) 10 10  20 

Missouri River - Omaha, NE (MOO) 8 10  18 

     

Total 65 78  143 
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Table 3.3.   Summary of the genotyping results after manual assignment and assignment using 

NewHybrids showing the total number and percentage of hybrid bighead (Hypophthalmichthys 

nobilis) and silver carp (H. molitrix) across categories (as defined in Table 3.1.) and locations.  

Also shown is the total number of hybrids (Total H) and percentage of hybrids per category 

across all the sampling locations, collectively.  

 

Location 

 

B
H

 

B
x
2
B

H
 

B
x
2
S

V
 

B
x
3
B

H
 

B
x
3
S

V
 

B
x
4
B

H
 

B
x
4
S

V
 

B
x
B

H
 

B
x
S

V
 

F
1
 

F
2
 

F
x
B

H
 

F
x
S

V
 

S
V

 

T
o

ta
l 

H
 

T
o

ta
l 

Illinois River -  
Alton Reach 

N 4 0 2 0 2 13 5 0 4 0 0 0 1 8 27 39 

(IALT) % 10.3 0.0 5.1 0.0 5.1 33.3 12.8 0.0 10.3 0.0 0.0 0.0 2.6 20.5 69.2 100 

                  

Illinois River - 
LaGrange Reach 

N 255 15 4 7 24 26 137 17 3 3 1 3 9 134 249 638 

(ILAG) % 40.0 2.4 0.6 1.1 3.8 4.1 21.5 2.7 0.5 0.5 0.2 0.5 1.4 21.0 39.0 100 

                  

Illinois River - 
Marseilles Reach 

N 128 6 19 16 45 29 134 19 11 10 2 1 20 105 312 545 

(IMAR) % 23.5 1.1 3.5 2.9 8.3 5.3 24.6 3.5 2.0 1.8 0.4 0.2 3.7 19.3 57.3 100 

                  

Illinois River - 
Peoria Reach 

N 0 0 0 0 2 0 35 0 0 0 0 1 0 38 38 76 

(IPEO) % 0.0 0.0 0.0 0.0 2.6 0.0 46.1 0.0 0.0 0.0 0.0 1.3 0.0 50.0 50 100 

                  

Mississippi River - 
Kentucky 

N 5 1 1 0 7 1 146 0 1 0 0 0 0 246 157 408 

(MKY) % 1.2 0.3 0.3 0.0 1.7 0.3 35.8 0.0 0.3 0.0 0.0 0.0 0.0 60.3 38.5 100 

                  

Mississippi River - 
Vicksburg, MS 

N 46 0 1 1 7 11 141 1 0 2 0 0 1 200 165 411 

(MMS) % 11.2 0.0 0.2 0.2 1.7 2.7 34.3 0.2 0.0 0.5 0.0 0.0 0.2 48.7 40.1 100 

                  

Missouri River - 
Omaha, NE 

N 92 0 0 0 5 10 26 3 2 3 0 1 1 37 51 180 

(MOO) % 51.1 0.0 0.0 0.0 2.8 5.6 14.4 1.7 1.1 1.7 0.0 0.6 0.6 20.6 28.4 100 

                  

Mississippi River - 
Pool 20 

N 23 1 1 0 7 28 37 1 0 0 0 0 0 38 75 136 

(PL20) % 16.9 0.7 0.7 0.0 5.2 20.6 27.2 0.7 0.0 0.0 0.0 0.0 0.0 27.9 55.2 100 

                  

Mississippi River - 
Pool 26 

N 121 4 6 2 10 57 72 4 0 3 4 2 6 74 170 365 

(PL26) % 33.2 1.1 1.6 0.6 2.7 15.6 19.7 1.1 0.0 0.8 1.1 0.6 1.6 20.3 46.6 100 

                  

                  

Total N 674 27 34 26 109 175 733 45 21 21 7 8 38 880 1244 2798 

 % 24.1 1.0 1.2 0.9 3.9 6.3 26.2 1.6 0.8 0.8 0.3 0.3 1.4 31.5 44.5 100 
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Table 3.4.  Summary of the mtDNA genotyping results according to hybrid category (as defined 

in Table 1) showing the number and percentage of fishes containing a mtDNA SNP for bighead 

(Hypophthalmichthys nobilis) (G) and silver carp (H. molitrix) (A) for each individual category 

genotyped at 57 nuclear SNP loci (n=730). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid 
category 

 

B
H

 

B
x2

B
H

 

B
x2

SV
 

B
x3

B
H

 

B
x3

SV
 

B
x4

B
H

 

B
x4

SV
 

B
xB

H
 

B
xS

V
 

F 1
 

F 2
 

Fx
B

H
 

Fx
SV

 

SV
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mtDNA 
genotype 

                 

Silver 
carp (A) 

N 0 6 33 7 105 5 82 28 17 13 3 3 33 148  483 

 % 0.0 23.0 100 27.0 100 7.5 100 67.0 94.0 62.0 75.0 38.0 100 100   

                  

Bighead 
carp (G) 

N 117 20 0 19 0 62 0 14 1 8 1 5 0 0  247 

 % 100 77 0 73 0 93 0 33 5.6 38 25 63 0 0   

Total N 117 26 33 26 105 67 82 42 18 21 4 8 33 148   

 % 16.0 3.6 4.5 3.6 14.0 9.2 11.0 5.8 2.5 2.9 0.6 1.1 4.5 20.0   
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Figure 4.1.  Spawning stage (Stage IV) gonad of female silver carp (Hypophthalmichthys 

molitrix) containing mature oocytes 
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Figure 4.2.  Simple linear regression plots of a.) log10 relative weight (Wr) and bighead carp 

(Hypophthalmichthys nobilis) (b’) species-specific allele frequency, and b.) log10 relative weight 

(Wr) and silver carp (H. molitrix) (a’) species-specific allele frequency.    Individuals with 

mtDNA SNP information are highlighted with blue circles for “G” (bighead carp species-specific 

mtDNA SNP) and red circles for “A” (silver carp species-specific mtDNA SNP). 
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Table 4.1.  Summary statistics of mean relative weight (Wr) (± S.D.) and mean gonadosomatic 

index (GSI) (± S.D.) ANOVA comparisons between bighead (Hypophthalmichthys nobilis) and 

silver carp (H. molitrix) parent and hybrid subgroupings.  Gonadosomatic index was tested as 

one pooled sample of all locations and Wr was tested at the Illinois River – Marseilles Reach 

location.   Asterisks represent significantly different values (α=0.05) within species (parent, early 

hybrid, and late hybrid). 

 
 Wr   GSI 

       

Group N Mean  Group N Mean 

BH 128 108.81 ± 9.61  BH 46 4.96 ± 2.78 

*earlyBH 29 94.69 ± 13.32  earlyBH 6 7.83 ± 3.18 

lateBH 54 105.23 ± 8.76  lateBH 10 5.50 ± 4.29 

SV 105 107.01 ± 9.47  SV 150 5.29 ± 3.48 

*earlySV 21 91.49 ± 13.07  earlySV 5 8.70 ± 1.79 

lateSV 219 105.91 ± 9.33  lateSV 152 5.26 ± 2.95 
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Table 4.2.  Chi-square results detailing the number and percent difference in spawning stage vs. 

non-spawning stage female gonads among bighead (Hypophthalmichthys nobilis) and silver carp 

(H. molitrix) parent and hybrid subgroupings.    A table of adjusted Bonferroni p-values for each 

comparison is listed, values in bold represent a significantly different comparison (α=0.05). 

 
 Parent Hybrid  Parent Hybrid   

 BH EarlyBH LateBH  SV EarlySV LateSV  Total 

Non-spawning 
stage 

248 23 88  176 12 184  731 

% 83.78 79.31 89.8  53.66 70.59 54.44   

          

Spawning stage 48 6 10  152 5 154  375 

% 16.22 20.69 10.2  46.34 29.41 45.56   

Total 296 29 98  328 17 338  1106 

% 27.11 2.65 8.98  30.04 1.55 30.95  100 

          

 X2 Bonferroni corrected p-value matrix 
BH 1 0.5368 0.1454  <0.0001 0.1583 <0.0001   

EarlyBH . 1 0.135  0.0077 0.5032 0.00095   
LateBH . . 1  <0.0001 0.0299 <0.0001   

SV . . .  1 0.1717 0.8401   
EarlySV . . .  . 1 0.1913   
LateSV . . .  . . 1   
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